Asthma prevalence due to building dampness in Europe: Difference between revisions
Jump to navigation
Jump to search
(→Result: country-specific BAU results for 2010 added) |
(→Formula: OR uncertainty added) |
||
Line 37: | Line 37: | ||
#<nowiki><math>prevalence_nondamp = \frac{prevalence_0}{%damp * OR + 1 - %damp}</math></nowiki> | #<nowiki><math>prevalence_nondamp = \frac{prevalence_0}{%damp * OR + 1 - %damp}</math></nowiki> | ||
*ERF approximated as that for current asthma (1.56). | *ERF approximated as that for current asthma (OR = 1.56). | ||
<nowiki> | <nowiki> | ||
Line 60: | Line 60: | ||
3.8,3.6,3.3,3.1,3,3,2.6,2.4,2.3,2.2,2.1,1.9,1.8,1.5,1.5,1.3,1.1,0.7)) | 3.8,3.6,3.3,3.1,3,3,2.6,2.4,2.3,2.2,2.1,1.9,1.8,1.5,1.5,1.3,1.1,0.7)) | ||
#asthma <- data.frame(Country=asthma[1:26,1], Casesper1000=(asthma[1:26,2]+asthma[1:26,3])) | #asthma <- data.frame(Country=asthma[1:26,1], Casesper1000=(asthma[1:26,2]+asthma[1:26,3])) | ||
poparray <- DataframeToArray(pop, "Population") | poparray <- DataframeToArray(pop, "Population") | ||
dampxpop <- IntArray(dampness, poparray, "Population") | dampxpop <- IntArray(dampness, poparray, "Population") | ||
Line 71: | Line 71: | ||
p_ndarray <- DataframeToArray(p_nd, "p_nd") | p_ndarray <- DataframeToArray(p_nd, "p_nd") | ||
dampxpopxasthmaxp_nd <- IntArray(dampxpopxasthma, p_ndarray, "p_nd") | dampxpopxasthmaxp_nd <- IntArray(dampxpopxasthma, p_ndarray, "p_nd") | ||
erf <- rnorm(nrow(dampxpopxasthmaxp_nd), 1.56, (1.86-1.30)/3.92) | |||
final <- data.frame(dampxpopxasthmaxp_nd[,c("obs","Country","policy","Year","Age","Rate","Sex")], | final <- data.frame(dampxpopxasthmaxp_nd[,c("obs","Country","policy","Year","Age","Rate","Sex")], | ||
Result=dampxpopxasthmaxp_nd[,"Population"] * dampxpopxasthmaxp_nd[,"p_nd"] * | Result=dampxpopxasthmaxp_nd[,"Population"] * dampxpopxasthmaxp_nd[,"p_nd"] * |
Revision as of 11:48, 14 January 2011
Moderator:Teemu R (see all) |
This page is a stub. You may improve it into a full page. |
Upload data
|
Scope
Europe in 2010, 2020, 2030, 2050.
Definition
Initial Prevalence data from GINA[1].
Formula calculates number of asthma cases which can be attributed to dampness in Europe in years 2010-2050 by using the following:
- <math>extra cases = (prevalence_total - prevalence_nondamp) population</math>
- <math>prevalence_total = prevalence_nondamp(%damp * OR + 1 - %damp)</math>
- <math>prevalence_nondamp = \frac{prevalence_0}{%damp * OR + 1 - %damp}</math>
Population data[1] included population growth scenarios so they too are included.
Distribution represents uncertainty (mainly of fraction of affected homes).
Data
Dependencies
- heande:Moisture damage
- Population of Europe
- Prevelance of Clinical Asthma[1]
- ERF of indoor dampness on respiratory health effects
Unit
#
Formula
- <math>extra cases = (prevalence_total - prevalence_nondamp) population</math>
- <math>prevalence_total = prevalence_nondamp(%damp * OR + 1 - %damp)</math>
- <math>prevalence_nondamp = \frac{prevalence_0}{%damp * OR + 1 - %damp}</math>
- ERF approximated as that for current asthma (OR = 1.56).
