Climate change policies and health in Kuopio: Difference between revisions
mNo edit summary |
|||
(116 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
[[op_fi:Kuopion ilmastopolitiikka ja terveys]] | |||
[[Category:Kuopio]] | |||
[[Category:Climate change]] | |||
[[Category:Urgenche]] | [[Category:Urgenche]] | ||
{{assessment|moderator=Jouni| | {{assessment|moderator=Jouni}} | ||
{{summary box | |||
|question = What are the most beneficial ways from public health point of view to reduce GHG emissions in Kuopio? | |||
|answer = The target of 40 % GHG reduction seems realistic due to reforms in Haapaniemi power plant, assuming that GHG emissions for wood-based fuel is 0. Life-cycle impacts of the wood-based fuel have not yet been estimated.}} | |||
<nowiki> | |||
{{#display_map: | |||
62.900223, 27.637482, Kuopio | |||
| zoom = 11 | |||
}} | |||
</nowiki> | |||
==Scope== | ==Scope== | ||
Line 8: | Line 22: | ||
What are potential climate policies that reach the greenhouse emission targets in the city of Kuopio for years 2010-2030? What are their effects on health and well-being, and what recommendations can be given based on this? The national greenhouse emission target is to reduce greenhouse gas emissions by 20 % between 1990 and 2020; the city of Kuopio has its own, more ambitious target of 40 % for the same time period. | What are potential climate policies that reach the greenhouse emission targets in the city of Kuopio for years 2010-2030? What are their effects on health and well-being, and what recommendations can be given based on this? The national greenhouse emission target is to reduce greenhouse gas emissions by 20 % between 1990 and 2020; the city of Kuopio has its own, more ambitious target of 40 % for the same time period. | ||
{| class="wikitable collapsible collapsed" | |||
!Details of scoping | |||
|---- | |||
| | |||
===Boundaries=== | ===Boundaries=== | ||
* Time: Year 2010 - 2030 | * Time: Year 2010 - 2030 | ||
* Spatial: Activities in Kuopio, Finland. Health and well-being effects due to policies anywhere, e.g. fine particle emissions in Kuopio increase cardiovascular mortality all over Finland. | * Spatial: Activities in Kuopio, Finland. Health and well-being effects due to policies anywhere, e.g. fine particle emissions in Kuopio increase cardiovascular mortality all over Finland. | ||
===Scenarios=== | |||
* See climate scenarios from [[Climate change policies in Kuopio]]. | |||
===Intended users=== | ===Intended users=== | ||
Line 22: | Line 44: | ||
* Main participants: | * Main participants: | ||
** City of Kuopio: Erkki Pärjälä, | ** City of Kuopio: Erkki Pärjälä, Arja Asikainen | ||
** [[THL]]: Marjo Niittynen, Jouni Tuomisto, Matti Jantunen. | ** [[THL]]: Marjo Niittynen, Jouni Tuomisto, Matti Jantunen. | ||
* Other participants: | * Other participants: | ||
Line 29: | Line 51: | ||
** Other Urgenche research groups | ** Other Urgenche research groups | ||
** Other Urgenche cities | ** Other Urgenche cities | ||
|} | |||
==Answer== | ==Answer== | ||
*[http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=xUA9zDXiadLXxi60 Results from an assessment model run] 10.6.2015. | |||
*{{#l:Urgenche building model run for Kuopio.pdf}} | |||
===Conclusions=== | |||
The target of 40 % GHG reduction seems realistic due to reforms in Haapaniemi power plant, assuming that GHG emissions for wood-based fuel is 0. Life-cycle impacts of the wood-based fuel have not yet been estimated. | |||
===Results=== | ===Results=== | ||
=== | ==== Model version 2 ==== | ||
:''This model version was used to produce the corrected manuscript in July 2015. | |||
* [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=5YrOTNdv6hO2Gg92 Model run 21.7.2015] runs to the end but emissions are too large exp for wood after 1980. | |||
* [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=CKE08J9mOmLlbtoi Model run 22.7.2015] Bugs with fuelShares fixed. Now results are similar to the ones in the manuscript. Except that health impacts are 2-3 times higher, only partly due to higher wood burning in the 2000's. | |||
* [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=iWTbYNM9MZOeQ0P7 Model run 23.7.2015] archived version. Also renovationShares and changeBuildings data corrected. | |||
* [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=PWq7mHEWjyFReXDV Model run 24.7.2015] archived version. This was used for the manuscript. | |||
<rcode graphics=1 store0 variables="name:server|type:hidden|default:TRUE"> | |||
### THIS CODE IS FROM PAGE [[Climate change policies and health in Kuopio]] (Op_en5461, code_name = "") | |||
library(OpasnetUtils) | |||
library(ggplot2) | |||
### Technical parameters | |||
openv.setN(0) # use medians instead of whole sampled distributions | |||
objects.latest("Op_en6007", code_name = "answer") # [[OpasnetUtils/Drafts]] findrest | |||
BS <- 24 # base_size = font sixe in graphs | |||
figstofile <- FALSE | |||
saveobjects <- FALSE | |||
finnish <- FALSE | |||
suomenna <- function(ova) { | |||
if(class(ova) == "ovariable") out <- ova@output else out <- ova | |||
if("Heating" %in% colnames(out)) { | |||
out$Heating <- as.factor(out$Heating) | |||
levels(out$Heating)[levels(out$Heating) == "District heating"] <- "District" | |||
} | |||
if("Response" %in% colnames(out)) { | |||
out$Response <- as.factor(out$Response) | |||
levels(out$Response)[levels(out$Response) == "Cardiopulmonary mortality"] <- "Cardiopulmonary" | |||
} | |||
if("Pollutant" %in% colnames(out)) { | |||
out$Pollutant <- as.factor(out$Pollutant) | |||
levels(out$Pollutant)[levels(out$Pollutant) == "CO2trade"] <- "CO2official" | |||
} | |||
out$Time <- as.numeric(as.character(out$Time)) | |||
return(out) | |||
} | |||
obstime <- Ovariable("obstime", data = data.frame(Obsyear = factor(seq(1920, 2050, 10), ordered = TRUE), Result = 1)) | |||
## Additional index needed in followup of ovariables efficiencyShares and stockBuildings | |||
year <- Ovariable("year", data = data.frame( | |||
Constructed = factor( | |||
c("1799-1899", "1900-1909", "1910-1919", "1920-1929", "1930-1939", "1940-1949", | |||
"1950-1959", "1960-1969", "1970-1979", "1980-1989", "1990-1999", | |||
"2000-2010", "2011-2019", "2020-2029", "2030-2039", "2040-2049" | |||
), | |||
ordered = TRUE | |||
), | |||
Time = c(1880, 1910 + 0:14 * 10), | |||
Result = 1 | |||
)) | |||
###################### Decisions | |||
decisions <- opbase.data('Op_en5461', subset = "Decisions") # [[Climate change policies and health in Kuopio]] | |||
DecisionTableParser(decisions) | |||
# Remove previous decisions, if any. | |||
forgetDecisions <- function() { | |||
for(i in ls(envir = openv)) { | |||
if("dec_check" %in% names(openv[[i]])) openv[[i]]$dec_check <- FALSE | |||
} | |||
return(cat("Decisions were forgotten.\n")) | |||
} | |||
forgetDecisions() | |||
############################ IMPORT DATA AND MODELS | |||
objects.latest("Op_en5417", code_name = "initiate") # [[Population of Kuopio]] | |||
# population: City_area | |||
objects.latest("Op_en5932", code_name = "initiatetest") # [[Building stock in Kuopio]] Building ovariables: | |||
# buildingStock: Building, Constructed, City_area | |||
# rateBuildings: Age, (RenovationPolicy) | |||
# renovationShares: Renovation | |||
# construction: Building | |||
# constructionAreas: City_area | |||
# buildingTypes: Building, Building2 | |||
# heatingShares: Building, Heating, Eventyear | |||
# heatingSharesNew: Building2, Heating | |||
# eventyear: Constructed, Eventyear | |||
###################### Actual building model | |||
# The building stock is measured as m^2 floor area. | |||
objects.latest("Op_en6289", code_name = "buildingstest") # [[Building model]] # Generic building model. | |||
###################### Energy and emissions | |||
objects.latest("Op_en5488", code_name = "energyUseAnnual") # [[Energy use of buildings]] energyUse | |||
objects.latest("Op_en5488", code_name = "efficiencyShares") # [[Energy use of buildings]] | |||
