ERF of waterborne microbes: Difference between revisions

From Opasnet
Jump to navigation Jump to search
Line 108: Line 108:
library(OpasnetUtils)
library(OpasnetUtils)


ERF_micr <- Ovariable("ERF_micr", ddata = "Op_en7948")
ERF_micr <- Ovariable("ERF_micr", ddata = "Op_en7948", subset="ERF")
colnames(ERF_micr@data) <- gsub(" ", "_", colnames(ERF_micr@data))
colnames(ERF_micr@data) <- gsub(" ", "_", colnames(ERF_micr@data))



Revision as of 12:13, 6 August 2019


Question

What are the dose-response functions of pathogens in drinking water?

Answer

+ Show code

Rationale

Data

ERF(-)
ObsExposure agentResponseExposureExposure unitER functionScalingThresholdERFDescription
1campylobactercampylobacter infectioningestion?beta poisson approximationNone0.0110.024
2rotavirusrotavirus infectioningestion?exact beta poissonNone0.1910.167
3norovirusnorovirus infectioningestion?exact beta poissonNone0.0550.04
4cryptosporidiumcryptosporidium infectioningestion?exact beta poissonNone0.1760.115
5giardiagiardia infectioningestion?exponentialNone00.0199
6E.coli O157:H7E. coli infectioningestion?exact beta poissonNone9.160.157E. coli O157:H7 strain


Probability of illness, given infection(probability)
ObsResponse Illness SubgroupResult
1giardia infectiongastroenteritis1
2cryptosporidium infectiongastroenteritis0.71
3cryptosporidium infectiondeathAge:age 0-40.00000070645
4cryptosporidium infectiondeathAge:age 5-90
5cryptosporidium infectiondeathAge:age 10-140
6cryptosporidium infectiondeathAge:age 15-640.000014839
7cryptosporidium infectiondeathAge:age 65-790.0011644
8cryptosporidium infectiondeathAge:age 80+0.0011644
9norovirus infectiongastroenteritis0.7
10norovirus infectiondeathAge:age 0-40.000002058
11norovirus infectiondeathAge:age 5-90
12norovirus infectiondeathAge:age 10-140
13norovirus infectiondeathAge:age 15-640
14norovirus infectiondeathAge:age 65-790.000168
15norovirus infectiondeathAge:age 80+0.000168
16rotavirus infectiongastroenteritis0.9
17rotavirus infectiondeathAge:age 0-40.00001917
18rotavirus infectiondeathAge:age 5-90
19rotavirus infectiondeathAge:age 10-140
20rotavirus infectiondeathAge:age 15-640
21rotavirus infectiondeathAge:age 65-810
22rotavirus infectiondeathAge:age 80+0
23campylobacter infectiongastroenteritis0.323
24campylobacter infectionclinical Guillian-Barré syndrome0.000066
25campylobacter infectionresidual Guillian Barré syndrome0.000066
26campylobacter infectionreactive arthritis0.0066
27campylobacter infectiondeath0.000131
28E. coli infectiongastroenteritis0.4346
29E. coli infectionhemorrhagic colitis0.3854
30E. coli infectionhaemolytic uraemic syndrome0.0082
31E. coli infectionend stage renal disease0.0009676
32E. coli infectiondeath0.00062238

⇤--arg6688: . Find out the units of the parameters to understand the functions precisely. --Jouni (talk) 12:54, 11 July 2019 (UTC) (type: truth; paradigms: science: attack)

----arg2087: . The ERF and Threshold numbers in the tables correspond to parameters called alpha and beta respectively in the papers cited below in the cases of campylo, rota, noro and crypto. The equations alpha and beta are used in in the papers don't (seem to) match the equations below. At least for campylo the equations are significantly more complicated. For giardia the value in ERF does seem to be used in the paper it's from in the way the exponential equation shows. In the paper it's marked as r, the probability of infection. The equation in the paper uses "mean number per portion" where Dose is in this equation. E.coli is the biggest mystery: I wasn't able to find the numbers in the table above from the paper sited for it at all. --Heta (talk) 10:32, 12 July 2019 (UTC) (type: truth; paradigms: science: comment)

In these equations, Param1 and Param2 are in Threshold and ERF columns, respectively.

  • Beta Poisson approximation: 1-(1+Dose/Param2)^-Param1
  • Exact beta Poisson: 1-exp(-(Param1/(Param1+Param2))*Dose)
  • Exponential: 1-exp(-Param1*Dose)
Pathogen Reference
Campylobacter [1]
Rotavirus [2]
Norovirus [3]
Cryptosporidium [4]
Giardia [5]
E.coli O157:H7 [6]

Calculations

+ Show code


+ Show code

⇤--arg5268: . The code below is old and does not work with the new ERF table. --Jouni (talk) 12:54, 11 July 2019 (UTC) (type: truth; paradigms: science: attack)

+ Show code

See also

References

  1. Teunis, P., van den Brandhof, W., Nauta, M., Wagenaar, J., van den Kerkhof, H. and van Pelt, W. 2005. A reconsideration of the Campylobacter dose–response relation. Epidemiol. Infec. 133, 583-592. DOI: https://doi.org/10.1017/S0950268805003912
  2. Teunis, P. F. M. and Havelaar, A. 2000. "The beta Poisson dose‐response model is not a single hit model."Risk Analysis 20(4): 513-520. https://doi.org/10.1111/0272-4332.204048
  3. Teunis P.F.M., Moe, C.L., Liu, P., Miller, S.E., Lindesmith, L., Baric, R.S., Le Pendu, J., Calderon, R.L. 2008. Norwalk Virus: How Infectious is It? Journal of Medical Virology 80:1468-1476. https://doi.org/10.1002/jmv.21237
  4. Teunis, P.F.M., Chappell, C.L., Okhuysen, P.C. 2002. Cryptosporidium Dose Response Studies: Variation Between Isolates. Risk Analysis 22(1) 175-183 https://doi.org/10.1111/0272-4332.00014
  5. Teunis, P.F.M., van der Heijden, O.G., van der Giessen, J.W.B., Havelaar, A.H. 1996. The dose-response relation in human volunteers for gastro-intestinal pathogens. RIVM report No. 284550002. http://hdl.handle.net/10029/9966
  6. Teunis, P., Takumi, K. and Shinagawa, K. 2004. "Dose response for infection by Escherichia coli O157:H7 from outbreak data." Risk Analysis 24(2): 401‐407. https://doi.org/10.1111/j.0272-4332.2004.00441.x