Asthma prevalence due to building dampness in Europe
| Moderator:Teemu R (see all) |
| This page is a stub. You may improve it into a full page. |
| Upload data
|
Scope
Europe in 2010, 2020, 2030, 2050.
Definition
Initial Prevalence data from GINA[1].
Formula calculates number of asthma cases which can be attributed to dampness in Europe in years 2010-2050 by using the following:
- <math>extra cases = (prevalence_total - prevalence_nondamp) population</math>
- <math>prevalence_total = prevalence_nondamp(%damp * OR + 1 - %damp)</math>
- <math>prevalence_0 = %damp * OR * prevalence_nondamp + (1 - %damp) * prevalence_nondamp</math>
- <math>prevalence_nondamp = \frac{prevalence_0}{%damp * OR + 1 - %damp}</math>
- Prevalences for nondamp and damp homes are assumed constant, for a given iteration. Fraction of damp homes varies, hence total prevalence varies.
Population data[1] included population growth scenarios so they too are included.
Distribution represents uncertainty (mainly of fraction of affected homes).
Data
Dependencies
- heande:Moisture damage
- Population of Europe
- Prevelance of Clinical Asthma[1]
- ERF of indoor dampness on respiratory health effects
Unit
#
Formula
- ERF approximated as that for current asthma (OR = 1.56).
dampness <- op_baseGetData("opasnet_base", "Erac2988")
pop <- op_baseGetData("opasnet_base", "Op_en4691", include = 1367, exclude = c(1435, 1436))
countries <- c("Austria", "Belgium", "Bulgaria", "Switzerland", "Cyprus", "Czech Republic", "Germany", "Denmark", "Estonia", "Spain",
"Finland", "France", "Greece", "Hungary", "Ireland", "Iceland", "Italy", "Lithuania", "Luxembourg", "Latvia", "Malta", "Netherlands",
"Norway", "Poland", "Portugal", "Romania", "Sweden", "Slowenia", "Slovakia", "United Kingdom")
levels(pop[,"CountryID"]) <- countries
colnames(pop)[4] <- "Country"
colnames(pop)[8] <- "Population"
#asthma <- read.csv("C:/Documents and Settings/tris/My Documents/Asthma prevalence.csv", sep = ";")
asthma <- data.frame(Country=c('Scotland','Jersey','Guernsey','Wales','Isle of Man','England','New Zealand','Australia','Republic of Ireland',
'Canada','Peru','Trinidad & Tobago','Costa Rica','Brazil','United States of America','Fiji','Paraguay','Uruguay','Israel','Barbados','Panama',
'Kuwait','Ukraine','Ecuador','South Africa','Czech Republic','Finland','Malta','Ivory Coast','Colombia','Turkey','Lebanon','Kenya','Germany',
'France','Norway','Japan','Sweden','Thailand','Hong Kong','Philippines','United Arab Emirates','Belgium','Austria','Spain','Saudi Arabia',
'Argentina','Iran','Estonia','Nigeria','Chile','Singapore','Malaysia','Portugal','Uzbekistan','FYR Macedonia','Italy','Oman','Pakistan',
'Tunisia','Cape Verde','Latvia','Poland','Algeria','South Korea','Bangladesh','Morocco','Occupied Territory of Palestine','Mexico','Ethiopia',
'Denmark','India','Taiwan','Cyprus','Switzerland','Russia','China','Greece','Georgia','Nepal','Romania','Albania','Indonesia','Macau'),
