ERF of waterborne microbes: Difference between revisions

From Opasnet
Jump to navigation Jump to search
(→‎Data: typo corrected)
 
(11 intermediate revisions by 3 users not shown)
Line 27: Line 27:
rotavirus|rotavirus infection|ingestion|?|exact beta poisson|None|0.191|0.167|
rotavirus|rotavirus infection|ingestion|?|exact beta poisson|None|0.191|0.167|
norovirus|norovirus infection|ingestion|?|exact beta poisson|None|0.055|0.04|
norovirus|norovirus infection|ingestion|?|exact beta poisson|None|0.055|0.04|
sapovirus|sapovirus infection|ingestion|?|exact beta poisson|None|0.055|0.04|
cryptosporidium|cryptosporidium infection|ingestion|?|exact beta poisson|None|0.176|0.115|
cryptosporidium|cryptosporidium infection|ingestion|?|exact beta poisson|None|0.176|0.115|
giardia|giardia infection|ingestion|?|exponential|None|0|0.0199|
giardia|giardia infection|ingestion|?|exponential|None|0|0.0199|
E.coli O157:H7|E. coli infection|ingestion|?|exact beta poisson|None|9.16|0.157|E. coli O157:H7 strain
E.coli O157:H7|E.coli O157:H7 infection|ingestion|?|exact beta poisson|None|9.16|0.157|E. coli O157:H7 strain
</t2b>
</t2b>


Line 36: Line 37:
giardia infection|gastroenteritis||1
giardia infection|gastroenteritis||1
cryptosporidium infection|gastroenteritis||0.71
cryptosporidium infection|gastroenteritis||0.71
cryptosporidium infection|death|Age:age 0-4|0.00000070645
cryptosporidium infection|death|Age:0-4|0.00000070645
cryptosporidium infection|death|Age:age 5-9|0
cryptosporidium infection|death|Age:5-9|0
cryptosporidium infection|death|Age:age 10-14|0
cryptosporidium infection|death|Age:10-14|0
cryptosporidium infection|death|Age:age 15-64|0.000014839
cryptosporidium infection|death|Age:15-64|0.000014839
cryptosporidium infection|death|Age:age 65-79|0.0011644
cryptosporidium infection|death|Age:65-79|0.0011644
cryptosporidium infection|death|Age:age 80+|0.0011644
cryptosporidium infection|death|Age:80+|0.0011644
norovirus infection|gastroenteritis||0.7
norovirus infection|gastroenteritis||0.7
norovirus infection|death|Age:age 0-4|0.000002058
norovirus infection|death|Age:0-4|0.000002058
norovirus infection|death|Age:age 5-9|0
norovirus infection|death|Age:5-9|0
norovirus infection|death|Age:age 10-14|0
norovirus infection|death|Age:10-14|0
norovirus infection|death|Age:age 15-64|0
norovirus infection|death|Age:15-64|0
norovirus infection|death|Age:age 65-79|0.000168
norovirus infection|death|Age:65-79|0.000168
norovirus infection|death|Age:age 80+|0.000168
norovirus infection|death|Age:80+|0.000168
rotavirus infection|gastroenteritis||0.9
sapovirus infection|gastroenteritis||0.7
rotavirus infection|death|Age:age 0-4|0.00001917
sapovirus infection|death|Age:0-4|0.000002058
rotavirus infection|death|Age:age 5-9|0
sapovirus infection|death|Age:5-9|0
rotavirus infection|death|Age:age 10-14|0
sapovirus infection|death|Age:10-14|0
rotavirus infection|death|Age:age 15-64|0
sapovirus infection|death|Age:15-64|0
rotavirus infection|death|Age:age 65-81|0
sapovirus infection|death|Age:65-79|0.000168
rotavirus infection|death|Age:age 80+|0
sapovirus infection|death|Age:80+|0.000168
rotavirus infection|gastroenteritis||0.5
rotavirus infection|death|Age:0-4|0.00001917
rotavirus infection|death|Age:5-9|0
rotavirus infection|death|Age:10-14|0
rotavirus infection|death|Age:15-64|0
rotavirus infection|death|Age:65-79|0
rotavirus infection|death|Age:80+|0
campylobacter infection|gastroenteritis||0.323
campylobacter infection|gastroenteritis||0.323
campylobacter infection|clinical Guillian-Barré syndrome||0.000066
campylobacter infection|clinical Guillian-Barré syndrome||0.000066
Line 61: Line 69:
campylobacter infection|reactive arthritis||0.0066
campylobacter infection|reactive arthritis||0.0066
campylobacter infection|death||0.000131
campylobacter infection|death||0.000131
E. coli infection|gastroenteritis||0.4346
E.coli O157:H7 infection|gastroenteritis||0.4346
E. coli infection|hemorrhagic colitis||0.3854
E.coli O157:H7 infection|hemorrhagic colitis||0.3854
E. coli infection|haemolytic uraemic syndrome||0.0082
E.coli O157:H7 infection|haemolytic uraemic syndrome||0.0082
E. coli infection|end stage renal disease||0.0009676
E.coli O157:H7 infection|end stage renal disease||0.0009676
E. coli infection|death||0.00062238
E.coli O157:H7 infection|death||0.00062238
</t2b>
</t2b>


