Exposure to PM2.5 in Finland: Difference between revisions

From Opasnet
Jump to navigation Jump to search
Line 3: Line 3:
[[Category: CLAIH]]
[[Category: CLAIH]]


==Question==


What is the exposure to fine particles (PM2.5) in the Finnish population? Only outdoor sources are considered here.


== Scope ==
==Answer==


Example run


== Rationale==


== Definition ==
===Dispersion modelling===


=== Data ===
<rcode name='disperse'>
library(OpasnetUtils)
library(OpasnetUtilsExt)
library(ggplot2)
library(rgdal)
library(maptools)
library(RColorBrewer)
library(classInt)
library(RgoogleMaps)


=== Causality ===
objects.latest("Op_en6007", code_name = "answer") # [[OpasnetUtils/Drafts]]


# GIS points for emissions.


districts <- tidy(opbase.data("Op_en3435.kuopio_city_districts"), widecol = "Location") # [[Exposure to PM2.5 in Finland]]
districts <- Ovariable("districts", data = data.frame(districts, Result = 1))


=== Unit ===
cat("PM2.5 intake fractions are being calculated for these locations.\n")


oprint(districts)


dis <- ova2spat(EvalOutput(districts), coord = c("E", "N"), proj4string = "+init=epsg:3067")


=== Formula ===
# Long-distance iF of PM2.5 for exposures beyond 10 km.


objects.latest("Op_en5813", code_name="initiate") # Long-distance iF for PM2.5 [[Intake fractions of PM]]
iF.PM2.5@data <- iF.PM2.5@data[iF.PM2.5@data$Subcategory == "Large power plants" , ]
iF.PM2.5@data <- iF.PM2.5@data[!colnames(iF.PM2.5@data) %in% c("Obs", "Geographical area", "Year", "PM type", "Source category", "Subcategory")]


# Calculate exposure concentration * population for a unit emission and all emission points.


== Result ==
out <- Ovariable()
for(i in 1:length(dis$City.area))
{
print(paste(i, "\n"))
temp <- GIS.Exposure(GIS.Concentration.matrix(
1,
LA = coordinates(dis)[i, 2],
LO = coordinates(dis)[i, 1],
N = 1
))
out@output <- rbind(out@output, data.frame(City.area = dis$City.area[i], temp@output))
}


out@output <- out@output[out@output$HAVAINTO == "VAESTO" , ]
out@marginal <- !grepl("Result$", colnames(out@output))
out <- unkeep(out, cols = c("KUNTA", "ID_NRO", "XKOORD", "YKOORD", "HAVAINTO", "dx", "dy"), sources = TRUE)


# Large matrix with detailed exposures in grids.
PILTTI.matrix <- out
# This produces an intake fraction if you give PM2.5 emissions as ton /a. GIS.Concentration.matrix takes ton /a and gives ug /m3.
# iF = intake (g /s) per emission (g /s) = concentration (ug /m3) * population (#) * breathing rate (m3 /s) / emission (g /s).
iF <- oapply(out, cols = c("LAbin", "LObin"), FUN = "sum", na.rm = TRUE)
iF <- iF * 20 / (24 * 3600) * 1E-6 # Divide by breathing rate 20 m3 /d and scale from ug to g to get intake fraction.
iF@output <- data.frame(Emissionheight = "Low", iF@output)
iF@output <- orbind(iF, data.frame(Emissionheight = "High", Result = 0))
iF@marginal <- c(TRUE, iF@marginal)
iF@output <- fillna(iF@output, marginals = colnames(iF@output)[iF@marginal])
iF <- iF + iF.PM2.5 * 1E-6 # Scale iF.PM2.5 from ppm to fractions.
emissionLocations <- Ovariable("emissionLocations", # [[Exposure to PM2.5 in Finland]]
ddata = 'Op_en3435',
subset = 'Emission locations'
)
emissionLocations@data$emissionLocationsResult <- 1
objects.store(PILTTI.matrix, iF, emissionLocations)
cat("Objects PILTTI.matrix, emissionLocations and iF saved.\n")
</rcode>
===Data===
'''Where and how do the emissions of heating take place?
<t2b name='Emission locations' index='Heating,Emission site,Emission height' obs='Dummy' unit='-'>
District|Haapaniemi|High|
Electricity|Haapaniemi|High|
Geothermal|Haapaniemi|High|
Oil|At site of consumption|Low|
Wood|At site of consumption|Low|
Gas|At site of consumption|Low|
</t2b>
==== Kuopio city districts ====
The exposures are calculated for the points listed below. The coordinates were visually checked from http://www.karttapaikka.fi
<t2b name='Kuopio city districts' index="City area,Location" locations="N,E" desc="Notes" unit= "ETRS-TM35FIN">
Itkonniemi|6974469|536853|
Männistö|6974607|535746|
Linnanpelto|6975014|535490|
Itkonniemi-Männistö-Linnanpelto|6974697|536030|
Niirala|6973403|532903|
Puijonlaakso|6975016|532625|
Rahusenkangas|6976558|534851|
Rahusenkangas-Kuivinniemi|6976558|534851|
Haapaniemi|6972486|534457|
Levänen|6970609|532094|
Saaristokaupunki|6968569|534906|
Jynkkä|6969424|533150|
Kettulanlahti|6977547|534958|
Petonen|6967759|532822|
Neulamäki|6973454|530655|
Kelloniemi|6976486|535799|
Särkiniemi|6971873|532398|
Särkilahti|6971406|531919|
Särkiniemi-Särkilahti|6971640|532159|
Saarijärvi|6975883|535098|
City center|6973853|535023|
Inkilänmäki|6976028|534434|
Inkilänmäki-Peipposenrinne|6975755|534453|
Pitkälahti|6963542|531123|
Julkula|6977523|532059|
Peipposenrinne|6975481|534472|
Päiväranta|6978479|533542|
Länsi-Puijo|6976667|532399|
</t2b>
===Dependencies===
* [[OpasnetUtils/Drafts]]
* [[Intake fractions of PM]]


