Helsinki energy decision 2015

From Opasnet
Jump to: navigation, search
Main message:
Question:

Helsinki will make a large energy decision during fall 2015. it will impact energy production for decades. An important decision requires systematic information. How do we guarantee a continuous and sufficient supply of district heat and electricity in Helsinki around the year for the next fifty years in such a way that the impacts on costs, health, climate change, and sustainable growth are as beneficial as possible? How can decentralised energy production and energy efficiency renovations improve the situation? The latter question was asked by the City Council, and another assessment (coordinated by the city of Helsinki and Helen energy company) will answer that soon.

Answer:

National Institute for Health and Welfare (THL) performed an open assessment on the Opasnet web-workspace during summer and fall 2015 aiming at shared understanding. We utilised knowledge crystals, i.e. regurlarly updated collaborative online answers to specific research questions. Based on them, we built a model called Sofia to assess impacts and implementability of several different energy options in Helsinki. An assessment report| has been published in Finnish.

Sofia can estimate the building stock and energy consumption based on average energy efficiency, floor area, and ambient temperature. Sofia is an energy balance model that optimises costs of energy production while ensuring the supply of district heating in Helsinki for each day. The situation is followed from 1985 to 2065. Sofia looks also at other heat, fuel, and electric power consumption, but not those of industry and traffic.

Based on balanced energy production Sofia estimates the fuel and other costs and greenhouse gas and fine particle emissions from power plants and other energy processes. The model can assess several scenarios and thus compare the overall impacts of different actions, such as energy renovations or new power plants.

Sofia's main conclusion is that the energy solutions seem to fall into two categories: those that produce electric power as a side stream of district heat, like in Hanasaari coal plant and the suggested Vuosaari C biofuel plant; and those that do not produce or even consume a large amount of electricity, like decentralised biofuel heat plants or sea heat pumps. Based on current discussions, the self-sufficiency of electric power in Helsinki seems to be disappearing and probably changing into a deep dependency of outside electricity. The development of the Nordic electric market determines whether this will be a problem or not in the future.

Unfortunately, the electric market is under strong transition, and for example the wind power tariffes complicate the situation, making future predictions of this crucial issue even more difficult. Local heat production solutions are in a great need of a clear and systematic national electric policy. Otherwise, the previously very efficient combined heat and power production will be replaced with something much less efficient in Finland in the future.

If we forget the question about self-sufficiency of electric power and focus only on district heat, there are several cost-effective solutions available. Excess heat from different processes such as data centres or Neste oil refinery seem to be more cost-effective than e.g. Vuosaari C biofuel plant. Also small and large heat pumps that take heat from the environment are cost-effective. District heat from Loviisa 3 nuclear power plant is also cost-effective in our estimates, but we were not able to fully charaterise uncertainties in the investment cost; and we must remember that the decision to build or not to build the reactor is not in the hands of Helsinki.

A major problem with the process heat solutions is that they consume electric power exactly when the demand for power is the largest and price the highest. We were not able to assess the variability of the price of electricity in this assessment, but it is substantial and might change conclusions. Also for this reason, there is a need for a national energy balance model with hourly resolution including eletricity, industry, and traffic.

Health and climate impacts are important in every single option we looked at, together ranging between a fifth and a fourth of all costs, health and climate comprising a half of that each. Surprisingly, differences between policy options in this respect were small even if the reputation of the climate-friendliness of the options was very different. According to Sofia, this is due to several reasons. All large power plants filter fine particles out very effectively, and therefore there are no large differences in health impacts; a clear exception is small-scale wood burning in houses, which has several times larger health problems than any other option despite its marginal role in energy production. Also, the life cycle emissions of fine particles and greenhouse gases is also important: even if the direct emissions from a heat pump are zero, the electric power imported has produced emissions somewhere. Biofuels are considered climate neutral in emission trade, but they still produce emissions during their life cycle. Therefore, even a fuel switch does not produce the expected results.