{{argument|relat1=attack|id=arg6688|type=truth|content=Find out the units of the parameters to understand the functions precisely.|sign=--[[User:Jouni|Jouni]] ([[User talk:Jouni|talk]]) 12:54, 11 July 2019 (UTC)}}
{{argument|relat1=attack|id=arg6688|type=truth|content=Find out the units of the parameters to understand the functions precisely.|sign=--[[User:Jouni|Jouni]] ([[User talk:Jouni|talk]]) 12:54, 11 July 2019 (UTC)}}
:{{argument|relat1=comment|id=arg2087|type=truth|content=The ERF and Threshold numbers in the tables correspond to parameters called alpha and beta respectively in the papers cited below in the cases of campylo, rota, noro and crypto. The equations alpha and beta are used in in the papers don't (seem to) match the equations below. At least for campylo the equations are significantly more complicated. For giardia the value in ERF does seem to be used in the paper it's from in the way the exponential equation shows. In the paper it's marked as r, the probability of infection. The equation in the paper uses "mean number per portion" where Dose is in this equation. E.coli is the biggest mystery: I wasn't able to find the numbers in the table above from the paper sited for it at all. |sign=--[[User:Heta|Heta]] ([[User talk:Heta|talk]]) 10:32, 12 July 2019 (UTC)}}
:{{argument|relat1=comment|id=arg2087|type=truth|content=The ERF and Threshold numbers in the tables correspond to parameters called alpha and beta respectively in the papers cited below in the cases of campylo, rota, noro and crypto. The equations alpha and beta are used in in the papers don't (seem to) match the equations below. At least for campylo the equations are significantly more complicated. For giardia the value in ERF does seem to be used in the paper it's from in the way the exponential equation shows. In the paper it's marked as r, the probability of infection. The equation in the paper uses "mean number per portion" where Dose is in this equation. ''E.coli'' is the biggest mystery: I wasn't able to find the numbers in the table above from the paper sited for it at all. |sign=--[[User:Heta|Heta]] ([[User talk:Heta|talk]]) 10:32, 12 July 2019 (UTC)}}