objects.latest("Op_en2791", code_name = "emissionstest") # [[Emission factors for burning processes]] | |||
objects.latest("Op_en2791", code_name = "emissionFactors") # [[Emission factors for burning processes]] | |||
objects.latest("Op_en7328", code_name = "emissionLocations") # [[Kuopio energy production]] | |||
objects.latest("Op_en7328", code_name = "fuelShares") # [[Kuopio energy production]] | |||
objects.latest("Op_en5141", code_name = "fuelUse") # [[Energy balance]] | |||
## Exposure | |||
objects.latest("Op_en5813", code_name = "exposure") # [[Intake fractions of PM]] uses Humbert iF as default. | |||
###################### Health assessment | |||
objects.latest('Op_en2261', code_name = 'totcases') # [[Health impact assessment]] totcases and dependencies. | |||
objects.latest('Op_en5461', code_name = 'DALYs') # [[Climate change policies and health in Kuopio]] DALYs, DW, L | |||
frexposed <- 1 # fraction of population that is exposed | |||
bgexposure <- 0 # Background exposure to an agent (a level below which you cannot get in practice) | |||
BW <- 70 # Body weight (is needed for RR calculations although it is irrelevant for PM2.5) | |||
##################### CALCULATIONS | |||
renovationRate <- EvalOutput(renovationRate) * 10 # Rates for 10-year periods | |||
renovationRate@marginal[colnames(renovationRate@output) == "Age"] <- TRUE | |||
renovationShares <- EvalOutput(renovationShares) | |||
colnames(renovationShares@output)[colnames(renovationShares@output) == "Startyear"] <- "Obsyear" | |||
stockBuildings <- EvalOutput(stockBuildings) | |||
stockBuildings <- oapply(stockBuildings, cols = c("City_area"), FUN = sum) | |||
changeBuildings <- EvalOutput(changeBuildings) | |||
changeBuildings <- oapply(changeBuildings, cols = c("City_area"), FUN = sum) | |||
buildings <- EvalOutput(buildings) | |||
buildings@output$RenovationPolicy <- factor( | |||
buildings@output$RenovationPolicy, | |||
levels = c("BAU", "Active renovation", "Effective renovation"), | |||
ordered = TRUE | |||
) | |||
buildings@output$EfficiencyPolicy <- factor( | |||
buildings@output$EfficiencyPolicy, | |||
levels = c("BAU", "Active efficiency"), | |||
ordered = TRUE | |||
) | |||
energyUse <- EvalOutput(energyUse) | |||
fuelUse <- EvalOutput(fuelUse) | |||
fuelUse <- fuelUse * 1E-3 *3600 # kWh -> MJ | |||
emissions <- EvalOutput(emissions) | |||
population <- 1E+5 # stockBuildings is using another population to divide floor area into City areas. | |||
exposure <- EvalOutput(exposure) | |||
exposure@output <- exposure@output[exposure@output$Area == "Average" , ] # Kuopio is an average area, | |||
# rather than rural or urban. | |||
totcases <- EvalOutput(totcases) | |||
totcases <- oapply(totcases, cols = c("Age", "Sex"), FUN = sum) | |||
DALYs <- EvalOutput(DALYs) | |||
###################### GRAPHS AND OUTPUTS | |||
bui <- suomenna(oapply(buildings * 1E-6, cols = c("City_area", "buildingsSource"), FUN = sum)) | |||
ggplot(subset(bui, RenovationPolicy == "BAU" & EfficiencyPolicy == "BAU"), aes(x = Time, weight = buildingsResult, fill = Heating)) + geom_bar(binwidth = 5) + | |||
theme_gray(base_size = BS) + | |||
labs( | |||
title = "Building stock in Kuopio", | |||
x = "Time", | |||
y = "Floor area (M m2)" | |||
) | |||
if(figstofile) ggsave("Figure3.eps", width = 8, height = 7) | |||
ggplot(bui, aes(x = Time, weight = buildingsResult, fill = Building))+geom_bar()+facet_grid(Efficiency~Heating) | |||
ggplot(subset(bui, EfficiencyPolicy == "BAU"), aes(x = Time, weight = buildingsResult, fill = Renovation)) + | |||
geom_bar(binwidth = 5) + | |||
facet_grid(. ~ RenovationPolicy) + theme_gray(base_size = BS) + | |||
labs( | |||
title = "Building stock in Kuopio by renovation policy", | |||
x = "Time", | |||
y = "Floor area (M m2)" | |||
) | |||
ggplot(subset(bui, RenovationPolicy == "BAU"), aes(x = Time, weight = buildingsResult, fill = Efficiency)) + geom_bar(binwidth = 5) + | |||
facet_grid(. ~ EfficiencyPolicy) + theme_gray(base_size = BS) + | |||
labs( | |||
title = "Building stock in Kuopio by efficiency policy", | |||
x = "Time", | |||
y = "Floor area (M m2)" | |||
) | |||
ggplot(subset(bui, RenovationPolicy == "BAU" & EfficiencyPolicy == "BAU"), aes(x = Time, weight = buildingsResult, fill = Building)) + geom_bar(binwidth = 5) + | |||
theme_gray(base_size = BS) + | |||
labs( | |||
title = "Building stock in Kuopio", | |||
x = "Time", | |||
y = "Floor area (M m2)" | |||
) | |||
ggplot(subset(suomenna(energyUse), EfficiencyPolicy == "BAU"), aes(x = Time, weight = energyUseResult * 1E-6, fill = Heating)) + geom_bar(binwidth = 5) + | |||
facet_wrap( ~ RenovationPolicy) + theme_gray(base_size = BS) + | |||
labs( | |||
title = "Energy used in heating in Kuopio", | |||
x = "Time", | |||
y = "Heating energy (GWh /a)" | |||
) | |||
if(figstofile) ggsave("Figure4.eps", width = 11, height = 7) | |||
ggplot(suomenna(energyUse), aes(x = Time, weight = energyUseResult * 1E-6, fill = Heating)) + geom_bar(binwidth = 5) + | |||
facet_grid(EfficiencyPolicy ~ RenovationPolicy) + theme_gray(base_size = BS) + | |||
labs( | |||
title = "Energy used in heating in Kuopio", | |||
x = "Time", | |||
y = "Heating energy (GWh /a)" | |||
) | |||
emis <- suomenna(truncateIndex(emissions, cols = "Fuel", bins = 5)) | |||
ggplot(subset(emis, EfficiencyPolicy == "BAU" & RenovationPolicy == "BAU" & Pollutant != "CO2eq"), aes(x = Time, weight = emissionsResult, fill = Fuel)) + geom_bar(binwidth = 5) + | |||
facet_grid(Pollutant ~ FuelPolicy, scale = "free_y") + theme_gray(base_size = BS) + | |||
labs( | |||
title = "Emissions from heating in Kuopio", | |||
x = "Time", | |||
y = "Emissions (ton /a)" | |||
) | |||
if(figstofile) ggsave("Figure5.eps", width = 8, height = 7) | |||
ggplot(subset(emis, EfficiencyPolicy == "BAU" & RenovationPolicy == "BAU"), aes(x = Time, weight = emissionsResult, fill = Fuel)) + geom_bar(binwidth = 5) + | |||
facet_grid(Pollutant ~ ., scale = "free_y") + theme_gray(base_size = BS) +#FuelPolicy | |||
labs( | |||
title = "Emissions from heating in Kuopio", | |||
x = "Time", | |||
y = "Emissions (ton /a)" | |||
) | |||
ggplot(subset(emis, EfficiencyPolicy == "BAU" & FuelPolicy == "BAU"), aes(x = Time, weight = emissionsResult, fill = Emission_site)) + geom_bar(binwidth = 5) + | |||
facet_grid(Pollutant ~ RenovationPolicy, scale = "free_y") + theme_gray(base_size = BS) + | |||
labs( | |||
title = "Emissions from heating in Kuopio", | |||
x = "Time", | |||
y = "Emissions (ton /a)" | |||
) | |||
ggplot(subset(emis, EfficiencyPolicy == "BAU" & FuelPolicy == "BAU"), aes(x = Time, weight = emissionsResult, fill = Fuel)) + geom_bar(binwidth = 5) + | |||
facet_grid(Pollutant ~ RenovationPolicy, scale = "free_y") + theme_gray(base_size = BS) + | |||
labs( | |||
title = "Emissions from heating in Kuopio", | |||
x = "Time", | |||
y = "Emissions (ton /a)" | |||
) | |||
ggplot(subset(suomenna(exposure), RenovationPolicy == "BAU" & EfficiencyPolicy == "BAU" & FuelPolicy == "BAU"), aes(x = Time, weight = exposureResult, fill = Heating)) + | |||
geom_bar(binwidth = 5) + facet_grid(Area ~ Emission_height) + theme_gray(base_size = BS) + | |||
labs( | |||
title = "Exposure to PM2.5 from heating in Kuopio", | |||
x = "Time", | |||
y = "Average PM2.5 (µg/m3)" | |||
) | |||
ggplot(subset(suomenna(exposure), EfficiencyPolicy == "BAU"), aes(x = Time, weight = exposureResult, fill = Heating)) + geom_bar(binwidth = 5) + facet_grid(FuelPolicy ~ RenovationPolicy) + theme_gray(base_size = BS) + | |||
labs( | |||
title = "Exposure to PM2.5 from heating in Kuopio", | |||
x = "Time", | |||
y = "Average PM2.5 (µg/m3)" | |||
) | |||
ggplot(subset(suomenna(totcases), EfficiencyPolicy == "BAU" & FuelPolicy == "BAU"), aes(x = Time, weight = totcasesResult, fill = Heating))+geom_bar(binwidth = 5) + | |||
facet_grid(Response ~ RenovationPolicy) + | |||
theme_gray(base_size = BS) + | |||
labs( | |||
title = "Health effects of PM2.5 from heating in Kuopio", | |||