Of course, the conclusions based on the model depend on the goodness of the data used. There are several uncertainties that should have been clarified had there been more time to work on the topic. Especially the fuel prices are very difficult to predict into the future. Also the fuel taxes are very high for some fuels but not for others. Effectively, the society decides, using taxes, which solutions make sense on the city level. This is a third reason why there should be a national, long-term, and clear energy policy - and tax policy supporting it - based on detailed, open energy balance modelling the best available information.


Scope

Question

Helsinki must be able to provide its residents with reliable, climate-friendly and cost-effective district heating and electricity every day all year round for the decades to come. When this energy balance is assessed, what options does Helsinki have for main energy solutions? What kind of impacts do these options have in terms of

  • climate mitigation,
  • stability (fuel availability etc),
  • cost to the city and citizens,
  • environment,
  • biofuel use,
  • national energy balance,
  • domestic source,
  • health?[1]

Intended use and users

Helsinki City Council will make a major decision in autumn 2015 about renovating old power plants, building a new one, or some other option replacing the need of the old power plants. Therefore, the City Council is the major user of the assessment. There are also secondary uses, such as informing national energy discussion and demonstrating the usefulness of an open combined energy balance and building model.

Participants

The work is coordinated by Jouni Tuomisto from THL / Impact Assessment Unit. Their motivation is to contribute to the decision-making process by bringing quantitative results to help assess the health and other impacts of different options in a transparent manner. Participants that we hope get involved when they are informed about the assessment include

  • THL: Jouni, Pauli, Teemu, Matleena, Julia
  • the City of Helsinki,
  • Helen energy company
  • Uusi energiapolitiikka group
  • Energiaremontti 2015

Boundaries

  • Time: 1985 - 2065
  • Energy need estimated for Helsinki.
  • Main focus is on local heat and power need. Energy balance estimated for Helsinki (electricity nationally).
  • Health impacts estimated for the regional area (ca. 300 km radius)
  • Impacts are assessed separately for the citizen, the city, Helen energy company, and Finland.
  • Transport is not looked at although it is an important energy consumer. This is because there is no interaction with heating except via city structure, and there are no resources to look at that in this assessment. Electric cars would have an interaction with electricity production, but that applies to the total electricity market area (Finland, partly Scandinavia) and is too complex to look at.

Decisions and scenarios

Main article: Helsinki energy decision options 2015

The two options in the official decision preparation as of May 2015 are i) Hanasaari shutdown and Vuosaari C, and ii) Hanasaari 40 bio and Salmisaari 40 bio. However, also other options have been suggested, and also they are evaluated at least superficially.

  1. BAU: Only small, essential renovations are made to current power plants to stay within new emission limits.
  2. Vuosaari C: A new power plant is built in Vuosaari with the capacity to burn 100 % wood-based fuel or any combination of wood-based fuels and coal.
  3. Hanasaari shutdown: The Hanasaari powerplant is shut down, demolished and apartment buildings are built in its place.
  4. Hanasaari 40 bio: The Hanasaari power plant is renovated to burn 40% wood-based fuels and 60% coal.
  5. Salmisaari 40 bio: The Salmisaari power plants are renovated to burn 40% wood-based fuels and 60% coal.
  6. Biofueled heat production units: Salmisaari oilfueled heat plant is shut down and new biofuel burning heat plants are built in Salmisaari and Vuorsaari.
  7. Loviisa nuclear CHP: A third nuclear power plant is built in Loviisa and the heat is used for district heating in Helsinki.
  8. Neste excess heat: The excess heat from the Neste's oil refinery in Porvoo is used for district heating in Helsinki.
  9. Decentralised energy production: The amount of decentralised energy production is increased as much as possible. Practically this means building a lot more solar panels, geothermal power, small-scale wood burning and wind mills around Helsinki.
  10. Large heat pumps: Big heat pumps are installed to draw heat from the Baltic sea or deep from the ground to produce district heating.
  11. Energy saving: With huge energy saving campaigns and by renovating buildings to be more energy efficient the amount of required energy is decreased significantly.
BAU Process heat Helen proposition Zero investment Carbon neutral 2050 CHP bio Distributed and sea
Biofuel heat plants No No Yes No Yes No No
CHP diesel generators No No No No No No Yes
Data center heat No Yes No No No No Yes
Deep-drill heat No No No No No No Yes
Hanasaari renovated for biofuels Yes No Yes No No No
Household air heat pumps Yes No Yes Yes Yes Yes Yes
Household air conditioning Yes No Yes Yes Yes Yes Yes
Household geothermal heat Yes No Yes Yes Yes Yes Yes
Household solar Yes No Yes Yes Yes Yes Yes
Katri Vala cooling Yes Yes Yes Yes Yes Yes Yes
Katri Vala heat Yes Yes Yes Yes Yes Yes Yes
Kellosaari back-up plant Yes Yes Yes Yes Yes Yes Yes
Kymijoki River's plants Yes Yes Yes Yes Yes Yes Yes
Loviisa nuclear heat No Yes No No No No No
Neste oil refinery heat No Yes No No Yes No No
Salmisaari A&B renovated for biofuels Yes Yes Yes No renovated for biofuels Yes
Sea heat pump No No No No Yes No Yes
Sea heat pump for cooling No No No No No No Yes
Small-scale wood burning No No No No No No No
Small gas heat plants Yes Yes Yes Yes No Yes Yes
Small fuel oil heat plants Yes Yes Yes Yes No Yes Yes
Suvilahti power storage Yes Yes Yes Yes Yes Yes Yes
Vanhakaupunki museum Yes Yes Yes Yes Yes Yes Yes
Vuosaari A Yes Yes Yes Yes No Yes Yes
Vuosaari B Yes Yes Yes Yes No Yes Yes
Vuosaari C biofuel No No No No Yes Yes No
Wind mills No No No No Yes Yes Yes