InitialPrevalence=c(18.4,17.6,17.5,16.8,16.7,15.3,15.1,14.7,14.6,14.1,13,12.6,11.9,11.4,10.9,10.5,9.7,9.5,9,8.9,8.8,8.5,8.3,8.2,8.1,8,8,8,7.8,7.4,
7.4,7.2,7,6.9,6.8,6.8,6.7,6.5,6.5,6.2,6.2,6.2,6,5.8,5.7,5.6,5.5,5.5,5.4,5.4,5.1,4.9,4.8,4.8,4.6,4.5,4.5,4.5,4.3,4.3,4.2,4.2,4.1,3.9,3.9,3.8,
3.8,3.6,3.3,3.1,3,3,2.6,2.4,2.3,2.2,2.1,1.9,1.8,1.5,1.5,1.3,1.1,0.7))
#asthma <- data.frame(Country=asthma[1:26,1], Casesper1000=(asthma[1:26,2]+asthma[1:26,3]))
poparray <- DataframeToArray(pop, "Population")
dampxpop <- IntArray(dampness, poparray, "Population")
asthmaarray <- DataframeToArray(asthma, "InitialPrevalence")
dampxpopxasthma <- IntArray(dampxpop, asthmaarray, "InitialPrevalence")
erf <- rnorm(nrow(dampxpopxasthma[dampxpopxasthma[,"Year"]=="2010",]), 1.56, (1.86-1.30)/3.92)
p_nd <- data.frame(dampxpopxasthma[dampxpopxasthma[,"Year"]=="2010", c("obs","Country","Age","Rate","Sex")],
p_nd=dampxpopxasthma[dampxpopxasthma[,"Year"]=="2010",
"InitialPrevalence"] * 100 /(dampxpopxasthma[dampxpopxasthma[,"Year"]=="2010", "Result"] * erf + 100 - dampxpopxasthma[dampxpopxasthma[,"Year"]==
"2010", "Result"]))
p_ndarray <- DataframeToArray(p_nd, "p_nd")
dampxpopxasthmaxp_nd <- IntArray(dampxpopxasthma, p_ndarray, "p_nd")
erfdf <- p_nd
colnames(erfdf)[ncol(erfdf)] <- "erf"
erfdf[,"erf"] <- erf
erfarray <- DataframeToArray(erfdf, "erf")
dampxpopxasthmaxp_ndxerf <- IntArray(dampxpopxasthmaxp_nd, erfarray, "erf")
final <- data.frame(dampxpopxasthmaxp_ndxerf[,c("obs","Country","policy","Year","Age","Rate","Sex")],
Result=dampxpopxasthmaxp_ndxerf[,"Population"] * dampxpopxasthmaxp_ndxerf[,"p_nd"] *
dampxpopxasthmaxp_ndxerf[,"Result"] * (dampxpopxasthmaxp_ndxerf[,"erf"] - 1) / 10000)
Result
{{#opasnet_base_link:Op_en4723}}
| Year | ||||
|---|---|---|---|---|
| Policy | 2010 | 2020 | 2030 | 2050 |
| BAU | 1719942 (1112299-2501866) | 2074298 (1283407-3166039) | 2307249 (1367574-3736504) | 2415120 (1371764-3983910) |
| All | NA | 2077607 (1287267-3174488) | 2642618 (1569616-4149730) | 3004924 (1758236-4783584) |
| Biomass | NA | NA | NA | 2994210 (1712744-4763987) |
| Insulation | NA | NA | NA | 2997521 (1717737-4737750) |
| Renovation | NA | NA | NA | 3412703 (1987737-5394455) |
| Country of observation | Mean | SD |
|---|---|---|
| Austria | 23958 | 19818 |
| Belgium | 46983 | 24769 |
| Cyprus | 3010 | 706 |
| Czech Republic | 65640 | 31215 |
| Denmark | 9088 | 6502 |
| Estonia | 8188 | 2735 |
| Finland | 10881 | 17198 |
| France | 303354 | 161230 |
| Germany | 379346 | 221077 |
| Greece | 20517 | 7842 |
| Italy | 279127 | 99106 |
| Latvia | 11991 | 3158 |
| Poland | 270064 | 49342 |
| Portugal | 48477 | 18082 |
| Spain | 226670 | 93709 |
| Sweden | 20039 | 24323 |
| Total | 1727332 |
See also
Keywords
Asthma, indoor air, dampness, Europe
References
Related files
<mfanonymousfilelist></mfanonymousfilelist>