x = "Time", | |||
y = "Health effects (deaths /a)" | |||
) | |||
cat("Total DALYs/a by different combinations of policy options.\n") | |||
dal <- subset(suomenna(DALYs), Response == "Total mortality") | |||
oprint(aggregate(dal["DALYsResult"], by = dal[c("Time", "EfficiencyPolicy", "RenovationPolicy", "FuelPolicy")], FUN = sum)) | |||
ggplot(subset(dal, FuelPolicy == "BAU"), aes(x = Time, weight = DALYsResult, fill = Heating))+geom_bar(binwidth = 5) + | |||
facet_grid(EfficiencyPolicy ~ RenovationPolicy) + | |||
theme_gray(base_size = BS) + | |||
labs( | |||
title = "Health effects in DALYs of PM2.5 from heating in Kuopio", | |||
x = "Time", | |||
y = "Health effects (DALY /a)" | |||
) | |||
ggplot(subset(dal, Time == 2030), aes(x = RenovationPolicy, weight = DALYsResult, fill = Heating))+geom_bar() + | |||
facet_grid(EfficiencyPolicy ~ FuelPolicy) + | |||
theme_gray(base_size = BS) + | |||
labs( | |||
title = "Health effects in DALYs of PM2.5 from heating in Kuopio 2030", | |||
x = "Biofuel policy in district heating", | |||
y = "Health effects (DALY /a)" | |||
) | |||
######## Buildings in Kuopio on map | |||
if(FALSE){ | |||
# Calculate locations for Kuopio districts | |||
temp <- buildings | |||
temp@output <- subset(temp@output, | |||
Time == 2030 & EfficiencyPolicy == "BAU" & RenovationPolicy == "BAU" | |||
) | |||
temp <- unkeep(temp, sources = TRUE, prevresults = TRUE) | |||
temp <- oapply(temp, cols = c("Building", "Heating", "Efficiency", "Renovation"), FUN = sum) | |||
####!------------------------------------------------ | |||
districts <- tidy(opbase.data("Op_en5932.kuopio_city_districts"), widecol = "Location") # [[Building stock in Kuopio]] | |||
####i------------------------------------------------ | |||
colnames(districts) <- gsub("[ \\.]", "_", colnames(districts)) | |||
districts <- Ovariable("districts", data = data.frame(districts, Result = 1)) | |||
temp <- temp * districts | |||
MyRmap( | |||
ova2spat( | |||
temp, | |||
coord = c("E", "N"), | |||
proj4string = "+init=epsg:3067" | |||
), # National Land Survey uses EPSG:3067 (ETRS-TM35FIN) | |||
plotvar = "Result", | |||
legend_title = "Floor area", | |||
numbins = 8, | |||
pch = 19, | |||
cex = 2 | |||
) | |||
} | |||
if(saveobjects) { | |||
objects.put(list = ls()) | |||
cat(c("All objects archived. Write down the key of the run to retrieve them with objects.get. Objects: ", | |||
ls(), "\n")) | |||
} | |||
</rcode> | |||
==== Sensitivity analysis ==== | |||
* [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=1zu5BF0w5a3miRtv Sensitivity analysis 26.7.2015] with 750 iterations | |||
<rcode label="Run sensitivity analysis" graphics=1 store=0 variables=" | |||
name:num|description:How many iterations? (For more, run on your own computer)|type:slider|options:1;100;1|default:10 | |||
"> | |||
### THIS CODE IS FROM PAGE [[Climate change policies and health in Kuopio]] (Op_en5461, code_name = "") | |||
library(OpasnetUtils) | |||
library(ggplot2) | |||
### Technical parameters | |||
openv.setN(num) | |||
#rm(list = ls()) # Remove existing objects (necessary on your own computer) | |||
saveobjects <- FALSE | |||
objects.latest("Op_en6007", code_name = "answer") # [[OpasnetUtils/Drafts]] findrest | |||
obstime <- Ovariable("obstime", data = data.frame(Obsyear = factor(seq(2010, 2030, 10), ordered = TRUE), Result = 1)) | |||
## Additional index needed in followup of ovariables efficiencyShares and stockBuildings | |||
year <- Ovariable("year", data = data.frame( | |||
Constructed = factor( | |||
c("1799-1899", "1900-1909", "1910-1919", "1920-1929", "1930-1939", "1940-1949", | |||
"1950-1959", "1960-1969", "1970-1979", "1980-1989", "1990-1999", | |||
"2000-2010", "2011-2019", "2020-2029", "2030-2039", "2040-2049" | |||
), | |||
ordered = TRUE | |||
), | |||
Time = c(1880, 1910 + 0:14 * 10), | |||
Result = 1 | |||
)) | |||
###################### Decisions | |||
decisions <- opbase.data('Op_en5461', subset = "Decisions") # [[Climate change policies and health in Kuopio]] | |||
DecisionTableParser(decisions) | |||
# Remove previous decisions, if any. | |||
forgetDecisions <- function() { | |||
for(i in ls(envir = openv)) { | |||
if("dec_check" %in% names(openv[[i]])) openv[[i]]$dec_check <- FALSE | |||
} | |||
return(cat("Decisions were forgotten.\n")) | |||
} | |||
forgetDecisions() | |||
############################ IMPORT DATA AND MODELS | |||
objects.latest("Op_en5417", code_name = "initiate") # [[Population of Kuopio]] | |||
objects.latest("Op_en5932", code_name = "initiatetest") # [[Building stock in Kuopio]] Building ovariables: | |||
objects.latest("Op_en6289", code_name = "buildingstest") # [[Building model]] # Generic building model. | |||
###################### Energy and emissions | |||
objects.latest("Op_en5488", code_name = "energyUseAnnual") # [[Energy use of buildings]] energyUse | |||
objects.latest("Op_en5488", code_name = "efficiencyShares") # [[Energy use of buildings]] | |||
objects.latest("Op_en2791", code_name = "emissionstest") # [[Emission factors for burning processes]] | |||
objects.latest("Op_en2791", code_name = "emissionFactors") # [[Emission factors for burning processes]] | |||
objects.latest("Op_en7328", code_name = "emissionLocations") # [[Kuopio energy production]] | |||
objects.latest("Op_en7328", code_name = "fuelShares") # [[Kuopio energy production]] | |||
objects.latest("Op_en5141", code_name = "fuelUse") # [[Energy balance]] | |||
## Exposure and health assessment | |||
objects.latest("Op_en5813", code_name = "exposure") # [[Intake fractions of PM]] uses Humbert iF as default. | |||
objects.latest('Op_en2261', code_name = 'totcases') # [[Health impact assessment]] totcases and dependencies. | |||
objects.latest('Op_en5461', code_name = 'DALYs') # [[Climate change policies and health in Kuopio]] DALYs, DW, L | |||
##################### CALCULATIONS | |||
constructionAreas <- EvalOutput(constructionAreas) | |||
constructionAreas@output$City_area <- "City centre"# We are not interested in locations in this analysis. | |||
constructionAreas <- oapply(constructionAreas, cols = "", FUN = sum) | |||
renovationRate <- EvalOutput(renovationRate) * 10 # Rates for 10-year periods | |||
renovationShares <- EvalOutput(renovationShares) | |||
stockBuildings <- EvalOutput(stockBuildings) | |||
stockBuildings@output$City_area <- "City centre" | |||
stockBuildings@output$Building <- "Apartment houses" | |||
stockBuildings <- oapply(stockBuildings, cols = c(""), FUN = sum) | |||
changeBuildings <- EvalOutput(changeBuildings) | |||
changeBuildings@output$City_area <- "City centre" | |||
changeBuildings@output$Building <- "Apartment houses" | |||
changeBuildings@output <- changeBuildings@output[changeBuildings@output$EfficiencyPolicy == "BAU" , ] | |||
changeBuildings <- oapply(changeBuildings, cols = c(""), FUN = sum) | |||
buildings <- EvalOutput(buildings) | |||
buildings@output <- buildings@output[buildings@output$Time == "2030" , ] | |||
energyUse <- EvalOutput(energyUse) | |||
energyUse <- oapply(energyUse, cols = c( | |||
"Efficiency", | |||
"Renovation" | |||
), FUN = sum) | |||
fuelUse <- EvalOutput(fuelUse) | |||
fuelUse <- fuelUse * 1E-3 *3600 # kWh -> MJ | |||
fuelUse <- oapply(fuelUse, cols = c( | |||
"Time" | |||
), FUN = sum) | |||
emissions <- EvalOutput(emissions) | |||
emissions <- oapply(emissions, cols = c( | |||
"Fuel", | |||
"City_area", | |||
"Emission_site", | |||
"Heating" | |||
), FUN = sum) | |||
population <- 1E+5 # stockBuildings is using another population to divide floor area into City areas. | |||
exposure <- EvalOutput(exposure) | |||
exposure@output <- exposure@output[exposure@output$Area == "Average" , ] # Kuopio is an average area, | |||
# rather than rural or urban. | |||
exposure <- oapply(exposure, cols = c( | |||
"Emission_height", | |||
"Area" | |||
), FUN = sum) | |||
totcases <- EvalOutput(totcases) | |||
totcases <- oapply(totcases, cols = c("Age", "Sex"), FUN = sum) | |||
