ERF of omega-3 fatty acids

From Opasnet
Revision as of 19:06, 14 December 2014 by Jouni (talk | contribs) (→‎Data)
Jump to navigation Jump to search



Question

What is the exposure-response function (ERF) of omega-3 fatty acids on several health end points?

Answer

+ Show code

Rationale

Data

ERF of omega-3 fatty acids(-)
ObsExposure agentTraitResponse metricExposure routeExposure metricExposure unitERF parameterScalingThresholdERFDescription
1DHAChild's intelligenceChange in IQ pointsPlacentaMaternal intakemg/kg bw/dayERSBW00.07 +- 0.01Cohen et al. 2005; Gradowska 2013; Standard deviation
2DHAChild's IQChange in IQ pointsPlacentaMaternal intakemg /dayERSNone00.0013 (0.0008 - 0.0018)Cohen et al. 2005; also according to Zeilmaker 2013
3Omega3Coronary heart diseaseMortalityIngestionIntake from fishmg/day EPA+DHARRNone00.9980 +- 0.000396Mozaffarian and Rimm 2006; Gradowska 2013 slope = -0.002, SD = exp(-0.002)-exp(-0.002+3.97E-4)
4Omega3CHDArrythmia mortalityIngestionIntake from fishmg/day EPA+DHARelative HillNone200-0.3Mozaffarian and Rimm 2006
5Omega3CHD2MortalityIngestionIntake from fishmg/day EPA+DHARelative HillNone47-0.17 (-0.25 - -0.088)Cohen et al 2005. "antiarrhythmic effect". No-exposure is <1 serving/mo, therefore ED50 = two servings per month = 1400 mg/mo = 47 mg/d
6Omega3CHD2MortalityIngestionIntake from fishmg/day EPA+DHARRNone00.99951 (0.99934 - 0.99989)Cohen et al 2005 "antiatherosclerotic effect". 1-0.039*0.01
7Omega3StrokeMortalityIngestionIntake from fishmg/day EPA+DHARelative HillNone47-0.12 (-0.25 - 0.01)Cohen et al. 2005
8Omega3StrokeMortalityIngestionIntake from fishmg/day EPA+DHARRNone00.9998 (0.99934 - 1.00027)1-0.02*0.01, Cohen et al 2005: −2.0% 95% CI: +2.7% to −6.6%
9FishSubclinical brain infarct (one or more)PrevalenceIngestionIntake of tuna/other fish≥3 times/week vs. <1/monthRRNone00.74 (0.54 - 1.01)Virtanen et al. 2008; 95% CI
10FishAny prevalent subclinical brain infarctPrevalenceIngestionIntake of tuna/other fishEach one serving per weekRRNone00.93 (0.88 - 0.994)Virtanen et al. 2008; 95% CI
11FishSubclinical brain infarct (one or more)IncidenceIngestionIntake of tuna/other fish≥3 times/week vs. <1/monthRRNone00.56 (0.30 - 1.07)Virtanen et al. 2008; 95% CI
12FishAny incident subclinical brain infarctIncidenceIngestionIntake of tuna/other fishEach one serving per weekRRNone00.89 (0.78 - 0.993)Virtanen et al. 2008; 95% CI
13FishStatus of cerebral white matterGrade scoreIngestionIntake of tuna/other fishEach one serving per weekERSNone00.038Virtanen et al. 2008; 95% CI
ERF publications
ERF data as described in original articles
Exposure agent Trait Response metric Exposure route Exposure metric Exposure unit ERF parameter Threshold ERF Description
DHA Child´s IQ Change in IQ points Placenta Maternal intake mg/kg bw/day ERS 0 0.07(±0.01) Cohen et al. 2005; Gradowska 2013
Omega3 CHD Δlog(CHD mortality rate) Ingestion Intake from fish mg/day EPA+DHA ERS 0 -0.002 (±3.97E-4) Mozaffarian and Rimm 2006; Gradowska 2013
Fish Subclinical brain infarct (one or more) Prevalence Ingestion Intake of tuna/other fish =3 times/week vs. <1/month RR 0 0.74(0.54-1.01) Virtanen et al. 2008
Fish Any prevalent subclinical brain infarct Prevalence Ingestion Intake of tuna/other fish Each one serving per week Decrease in RR % 0 7(0.6-12) Virtanen et al. 2008
Fish Subclinical brain infarct (one or more) Incidence Ingestion Intake of tuna/other fish =3 times/week vs. <1/month RR 0 0.56(0.30-1.07) Virtanen et al. 2008
Fish Any incident subclinical brain infarct Incidence Ingestion Intake of tuna/other fish Each one serving per week Decrease in RR % 0 11(0.7-22) Virtanen et al. 2008
Fish Status of cerebral white matter Grade score Ingestion Intake of tuna/other fish Each one serving per week Increase in grade score % 0 3.8 Virtanen et al. 2008

Exposure-response of fish oil intake for MI risk in adults is indexed by variable age. It applies to age categories > 18 years.

The study by Cohen et al. 2005 [1] estimates that increasing maternal docosahexaenoic acid (DHA) intake by 100 mg/day increases child's IQ by 0.13 points D↷. This value represents central estimate while the upper and lower bound for this ERF is 0.08 and 0.18. Triangular distribution is used.