There are two policies that are currently implemented in the model. Each has several options:

  • Energy saving policy: take several actions that reduce the energy demand of the building stock.
    • BAU: business as usual, e.g. renovate 1 % of buildings per year if age > 30 a.
    • Energy saving moderate: renovate 2 %/a
    • Energy saving total: renovate 4 %/a, in addition increase the share of passive buildings up by 25 %-units since 2025, and add the share of sheath reform renovations up by 25 %-units.
    • WWF energy saving: energy saving according to WWF energy saving plan published 8th October 2015. It is based on efficient energy saving actions on buildings and consequental possibility to reduce coal energy. The savings are based on increased energy renovations (2.5 % per year), more effective renovations in 10 % of renovation cases, and demolition of old buildings (1 % per year).[2]
  • Plant policy: Choose an optimal selection of power plant infrastructure. These poicy options are the main focus of the assessment. There is a separate table describing these options.

Timing

The assessment started in May 2015. First draft results are expected before midsummer 2015. Final results should be available well before the City Council makes the decision in autumn, which means that results should exist by September 15th, 2015. There will be a public meeting to present the near-final results and discuss their implications. The meeting was held in THL, Helsinki on 11st September 2015 at noon. The final report was published on 27th October 2015.

Answer

Model with user interface

The final results results can be found from model run 1.11.2015. It is the final archived version in English. Objects were stored, so you can download the whole assessment to R in your own computer.

Choose power plants you want to build (or keep running if they already exist) (the default selection is Helen's bio). This will become PlantPolicy: Custom.:
Biofuel heat plants
CHP diesel generators
Data center heat
Deep-drill heat
Hanasaari
Household air heat pumps
Household air conditioning
Household geothermal heat
Katri Vala cooling
Katri Vala heat
Kellosaari back-up plant
Loviisa nuclear heat
Neste oil refinery heat
Salmisaari A&B
Salmisaari biofuel renovation
Sea heat pump
Sea heat pump for cooling
Small gas heat plants
Small fuel oil heat plants
Small-scale wood burning
Vuosaari A
Vuosaari B
Vuosaari C biofuel

Choose power plants to be renovated (PlantPolicy: Custom):
Hanasaari biofuel renovation

+ Show code


Results

Conclusions

See summary in the beginning.


Rationale

Causal diagram for the assessment.