DALYs <- EvalOutput(DALYs) | |||
cost <- Ovariable("cost", | |||
dependencies = data.frame(Name = c("DALYs", "emissions")), | |||
formula = function(...) { | |||
dals <- DALYs | |||
dals@output <- dals@output[dals@output$Time == "2030" , ] | |||
dals <- oapply(DALYs, INDEX = c("EfficiencyPolicy", "RenovationPolicy", "FuelPolicy", "Iter"), FUN = sum) | |||
emi <- emissions | |||
emi@output <- emi@output[emi@output$Pollutant == "CO2direct" & emi@output$Time == "2030" , ] | |||
emi <- oapply(emissions, INDEX = c("EfficiencyPolicy", "RenovationPolicy", "FuelPolicy", "Iter"), FUN = sum) | |||
cost <- dals * 50000 + emi * 15 | |||
bau <- cost | |||
bau@output <- subset(bau@output, FuelPolicy == "BAU" & RenovationPolicy == "BAU" & EfficiencyPolicy == "BAU") | |||
bau <- unkeep(bau, cols = c( "EfficiencyPolicy", "RenovationPolicy", "FuelPolicy"), prevresults = TRUE) | |||
bau <- bau * Ovariable( | |||
output = data.frame(Objective = c("Direct", "BAU comparison"), Result = c(0, 1)), | |||
marginal = c(TRUE, FALSE) | |||
) | |||
cost <- cost - bau | |||
return(cost) | |||
} | |||
) | |||
t1 <- subset(construction@output, Building == "Apartment houses") | |||
t2 <- subset(efficiencyRatio@output, Efficiency == "New") | |||
t3 <- subset(efficiencyShares@output, Efficiency == "New" & Time == "2030" & EfficiencyPolicy == "BAU") | |||
t4 <- subset(emissionFactors@output, Fuel == "Peat" & Pollutant == "PM2.5") | |||
t5 <- subset(emissionFactors@output, Fuel == "Peat" & Pollutant == "CO2direct") | |||
t6 <- subset(energyFactor@output, Building == "Apartment houses" & Heating == "District") | |||
t7 <- subset(ERF@output, Exposure_agent == "PM2.5" & Response == "Total mortality") | |||
t8 <- subset(heatingShares@output, Heating == "District" & Building == "Apartment houses" & Time == "2030") | |||
t9 <- subset(renovationShares@output, RenovationPolicy == "Active renovation" & Renovation == "Sheath reform" & Obsyear == "2030") | |||
testvariable <- Ovariable("testvariable", data = data.frame( | |||
Iter = c( | |||
t1$Iter, | |||
t2$Iter, | |||
t3$Iter, | |||
t4$Iter, | |||
t5$Iter, | |||
t6$Iter, | |||
t7$Iter, | |||
t8$Iter, | |||
t9$Iter | |||
), | |||
Variable = c( | |||
rep("Construction of apartment houses", openv$N), | |||
rep("Efficiency ratio", openv$N), | |||
rep("Efficiency shares", openv$N), | |||
rep("PM2.5 emission factor", openv$N), | |||
rep("CO2 emission factor", openv$N), | |||
rep("Energy factor of apartment houses", openv$N), | |||
rep("Exposure-response funtion of PM2.5", openv$N), | |||
rep("Future heating shares", openv$N), | |||
rep("Shares of renovation types", openv$N) | |||
), | |||
Result = c( | |||
t1$constructionResult, | |||
t2$efficiencyRatioResult, | |||
t3$efficiencySharesResult, | |||
t4$emissionFactorsResult, | |||
t5$emissionFactorsResult, | |||
t6$energyFactorResult, | |||
t7$ERFResult, | |||
t8$heatingSharesResult, | |||
t9$renovationSharesResult | |||
) | |||
)) | |||
tornado <- Ovariable("tornado", | |||
dependencies = data.frame(Name = c("cost", "testvariable")), | |||
formula = function(...) { | |||
test <- cost * testvariable | |||
indices <- unique(test@output[test@marginal & ! colnames(test@output) %in% "Iter"]) | |||
out <- data.frame() | |||
for(i in 1:nrow(indices)) { | |||
temp <- merge(test, indices[i,])@output | |||
temp <- cor( | |||
temp[[paste(cost@name, "Result", sep = "")]], | |||
temp[[paste(testvariable@name, "Result", sep = "")]], | |||
method = "spearman" | |||
) | |||
out <- rbind(out, data.frame(indices[i,], Result = temp)) | |||
} | |||
return(out) | |||
} | |||
) | |||
tornado <- EvalOutput(tornado) | |||
ggplot(tornado@output, aes(x = Variable, y = tornadoResult, colour = Objective)) + | |||
geom_point(position = "jitter", size = 2)+coord_flip() + theme_gray(base_size = 24) + | |||
labs( | |||
title = "Importance diagram with direct or incremental cost", | |||
y = "Spearman correlation vs. cost", | |||
x = "Uncertain input variable to correlate" | |||
) | |||
cortable <- tornado@output | |||
# Remove those that actually are not probabilistic | |||
cortable <- cortable[!cortable$Variable %in% c("CO2 emission factor", "Energy factor of apartment houses") , ] | |||
cortable <- reshape( | |||
cortable, | |||
v.names = "tornadoResult", | |||
timevar = "Objective", | |||
idvar = c("FuelPolicy", "RenovationPolicy", "EfficiencyPolicy", "Variable"), | |||
drop = c("costSource", "testvariableSource", "tornadoSource"), | |||
direction = "wide" | |||
) | |||
cat("Spearman correlations between the outcome (cost) and probabilistic input variables. Cost is either A) direct cost or B) incremental compared with BAU.\n") | |||
oprint(cortable) | |||
if(saveobjects) { | |||
objects.put(list = ls()) | |||
cat(c("All objects archived. Write down the key of the run to retrieve them with objects.get. Objects: ", | |||
ls(), "\n")) | |||
} | |||
</rcode> | |||
==== Model version 1 ==== | |||
:''This model version was used to produce the submitted manuscript in spring 2015. | |||
[[heande:Kuopio housing]] | |||
; Calculate building stock into the future | |||
* The dynamics is calculated by adding building floor area at time points greater than construction year, and by subtracting when time point is greater than demolition year. This is done by building category, not individually. | |||
* Also the renovation dynamics is built using event years: at an event, a certain amount of floor area is moved from one energy efficiency category to another. | |||
* Full data are stored in the ovariables. Before evaluating, extra columns and rows are removed. The first part of the code is about this. | |||
* [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=s3zYXviOuNZtzMZz Full model run with corrected table 13th March 2015] | |||
* [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=Tm0DmRTpr2qTAaVW Full model run 23 Feb 2015] | |||
* [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=CcSsz4RJAZFaAAmE Old example model run] (running the model takes more than 6 min, so use this ready-made result) | |||
<rcode graphics=1 store=0 variables="name:server|type:hidden|default:TRUE"> | |||
### THIS CODE IS FROM PAGE [[Climate change policies and health in Kuopio]] (Op_en5461, code_name = "") | |||
# Siirrä Kuopion-datat kässäristä linkin taakse Opasnettiin | |||
# KÄssäriin vain yhteenvetotaulukko joka kaupungista. | |||
# Mieti mitä sanotaan sisäilmasta. Perusmalli toimii ilmankin, ja Matin nostama miljoonan sisäilman hankaluus pitäisi lähinnä keskustella. Käytetäänkä ylileveitä jakaumia? | |||
# Onko järkeä yhdistää kaupungit? Silloin tulisi NA:ta eri päätösten kohdalle, ja tämä pitäisi huomioida kuvissa (muutenkin kannattaisi slaissata data ennen kuvien piirtämistä). | |||
# Tarkista iF jota käytetään: Mikä on iF-summary? | |||
library(OpasnetUtils) | |||
library(ggplot2) | |||
library(rgdal) | |||
library(maptools) | |||
library(RColorBrewer) | |||
library(classInt) | |||
#library(OpasnetUtilsExt) | |||
library(RgoogleMaps) | |||
openv.setN(0) # use medians instead of whole sampled distributions | |||
objects.latest("Op_en6007", code_name = "answer") # [[OpasnetUtils/Drafts]] findrest | |||
obstime <- data.frame(Startyear = (192:205) * 10) # Observation years must be defined for an assessment. | |||
## Additional index needed in followup of ovariables efficiencyShares and stockBuildings | |||
year <- Ovariable("year", data = data.frame( | |||
Constructed = factor( | |||
c("1799-1899", "1900-1909", "1910-1919", "1920-1929", "1930-1939", "1940-1949", | |||
"1950-1959", "1960-1969", "1970-1979", "1980-1989", "1990-1999", | |||
"2000-2010", "2011-2019", "2020-2029", "2030-2039", "2040-2049" | |||
), | |||
ordered = TRUE | |||
), | |||
Time = c(1880, 1905 + 0:14 * 10), | |||
Result = 1 | |||
)) | |||
BS <- 24 | |||
heating_before <- FALSE | |||
efficiency_before <- TRUE | |||
figstofile <- FALSE | |||
###################### Decisions | |||
