Energy balance: Difference between revisions
mNo edit summary |
|||
Line 813: | Line 813: | ||
) | ) | ||
objects.store(EnergyConsumerDemandTotal, EnergyFlowHeat, EnergyFlowOther, EnergyNetworkDemand, EnergyNetworkOptim, fuelUse) | EnergyNetworkCost <- Ovariable("EnergyNetworkCost", | ||
cat("Ovariables EnergyConsumerDemandTotal, EnergyFlowHeat, EnergyFlowOther, EnergyNetworkDemand, EnergyNetworkOptim and fuelUse stored.\n") | dependencies = | ||
data.frame( | |||
Name = c( | |||
"plantParameters", | |||
"EnergyNetworkOptim", | |||
"temperdays" | |||
), | |||
Ident = c( | |||
NA, | |||
"Op_en5141/EnergyNetworkOptim", # [[Energy balance]] | |||
NA | |||
) | |||
), | |||
formula = function(...) { | |||
oper <- plantParameters[plantParameters@output$Parameter == "Max" , colnames(plantParameters@output) != "Parameter"] | |||
result(oper)[result(oper) != 0] <- 1 | |||
oper <- plantParameters * oper | |||
# Take the first year when a plant is operated and put all investment cost there. | |||
investment <- oper[oper@output$Parameter == "Investment cost" , colnames(oper@output) != "Parameter"] | |||
investment <- investment[result(investment) > 0 , ] | |||
investment <- investment[order(investment@output$Time) , ] | |||
investment <- investment[!duplicated(investment@output[investment@marginal & colnames(investment@output) != "Time"]) , ] | |||
investment <- unkeep(investment, sources = TRUE) | |||
#investment <- oapply(investment, cols = "Plant", FUN = sum) | |||
maintenance <- oper[oper@output$Parameter == "Management cost" , colnames(oper@output) != "Parameter"] | |||
maintenance <- unkeep(maintenance, sources = TRUE) | |||
#maintenance <- oapply(maintenance, cols = c("Plant"), FUN = sum) | |||
operation <- EnergyNetworkOptim[EnergyNetworkOptim@output$Process_variable_name == "Operation cost" , ] | |||
operation <- operation * temperdays * 5 * 1E-6 # For 5-year periods, € -> M€ | |||
operation <- oapply(operation, cols = c("Temperature"), FUN = sum) | |||
operation <- unkeep(operation, cols = c("Process_variable_name", "Process_variable_type"), sources = TRUE, prevresults = TRUE) | |||
operation <- operation * Ovariable(output = data.frame(Plant = "Operation", Result = 1), marginal = c(TRUE, FALSE)) | |||
cost <- combine(investment, maintenance, operation) | |||
marginals <- character() | |||
for(i in colnames(cost@output)[cost@marginal]) { | |||
if(any(is.na(cost@output[[i]]))) marginals <- c(marginals, i) | |||
} | |||
if(length(marginals) > 0) { | |||
cost@output <- fillna(cost@output, marginals) | |||
warning(paste("In combine had to fillna marginals", marginals, "\n")) | |||
} | |||
return(cost) | |||
} | |||
) | |||
objects.store(EnergyConsumerDemandTotal, EnergyFlowHeat, EnergyFlowOther, EnergyNetworkDemand, EnergyNetworkOptim, fuelUse, EnergyNetworkCost) | |||
cat("Ovariables EnergyConsumerDemandTotal, EnergyFlowHeat, EnergyFlowOther, EnergyNetworkDemand, EnergyNetworkOptim, EnergyNetworkCost and fuelUse stored.\n") | |||
</rcode> | </rcode> | ||
Revision as of 21:41, 15 August 2015
Moderator:Jouni (see all) |
This page is a stub. You may improve it into a full page. |
Upload data
|
Main message: |
---|
Question:
What is energy balance and how is it modelled? Summing up the amount of energy produced and subtracting the amount of energy consumed within a time period gives the energy balance. Since the electricity grid and district heat network lack significant storage mechanics, the balance has to be virtually zero over short periods. When considering the balance of a particular area (e.g. Helsinki), we can make the assumption that electricity can be imported and exported in international markets. The energy in the district heat network, however, has to produced locally. This sets up the non-trivial problem of optimising production so that there are no significant deficits as well as minimising losses and maximising profits. This problem is solved (to some extent) by market forces in the real world. Our most recent energy balance model uses linear programming tools to solve an optimum for the activity of a given set of production units in simulated instances created by the main model. The main model is responsible for the