Training health impact: Difference between revisions

From Opasnet
Jump to navigation Jump to search
mNo edit summary
No edit summary
Line 9: Line 9:
== Answer ==
== Answer ==


<rcode
name="answer"
label="Run code"
graphics="1"
include="
page:Opasnet_(R_library)|name:answer|
page:Training_health_impact|name:formula|
page:Training_exposure|name:formula
"
variables="name:population|description:What is the size of the population|default:100000"
>
cat("Initiation successful. Now starting the model.\n")
out <- make.ovariable(
name        = "health.impact",
data        = fetch("Op_en5675"),
formula      = formula.Op_en5675,
dependencies = dependencies.Op_en5675
)
print(out)
plot(out)
</rcode>


==Rationale==
==Rationale==
Line 47: Line 22:


<rcode  
<rcode  
name="formula"
label="Initiate functions"  
label="Initiate functions"  
>
>
library(OpasnetUtils)
library(xtable)
dependencies <- data.frame(
Name = c("exposure"),
Key = c("muRtYjhkphoNPQJI")
)
formula <- function(dependencies, ...) {
ComputeDependencies(dependencies, ...)
erf <- 1.5 # RR per ug / m3


erf <- data.frame(Unit = "RR per ug/m3", Result = 1.5)
background <- 100 / 100000 # cases per 100000 person-years
population <- 50000
cases      <- exposure * population * background * erf
return(cases)
}


background <- 100 / 100000 # cases per 100000 person-years
data <- tidy(op_baseGetData("opasnet_base", "Op_en5675"), "health.impact")


dependencies.Op_en5675 <- data.frame(
health.impact <- new("ovariable",
Name = "",  
name        = "health.impact",
Identifier = c("Op_en5674", "", "", ""),  
formula      = formula,
Direction = "wide",  
dependencies = dependencies,
Result = c("exposure", "erf", "population", "background")
data        = data
)
)


out <- EvalOutput(health.impact, N = 10)


formula.Op_en5675 <- function(x) {
print(xtable(out@output), type = "html")
exposure  <- make.ovariable(fetch(x[1, "Identifier"]), name = "exposure")
erf        <- make.ovariable(fetch(x[2, "Result"]), name = "erf")
population <- make.ovariable(
data = fetch(x[3, "Result"]),
name = "population",
formula = function(x) {return(interpret("50000-150000"))},
dependencies = data.frame(Result = 0)
)
background <- make.ovariable(fetch(x[4, "Result"]), name = "background")
cases      <- population * background * exp(exposure * log(erf))
return(cases)
}


objects.put(health.impact)
</rcode>
</rcode>



Revision as of 08:36, 16 August 2012



Question

What is the health impact in the Training assessment?

Answer

Rationale

Data

Training health impact: Difference between revisions(-)
ObsYearUnitResultDescription
12012cases/year10 - 100
22020cases/year15 - 150

Formula

+ Show code

See also

Materials and examples for training in Opasnet and open assessment
Help pages Wiki editingHow to edit wikipagesQuick reference for wiki editingDrawing graphsOpasnet policiesWatching pagesWriting formulaeWord to WikiWiki editing Advanced skills
Training assessment (examples of different objects) Training assessmentTraining exposureTraining health impactTraining costsClimate change policies and health in KuopioClimate change policies in Kuopio
Methods and concepts AssessmentVariableMethodQuestionAnswerRationaleAttributeDecisionResultObject-oriented programming in OpasnetUniversal objectStudyFormulaOpasnetBaseUtilsOpen assessmentPSSP
Terms with changed use ScopeDefinitionResultTool


Keywords

References


Related files

<mfanonymousfilelist></mfanonymousfilelist>