dampness <- op_baseGetData("opasnet_base", "Erac2988") pop <- op_baseGetData("opasnet_base", "Op_en4691", include = 1367, exclude = c(1435, 1436)) countries <- c("Austria", "Belgium", "Bulgaria", "Switzerland", "Cyprus", "Czech Republic", "Germany", "Denmark", "Estonia", "Spain", "Finland", "France", "Greece", "Hungary", "Ireland", "Iceland", "Italy", "Lithuania", "Luxembourg", "Latvia", "Malta", "Netherlands", "Norway", "Poland", "Portugal", "Romania", "Sweden", "Slowenia", "Slovakia", "United Kingdom") levels(pop[,"CountryID"]) <- countries colnames(pop)[4] <- "Country" colnames(pop)[8] <- "Population" #asthma <- read.csv("C:/Documents and Settings/tris/My Documents/Asthma prevalence.csv", sep = ";") asthma <- data.frame(Country=c('Scotland','Jersey','Guernsey','Wales','Isle of Man','England','New Zealand','Australia','Republic of Ireland', 'Canada','Peru','Trinidad & Tobago','Costa Rica','Brazil','United States of America','Fiji','Paraguay','Uruguay','Israel','Barbados','Panama', 'Kuwait','Ukraine','Ecuador','South Africa','Czech Republic','Finland','Malta','Ivory Coast','Colombia','Turkey','Lebanon','Kenya','Germany', 'France','Norway','Japan','Sweden','Thailand','Hong Kong','Philippines','United Arab Emirates','Belgium','Austria','Spain','Saudi Arabia', 'Argentina','Iran','Estonia','Nigeria','Chile','Singapore','Malaysia','Portugal','Uzbekistan','FYR Macedonia','Italy','Oman','Pakistan', 'Tunisia','Cape Verde','Latvia','Poland','Algeria','South Korea','Bangladesh','Morocco','Occupied Territory of Palestine','Mexico','Ethiopia', 'Denmark','India','Taiwan','Cyprus','Switzerland','Russia','China','Greece','Georgia','Nepal','Romania','Albania','Indonesia','Macau'), InitialPrevalence=c(18.4,17.6,17.5,16.8,16.7,15.3,15.1,14.7,14.6,14.1,13,12.6,11.9,11.4,10.9,10.5,9.7,9.5,9,8.9,8.8,8.5,8.3,8.2,8.1,8,8,8,7.8,7.4, 7.4,7.2,7,6.9,6.8,6.8,6.7,6.5,6.5,6.2,6.2,6.2,6,5.8,5.7,5.6,5.5,5.5,5.4,5.4,5.1,4.9,4.8,4.8,4.6,4.5,4.5,4.5,4.3,4.3,4.2,4.2,4.1,3.9,3.9,3.8, 3.8,3.6,3.3,3.1,3,3,2.6,2.4,2.3,2.2,2.1,1.9,1.8,1.5,1.5,1.3,1.1,0.7)) #asthma <- data.frame(Country=asthma[1:26,1], Casesper1000=(asthma[1:26,2]+asthma[1:26,3])) poparray <- DataframeToArray(pop, "Population") dampxpop <- IntArray(dampness, poparray, "Population") asthmaarray <- DataframeToArray(asthma, "InitialPrevalence") dampxpopxasthma <- IntArray(dampxpop, asthmaarray, "InitialPrevalence") p_nd <- data.frame(dampxpopxasthma[dampxpopxasthma[,"Year"]=="2010", c("obs","Country","Age","Rate","Sex")], p_nd=dampxpopxasthma[dampxpopxasthma[,"Year"]=="2010", "InitialPrevalence"] * 100 /(dampxpopxasthma[dampxpopxasthma[,"Year"]=="2010", "Result"] * erf + 100 - dampxpopxasthma[dampxpopxasthma[,"Year"]== "2010", "Result"])) p_ndarray <- DataframeToArray(p_nd, "p_nd") dampxpopxasthmaxp_nd <- IntArray(dampxpopxasthma, p_ndarray, "p_nd") erf <- rnorm(nrow(dampxpopxasthmaxp_nd), 1.56, (1.86-1.30)/3.92) final <- data.frame(dampxpopxasthmaxp_nd[,c("obs","Country","policy","Year","Age","Rate","Sex")], Result=dampxpopxasthmaxp_nd[,"Population"] * dampxpopxasthmaxp_nd[,"p_nd"] * dampxpopxasthmaxp_nd[,"Result"] * (erf - 1) / 10000)
Result
{{#opasnet_base_link:Op_en4723}}
Country of observation | Mean | SD |
---|---|---|
Austria | 23958 | 19818 |
Belgium | 46983 | 24769 |
Cyprus | 3010 | 706 |
Czech Republic | 65640 | 31215 |
Denmark | 9088 | 6502 |
Estonia | 8188 | 2735 |
Finland | 10881 | 17198 |
France | 303354 | 161230 |
Germany | 379346 | 221077 |
Greece | 20517 | 7842 |
Italy | 279127 | 99106 |
Latvia | 11991 | 3158 |
Poland | 270064 | 49342 |
Portugal | 48477 | 18082 |
Spain | 226670 | 93709 |
Sweden | 20039 | 24323 |
Total | 1727332 |
See also
Keywords
Asthma, indoor air, dampness, Europe
References
Related files
<mfanonymousfilelist></mfanonymousfilelist>