decision making aspects, while the energy balance optimisation only functions as an approximation of real world market mechanics. The linear programming problem is set up as follows. For each production unit: let xi be activity of the plant. Lets also have variables yj for deficits and excesses for each type of energy produced. The objective function is the function we are optimising. Each production unit has a unit profit per activity denoted by ai which is determined by the amount of different input commodities (e.g. coal) per amount of different output commodities (i.e. electricity and heat) and their market prices. Also, lets say we want to make sure that district heat demand is always met when possible and have a large penalty factor for each unit of heat demand not met (1M€ in the model). In addition, it must be noted that excess district heat becomes wasted so it counts as loss. Let these deficit and excess related losses be denoted by bj. The whole objective function then becomes: sum(xiai) + sum(yjbj). The values of variables are constrained by equalities and inequalities: the sum of production of a commodity is equal to its demand minus deficit plus excess, activity is constrained by the maximum capacity and all variables are non-negative by definition. This can be efficiently solved by computers for each given instance. Production wind-up and wind-down is ignored, since time continuity is not considered. As a consequence fuel limits (e.g. diminishing hydropower capacity) are not modelled completely either. |
Question
How to calculate energy balances?
Answer
Press button to run the model. Get a free user account and edit the table below to change the model inputs. You may also copy the model to your own page for your own purposes. For examples, see e.g. Energy balance in Kuopio or Energy balance in Suzhou.
Rationale
Input
- Example table for making matrices from text format equations. CHPcapacity describes which of the piecewise linear equations should be used. Policy is a decision option that alters the outcome. Dummy is only for compatibility but it is not used.
Obs | CHPcapacity | Policy | Equation | Dummy | Description |
---|---|---|---|---|---|
1 | Biofuel | CHP renewable = CHP peat | 1 | Biofuel policy contains half biofuels, half peat | |
2 | BAU | CHP renewable = 89.24 | 1 | ||
3 | CHP peat + CHP renewable + CHP oil = CHP heat + CHP electricity | 1 | |||
4 | CHP peat = 90-98*CHP oil | 1 | |||
5 | CHP electricity = 0.689*CHP heat | 1 | |||
6 | CHP<1000 | H heat = 0.08*CHP heat | 1 | Small heat plants reflect the total heat need | |
7 | CHP>1000 | CHP heat + CHP electricity = 1000 | 1 | But production capacity of CHP may be overwhelmed, decoupling CHP heat and H heat. | |
8 | H biogas + H oil = H heat | 1 | |||
9 | H oil = 18.973*H biogas | 1 | |||
10 | Bought electricity + CHP electricity = Cons electricity | 1 | |||
11 | CHP heat + H heat = Cons heat | 1 | |||
12 | Cons electricity = 900-1100 | 1 | |||
13 | Cons heat = 900-1000 | 1 |
- Example table to describe the details about nonlinear equations.
Obs | critVar | critIndex | rescol | critLocLow | critLocHigh | critValue |
---|---|---|---|---|---|---|
1 | Cons heat | CHPcapacity | Result | CHP<1000 | CHP>1000 | 1080 |
- This table is fetched if there are no nonlinearities. Therefore, there is no need to copy it to the case study page.
Obs | critVar | critIndex | rescol | critLocLow | critLocHigh | critValue |
---|---|---|---|---|---|---|
1 |
- This table is fetched if there are no modelled upstream variables that would affect the equations.
Obs | energybalanceVars | Result |
---|---|---|
1 |
Output
Output is an ovariable with column energy.balanceVar for the solved variables, a result column, and all other indices in the balance object used as input. This method has been used in several cases:
- Energy balance in Kuopio
- Energy balance in Basel
- Energy balance in Stuttgart
- Energy balance in Suzhou
Data
- Energy balances are described as input = output on a coarse level (called classes) where the structure is the same or similar to the OECD energy balance tables. If possible, this is described on the Energy balance method level and it is shared by all cities.
