Helsinki energy production: Difference between revisions

From Opasnet
Jump to navigation Jump to search
(→‎Energy balance: divided Smaller heat plants into Gas and Fuel oil heat plants)
Line 86: Line 86:
2020-2070|Sea heat pump for cooling|0|225|280|10|4|
2020-2070|Sea heat pump for cooling|0|225|280|10|4|
1980-2070|Small-scale wood burning|0|78|0|1|5|Assuming 70% of Helsinki's detached and row houses have a working fireplace
1980-2070|Small-scale wood burning|0|78|0|1|5|Assuming 70% of Helsinki's detached and row houses have a working fireplace
1980-2070|Smaller gas heat plants around Helsinki|0|1000|50|5|5|
1980-2070|Smaller gas heat plants around Helsinki|0|600|0|5|5|
1980-2070|Smaller fuel oil heat plants around Helsinki|0|1000|50|5|5|
1980-2070|Smaller fuel oil heat plants around Helsinki|0|1600|0|5|5|
2015-2040|Suvilahti power storage|-1.2|1.2|100|10|5|electricity storage 0.6 MWh  
2015-2040|Suvilahti power storage|-1.2|1.2|100|10|5|electricity storage 0.6 MWh  
2013-2070|Suvilahti solar|0|0.34|0|10|5|
2013-2070|Suvilahti solar|0|0.34|0|10|5|

Revision as of 07:03, 23 July 2015


Question

What is the amount of energy produced (including distributed production) in Helsinki? Where is it produced (-> emissions)? Which processes are used in its production?

Answer

Rationale

Energy balance

Amount produced is determined largely by the energy balance in Helsinki and Helsinki energy consumption. Energy produced and fuels used by of all Helen's power plants.[1]

Heat, power and cooling processes(MJ /MJ)
ObsPlantBurnerElectricityHeatCoolingCoalGasFuel oilBiofuelDescription
1Biofueled heat production unitsLarge fluidized bed00.85-0.910000-1
2CHP diesel generatorsDiesel engine0.30.4000-10
3Deep-drill heatNone-0.1100000
4HanasaariLarge fluidized bed0.310.600-1000Assume 91 % efficiency. Capacity: electricity 220 MW heat 420 MW Loss 64 MW
5Hanasaari biofuel renovationLarge fluidized bed0.310.600-0.600-0.4
6Household air heat pumpsNone-0.7 - -0.2100000The efficiency of heat pumps is largely dependent on outside air temperature, it's feasible for a household air heat pump to reach COP 5 at 10 °C and COP 1.5 at -25 °C.
7Household air heat pumps for coolingNone-0.7 - -0.2010000
8Household geothermal heatNone-0.3 - -0.1100000
9Katri Vala coolingNone-0.55010000District cooling produced by absorption (?) heat pumps.
10Katri Vala heatNone-0.35100000Heat from cleaned waste water and district heating network's returing water.
11Kellosaari back-up plantLarge fluidized bed0.350000-10
12Kymijoki River's plantsNone1000000Hydropower
13Loviisa nuclear heatNone-0.1100000
14Neste oil refinery heatNone-0.1100000
15Powerplant museum in VanhakaupunkiNone1000000Hydropower
16Salmisaari A&BLarge fluidized bed0.320.590-1000Capacity: electricity 160 MW heat 300 MW loss 46 MW
17Salmisaari biofuel renovationLarge fluidized bed0.320.590000-1
18Sea heat pumpNone-0.2100000
19Sea heat pump for coolingNone-0.2010000
20Small-scale wood burningHousehold00.9 - 0.50000-1
21Smaller gas heat plants around HelsinkiLarge fluidized bed00.9100-100
22Smaller fuel oil heat plants around HelsinkiLarge fluidized bed00.91000-10
23Suvilahti power storageNone1000000
24Vuosaari ALarge fluidized bed0.4550.45500-100Capacity: electricity 160 MW heat 160 MW loss 30 MW
25Vuosaari BLarge fluidized bed0.50.4100-100Capacity: electricity 500 MW heat 424 MW loss 90 MW
26Vuosaari C biofuelLarge fluidized bed0.470.440000-1

Notes:

  • Household air heat pumps data from heat pump comparison[2]
  • Household geothermal heat data from Energy Department of the United States: Geothermal Heat Pumps[3]
  • Small-scale wood burning data from Energy Department of the United States: Wood and Pellet Heating[4]
  • Loss of thermal energy through distribution is around 10 %. From Norwegian Water Resources and Energy Directorate: Energy in Norway.[5]
  • Sustainable Energy Technology at Work: Use of waste heat from refining industry, Sweden.[6]
  • Chalmers University of Technology: Towards a Sustainable Oil Refinery, Pre-study for larger co-operation projects[7]

+ Show code

These equations below aim to reflect the energy production facilities and capabilities.

Note! Maintenance cost only contains costs that do not depend on activity. Operational cost contains costs that depend on activity but NOT fuel price; those are calculated separately based on energy produced.