decisions <- opbase.data('Op_en5461', subset = "Decisions") # [[Climate change policies and health in Kuopio]] | |||
DecisionTableParser(decisions) | |||
# Remove previous decisions, if any. | |||
rm( | |||
"buildings", | |||
"stockBuildings", | |||
"changeBuildings", | |||
"efficiencyShares", | |||
"energyUse", | |||
"heatingShares", | |||
"renovationShares", | |||
"renovationRate", | |||
"fuelShares", | |||
"year", | |||
envir = openv | |||
) | |||
############################ City-specific data | |||
####!------------------------------------------------ | |||
objects.latest("Op_en5417", code_name = "initiate") # [[Population of Kuopio]] | |||
# population: City_area | |||
objects.latest("Op_en5932", code_name = "initiate") # [[Building stock in Kuopio]] Building ovariables: | |||
# buildingStock: Building, Constructed, City_area | |||
# rateBuildings: Age, (RenovationPolicy) | |||
# renovationShares: Renovation | |||
# construction: Building | |||
# constructionAreas: City_area | |||
# buildingTypes: Building, Building2 | |||
# heatingShares: Building, Heating, Eventyear | |||
# heatingSharesNew: Building2, Heating | |||
# eventyear: Constructed, Eventyear | |||
# efficiencyShares: Time, Efficiency | |||
renovationRate <- EvalOutput(renovationRate) * 10 # Rates for 10-year periods | |||
#################### Energy use (needed for buildings submodel) | |||
####!------------------------------------------------ | |||
objects.latest("Op_en5488", code_name = "initiate") # [[Energy use of buildings]] | |||
# energyUse: Building, Heating | |||
# efficiencyShares: Efficiency, Constructed | |||
# renovationRatio: Efficiency, Building2, Renovation | |||
####i------------------------------------------------ | |||
###################### Actual building model | |||
# The building stock is measured as m^2 floor area. | |||
####!------------------------------------------------ | |||
objects.latest("Op_en6289", code_name = "initiate") # [[Building model]] # Generic building model. | |||
# buildings: formula-based | |||
# heatingEnergy: formula-based | |||
####i------------------------------------------------ | |||
buildings <- EvalOutput(buildings) | |||
buildings@output$RenovationPolicy <- factor( | |||
buildings@output$RenovationPolicy, | |||
levels = c("BAU", "Active renovation", "Effective renovation"), | |||
ordered = TRUE | |||
) | |||
buildings@output$EfficiencyPolicy <- factor( | |||
buildings@output$EfficiencyPolicy, | |||
levels = c("BAU", "Active efficiency"), | |||
ordered = TRUE | |||
) | |||
bui <- oapply(buildings * 1E-6, cols = c("City_area", "buildingsSource"), FUN = sum)@output | |||
ggplot(subset(bui, RenovationPolicy == "BAU" & EfficiencyPolicy == "BAU"), aes(x = Time, weight = buildingsResult, fill = Heating)) + geom_bar(binwidth = 5) + | |||
theme_gray(base_size = BS) + | |||
labs( | |||
title = "Building stock in Kuopio", | |||
x = "Time", | |||
y = "Floor area (M m2)" | |||
) | |||
if(figstofile) ggsave("Figure3.eps", width = 8, height = 7) | |||
ggplot(subset(bui, EfficiencyPolicy == "BAU"), aes(x = Time, weight = buildingsResult, fill = Renovation)) + | |||
geom_bar(binwidth = 5) + | |||
facet_grid(. ~ RenovationPolicy) + theme_gray(base_size = BS) + | |||
labs( | |||
title = "Building stock in Kuopio by renovation policy", | |||
x = "Time", | |||
y = "Floor area (M m2)" | |||
) | |||
ggplot(subset(bui, RenovationPolicy == "BAU"), aes(x = Time, weight = buildingsResult, fill = Efficiency)) + geom_bar(binwidth = 5) + | |||
facet_grid(. ~ EfficiencyPolicy) + theme_gray(base_size = BS) + | |||
labs( | |||
title = "Building stock in Kuopio by efficiency policy", | |||
x = "Time", | |||
y = "Floor area (M m2)" | |||
) | |||
ggplot(subset(bui, RenovationPolicy == "BAU" & EfficiencyPolicy == "BAU"), aes(x = Time, weight = buildingsResult, fill = Building)) + geom_bar(binwidth = 5) + | |||
theme_gray(base_size = BS) + | |||
labs( | |||
title = "Building stock in Kuopio", | |||
x = "Time", | |||
y = "Floor area (M m2)" | |||
) | |||
###################### Energy and emissions | |||
####!------------------------------------------------ | |||
objects.latest("Op_en2791", code_name = "initiate") # [[Emission factors for burning processes]] | |||
# emissionFactors: Burner, Fuel, Pollutant | |||
# fuelShares: Heating, Burner, Fuel | |||
####i------------------------------------------------ | |||
heatingEnergy <- EvalOutput(heatingEnergy) | |||
################ Transport and fate | |||
objects.latest("Op_en5813", code_name = "initiate") # [[Intake fractions of PM]], iF | |||
emissions <- EvalOutput(emissions) | |||
emissions@output$Time <- as.numeric(as.character(emissions@output$Time)) | |||
# Plot energy need and emissions | |||
ggplot(subset(heatingEnergy@output, EfficiencyPolicy == "BAU"), aes(x = Time, weight = heatingEnergyResult * 1E-6, fill = Heating)) + geom_bar(binwidth = 5) + | |||
facet_wrap( ~ RenovationPolicy) + theme_gray(base_size = BS) + | |||
labs( | |||
title = "Energy used in heating in Kuopio", | |||
x = "Time", | |||
y = "Heating energy (GWh /a)" | |||
) | |||
if(figstofile) ggsave("Figure4.eps", width = 11, height = 7) | |||
emis <- truncateIndex(emissions, cols = "Emission_site", bins = 5)@output | |||
ggplot(subset(emis, EfficiencyPolicy == "BAU" & RenovationPolicy == "BAU"), aes(x = Time, weight = emissionsResult, fill = Fuel)) + geom_bar(binwidth = 5) + | |||
facet_grid(Pollutant ~ FuelPolicy, scale = "free_y") + theme_gray(base_size = BS) + | |||
labs( | |||
title = "Emissions from heating in Kuopio", | |||
x = "Time", | |||
y = "Emissions (ton /a)" | |||
) | |||
if(figstofile) ggsave("Figure5.eps", width = 8, height = 7) | |||
ggplot(heatingEnergy@output, aes(x = Time, weight = heatingEnergyResult * 1E-6, fill = Heating)) + geom_bar(binwidth = 5) + | |||
facet_grid(EfficiencyPolicy ~ RenovationPolicy) + theme_gray(base_size = BS) + | |||
labs( | |||
title = "Energy used in heating in Kuopio", | |||
x = "Time", | |||
y = "Heating energy (GWh /a)" | |||
) | |||
ggplot(subset(emis, EfficiencyPolicy == "BAU" & RenovationPolicy == "BAU"), aes(x = Time, weight = emissionsResult, fill = Fuel)) + geom_bar(binwidth = 5) + | |||
facet_grid(Pollutant ~ FuelPolicy, scale = "free_y") + theme_gray(base_size = BS) + | |||
labs( | |||
title = "Emissions from heating in Kuopio", | |||
x = "Time", | |||
y = "Emissions (ton /a)" | |||
) | |||
ggplot(subset(emis, EfficiencyPolicy == "BAU" & FuelPolicy == "BAU"), aes(x = Time, weight = emissionsResult, fill = Emission_site)) + geom_bar(binwidth = 5) + | |||
facet_grid(Pollutant ~ RenovationPolicy, scale = "free_y") + theme_gray(base_size = BS) + | |||
labs( | |||
title = "Emissions from heating in Kuopio", | |||
x = "Time", | |||
y = "Emissions (ton /a)" | |||
) | |||
ggplot(subset(emis, EfficiencyPolicy == "BAU" & FuelPolicy == "BAU"), aes(x = Time, weight = emissionsResult, fill = Fuel)) + geom_bar(binwidth = 5) + | |||
facet_grid(Pollutant ~ RenovationPolicy, scale = "free_y") + theme_gray(base_size = BS) + | |||
labs( | |||
title = "Emissions from heating in Kuopio", | |||
x = "Time", | |||
y = "Emissions (ton /a)" | |||
) | |||
###################### Health assessment | |||
####!------------------------------------------------ | |||
objects.latest('Op_en2261', code_name = 'initiate') # [[Health impact assessment]] dose, RR, totcases. | |||
objects.latest('Op_en5917', code_name = 'initiate') # [[Disease risk]] disincidence | |||
directs <- tidy(opbase.data("Op_en5461", subset = "Direct inputs"), direction = "wide") # [[Climate change policies and health in Kuopio]] | |||
####i------------------------------------------------ | |||
colnames(directs) <- gsub(" ", "_", colnames(directs)) | |||
### Use these population and iF values in health impact assessment. Why? | |||
frexposed <- 1 # fraction of population that is exposed | |||
bgexposure <- 0 # Background exposure to an agent (a level below which you cannot get in practice) | |||