- On more detailed (variable level in the matrix), the fraction of each variable of the total class are described separately. Fractions are city specific and they are described on city level in a separate table.
- Based on the fraction table, detailed equations with variables are created. The format will be fraction * class total = variable.
- The last fraction has zero degrees of freedom when the class total is given. However, it must have a variable and thus a row in the fraction table. The result for that variable is an empty cell (which results in NA).
- Unlike in the previous version, all variables are given either as values or equations, and the user interface is not used for BAU. In contrast, user interface or decision table may be used to derive values for alternative scenarios.
- To make this work, the city-specific fraction data must be defined as ovariable (so that it can be changed with a decision table), and also the energy balance method must be described asa ovariable. How are we going to make the two interplay, as we may want to have several cities?
- Define one city ovariable and evaluate energy balance with that. The ovariable has a generic name. Then, define a new city ovariable with the same name and re-evaluate the energy balance ovariable; this must be done so that the two cities are appended rather than replaced.
- city ovariables are appended first into a large fraction table, and then that is used to create the large energy balance matrix. ←--#: . This is clearly better. --Jouni 17:09, 21 February 2013 (EET) (type: truth; paradigms: science: defence)
- The city-specific ovariable may have Iter and other indices. A separate matrix is created and solved for each unique combination of indices. This makes it possible to have a very flexible approach.
- We should check if the energy balance matrix (see Matti's Excel) has city-specific equations. If possible, energy transformations are described as generic equations on the energy balance method.
- Structure of OECD Energy balance tables (data):
- Fuel (given as observation columns in OECD table)
- Activity (row in OECD table)
- Description
- Structure of the generic process table
- Columns for fraction table
- Class
- Item
- Result (fraction)
- Indices as needed
'Additional thoughts
Energy balance has these parts
- General table that describes balances and conversions from ole fuel to another.
- Items and sums Are defined at generic level.
- Data table that contains amounts from OECD table
- Fraction table thAt describes how detailSs Are derived from sums.
- if there Are additions to sta dard items, they descrided at city level in an addition table. It must have the struxture of the matrix table in long format.
- can nonlinearities ne handled simply by indices separating two linear parts of nonlinear equations?
Old description
⇤--#: . What are other energy sources,i wish it should be specific,how about air transport,does it included in the energy balance calculation? --Sam0911 16:29, 10 February 2013 (EET) (type: truth; paradigms: science: attack)
Use a table where different fuel types are columns and different stocks, energy production processes, or consumption types are rows called Energy accounts (Ene.account for short). See also an example File:Energy supply in Europe.xls. All Ene.accounts and fuel types used are listed on Energy consumption classes.
Coal and peat | Crude oil | Petrochemical products | Electricity | Heat | |
---|---|---|---|---|---|
Production and supply of primary energy | |||||
Production | 129 | ||||
Import | 28 | 63 | |||
Export | |||||
Conversion of primary energy to use | |||||
Transfers | |||||
Electricity plants | |||||
CHP plants | -129 | -28 | 61 | 96 | |
Final energy consumption | |||||
Industry | |||||
Road transport | 54 | ||||
Heating | 10 | 96 | |||
Other energy use | 9 | 51 |
Energy balance can be considered as double-entry bookkeeping. The production and conversion are typically credit (i.e., where the energy comes from), while consumption is debit (i.e., where the energy is used). In a typical case, both credit and debit are marked positive on the energy balance sheet. However, there are activities that convert one fuel to another, so that the energy is moved from one column to another. In this case, credit (the source) is marked negative and debit (the target) is marked positive. This is because the production and conversion rows together should reflect how much energy is actually available for final consumption. In other words, the sum of production and conversion rows should equal the sum of the consumption rows in every column.
Because production + conversion = consumption, also production = consumption - conversion. These equations are used to derive the supply that is needed to fulfil the demand.
There is an alternative to energy for calculating fuel use. It is based on the idea that for each heating type, there is a constant share of fuels used. For some heating types, this is generic and is shown on this page. For some others, the constant is case-specific and is determined on a case-specific page.