In a recent study, 3660 over 65-year-old individuals were monitored for five years, and the change in small brain infarctions was observed by magnetic resonance imageing. The infaction risk was 25 % lower in those who ate at least three portions of omega-3-rich fish meals per week, and 13 % lower in those who ate one meal per week. [2]

Fernandez-Jarne et al. [3] examined the relationship between intake of fish and n-3 PUFA and the risk of first acute myocardial infarction (AMI) in a low risk population from Navarre (Spain). They found that the n-3 PUFA intake has a protective effect on AMI. The adjusted odds ratio (OR) for the second and third tertile of n-3 PUFA intake were 0.44 (95% Cl, 0.21-0.91) and 0.47 (95% Cl, 0.22-1.00), respectively. The trend test was not statistically significant. D↷

Mozaffarian and Rimm [4] estimated that at intakes between 0 and 250 mg/d, the relative risk of coronary heart disease (CHD) death is lower by 14.6% (95% CI: 8% to 21%) per each 100 mg/d of EPA and DHA intake and that at higher intakes ( > 250 mg/d) the risk reduction is 0.0% (95% CI: -0.9% to 0.8%) per each 100 mg/d.

The ERF of omega-3 fatty acids (DHA+EPA) intake from fish (in unit of mg/kg bw-day) on the CHD mortality is estimated based on information provided in [4]. First, the central estimate and the 95% CI for the change (in this case decrease) in natural logarithm of relative risk (RR) of CHD mortality per unit change in omega-3 fatty acids intake (in unit of mg/day) in both intake intervals were derived. In general, the relationship between the percent change in RR (%RR) associated with c-unit increase in omega-3 fatty acids intake and the incremental change in lnRR (beta) per unit change in omega-3 fatty acids intake is beta = (1/c)*ln((%RR/100)+1). Normal distribution was chosen to describe the uncertainty in the parameter of the log-linear model for RR in each intake interval. For intake of EPA+DHA between 0 and 250 mg/day the mean and the standard deviation of parameter distribution are -0.0016 and 0.0004, for higher intakes 0 and 0.0005. Then, the distribution of ERF of omega-3 fatty acids intake from fish in units of mg/kg bw-day was obtained by multiplying ERFs of omega-3 fatty acids intake measured in mg/day by the body weight of adult.

Unit
lnRR/ 1 (mg/kg bw-day) change in EPA+DHA intake from fish
Beneris distributions
For intakes of EPA+DHA from fish between 0 and 250 mg/day: N(-0.0016,0.0004)*BW
For intakes of EPA+DHA from fish higher than 250 mg/day: N(0,0.0005)*BW
Summary of dose–response relationships[5]
Health effect Relationship Central estimate Uncertainty
Fish consumption and CHD mortality ΔRR for some fish consumption vs no fish consumption (<1 serving/month) −17% 95% CI a: −8.8% to −25%
ΔRR per additional serving/week −3.9% 95% CI a: −1.1% to −6.6%
Fish consumption and stroke incidence ΔRR for some fish consumption vs no fish consumption (<1 serving/month) −12% 95% CI a: +1.0% to −25%
ΔRR per additional serving/week −2.0% 95% CI a: +2.7% to −6.6%
MeHg exposure and cognitive development ΔIQ per μg/g total Hg in maternal hair −0.7 pts Bounds: 0 to 1.5 pts
DHA intake and cognitive development ΔIQ per g/day maternal intake of DHA 1.3 pts Bounds: 0.8 to 1.8 pts

a 95% CI is based on the distribution for this coefficient calculated from the regression analysis used to develop the dose–response relationship for CHD or stroke. CHD, coronary heart disease; CI, confidence interval; DHA, docosahexaenoic acid; MeHg, methyl mercury; pts, points; RR, relative risk. Serving size was 100 g.

Here we need to convert the serving size to omega-3 intake. It depends on the average omega-3 content in the diets of the patients in the studies, and it is not known to us. Therefore, we may assume that it is higher than in lean fish (0 - 0.5 %) and lower than in fatty fish (1-2 %), i.e. say 0.7 % or 700 mg per serving. Therefore, the published RR changes (per servings/week) must be multiplied by 1 per (servings * 700 mg/serving / (week * 7 d/week) = 0.01 * RR changes per mg/d. CHD2 is used as the trait to prevent double counting with the other ERFs based on Mozaffarian and Rimm.

In addition, Cohen[5] concluded that the ERFs for CHD and stroke are non-linear with a larger reduction in risk between non-consumers and some-consumers (the limit defined as 1 serving per month). In addition, a linear incremental benefit was estimated for intakes more than 1 serving per week. This results in two independent ERFs where the low-dose "antiarrhythmic" effect follows Relative Hill function and the high-dose "antiatherosclerotic" effect follows RR function. Cohen assumed a negative correlation between these, but this is not easy to implement with the current HIA ovariables and therefore we ignore the correlation; this results in an increase of the estimated uncertainty in the model.

Calculations

+ Show code

See also

References

  1. Cohen, J.T., PhD, Bellinger, D.C, PhD, W.E., MD, Bennett A., and Shaywitz B.A. 2005b. A Quantitative Analysis of Prenatal Intake of n-3 Polyunsaturated Fatty Acids and Cognitive Development. American Journal of Preventive Medicine 2005;29(4):366–374).
  2. Fish consumption and risk of subclinical brain abnormalities on MRI in older adults Jyrki K. Virtanen, David S. Siscovick, Will T. Longstreth, Lewis H. Kuller, Dariush Mozaffarian Neurology 2008;71:439–446.
  3. Fernandez-Jarne E, Garrido FA, Gutierrez AA, Arrillaga CDF, Martinez-Gonzales MA. Dietary intake of n-3 fatty acids and the risk of acute myocardial infarction: a case-control study. (In Spanish) 2002;118:121–5.
  4. 4.0 4.1 Mozaffarian D., Rimm E.B., Fish intake, contaminants, and human health. Evaluating the risks and the benefits. (Reprinted) JAMA, 2006. Vol 296, No. 15
  5. 5.0 5.1 Cohen JT, Bellinger DC, Shaywitz BA. A quantitative analysis of prenatal methyl mercury exposure and cognitive development. Am J Prev Med. 2005 Nov;29(4):353-65. [1]