Asthma prevalence due to building dampness in Europe

From Opasnet
Revision as of 14:21, 3 January 2011 by Teemu R (talk | contribs) (→‎Formula: simplified mathematics, same outcome)
Jump to navigation Jump to search


Scope

Europe in 2010, 2020, 2030, 2050.

Definition

Data

Description of the data used for obtaining the value of the variable
(e.g. measurement data; mathematical method and its parameters). 
Please include references (preferably using the <ref> </ref> tags) and links to original data, as appropriate.

Dependencies

Unit

#

Formula

  1. <math>extra cases = (prevalence_total - prevalence_nondamp) population</math>
  2. <math>prevalence_total = prevalence_nondamp(%damp * OR + 1 - %damp)</math>
  3. <math>prevalence_nondamp = \frac{prevalence_0}{%damp * OR + 1 - %damp}</math>
  • ERF approximated as that for current asthma (1.56).
dampness <- op_baseGetData("opasnet_base", "Erac2988")
pop <- op_baseGetData("opasnet_base", "Op_en4691", include = 1367, exclude = c(1435, 1436))
countries <- c("Austria", "Belgium", "Bulgaria", "Switzerland", "Cyprus", "Czech Republic", "Germany", "Denmark", "Estonia", "Spain", 
	"Finland", "France", "Greece", "Hungary", "Ireland", "Iceland", "Italy", "Lithuania", "Luxembourg", "Latvia", "Malta", "Netherlands", 
	"Norway", "Poland", "Portugal", "Romania", "Sweden", "Slowenia", "Slovakia", "United Kingdom")
levels(pop[,"CountryID"]) <- countries
colnames(pop)[4] <- "Country"
colnames(pop)[8] <- "Population"
#asthma <- read.csv("C:/Documents and Settings/tris/My Documents/Asthma prevalence.csv", sep = ";")
asthma <- data.frame(Country=c('Scotland','Jersey','Guernsey','Wales','Isle of Man','England','New Zealand','Australia','Republic of Ireland', 
'Canada','Peru','Trinidad & Tobago','Costa Rica','Brazil','United States of America','Fiji','Paraguay','Uruguay','Israel','Barbados','Panama', 
'Kuwait','Ukraine','Ecuador','South Africa','Czech Republic','Finland','Malta','Ivory Coast','Colombia','Turkey','Lebanon','Kenya','Germany', 
'France','Norway','Japan','Sweden','Thailand','Hong Kong','Philippines','United Arab Emirates','Belgium','Austria','Spain','Saudi Arabia', 
'Argentina','Iran','Estonia','Nigeria','Chile','Singapore','Malaysia','Portugal','Uzbekistan','FYR Macedonia','Italy','Oman','Pakistan', 
'Tunisia','Cape Verde','Latvia','Poland','Algeria','South Korea','Bangladesh','Morocco','Occupied Territory of Palestine','Mexico','Ethiopia', 
'Denmark','India','Taiwan','Cyprus','Switzerland','Russia','China','Greece','Georgia','Nepal','Romania','Albania','Indonesia','Macau'), 
InitialPrevalence=c(18.4,17.6,17.5,16.8,16.7,15.3,15.1,14.7,14.6,14.1,13,12.6,11.9,11.4,10.9,10.5,9.7,9.5,9,8.9,8.8,8.5,8.3,8.2,8.1,8,8,8,7.8,7.4, 
7.4,7.2,7,6.9,6.8,6.8,6.7,6.5,6.5,6.2,6.2,6.2,6,5.8,5.7,5.6,5.5,5.5,5.4,5.4,5.1,4.9,4.8,4.8,4.6,4.5,4.5,4.5,4.3,4.3,4.2,4.2,4.1,3.9,3.9,3.8, 
3.8,3.6,3.3,3.1,3,3,2.6,2.4,2.3,2.2,2.1,1.9,1.8,1.5,1.5,1.3,1.1,0.7))
#asthma <- data.frame(Country=asthma[1:26,1], Casesper1000=(asthma[1:26,2]+asthma[1:26,3]))
erf <- 1.56
poparray <- DataframeToArray(pop, "Population")
dampxpop <- IntArray(dampness, poparray, "Population")
asthmaarray <- DataframeToArray(asthma, "InitialPrevalence")
dampxpopxasthma <- IntArray(dampxpop, asthmaarray, "InitialPrevalence")
p_nd <- data.frame(dampxpopxasthma[dampxpopxasthma[,"Year"]=="2010", c(2,3,6,7,8)], p_nd=dampxpopxasthma[dampxpopxasthma[,"Year"]=="2010", 
"InitialPrevalence"] * 100 /(dampxpopxasthma[dampxpopxasthma[,"Year"]=="2010", "Result"] * erf + 100 - dampxpopxasthma[dampxpopxasthma[,"Year"]==
"2010", "Result"]))
p_ndarray <- DataframeToArray(p_nd, "p_nd")
dampxpopxasthmaxp_nd <- IntArray(dampxpopxasthma, p_ndarray, "p_nd")
final <- data.frame(dampxpopxasthmaxk[,c(2,3,4,6,7,8)], Result=dampxpopxasthmaxp_nd[,"Population"] * dampxpopxasthmaxp_nd[,"p_nd"] * 
dampxpopxasthmaxp_nd[,"Result"] * (erf - 1) / 10000)

Result

{{#opasnet_base_link:Op_en4723}}


See also

Keywords

Asthma, indoor air, dampness, Europe

References

Related files

<mfanonymousfilelist></mfanonymousfilelist>