Stakeholders

The impacts are assessed and valued from the point of view of the following stakeholders:

  • The city of Helsinki
  • Helen Oy energy company
  • A citizen of Helsinki
  • Finland
  • Global view

Dependencies

List of key pages used in model


Other models used in the Helsinki assessment (but are not in the core of this assessment)


Analyses

  • Cost-benefit analysis of different options. Costs considered: capital and operational costs of energy production, climate costs (CO2e emissions converted to euros), health (DALYs converted to euros).
  • Total capacity availability and feasibility (applies especially to decentralised option).
  • Temporal heat and power demand and supply (hourly resolution).

Indices

  • Temporal: Time (5-year observation periods)
  • Temperature (3-degree-Celsius intervals for ambient daily average temperatures. It is assumed that heating is not needed above 17 C and cooling is not needed below 24 C. Hot water need is independent of ambient temperature.
  • Decisions: EnergySavingPolicy contains options that reduce the energy need of the building stock and other consumption. PlantPolicy contains options about which energy plants to build (or demolish).
  • Stakeholder (Citizen, City, Helen, Finland)
  • Spatial: City area (summed up after energy need)
  • Health: Response (any disease that is linked to Exposure agents emitted)
  • Emission, exposure: Pollutant or Exposure agent (any agent that is emitted by energy production)
  • Energy production: Burner (type of burner used in the facility where energy is produced), Fuel (type of fuel used in energy production), Heating (type of heating in the building).
  • Buildings: Building [use type], Heating, Constructed, City area, Renovation, Efficiency.


Calculations

+ Show code


Preference order

This code should be used for new model runs. It is newer but not fully adjusted for its purpose yet.

+ Show code

  • Model run 22.10.2015 with updated fuel prices. This is NOT used for the assessment report, because the scenarios were based on the previous fuel prices.

This code was used for prioritizing before fuel prices were updated.

+ Show code

DALY shortcut

This code creates a ready-made DALYs estimate for 1 ug/m^3 PM2.5. It is much quicker to calculate health impacts of case-specific emissions with this ovariable, if there is a large emissions ovariable and if the exposure is such that proportionality can be assumed in health impacts.

+ Show code

See also

Helsinki energy decision 2015
In English
Assessment Main page | Helsinki energy decision options 2015
Helsinki data Building stock in Helsinki | Helsinki energy production | Helsinki energy consumption | Energy use of buildings | Emission factors for burning processes | Prices of fuels in heat production | External cost
Models Building model | Energy balance | Health impact assessment | Economic impacts
Related assessments Climate change policies in Helsinki | Climate change policies and health in Kuopio | Climate change policies in Basel
In Finnish
Yhteenveto Helsingin energiapäätös 2015 | Helsingin energiapäätöksen vaihtoehdot 2015 | Helsingin energiapäätökseen liittyviä arvoja | Helsingin energiapäätös 2015.pptx

Keywords

Energy, renewable energy, nuclear energy, fossil energy, wood pellets, power plants, district heating, decentralised energy production, centralised energy production, cost-effectiveness, Helsinki, climate change, health effects, fine particles, biofuels, energy saving.

References

  1. 1.0 1.1 1.2 Halme, Minna; Hukkinen, Janne; Korppi-Tommola, Jouko; Linnanen, Lassi; Liski, Matti; Lovio, Raimo; Lund, Peter; Luukkanen, Jyrki; Nokso-Koivisto, Oskari; Partanen, Jarmo; Wilenius, Markku. Kasvua ja työllisyyttä uudella energiapolitiikalla. Jyväskylän yliopiston julkaisuja 2014. [1]
  2. WWF. Helsingin energiapäätös. Energiansäästö on polttoainevaihtoehdoista paras. WWF, 8.10.2015 http://wwf.fi/mediabank/7784.pdf [2]
  3. Jáchym Judl, Sirkka Koskela, Timo Korpela, Niko Karvosenoja, Anna Häyrinen, Jari Rantsi. Net environmental impacts of low-share wood pellet co-combustion in an existing coal-fired CHP (combined heat and power) production in Helsinki, Finland. Energy 77 (2014) 844-851. doi:10.1016/j.energy.2014.09.068
  4. Sanni Väisänen: Greenhouse gas emissions from peat and biomass-derived fuels, electricity and heat — Estimation of various production chains by using LCA methodology

Related files