The table below contains connections of heating types and fuel usage in generic situations. There may be case-specific differences, which must be handled separately.
Obs | Heating | Burner | Fuel | Fraction | Description |
---|---|---|---|---|---|
1 | Wood | Household | Wood | 1 | |
2 | Oil | Household | Light oil | 1 | |
3 | Gas | Household | Gas | 1 | |
4 | Heating oil | Household | Light oil | 1 | |
5 | Coal | Household | Coal | 1 | |
6 | Other sources | Household | Other sources | 1 | |
7 | No energy source | Household | Other sources | 1 | |
8 | Geothermal | Grid | Electricity | 0.3 | Geothermal does not sum up to 1 because more heat is produced than electricity consumed. |
9 | Centrifuge, hydro-extractor | Grid | Electricity | 0.3 | Not quite clear what this is but presumably a heat pump. |
10 | Solar heater/ collector | Grid | Electricity | 0.1 | Use only; life-cycle impacts omitted. |
11 | Electricity | Grid | Electricity | 1 | |
12 | District | Undefined | Heat | 1 |
----#: . District removed from fuelShares/Heating, but it is not clear why it was there in the first place. For completion? But for what? --Jouni (talk) 13:41, 23 July 2015 (UTC) (type: truth; paradigms: science: comment)
- ⇤--#: . Still necessary in model. It completes the description of flows related to different heating methods. In a descriptor of flows, "fuel" is a slight misnomer and should be reclassified as a "commodity" or similar throughout the model. --Teemu R (talk) 12:23, 24 July 2015 (UTC) (type: truth; paradigms: science: attack)
Calculations
- Ovariable energyBalance below is used in Helsinki energy decision 2015. Prices of fuels in heat production are used as direct inputs in the optimising.
Newer version
Original version
Stored objects below used by Energy balance in Kuopio.
- Model version that was used to run results for ISEE2013.
How to give uncertain parameters?
- In equations, the content is interpreted only inside solveMatrix. Therefore, the typical approach where all unique index combinations are run one at a time does not work.
- There should be an update in parameter interpretation for terms with one entry only. It can no longer be based on as.numeric, if distributions (=text) is allowed.
- If it starts with [a-z.] it is a variable name.
- If it starts with [0-9<\\-] it is a parameter value.
- Instead of params[[i]] and [[vars]] vectors, a data.frame will be created with Result as the params column.
- The data.frame is then interpreted with N = N. If parameters are probabilistic, Iter column will appear.
- When all parameters have been interpreted, check if Iter exists.
- If Iter exists, make a for loop for all values of Iter.
- Create a matrix from the parameters and solve.
- Rbind the result to a data.frame with Iter.
- Return the output.
- Old code with an input table with columns Equation, Col, Result, Description: [1]
See also
- A new version of energy balance is using optim function. See Energy balance in Helsinki.
- Energiepolitik, bitte wenden! Neue Zürcher Zeitung 27.12.2014 by Giorgio V. Müller
- TIME: Electric Cars Will Change the Way You Power Your Home. How the homes of the future will generate and store their own electricity, turning your house into a mini-power plant.
- Energy supply in Europe
- media:Health impacts of energy production.ppt (a lecture that also contains explanation of an energy balance using matrices)
- Energy balance in Kuopio Describes the production and consumption of energy in Kuopio.
- Energy balance in Basel
- Energy balance in Stuttgart Describes the production and consumption of energy in Stuttgart.
- Energy balance in Suzhou Describes the production and consumption of energy in Suzhou.
- A previous method to calculate energy balances. Includes also other pages:
- Energy transformations Describes the inputs and outputs of energy processes. Shows, which other things change when some input or output is changed.
- Market allocation factor
- File:Energy supply in Europe.xls
- Climate change policies in Kuopio Indicates, which items change when a policy changes.
- Energiatase
- Kasvihuonekaasupäästöt/Kuopio
- Päätösanalyysia_ja_riskinhallintaa.ppt
- Urgenche
- http://www.energia.fi/sites/default/files/polttoaine-energian_maarittaminen_taselaskennan_avulla.pdf
- Uusiutuvan energian riskit selvitetään
- Urgenche: Mesap Planet energy model
- OpasnetUtils/Drafts
References