Asthma prevalence due to building dampness in Europe: Difference between revisions
Jump to navigation
Jump to search
(→Formula: OR uncertainty added) |
m (→Formula) |
||
(9 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{variable|moderator=Teemu R | [[Category:Indoor air]] | ||
[[Category:Mega case study]] | |||
[[Category:Health impact]] | |||
{{variable|moderator=Teemu R}} | |||
== Scope == | == Scope == | ||
Line 7: | Line 10: | ||
== Definition == | == Definition == | ||
This variable is calculated entirely from upstream variables listed under [[#Dependencies]]. Mathematical method described under [[#Formula]]. | |||
Formula | |||
=== Data === | === Data === | ||
Line 24: | Line 18: | ||
*[[:heande:Moisture damage]] | *[[:heande:Moisture damage]] | ||
*[[Population of Europe by Country|Population of Europe]] | *[[Population of Europe by Country|Population of Europe]] | ||
* | *[[Asthma prevalence]] | ||
*[[ERF of indoor dampness on respiratory health effects]] | *[[ERF of indoor dampness on respiratory health effects]] | ||
Line 33: | Line 27: | ||
=== Formula === | === Formula === | ||
# | Formula calculates number of asthma cases which can be attributed to dampness in Europe in years 2010-2050 by using the following: | ||
# | #<math>extra cases = (prevalencetotal - prevalencenondamp) * population</math> | ||
#<math>prevalencetotal = prevalencenondamp * (%damp * OR + 1 - %damp)</math> | |||
#<math>prevalence_0 = %damp * OR * prevalencenondamp + (1 - %damp) * prevalencenondamp</math> | |||
::<math>prevalencenondamp = \frac{prevalence_0}{%damp * OR + 1 - %damp}</math> | |||
* | *Prevalences for nondamp and damp homes are assumed constant, for a given iteration in a given country. | ||
<nowiki> | <nowiki> | ||
Line 45: | Line 41: | ||
"Finland", "France", "Greece", "Hungary", "Ireland", "Iceland", "Italy", "Lithuania", "Luxembourg", "Latvia", "Malta", "Netherlands", | "Finland", "France", "Greece", "Hungary", "Ireland", "Iceland", "Italy", "Lithuania", "Luxembourg", "Latvia", "Malta", "Netherlands", | ||
"Norway", "Poland", "Portugal", "Romania", "Sweden", "Slowenia", "Slovakia", "United Kingdom") | "Norway", "Poland", "Portugal", "Romania", "Sweden", "Slowenia", "Slovakia", "United Kingdom") | ||
levels(pop[,"CountryID"]) <- countries | levels(pop[,"CountryID"]) <- countries #IDs converted to actual names, for compatibility with other data | ||
colnames(pop)[4] <- "Country" | colnames(pop)[c(4,7)] <- c("Country","Population") | ||
asthma <- op_baseGetData("opasnet_base", "Op_en4789") | |||
erf <- op_baseGetData("opasnet_base", "Op_en4716") | |||
poparray <- DataframeToArray(pop, "Population") | poparray <- DataframeToArray(pop, "Population") | ||
dampxpop <- IntArray(dampness, poparray, "Population") | dampxpop <- IntArray(dampness, poparray, "Population") | ||
asthmaarray <- DataframeToArray(asthma | asthmaarray <- DataframeToArray(asthma) | ||
dampxpopxasthma <- IntArray(dampxpop, asthmaarray, "InitialPrevalence") | dampxpopxasthma <- IntArray(dampxpop, asthmaarray, "InitialPrevalence") | ||
p_nd <- data.frame( | erfarray <- DataframeToArray(erf) | ||
p_nd= | dampxpopxasthmaxerf <- IntArray(dampxpopxasthma, erfarray, "ERF") | ||
"InitialPrevalence"] * 100 /( | p_nd <- data.frame(dampxpopxasthmaxerf[dampxpopxasthmaxerf[,"Year"]=="2010", c("obs","Country","Age","Sex")], | ||