Plant parameters(MW,MW,M€,M€ /a,€ /MWh)
ObsYears_activePlantMinMaxInvestment costManagement costOperation costDescription
12017-2070Biofueled heat production units0100-300360104-12biofuels (pellets, wood chips and possibly biochar)
22025-2070CHP diesel generators0144114411Assuming all of Helsinki's apartment houses were fitted with 100 kW generators.
32025-2080Deep-drill heat03004909.640
41965-2040Hanasaari064009.6895% coal, 5% pellets. Assume cost of running and maintenance in coal plants 15€/kW (Sähköenergian kustannusrakenne)
52018-2060Hanasaari biofuel renovation0640100108.560% coal, 40% biofuels
62010-2060Household air heat pumps0112200-300105Assuming all of Helsinki's detached and row houses were fitted with air heat pumps
72010-2060Household air heat pumps for cooling067150-200105
82016-2060Household geothermal heat0335380-450105Assuming all of Helsinki's detached and row houses were fitted with geothermal heat pumps
92020-2035Household solar0105220-25055Assuming 700000 m2 suitable for solar panels.
102010-2070Katri Vala cooling0600103waste water
112005-2065Katri Vala heat0900103waste water
121980-2050Kellosaari back-up plant012001020oil
131980-2070Kymijoki River's plants0600101-4water
142022-2080Loviisa nuclear heat01800-26004000-60001010*investment cost includes building cost of plant and energy tunnel
152020-2060Neste oil refinery heat02000100105
161880-2070Powerplant museum in Vanhakaupunki00.20100water
171975-2050Salmisaari A&B050607.6895% coal, 5% pellets
182018-2060Salmisaari biofuel renovation0506100108.560% coal, 40% biofuels
192020-2070Sea heat pump0225280104
202020-2070Sea heat pump for cooling0225280104
211980-2070Small-scale wood burning078015Assuming 70% of Helsinki's detached and row houses have a working fireplace
221980-2070Smaller gas heat plants around Helsinki0600055
231980-2070Smaller fuel oil heat plants around Helsinki01600055
242015-2040Suvilahti power storage-1.21.2100105electricity storage 0.6 MWh
252013-2070Suvilahti solar00.340105
261991-2070Vuosaari A0320055natural gas
271998-2070Vuosaari B0924055natural gas
282018-2070Vuosaari C biofuel0133165010980-100% biofuels, rest coal
292017-2060Wind mills010120.07-0.157-11

Notes:

+ Show code


Non-adjustable energy production(MW)
ObsPlantBurnerFuel201520252035204520552065
1Suvilahti solarNoneElectricity5510101010
2Wind millsNoneElectricity5510101010

⇤--#: . How to model non-adjustable energy production exactly? Probably needs a submodel instead of a t2b table. --Jouni (talk) 07:30, 27 June 2015 (UTC) (type: truth; paradigms: science: attack)

+ Show code

Heating

Fuel use by heating type

Helsinki-specific data about connections between Heating and fuel usage. Generic data should be taken from Energy balance. Because all Helsinki-specific data is given in the energyProcess table, this only contains dummy data.

Fuel use by heating type(-)
ObsHeatingBurnerFuelFractionDescription
1DummyNoneCoal0

+ Show code

Emission locations

Emission location and height by heating type.

Emission locations(-)
ObsHeatingEmission_siteEmission_heightDummy
1District010High
2Electricity010High
3Geothermal010High
4OilAt site of consumptionGround
5WoodAt site of consumptionGround
6GasAt site of consumptionGround
7CoalAt site of consumptionGround

This code creates technical ovariables emissionLocations and heatingShares that are needed to run the Building model and its ovariables buildings and heatingEnergy.

+ Show code

Emission locations per plant

Emission locations per plant(-)
ObsPlantEmission siteEmission heightDescription
1Air conditioning010
2CHP diesel generators010Ground
3Deep-drill heat010
4Hanasaari010High
5Hanasaari biofuel renovation010High
6Household heat pumps010
7Katri Vala cooling010
8Katri Vala heat010
9Kellosaari back-up plant010High
10Kymijoki River's plants010
11Loviisa nuclear heat010
12Neste oil refinery heat010High
13Powerplant museum in Vanhakaupunki010
14Salmisaari A&B010High
15Salmisaari biofuel renovation010High
16Sea heat pump010
17Smaller heat plants around Helsinki010Low
18Small-scale wood burning010Ground
19Suvilahti power storage010
20Suvilahti solar010
21UnidentifiedAt site of consumptionGround
22Vuosaari A010High
23Vuosaari B010High
24Vuosaari C biofuel010High
25Wind mills010

+ Show code

Production and emission statistics

Helsingin Energia energy sold in 2013 (GWh)[19]
Electricity 7145
District heat and steam 6807
District cooling 116

Dependencies

Calculations

+ Show code

See also

Helsinki energy decision 2015
In English
Assessment Main page | Helsinki energy decision options 2015
Helsinki data Building stock in Helsinki | Helsinki energy production | Helsinki energy consumption | Energy use of buildings | Emission factors for burning processes | Prices of fuels in heat production | External cost
Models Building model | Energy balance | Health impact assessment | Economic impacts
Related assessments Climate change policies in Helsinki | Climate change policies and health in Kuopio | Climate change policies in Basel
In Finnish
Yhteenveto Helsingin energiapäätös 2015 | Helsingin energiapäätöksen vaihtoehdot 2015 | Helsingin energiapäätökseen liittyviä arvoja | Helsingin energiapäätös 2015.pptx

Keywords

References