Training assessment: Difference between revisions

From Opasnet
Jump to navigation Jump to search
Line 81: Line 81:


===Calculations===
===Calculations===
<rcode label="testcode">
dectable <- data.frame(
Stakeholder = rep(c("School", "City of Kuopio"), 4),
Variable = rep(c("health.impact", "exposure"), each = 2),
Cell = c("Year:2012,2014,2020", "Year:2012"),
Result = 2
)
health.impact <- data.frame(Year = 2011:2010, Result = 1:10)
exposure <- data.frame(Year = 2012, Result = 100:110)
# temp <- tempovar@output[tempovar@output$health.impactSource == "Formula", ]
dectable <- dectable[dectable$Stakeholder == "School" & dectable$Variable == "health.impact", ]
#####################
##### SelectCond takes conditions and slices a data.frame leaving rows that fulfil the conditions.
##### SelectCond can be used for ovariables as well, then ovariable@output is taken as the data.frame.
##### Parameters: conditions: a data.frame with conditions for slicing. It must contain columns Variable and Cell.
###### Result and Stakeholder are optional but they are typically needed for further use.
###### Stakeholder and Variable columns must have the same values at each row,
###### i.e. the Stakeholder-Variable pair must be unique.
###### There must exist a data.frame or ovariable with the name found in the Variable column.
SelectCond <- function(conditions, ...) {
temp <- get(as.character(dectable[1, "Variable"]))
if(class(temp) == "ovariable") {temp <- temp@output}
for (j in 1:nrow(dectable)) {
# In the decision table format conditions are given in the "Cell"-column separated by ";".
sel1 <- strsplit(as.character(dectable[j, "Cell"]), split = ";")[[1]]
# ":" defines index - location matches as a condition.
sel2 <- strsplit(sel1, split = ":") # No need for lapply, since strsplit is a vectorized function and current list depth is 1.
# Create a list of conditions which the decision and option specific condition vector consists of.
for (k in 1:length(sel1)) { # For each condition separated by ";"
if (length(sel2[[k]]) > 1) { # If ":" has been used for condition k
locs <- strsplit(sel2[[k]][2], split = ",")[[1]] # Split by "," for multiple locs per given index
temp <- temp[temp[, sel2[[k]][1]] %in% locs , ] # Match our data.frame to the condition
temp <- temp[, colnames(temp) != sel2[[k]][1] ] # Remove all indices that were  used in selecting rows, because otherwise they cannot be merged.
cat(j, k, "\n")
}
}
}
return(temp)
}
SelectCond(dectable)
</rcode>


<rcode  
<rcode  

Revision as of 15:19, 2 January 2013



This is a training assessment about an imaginary, simple case. The purpose is to illustrate assessment functionalities.

Scope

Question

What decisions are worth implementing in the training assessment?

Boundaries

  • Time: Year 2012 - 2020

Scenarios

  • Factory can reduce emissions, or continue business as usual.
  • School can increase health education, decrease it to save money, or continue business as usual.

Intended users

  • Anyone who wants to learn to make open assessments.

Participants

  • Main participants:
    • YMAL,
    • Summer workers of YMAL in 2012,
    • Participants of [[Decision analysis and risk management 2013}}

Answer

Conclusions

Results

Not yet available.

Rationale

The causal diagram for the training assessment.

Assessment-specific data

Decisions
Decisions(-)
ObsDecisionmakerDecisionOptionVariableCellChangeUnitAmountDescription
1FactoryCleaning.policyReduce emissionsexposureYear:2020Multiply-0.5
2SchoolHealth.promotionIncrease health educationhealth.impactYear:2020Multiply-0.9
3SchoolHealth.promotionPromotion budget reducedhealth.impactYear:2020Multiply-1.1
Probabilities
Probabilities(P)
ObsStakeholderVariableCellProbabilityDescription
1City of KuopioexposureCleaning.policy: Reduce emissions0.8
2City of KuopioexposureCleaning.policy: BAU0.2
3Factoyhealth.impactHealth.promotion: Increase health education0.1
4Factoyhealth.impactHealth.promotion: Promotion budget reduced0.4
5Factoyhealth.impactHealth.promotion: BAU0.5
Endpoints
Endpoints(-)
ObsStakeholderVariableCellModelResultDescription
1City of Kuopiohealth.impactYear:2012Weighted sum1000
2City of Kuopiohealth.impactYear:2020Weighted sum1000
3Citizenshealth.impactYear:2012Weighted sum1000
4Citizenshealth.impactYear:2020Weighted sum2000Future years are twice as important.
Variables
Analyses
  • Decision analysis on each policy: Which option minimises the health risks?
  • Value of information (VOI) analysis for each policy about the major variables in the model and the total VOI.

Calculations

+ Show code

+ Show code

See also

Materials and examples for training in Opasnet and open assessment
Help pages Wiki editingHow to edit wikipagesQuick reference for wiki editingDrawing graphsOpasnet policiesWatching pagesWriting formulaeWord to WikiWiki editing Advanced skills
Training assessment (examples of different objects) Training assessmentTraining exposureTraining health impactTraining costsClimate change policies and health in KuopioClimate change policies in Kuopio
Methods and concepts AssessmentVariableMethodQuestionAnswerRationaleAttributeDecisionResultObject-oriented programming in OpasnetUniversal objectStudyFormulaOpasnetBaseUtilsOpen assessmentPSSP
Terms with changed use ScopeDefinitionResultTool


  • Descriptions of a previous structure
  • ----#: . Päätöksenteon sokea piste: se mitä ihmiset eivät näe mutta eivät myöskään huomaa etteivät näe. Kuitenkin tutkimalla sitä mitä mitä ihmiset eivät näe saadaan selville asioita sokeasta pisteesta. Ymmärtämällä sokeaa pistettä voidaan keksiä asioita jotka järjestelmällisesti jäävät huomaamatta ja asioita, joilla voidaan korjata järjestelmällisiä puutteita. Avoin arviointi on tämmöinen päätöksenteon järjestelmällisten puutteiden korjausmekanismi. --Jouni 08:55, 1 May 2012 (EEST) (type: truth; paradigms: science: comment)

References


Related files

<mfanonymousfilelist></mfanonymousfilelist>