BW <- 70 # Body weight (is needed for RR calculations although it is irrelevant for PM2.5) | |||
population <- 1E+5 | |||
exposure <- EvalOutput(exposure, verbose = TRUE) | |||
ggplot(subset(exposure@output, RenovationPolicy == "BAU" & EfficiencyPolicy == "BAU" & FuelPolicy == "BAU"), aes(x = Time, weight = exposureResult, fill = Heating)) + | |||
geom_bar(binwidth = 5) + facet_grid(Area ~ Emission_height) + theme_gray(base_size = BS) + | |||
labs( | |||
title = "Exposure to PM2.5 from heating in Kuopio", | |||
x = "Time", | |||
y = "Average PM2.5 (µg/m3)" | |||
) | |||
exposure@output <- exposure@output[exposure@output$Area == "Average" , ] # Kuopio is an average area, | |||
# rather than rural or urban. | |||
ggplot(subset(exposure@output, EfficiencyPolicy == "BAU"), aes(x = Time, weight = exposureResult, fill = Heating)) + geom_bar(binwidth = 5) + facet_grid(FuelPolicy ~ RenovationPolicy) + theme_gray(base_size = BS) + | |||
labs( | |||
title = "Exposure to PM2.5 from heating in Kuopio", | |||
x = "Time", | |||
y = "Average PM2.5 (µg/m3)" | |||
) | |||
totcases <- EvalOutput(totcases) | |||
totcases@output$Time <- as.numeric(as.character(totcases@output$Time)) | |||
totcases <- oapply(totcases, cols = c("Age", "Sex"), FUN = sum) | |||
ggplot(subset(totcases@output, EfficiencyPolicy == "BAU" & FuelPolicy == "BAU"), aes(x = Time, weight = totcasesResult, fill = Heating))+geom_bar(binwidth = 5) + | |||
facet_grid(Trait ~ RenovationPolicy) + | |||
theme_gray(base_size = BS) + | |||
labs( | |||
title = "Health effects of PM2.5 from heating in Kuopio", | |||
x = "Time", | |||
y = "Health effects (deaths /a)" | |||
) | |||
DW <- Ovariable("DW", data = data.frame(directs["Trait"], Result = directs$DW)) | |||
L <- Ovariable("L", data = data.frame(directs["Trait"], Result = directs$L)) | |||
DALYs <- totcases * DW * L | |||
cat("Total DALYs/a by different combinations of policy options.\n") | |||
temp <- DALYs | |||
temp@output <- subset( | |||
temp@output, | |||
as.character(Time) %in% c("2010", "2030") & Trait == "Total mortality" | |||
) | |||
oprint(oapply(temp, INDEX = c("Time", "EfficiencyPolicy", "RenovationPolicy", "FuelPolicy"), FUN = sum)) | |||
ggplot(subset(DALYs@output, FuelPolicy == "BAU" & Trait == "Total mortality"), aes(x = Time, weight = Result, fill = Heating))+geom_bar(binwidth = 5) + | |||
facet_grid(EfficiencyPolicy ~ RenovationPolicy) + | |||
theme_gray(base_size = BS) + | |||
labs( | |||
title = "Health effects in DALYs of PM2.5 from heating in Kuopio", | |||
x = "Time", | |||
y = "Health effects (DALY /a)" | |||
) | |||
ggplot(subset(DALYs@output, Time == 2030 & Trait == "Total mortality"), aes(x = FuelPolicy, weight = Result, fill = Heating))+geom_bar() + | |||
facet_grid(EfficiencyPolicy ~ RenovationPolicy) + | |||
theme_gray(base_size = BS) + | |||
labs( | |||
title = "Health effects in DALYs of PM2.5 from heating in Kuopio", | |||
x = "Biofuel policy in district heating", | |||
y = "Health effects (DALY /a)" | |||
) | |||
######## Buildings in Kuopio on map | |||
# Calculate locations for Kuopio districts | |||
temp <- buildings | |||
temp@output <- subset(temp@output, | |||
Time == 2030 & EfficiencyPolicy == "BAU" & RenovationPolicy == "BAU" | |||
) | |||
temp <- unkeep(temp, sources = TRUE, prevresults = TRUE) | |||
temp <- oapply(temp, cols = c("Building", "Heating", "Efficiency", "Renovation"), FUN = sum) | |||
####!------------------------------------------------ | |||
districts <- tidy(opbase.data("Op_en5932.kuopio_city_districts"), widecol = "Location") # [[Building stock in Kuopio]] | |||
####i------------------------------------------------ | |||
colnames(districts) <- gsub("[ \\.]", "_", colnames(districts)) | |||
districts <- Ovariable("districts", data = data.frame(districts, Result = 1)) | |||
temp <- temp * districts | |||
MyRmap( | |||
ova2spat( | |||
temp, | |||
coord = c("E", "N"), | |||
proj4string = "+init=epsg:3067" | |||
), # National Land Survey uses EPSG:3067 (ETRS-TM35FIN) | |||
plotvar = "Result", | |||
legend_title = "Floor area", | |||
numbins = 8, | |||
pch = 19, | |||
cex = 2 | |||
) | |||
</rcode> | |||
==Rationale== | ==Rationale== | ||
[[image:Building model causal diagram.png|thumb|400px|Causal diagram of the [[building model]].]] | |||
* [[Climate change policies and health in Kuopio/ | |||
===Dependencies=== | |||
* [[Building stock in Kuopio]] | |||
* [[Intake fractions of PM]] | |||
* [[OpasnetUtils/Drafts]] | |||
* [[Energy use of buildings]] | |||
* [[Kuopio energy production]] | |||
* [[Emission factors for burning processes]] | |||
* [[Population of Kuopio]] | |||
* [[Building model]] | |||
* [[Health impact assessment]] | |||
* [[Disease risk]] | |||
* [[ERFs of environmental pollutants]] | |||
* [[Burden of disease in Finland]] | |||
* [[Climate change policies and health in Kuopio]] DALY weights etc | |||
===Decisions=== | |||
* Efficiency policy (index EfficiencyPolicy): Relates to the shares of efficiency types when new buildings are built (ovariable efficiencyShares). | |||
** BAU: The shares are like in [[Energy use of buildings#Energy efficiency in heating]] | |||
** Active efficiency: Passive buildings increase the market share by 25 and 10 %-units at the expense of low-energy buildings since 2020 and 2040, respectively. | |||
* Biofuel policy (index FuelPolicy): Increase the share of biofuels in the Haapaniemi power plant (ovariable fuelShares). | |||
** BAU: The shares are like in [[Emission factors for burning processes#Emission factors for heating]] (Fuel use in different heating types): Peat 84 %, wood 4 %, heavy oil 12 %. | |||
** Biofuel increase: Peat 49.5 %, wood 49.5 %, heavy oil 1 %. | |||
* Renovation policy (index RenovationPolicy): Existing buildings are renovated (typically after 25 years of age) for better energy efficiency. Different renovations produce different results (ovariables renovationRate, renovationShares). | |||
** BAU: Default renovation rate is 3 % /a if the age of the building is >= 25 a. For renovation shares, see [[Building stock in Kuopio#Renovations]]. | |||
** Active renovation: The renovation rate of all renovation types is 4.5 % /a. | |||
** Effective renovation: The renovation rate is 3 % /a as in BAU, but all renovations are the most effective. i.e. sheath reforms. | |||
{{hidden| | |||
<t2b name='Decisions' index='Decision maker,Decision,Option,Variable,Cell,Change,Unit' obs='Amount' desc='Description' unit='-'> | |||
Builders|EfficiencyPolicy|BAU|efficiencyShares||Add||0| | |||
Builders|EfficiencyPolicy|Active efficiency|efficiencyShares|Efficiency:Passive;Time:2020,2025,2030,2035|Add|fraction|0.25|All input must be given in units that are used in respective ovariables. | |||
Builders|EfficiencyPolicy|Active efficiency|efficiencyShares|Efficiency:Passive;Time:2040,2045,2050|Add|fraction|0.1| | |||
Builders|EfficiencyPolicy|Active efficiency|efficiencyShares|Efficiency:Low-energy;Time:2020,2025,2030,2035|Add|fraction|-0.25| | |||
Builders|EfficiencyPolicy|Active efficiency|efficiencyShares|Efficiency:Low-energy;Time:2040,2024,2050|Add|fraction|-0.1| | |||
Kuopion Energia|FuelPolicy|BAU|fuelShares||Add||0| | |||
Kuopion Energia|FuelPolicy|Biofuel increase|fuelShares|Burner:Large fluidized bed;Fuel:Wood;Time:2015,2020,2025,2030,2035,2040,2045,2050|Replace|fraction|0.495| | |||
Kuopion Energia|FuelPolicy|Biofuel increase|fuelShares|Burner:Large fluidized bed;Fuel:Peat;Time:2015,2020,2025,2030,2035,2040,2045,2050|Replace|fraction|0.495| | |||
Kuopion Energia|FuelPolicy|Biofuel increase|fuelShares|Burner:Large fluidized bed;Fuel:Heavy oil;Time:2015,2020,2025,2030,2035,2040,2045,2050|Replace|fraction|0.01| | |||
Building owner|RenovationPolicy|BAU|renovationRate||Multiply|1 /a|1| | |||
Building owner|RenovationPolicy|Active renovation|renovationRate||Multiply|1 /a|1.5| | |||
Building owner|RenovationPolicy|Effective renovation|renovationRate||Multiply|1 /a|1| | |||
