Asthma prevalence due to building dampness in Europe: Difference between revisions
Jump to navigation
Jump to search
(updated formula and definition) |
|||
Line 7: | Line 7: | ||
== Definition == | == Definition == | ||
This variable is calculated entirely from upstream variables listed under [[#Dependencies]]. Mathematical method described under [[#Formula]]. | |||
Formula | |||
=== Data === | === Data === | ||
Line 27: | Line 15: | ||
*[[:heande:Moisture damage]] | *[[:heande:Moisture damage]] | ||
*[[Population of Europe by Country|Population of Europe]] | *[[Population of Europe by Country|Population of Europe]] | ||
* | *[[Asthma prevalence]] | ||
*[[ERF of indoor dampness on respiratory health effects]] | *[[ERF of indoor dampness on respiratory health effects]] | ||
Line 36: | Line 24: | ||
=== Formula === | === Formula === | ||
Formula calculates number of asthma cases which can be attributed to dampness in Europe in years 2010-2050 by using the following: | |||
#<nowiki><math>extra cases = (prevalence_total - prevalence_nondamp) population</math></nowiki> | |||
#<nowiki><math>prevalence_total = prevalence_nondamp(%damp * OR + 1 - %damp)</math></nowiki> | |||
#<nowiki><math>prevalence_0 = %damp * OR * prevalence_nondamp + (1 - %damp) * prevalence_nondamp</math></nowiki> | |||
::<nowiki><math>prevalence_nondamp = \frac{prevalence_0}{%damp * OR + 1 - %damp}</math></nowiki> | |||
*Prevalences for nondamp and damp homes are assumed constant, for a given iteration. | |||
<nowiki> | <nowiki> | ||
Line 44: | Line 38: | ||
"Finland", "France", "Greece", "Hungary", "Ireland", "Iceland", "Italy", "Lithuania", "Luxembourg", "Latvia", "Malta", "Netherlands", | "Finland", "France", "Greece", "Hungary", "Ireland", "Iceland", "Italy", "Lithuania", "Luxembourg", "Latvia", "Malta", "Netherlands", | ||
"Norway", "Poland", "Portugal", "Romania", "Sweden", "Slowenia", "Slovakia", "United Kingdom") | "Norway", "Poland", "Portugal", "Romania", "Sweden", "Slowenia", "Slovakia", "United Kingdom") | ||
levels(pop[,"CountryID"]) <- countries | levels(pop[,"CountryID"]) <- countries #IDs converted to actual names, for compatibility with other data | ||
colnames(pop)[4] <- "Country" | colnames(pop)[c(4,7)] <- c("Country","Population") | ||
asthma <- op_baseGetData("opasnet_base", "Op_en4789") | |||
erf <- op_baseGetData("opasnet_base", "Op_en4716") | |||
poparray <- DataframeToArray(pop, "Population") | poparray <- DataframeToArray(pop, "Population") | ||
dampxpop <- IntArray(dampness, poparray, "Population") | dampxpop <- IntArray(dampness, poparray, "Population") | ||
asthmaarray <- DataframeToArray(asthma | asthmaarray <- DataframeToArray(asthma) | ||
dampxpopxasthma <- IntArray(dampxpop, asthmaarray, "InitialPrevalence") | dampxpopxasthma <- IntArray(dampxpop, asthmaarray, "InitialPrevalence") | ||
erf <- | erfarray <- DataframeToArray(erf) | ||
p_nd <- data.frame( | dampxpopxasthmaxerf <- IntArray(dampxpopxasthma, erfarray, "ERF") | ||
p_nd= | p_nd <- data.frame(dampxpopxasthmaxerf[dampxpopxasthmaxerf[,"Year"]=="2010", c("obs","Country","Age","Sex")], | ||
"InitialPrevalence"] * 100 /( | p_nd=dampxpopxasthmaxerf[dampxpopxasthmaxerf[,"Year"]=="2010", "InitialPrevalence"] * 100 /(dampxpopxasthmaxerf[ | ||
"2010", "Result"])) | dampxpopxasthmaxerf[,"Year"]=="2010", "Result"] * dampxpopxasthmaxerf[dampxpopxasthmaxerf[,"Year"]=="2010", | ||
"ERF"] + 100 - dampxpopxasthmaxerf[dampxpopxasthmaxerf[,"Year"]=="2010", "Result"])) | |||
p_ndarray <- DataframeToArray(p_nd, "p_nd") | p_ndarray <- DataframeToArray(p_nd, "p_nd") | ||
dampxpopxasthmaxerfxp_nd <- IntArray(dampxpopxasthmaxerf, p_ndarray, "p_nd") | |||
final <- data.frame(dampxpopxasthmaxerfxp_nd[,c("obs","Country","policy","Year","Age","Sex")], | |||
Result=dampxpopxasthmaxerfxp_nd[,"Population"] * dampxpopxasthmaxerfxp_nd[,"p_nd"] * | |||
dampxpopxasthmaxerfxp_nd[,"Result"] * (dampxpopxasthmaxerfxp_nd[,"ERF"] - 1) / 10000)</nowiki> | |||
final <- data.frame( | |||
Result= | |||
== Result == | == Result == |
Revision as of 13:46, 26 January 2011
Moderator:Teemu R (see all) |
This page is a stub. You may improve it into a full page. |
Upload data
|
Scope
Europe in 2010, 2020, 2030, 2050.