"2010", "Result"])) | p_nd=dampxpopxasthmaxerf[dampxpopxasthmaxerf[,"Year"]=="2010", "InitialPrevalence"] * 100 /(dampxpopxasthmaxerf[ | ||
dampxpopxasthmaxerf[,"Year"]=="2010", "Result"] * dampxpopxasthmaxerf[dampxpopxasthmaxerf[,"Year"]=="2010", | |||
"ERF"] + 100 - dampxpopxasthmaxerf[dampxpopxasthmaxerf[,"Year"]=="2010", "Result"])) | |||
p_ndarray <- DataframeToArray(p_nd, "p_nd") | p_ndarray <- DataframeToArray(p_nd, "p_nd") | ||
dampxpopxasthmaxerfxp_nd <- IntArray(dampxpopxasthmaxerf, p_ndarray, "p_nd") | |||
final <- data.frame(dampxpopxasthmaxerfxp_nd[,c("obs","Country","policy","Year","Age","Sex")], | |||
final <- data.frame( | Result=dampxpopxasthmaxerfxp_nd[,"Population"] * dampxpopxasthmaxerfxp_nd[,"p_nd"] * | ||
Result= | dampxpopxasthmaxerfxp_nd[,"Result"] * (dampxpopxasthmaxerfxp_nd[,"ERF"] - 1) / 10000) | ||
###Fancy alternative below, might be better, requires more testing | |||
#final <- model.frame(I(Result*Population*p_nd*(ERF-1)/10000)~ obs + Country + policy + Age + Sex + Outcome, | |||
#data = dampxpopxasthmaxerfxp_nd)</nowiki> | |||
== Result == | == Result == | ||
{{resultlink}} | {{resultlink}} | ||
{|{{prettytable}} | |||
|+'''Asthma cases (prevalence) in Europe due to residential building dampness (mean and 95% confidence interval).''' | |||
! !!colspan="4"|Year | |||
|---- | |||
!Policy!!2010!!2020!!2030!!2050 | |||
|---- | |||
|BAU || 1715846 (794208-2918407) || 2069089 (929518-3645690) || 2300513 (1007103-4193891) || 2417413 (1016202-4559645) | |||
|---- | |||
|All || NA || 2071501 (940391-3650210) || 2634778 (1139578-4745158) || 3009693 (1251020-5519308) | |||
|---- | |||
|Biomass || NA || NA || NA || 2998888 (1249803-5529395) | |||
|---- | |||
|Insulation || NA || NA || NA || 3002498 (1239186-5524389) | |||
|---- | |||
|Renovation || NA || NA || NA || 3416010 (1443227-6233562) | |||
|---- | |||
|} | |||
{| {{prettytable}} | {| {{prettytable}} | ||
Line 84: | Line 90: | ||
! Country of observation!! Mean!! SD | ! Country of observation!! Mean!! SD | ||
|---- | |---- | ||
|| Austria|| | || Austria || 23661 || 22103 | ||
|---- | |---- | ||
|| Belgium|| | || Belgium || 46341 || 30025.2 | ||
|---- | |---- | ||
|| Cyprus|| | || Cyprus || 2988 || 1251 | ||
|---- | |---- | ||
|| Czech Republic|| | || Czech Republic || 65025 || 39220 | ||
|---- | |---- | ||
|| Denmark|| | || Denmark|| 9051 || 7432 | ||
|---- | |---- | ||
|| Estonia|| | || Estonia|| 7828 || 3876 | ||
|---- | |---- | ||
|| Finland|| | || Finland|| 10929 || 18613 | ||
|---- | |---- | ||
|| France|| | || France|| 302344 || 201280 | ||
|---- | |---- | ||
|| Germany|| | || Germany|| 375145 || 265165 | ||
|---- | |---- | ||
|| Greece|| | || Greece|| 20343 || 10627 | ||
|---- | |---- | ||
|| Italy|| | || Italy|| 276619 || 142459 | ||
|---- | |---- | ||
|| Latvia|| | || Latvia|| 11875 || 5228 | ||
|---- | |---- | ||
|| Poland|| | || Poland|| 267934 || 105393 | ||
|---- | |---- | ||
|| Portugal|| | || Portugal|| 47961 || 25133 | ||
|---- | |---- | ||
|| Spain|| | || Spain|| 227574 || 126839 | ||
|---- | |---- | ||
|| Sweden|| | || Sweden|| 20225 || 27113 | ||
|---- | |---- | ||
! Total!! | ! Total!! 1715846 || | ||
|---- | |---- | ||
|} | |} |
Latest revision as of 12:23, 11 April 2011
Moderator:Teemu R (see all) |
|
Upload data
|
Scope
Europe in 2010, 2020, 2030, 2050.
Definition
This variable is calculated entirely from upstream variables listed under #Dependencies. Mathematical method described under #Formula.