Building owner|RenovationPolicy|Effective renovation|renovationShares|Renovation:Windows|Replace|fraction|0| | |||
Building owner|RenovationPolicy|Effective renovation|renovationShares|Renovation:Technical systems|Replace|fraction|0| | |||
Building owner|RenovationPolicy|Effective renovation|renovationShares|Renovation:Sheath reform|Replace|fraction|1| | |||
Building owner|RenovationPolicy|Effective renovation|renovationShares|Renovation:General|Replace|fraction|0| | |||
Building owner|RenovationPolicy|BAU|renovationShares||Add|fraction|0| | |||
Building owner|RenovationPolicy|Active renovation|renovationShares||Add|fraction|0| | |||
</t2b> | |||
}} | |||
=== Direct inputs === | |||
<t2b name='Direct inputs' index='Exposure agent,Response,Observation' locations='Cases,DW,L' desc='Description' unit='-'> | |||
PM2.5|Total mortality|877|1|11|Actually "Mortality (all cause)". In 2009 for Pohjois-Savo area 1090 / 100 000 from death cause registry. | |||
PM2.5|Work loss days (WLDs)|323135|0.02|0.003| | |||
PM2.5|Restricted activity days (RADs)|31867|0.07|0.003|2.1 million in whole Finland | |||
PM2.5|Infant mortality|3|1|81|<1 year old 2009 data for Pohjois-Savo area 244 / 100 000 from death registry. In 2009 in Kuopio 1110 <1 year olds. | |||
PM2.5|COPD|339|0.099|15|Actually "Chronic bronchitis (>15 year olds)". Kelasto, includes astma cases too | |||
PM2.5|Cardiovascular hospital admissions (number)|2109|0.253|0.017|21424 in year 2010 in Kuopio hospital. Hospital serves area with 817166 inhabitats. | |||
PM2.5|Respiratory hospital admissions|1150|0.043|0.02|In 2007 1429.55 hospital discharges for respiratory disease / 100 000 in whole Finland. http://data.euro.who.int/hfadb/ | |||
PM2.5|Asthma medication use (children aged 5-14)|62|0.043|15|Kelasto | |||
Mold/dampness|Asthma development (>15 year olds)|252|0.043|15|Kelasto-database | |||
Mold/dampness|Asthma development (5-14 year olds)|62|0.043|15|Kelasto-database | |||
Noise|Highly annoyed||0.02|1| | |||
Noise|Sleep disturbance||0.07|1| | |||
Noise|Myocardial infarction|1289|0.439|0.019663|13101 cases in Kuopio university Hospital in year 2010. Hospital serves area with 817166 inhabitats. | |||
EC|Cardiovascular mortality|366|0.043|0.02|In 2009 for Pohjois-Savo area 455 / 100 000 from death cause registry. | |||
|Cardiopulmonary||1|11|Guesswork. The same as total mortality | |||
|Lung cancer||1|11|Guesswork. The same as total mortality. | |||
</t2b> | |||
<rcode name="DALYs" label="Initiate DALYs (developers only)" embed=1> | |||
# Code Climate change policies and health in Kuopio/DW | |||
library(OpasnetUtils) | |||
[[ | directs <- tidy(opbase.data("Op_en5461", subset = "Direct inputs"), direction = "wide") # [[Climate change policies and health in Kuopio]] | ||
colnames(directs) <- gsub(" ", "_", colnames(directs)) | |||
DW <- Ovariable("DW", data = data.frame(directs["Response"], Result = directs$DW)) | |||
L <- Ovariable("L", data = data.frame(directs["Response"], Result = directs$L)) | |||
=== | DALYs <- Ovariable("DALYs", | ||
dependencies = data.frame(Name = c("DW", "L")), | |||
formula = function(...) { | |||
out <- totcases * DW * L | |||
return(out) | |||
} | |||
) | |||
objects.store(DALYs, DW, L) | |||
cat("Objects DALYs, DW, L stored.\n") | |||
</rcode> | |||
===Specific actions - real and potential=== | |||
**Building stock | [[File:Haapaniemi at winter.JPG|thumb|300px|The plume of Haapaniemi power plant in January, 2014.]] | ||
[[File:Iloharju at winter.JPG|thumb|300px|The Iloharju heat plant is only used when the heat demand is high, i.e. at temperatures below ca. -15 °C. January, 2014.]] | |||
** | *Energy production | ||
**New power plant unit in Haapaniemi: ability to use significantly more biomass in the production of district heat (2014) | |||
**Enhancement of dispersed energy production with biofuels | |||
**Wide scale transition to renewable energy sources in heating | |||
*Building stock | |||
**Energy efficiency of buildings is increased: new stricter building regulations in Finland (2/2013) | |||
**Education to building owners and managers: semblance of best practicies in heating and other use of energy. Possible reduction in energy use of building stock is about 10%, and mere beneficial health effects are expected. | |||
*Land use and transport | |||
**If possible, PM emissions and noise are calculated based on updated version of Kuopio´s traffic network | |||
**Alternatively, the effect of increased use of biofuels on GHG and CO2 emissions is evaluated. | |||
**Possibilities of rail traffic in Kuopio | |||
*Other... | |||
===Indicators=== | ===Indicators=== | ||
Line 70: | Line 1,137: | ||
* Well-being... | * Well-being... | ||
== | An [http://en.opasnet.org/en-opwiki/index.php?title=Climate_change_policies_and_health_in_Kuopio&oldid=34738 archived version] was planning to use [[:en:Weighted product model|Weighted product model]] to summarise results, but the idea was dropped. | ||
* Stakeholders: City of Kuopio, Citizens, Budget office of Kuopio | |||
===Assessment-specific data=== | ===Assessment-specific data=== | ||
'''Received''' | |||
*'''Building stock data''' | |||
**Building registry | |||
**Use of electricity by building type or type of activity | |||
**Use of district heat by contract | |||
**Amount of building stock renovated per year | |||
**Amount of new building stock per year during 2010-2012 | |||
**Energy consumption in some of city´s own buildings before and after renovation | |||
*'''Energy production''' | |||
**Fuels and emissions of Haapaniemi CHP plant | |||
*'''Traffic''' | |||
**Regional plan on public transport | |||
'''To be gathered''' | |||
Building registry | *Updated traffic network model? | ||
Use of electricity by building type | *Estimates of the amount, area, volume and energy class of new buildings during next years (about 2014-2020) | ||
Use of heat by contract | |||
==See also== | ==See also== | ||
{{Urgenche}} | {{Urgenche}} | ||
* [http://kuopio02.hosting.documenta.fi/kokous/2012209757-4.HTM Kuopion kaupunginhallitus 8.10.2012: Kuopion ja Siilinjärven joukkoliikennesuunnitelma] (Kuopio public transport plan) | |||
* [http://www.ymparisto.fi/default.asp?contentid=423217&lan=FI Laskureita hiilijalanjäljen arviointiin ja seurantaan] ([http://www.ymparisto.fi/default.asp?contentid=423217&lan=EN Carbon footprint calculators]): SYNERGIA, JUHILAS, Ilmastodieetti, KASVENER, KUHILAS, Y-HIILARI | |||
* [https://www.otakantaa.fi/fi-FI/Hankkeet/Millaisen_tiekartan_avulla_hiilineutraaliin_Suomeen_2050 Millaisen tiekarten avulla hiilineutraaliin Suomeen 2050] | |||
* [http://www.kuopio.fi/c/document_library/get_file?uuid=ab67c50a-9558-423c-951e-fd96cf1aaabf&groupId=12141 Climate policy of Kuopio 2009 - 2020] | |||
* [http://debattibaari.fi/yhteenveto/energialoppu/ DebattiBaari: energiakeskustelu] | |||
==References== | ==References== | ||
<references/> | <references/> | ||
==Keywords== | |||
Climate Change, Kuopio, Green house gas emissions, Health, Energy | |||
==Related files== | ==Related files== | ||
{{mfiles}} | {{mfiles}} |
Latest revision as of 16:52, 11 January 2016
Moderator:Jouni (see all) |
|
Upload data
|
Main message: |
---|
Question:
What are the most beneficial ways from public health point of view to reduce GHG emissions in Kuopio? The target of 40 % GHG reduction seems realistic due to reforms in Haapaniemi power plant, assuming that GHG emissions for wood-based fuel is 0. Life-cycle impacts of the wood-based fuel have not yet been estimated. |
{{#display_map:
62.900223, 27.637482, Kuopio
| zoom = 11
}}
Scope
Question
What are potential climate policies that reach the greenhouse emission targets in the city of Kuopio for years 2010-2030? What are their effects on health and well-being, and what recommendations can be given based on this? The national greenhouse emission target is to reduce greenhouse gas emissions by 20 % between 1990 and 2020; the city of Kuopio has its own, more ambitious target of 40 % for the same time period.