Definition
This variable is calculated entirely from upstream variables listed under #Dependencies. Mathematical method described under #Formula.
Data
Dependencies
- heande:Moisture damage
- Population of Europe
- Asthma prevalence
- ERF of indoor dampness on respiratory health effects
Unit
#
Formula
Formula calculates number of asthma cases which can be attributed to dampness in Europe in years 2010-2050 by using the following:
- <math>extra cases = (prevalence_total - prevalence_nondamp) population</math>
- <math>prevalence_total = prevalence_nondamp(%damp * OR + 1 - %damp)</math>
- <math>prevalence_0 = %damp * OR * prevalence_nondamp + (1 - %damp) * prevalence_nondamp</math>
- <math>prevalence_nondamp = \frac{prevalence_0}{%damp * OR + 1 - %damp}</math>
- Prevalences for nondamp and damp homes are assumed constant, for a given iteration.
dampness <- op_baseGetData("opasnet_base", "Erac2988") pop <- op_baseGetData("opasnet_base", "Op_en4691", include = 1367, exclude = c(1435, 1436)) countries <- c("Austria", "Belgium", "Bulgaria", "Switzerland", "Cyprus", "Czech Republic", "Germany", "Denmark", "Estonia", "Spain", "Finland", "France", "Greece", "Hungary", "Ireland", "Iceland", "Italy", "Lithuania", "Luxembourg", "Latvia", "Malta", "Netherlands", "Norway", "Poland", "Portugal", "Romania", "Sweden", "Slowenia", "Slovakia", "United Kingdom") levels(pop[,"CountryID"]) <- countries #IDs converted to actual names, for compatibility with other data colnames(pop)[c(4,7)] <- c("Country","Population") asthma <- op_baseGetData("opasnet_base", "Op_en4789") erf <- op_baseGetData("opasnet_base", "Op_en4716") poparray <- DataframeToArray(pop, "Population") dampxpop <- IntArray(dampness, poparray, "Population") asthmaarray <- DataframeToArray(asthma) dampxpopxasthma <- IntArray(dampxpop, asthmaarray, "InitialPrevalence") erfarray <- DataframeToArray(erf) dampxpopxasthmaxerf <- IntArray(dampxpopxasthma, erfarray, "ERF") p_nd <- data.frame(dampxpopxasthmaxerf[dampxpopxasthmaxerf[,"Year"]=="2010", c("obs","Country","Age","Sex")], p_nd=dampxpopxasthmaxerf[dampxpopxasthmaxerf[,"Year"]=="2010", "InitialPrevalence"] * 100 /(dampxpopxasthmaxerf[ dampxpopxasthmaxerf[,"Year"]=="2010", "Result"] * dampxpopxasthmaxerf[dampxpopxasthmaxerf[,"Year"]=="2010", "ERF"] + 100 - dampxpopxasthmaxerf[dampxpopxasthmaxerf[,"Year"]=="2010", "Result"])) p_ndarray <- DataframeToArray(p_nd, "p_nd") dampxpopxasthmaxerfxp_nd <- IntArray(dampxpopxasthmaxerf, p_ndarray, "p_nd") final <- data.frame(dampxpopxasthmaxerfxp_nd[,c("obs","Country","policy","Year","Age","Sex")], Result=dampxpopxasthmaxerfxp_nd[,"Population"] * dampxpopxasthmaxerfxp_nd[,"p_nd"] * dampxpopxasthmaxerfxp_nd[,"Result"] * (dampxpopxasthmaxerfxp_nd[,"ERF"] - 1) / 10000)
Result
{{#opasnet_base_link:Op_en4723}}
Year | ||||
---|---|---|---|---|
Policy | 2010 | 2020 | 2030 | 2050 |
BAU | 1719942 (1112299-2501866) | 2074298 (1283407-3166039) | 2307249 (1367574-3736504) | 2415120 (1371764-3983910) |
All | NA | 2077607 (1287267-3174488) | 2642618 (1569616-4149730) | 3004924 (1758236-4783584) |
Biomass | NA | NA | NA | 2994210 (1712744-4763987) |
Insulation | NA | NA | NA | 2997521 (1717737-4737750) |
Renovation | NA | NA | NA | 3412703 (1987737-5394455) |
Country of observation | Mean | SD |
---|---|---|
Austria | 23958 | 19818 |
Belgium | 46983 | 24769 |
Cyprus | 3010 | 706 |
Czech Republic | 65640 | 31215 |
Denmark | 9088 | 6502 |
Estonia | 8188 | 2735 |
Finland | 10881 | 17198 |
France | 303354 | 161230 |
Germany | 379346 | 221077 |
Greece | 20517 | 7842 |
Italy | 279127 | 99106 |
Latvia | 11991 | 3158 |
Poland | 270064 | 49342 |
Portugal | 48477 | 18082 |
Spain | 226670 | 93709 |
Sweden | 20039 | 24323 |
Total | 1727332 |
See also
Keywords
Asthma, indoor air, dampness, Europe
References
Related files
<mfanonymousfilelist></mfanonymousfilelist>