Data
Dependencies
- heande:Moisture damage
- Population of Europe
- Asthma prevalence
- ERF of indoor dampness on respiratory health effects
Unit
#
Formula
Formula calculates number of asthma cases which can be attributed to dampness in Europe in years 2010-2050 by using the following:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle extra cases = (prevalencetotal - prevalencenondamp) * population}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle prevalencetotal = prevalencenondamp * (%damp * OR + 1 - %damp)}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle prevalence_0 = %damp * OR * prevalencenondamp + (1 - %damp) * prevalencenondamp}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle prevalencenondamp = \frac{prevalence_0}{%damp * OR + 1 - %damp}}
- Prevalences for nondamp and damp homes are assumed constant, for a given iteration in a given country.
dampness <- op_baseGetData("opasnet_base", "Erac2988") pop <- op_baseGetData("opasnet_base", "Op_en4691", include = 1367, exclude = c(1435, 1436)) countries <- c("Austria", "Belgium", "Bulgaria", "Switzerland", "Cyprus", "Czech Republic", "Germany", "Denmark", "Estonia", "Spain", "Finland", "France", "Greece", "Hungary", "Ireland", "Iceland", "Italy", "Lithuania", "Luxembourg", "Latvia", "Malta", "Netherlands", "Norway", "Poland", "Portugal", "Romania", "Sweden", "Slowenia", "Slovakia", "United Kingdom") levels(pop[,"CountryID"]) <- countries #IDs converted to actual names, for compatibility with other data colnames(pop)[c(4,7)] <- c("Country","Population") asthma <- op_baseGetData("opasnet_base", "Op_en4789") erf <- op_baseGetData("opasnet_base", "Op_en4716") poparray <- DataframeToArray(pop, "Population") dampxpop <- IntArray(dampness, poparray, "Population") asthmaarray <- DataframeToArray(asthma) dampxpopxasthma <- IntArray(dampxpop, asthmaarray, "InitialPrevalence") erfarray <- DataframeToArray(erf) dampxpopxasthmaxerf <- IntArray(dampxpopxasthma, erfarray, "ERF") p_nd <- data.frame(dampxpopxasthmaxerf[dampxpopxasthmaxerf[,"Year"]=="2010", c("obs","Country","Age","Sex")], p_nd=dampxpopxasthmaxerf[dampxpopxasthmaxerf[,"Year"]=="2010", "InitialPrevalence"] * 100 /(dampxpopxasthmaxerf[ dampxpopxasthmaxerf[,"Year"]=="2010", "Result"] * dampxpopxasthmaxerf[dampxpopxasthmaxerf[,"Year"]=="2010", "ERF"] + 100 - dampxpopxasthmaxerf[dampxpopxasthmaxerf[,"Year"]=="2010", "Result"])) p_ndarray <- DataframeToArray(p_nd, "p_nd") dampxpopxasthmaxerfxp_nd <- IntArray(dampxpopxasthmaxerf, p_ndarray, "p_nd") final <- data.frame(dampxpopxasthmaxerfxp_nd[,c("obs","Country","policy","Year","Age","Sex")], Result=dampxpopxasthmaxerfxp_nd[,"Population"] * dampxpopxasthmaxerfxp_nd[,"p_nd"] * dampxpopxasthmaxerfxp_nd[,"Result"] * (dampxpopxasthmaxerfxp_nd[,"ERF"] - 1) / 10000) ###Fancy alternative below, might be better, requires more testing #final <- model.frame(I(Result*Population*p_nd*(ERF-1)/10000)~ obs + Country + policy + Age + Sex + Outcome, #data = dampxpopxasthmaxerfxp_nd)
Result
{{#opasnet_base_link:Op_en4723}}
Year | ||||
---|---|---|---|---|
Policy | 2010 | 2020 | 2030 | 2050 |
BAU | 1715846 (794208-2918407) | 2069089 (929518-3645690) | 2300513 (1007103-4193891) | 2417413 (1016202-4559645) |
All | NA | 2071501 (940391-3650210) | 2634778 (1139578-4745158) | 3009693 (1251020-5519308) |
Biomass | NA | NA | NA | 2998888 (1249803-5529395) |
Insulation | NA | NA | NA | 3002498 (1239186-5524389) |
Renovation | NA | NA | NA | 3416010 (1443227-6233562) |
Country of observation | Mean | SD |
---|---|---|
Austria | 23661 | 22103 |
Belgium | 46341 | 30025.2 |
Cyprus | 2988 | 1251 |
Czech Republic | 65025 | 39220 |
Denmark | 9051 | 7432 |
Estonia | 7828 | 3876 |
Finland | 10929 | 18613 |
France | 302344 | 201280 |
Germany | 375145 | 265165 |
Greece | 20343 | 10627 |
Italy | 276619 | 142459 |
Latvia | 11875 | 5228 |
Poland | 267934 | 105393 |
Portugal | 47961 | 25133 |
Spain | 227574 | 126839 |
Sweden | 20225 | 27113 |
Total | 1715846 |
See also
Keywords
Asthma, indoor air, dampness, Europe
References
Related files
<mfanonymousfilelist></mfanonymousfilelist>