Details of scoping |
---|
Boundaries
Scenarios
Intended users
Participants
|
Answer
Conclusions
The target of 40 % GHG reduction seems realistic due to reforms in Haapaniemi power plant, assuming that GHG emissions for wood-based fuel is 0. Life-cycle impacts of the wood-based fuel have not yet been estimated.
Results
Model version 2
- This model version was used to produce the corrected manuscript in July 2015.
- Model run 21.7.2015 runs to the end but emissions are too large exp for wood after 1980.
- Model run 22.7.2015 Bugs with fuelShares fixed. Now results are similar to the ones in the manuscript. Except that health impacts are 2-3 times higher, only partly due to higher wood burning in the 2000's.
- Model run 23.7.2015 archived version. Also renovationShares and changeBuildings data corrected.
- Model run 24.7.2015 archived version. This was used for the manuscript.
Sensitivity analysis
- Sensitivity analysis 26.7.2015 with 750 iterations
Model version 1
- This model version was used to produce the submitted manuscript in spring 2015.
- Calculate building stock into the future
- The dynamics is calculated by adding building floor area at time points greater than construction year, and by subtracting when time point is greater than demolition year. This is done by building category, not individually.
- Also the renovation dynamics is built using event years: at an event, a certain amount of floor area is moved from one energy efficiency category to another.
- Full data are stored in the ovariables. Before evaluating, extra columns and rows are removed. The first part of the code is about this.
- Full model run with corrected table 13th March 2015
- Full model run 23 Feb 2015
- Old example model run (running the model takes more than 6 min, so use this ready-made result)
Rationale
Dependencies
- Building stock in Kuopio
- Intake fractions of PM
- OpasnetUtils/Drafts
- Energy use of buildings
- Kuopio energy production
- Emission factors for burning processes
- Population of Kuopio
- Building model
- Health impact assessment
- Disease risk
- ERFs of environmental pollutants
- Burden of disease in Finland
- Climate change policies and health in Kuopio DALY weights etc
Decisions
- Efficiency policy (index EfficiencyPolicy): Relates to the shares of efficiency types when new buildings are built (ovariable efficiencyShares).
- BAU: The shares are like in Energy use of buildings#Energy efficiency in heating
- Active efficiency: Passive buildings increase the market share by 25 and 10 %-units at the expense of low-energy buildings since 2020 and 2040, respectively.
- Biofuel policy (index FuelPolicy): Increase the share of biofuels in the Haapaniemi power plant (ovariable fuelShares).
- BAU: The shares are like in Emission factors for burning processes#Emission factors for heating (Fuel use in different heating types): Peat 84 %, wood 4 %, heavy oil 12 %.
- Biofuel increase: Peat 49.5 %, wood 49.5 %, heavy oil 1 %.
- Renovation policy (index RenovationPolicy): Existing buildings are renovated (typically after 25 years of age) for better energy efficiency. Different renovations produce different results (ovariables renovationRate, renovationShares).
- BAU: Default renovation rate is 3 % /a if the age of the building is >= 25 a. For renovation shares, see Building stock in Kuopio#Renovations.
- Active renovation: The renovation rate of all renovation types is 4.5 % /a.
- Effective renovation: The renovation rate is 3 % /a as in BAU, but all renovations are the most effective. i.e. sheath reforms.
Show details | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Data updated successfully!
|
Direct inputs
Data updated successfully!
Obs | Exposure agent | Response | Cases | DW | L | Description |
---|---|---|---|---|---|---|
1 | PM2.5 | Total mortality | 877 | 1 | 11 | Actually "Mortality (all cause)". In 2009 for Pohjois-Savo area 1090 / 100 000 from death cause registry. |
2 | PM2.5 | Work loss days (WLDs) | 323135 | 0.02 | 0.003 | |
3 | PM2.5 | Restricted activity days (RADs) | 31867 | 0.07 | 0.003 | 2.1 million in whole Finland |
4 | PM2.5 | Infant mortality | 3 | 1 | 81 | <1 year old 2009 data for Pohjois-Savo area 244 / 100 000 from death registry. In 2009 in Kuopio 1110 <1 year olds. |
5 | PM2.5 | COPD | 339 | 0.099 | 15 | Actually "Chronic bronchitis (>15 year olds)". Kelasto, includes astma cases too |
6 | PM2.5 | Cardiovascular hospital admissions (number) | 2109 | 0.253 | 0.017 | 21424 in year 2010 in Kuopio hospital. Hospital serves area with 817166 inhabitats. |
7 | PM2.5 | Respiratory hospital admissions | 1150 | 0.043 | 0.02 | In 2007 1429.55 hospital discharges for respiratory disease / 100 000 in whole Finland. http://data.euro.who.int/hfadb/ |
8 | PM2.5 | Asthma medication use (children aged 5-14) | 62 | 0.043 | 15 | Kelasto |
9 | Mold/dampness | Asthma development (>15 year olds) | 252 | 0.043 | 15 | Kelasto-database |
10 | Mold/dampness | Asthma development (5-14 year olds) | 62 | 0.043 | 15 | Kelasto-database |
11 | Noise | Highly annoyed | 0.02 | 1 | ||
12 | Noise | Sleep disturbance | 0.07 | 1 | ||
13 | Noise | Myocardial infarction | 1289 | 0.439 | 0.019663 | 13101 cases in Kuopio university Hospital in year 2010. Hospital serves area with 817166 inhabitats. |
14 | EC | Cardiovascular mortality | 366 | 0.043 | 0.02 | In 2009 for Pohjois-Savo area 455 / 100 000 from death cause registry. |
15 | Cardiopulmonary | 1 | 11 | Guesswork. The same as total mortality | ||
16 | Lung cancer | 1 | 11 | Guesswork. The same as total mortality. |
Specific actions - real and potential
- Energy production
- New power plant unit in Haapaniemi: ability to use significantly more biomass in the production of district heat (2014)
- Enhancement of dispersed energy production with biofuels
- Wide scale transition to renewable energy sources in heating
- Building stock
- Energy efficiency of buildings is increased: new stricter building regulations in Finland (2/2013)
- Education to building owners and managers: semblance of best practicies in heating and other use of energy. Possible reduction in energy use of building stock is about 10%, and mere beneficial health effects are expected.
- Land use and transport
- If possible, PM emissions and noise are calculated based on updated version of Kuopio´s traffic network
- Alternatively, the effect of increased use of biofuels on GHG and CO2 emissions is evaluated.
- Possibilities of rail traffic in Kuopio
- Other...
Indicators
- Cardiovascular mortality
- Pulmonar mortality
- Well-being...
An archived version was planning to use Weighted product model to summarise results, but the idea was dropped.
- Stakeholders: City of Kuopio, Citizens, Budget office of Kuopio
Assessment-specific data
Received
- Building stock data
- Building registry
- Use of electricity by building type or type of activity
- Use of district heat by contract
- Amount of building stock renovated per year
- Amount of new building stock per year during 2010-2012
- Energy consumption in some of city´s own buildings before and after renovation
- Energy production
- Fuels and emissions of Haapaniemi CHP plant
- Traffic
- Regional plan on public transport
To be gathered
- Updated traffic network model?
- Estimates of the amount, area, volume and energy class of new buildings during next years (about 2014-2020)
See also
- Kuopion kaupunginhallitus 8.10.2012: Kuopion ja Siilinjärven joukkoliikennesuunnitelma (Kuopio public transport plan)
- Laskureita hiilijalanjäljen arviointiin ja seurantaan (Carbon footprint calculators): SYNERGIA, JUHILAS, Ilmastodieetti, KASVENER, KUHILAS, Y-HIILARI
- Millaisen tiekarten avulla hiilineutraaliin Suomeen 2050
- Climate policy of Kuopio 2009 - 2020
- DebattiBaari: energiakeskustelu
References
Keywords
Climate Change, Kuopio, Green house gas emissions, Health, Energy
Related files
<mfanonymousfilelist></mfanonymousfilelist>