==See also==
==See also==


* This data is used in [[Building stock in Kuopio]]


{{urgenche}}


==References==
==References==

Revision as of 14:48, 5 March 2014

Question

What is the exposure to fine particles (PM2.5) in the Finnish population? Only outdoor sources are considered here.

Answer

Example run

Rationale

Dispersion modelling

+ Show code

Data

Where and how do the emissions of heating take place?


Emission locations(-)
ObsHeatingEmission siteEmission heightDummy
1DistrictHaapaniemiHigh
2ElectricityHaapaniemiHigh
3GeothermalHaapaniemiHigh
4OilAt site of consumptionLow
5WoodAt site of consumptionLow
6GasAt site of consumptionLow

Kuopio city districts

The exposures are calculated for the points listed below. The coordinates were visually checked from http://www.karttapaikka.fi

Kuopio city districts(ETRS-TM35FIN)
ObsCity areaNENotes
1Itkonniemi6974469536853
2Männistö6974607535746
3Linnanpelto6975014535490
4Itkonniemi-Männistö-Linnanpelto6974697536030
5Niirala6973403532903
6Puijonlaakso6975016532625
7Rahusenkangas6976558534851
8Rahusenkangas-Kuivinniemi6976558534851
9Haapaniemi6972486534457
10Levänen6970609532094
11Saaristokaupunki6968569534906
12Jynkkä6969424533150
13Kettulanlahti6977547534958
14Petonen6967759532822
15Neulamäki6973454530655
16Kelloniemi6976486535799
17Särkiniemi6971873532398
18Särkilahti6971406531919
19Särkiniemi-Särkilahti6971640532159
20Saarijärvi6975883535098
21City center6973853535023
22Inkilänmäki6976028534434
23Inkilänmäki-Peipposenrinne6975755534453
24Pitkälahti6963542531123
25Julkula6977523532059
26Peipposenrinne6975481534472
27Päiväranta6978479533542
28Länsi-Puijo6976667532399

Dependencies

See also

Urgenche research project 2011 - 2014: city-level climate change mitigation
Urgenche pages

Urgenche main page · Category:Urgenche · Urgenche project page (password-protected)

Relevant data
Building stock data in Urgenche‎ · Building regulations in Finland · Concentration-response to PM2.5 · Emission factors for burning processes · ERF of indoor dampness on respiratory health effects · ERF of several environmental pollutions · General criteria for land use · Indoor environment quality (IEQ) factors · Intake fractions of PM · Land use in Urgenche · Land use and boundary in Urgenche · Energy use of buildings

Relevant methods
Building model · Energy balance · Health impact assessment · Opasnet map · Help:Drawing graphs · OpasnetUtils‎ · Recommended R functions‎ · Using summary tables‎

City Kuopio
Climate change policies and health in Kuopio (assessment) · Climate change policies in Kuopio (plausible city-level climate policies) · Health impacts of energy consumption in Kuopio · Building stock in Kuopio · Cost curves for energy (prioritization of options) · Energy balance in Kuopio (energy data) · Energy consumption and GHG emissions in Kuopio by sector · Energy consumption classes (categorisation) · Energy consumption of heating of buildings in Kuopio · Energy transformations (energy production and use processes) · Fuels used by Haapaniemi energy plant · Greenhouse gas emissions in Kuopio · Haapaniemi energy plant in Kuopio · Land use in Kuopio · Building data availability in Kuopio · Password-protected pages: File:Heat use in Kuopio.csv · Kuopio housing

City Basel
Buildings in Basel (password-protected)

Energy balances
Energy balance in Basel · Energy balance in Kuopio · Energy balance in Stuttgart · Energy balance in Suzhou


References