In these equations, Param1 and Param2 are in Threshold and ERF columns, respectively.
In these equations, Param1 and Param2 are in ERF and Threshold, respectively.
* Beta Poisson approximation: 1-(1+Dose/Param2)^-Param1
* Beta Poisson approximation: 1-(1+Dose/Param2)^-Param1
* Exact beta Poisson: 1-exp(-(Param1/(Param1+Param2))*Dose)
* Exact beta Poisson: 1-exp(-(Param1/(Param1+Param2))*Dose)
Line 81: Line 89:
|----
|----
| Campylobacter
| Campylobacter
| <ref>Teunis, P., van den Brandhof, W., Nauta, M., Wagenaar, J., van den Kerkhof, H. and van Pelt, W. 2005. A reconsideration of the Campylobacter dose–response relation. Epidemiol. Infec. 133, 583-592. DOI: https://doi.org/10.1017/S0950268805003912 </ref>
| <ref>Teunis, P., van den Brandhof, W., Nauta, M., Wagenaar, J., van den Kerkhof, H. and van Pelt, W. 2005. A reconsideration of the Campylobacter dose–response relation. Epidemiol. Infec. 133, 583-592. DOI: https://doi.org/10.1017/S0950268805003912 </ref> <ref name="WHO">WHO Guidelines for drinking-water quality 2017. ISBN 978-92-4-154995-0 [https://apps.who.int/iris/bitstream/handle/10665/254637/9789241549950-eng.pdf?sequence=1]</ref>
|----
|----
| Rotavirus
| Rotavirus
| <ref>Teunis, P. F. M. and Havelaar, A. 2000. "The beta Poisson dose‐response model is not a single hit model."Risk Analysis 20(4): 513-520.  https://doi.org/10.1111/0272-4332.204048</ref>
| <ref>Teunis, P. F. M. and Havelaar, A. 2000. "The beta Poisson dose‐response model is not a single hit model."Risk Analysis 20(4): 513-520.  https://doi.org/10.1111/0272-4332.204048</ref> <ref name="WHO"/>
|----
|----
| Norovirus
| Norovirus
| <ref>Teunis P.F.M., Moe, C.L., Liu, P., Miller, S.E., Lindesmith, L., Baric, R.S., Le Pendu, J., Calderon, R.L. 2008. Norwalk Virus: How Infectious is It? Journal of Medical Virology 80:1468-1476. https://doi.org/10.1002/jmv.21237</ref>
|----
| Sapovirus
| <ref>Teunis P.F.M., Moe, C.L., Liu, P., Miller, S.E., Lindesmith, L., Baric, R.S., Le Pendu, J., Calderon, R.L. 2008. Norwalk Virus: How Infectious is It? Journal of Medical Virology 80:1468-1476. https://doi.org/10.1002/jmv.21237</ref>
| <ref>Teunis P.F.M., Moe, C.L., Liu, P., Miller, S.E., Lindesmith, L., Baric, R.S., Le Pendu, J., Calderon, R.L. 2008. Norwalk Virus: How Infectious is It? Journal of Medical Virology 80:1468-1476. https://doi.org/10.1002/jmv.21237</ref>
|----
|----
| Cryptosporidium
| Cryptosporidium
| <ref>Teunis, P.F.M., Chappell, C.L., Okhuysen, P.C. 2002. Cryptosporidium Dose Response Studies: Variation Between Isolates. Risk Analysis 22(1) 175-183  https://doi.org/10.1111/0272-4332.00014</ref>
| <ref>Teunis, P.F.M., Chappell, C.L., Okhuysen, P.C. 2002. Cryptosporidium Dose Response Studies: Variation Between Isolates. Risk Analysis 22(1) 175-183  https://doi.org/10.1111/0272-4332.00014</ref><ref name="WHO"/>
|----
|----
| Giardia
| Giardia
| <ref>Teunis, P.F.M., van der Heijden, O.G., van der Giessen, J.W.B., Havelaar, A.H. 1996.  The dose-response relation in human volunteers for gastro-intestinal pathogens. RIVM report No. 284550002. http://hdl.handle.net/10029/9966 </ref>
| <ref>Teunis, P.F.M., van der Heijden, O.G., van der Giessen, J.W.B., Havelaar, A.H. 1996.  The dose-response relation in human volunteers for gastro-intestinal pathogens. RIVM report No. 284550002. http://hdl.handle.net/10029/9966 </ref>
|----
|----
| E.coli O157:H7
| ''E.coli'' O157:H7
| <ref>Teunis, P., Takumi, K. and Shinagawa, K. 2004. "Dose response for infection by Escherichia coli O157:H7
| <ref>Teunis, P., Takumi, K. and Shinagawa, K. 2004. "Dose response for infection by Escherichia coli O157:H7
from outbreak data." Risk Analysis 24(2): 401‐407. https://doi.org/10.1111/j.0272-4332.2004.00441.x</ref>
from outbreak data." Risk Analysis 24(2): 401‐407. https://doi.org/10.1111/j.0272-4332.2004.00441.x</ref>
Line 101: Line 112:


=== Calculations ===
=== Calculations ===
<rcode name="P_illness" label="Initiate P_illness" embed=1>
# This is code Op_en7948/P_illness on page [[ERF of waterborne microbes]]
library(OpasnetUtils)
objects.latest("Op_en2031", code_name="subgrouping") # [[ERF]] subgrouping
P_illness <- Ovariable("P_illness", ddata = "Op_en7948", subset="Probability of illness, given infection")
P_illness@data <- subgrouping(P_illness@data)
objects.store(P_illness)
cat("Ovariable P_illness stored.\n")
</rcode>


<rcode name="ERF_micr2" label="Initiate ovariable ERF_micr" embed=1>
<rcode name="ERF_micr2" label="Initiate ovariable ERF_micr" embed=1>
Line 108: Line 133:
library(OpasnetUtils)
library(OpasnetUtils)


ERF_micr <- Ovariable("ERF_micr", ddata = "Op_en7948")
ERF_micr <- Ovariable("ERF_micr", ddata = "Op_en7948", subset="ERF")
colnames(ERF_micr@data) <- gsub(" ", "_", colnames(ERF_micr@data))
colnames(ERF_micr@data) <- gsub(" ", "_", colnames(ERF_micr@data))



Latest revision as of 08:59, 6 February 2022


Question

What are the dose-response functions of pathogens in drinking water?

Answer

+ Show code

Rationale

Data

ERF(-)
ObsExposure agentResponseExposureExposure unitER functionScalingThresholdERFDescription
1campylobactercampylobacter infectioningestion?beta poisson approximationNone0.0110.024
2rotavirusrotavirus infectioningestion?exact beta poissonNone0.1910.167
3norovirusnorovirus infectioningestion?exact beta poissonNone0.0550.04
4sapovirussapovirus infectioningestion?exact beta poissonNone0.0550.04
5cryptosporidiumcryptosporidium infectioningestion?exact beta poissonNone0.1760.115
6giardiagiardia infectioningestion?exponentialNone00.0199
7E.coli O157:H7E.coli O157:H7 infectioningestion?exact beta poissonNone9.160.157E. coli O157:H7 strain


Probability of illness, given infection(probability)
ObsResponse Illness SubgroupResult
1giardia infectiongastroenteritis1
2cryptosporidium infectiongastroenteritis0.71
3cryptosporidium infectiondeathAge:0-40.00000070645
4cryptosporidium infectiondeathAge:5-90
5cryptosporidium infectiondeathAge:10-140
6cryptosporidium infectiondeathAge:15-640.000014839
7cryptosporidium infectiondeathAge:65-790.0011644
8cryptosporidium infectiondeathAge:80+0.0011644
9norovirus infectiongastroenteritis0.7
10norovirus infectiondeathAge:0-40.000002058
11norovirus infectiondeathAge:5-90
12norovirus infectiondeathAge:10-140
13norovirus infectiondeathAge:15-640
14norovirus infectiondeathAge:65-790.000168
15norovirus infectiondeathAge:80+0.000168
16sapovirus infectiongastroenteritis0.7
17sapovirus infectiondeathAge:0-40.000002058
18sapovirus infectiondeathAge:5-90
19sapovirus infectiondeathAge:10-140
20sapovirus infectiondeathAge:15-640
21sapovirus infectiondeathAge:65-790.000168
22sapovirus infectiondeathAge:80+0.000168
23rotavirus infectiongastroenteritis0.5
24rotavirus infectiondeathAge:0-40.00001917
25rotavirus infectiondeathAge:5-90
26rotavirus infectiondeathAge:10-140
27rotavirus infectiondeathAge:15-640
28rotavirus infectiondeathAge:65-790
29rotavirus infectiondeathAge:80+0
30campylobacter infectiongastroenteritis0.323
31campylobacter infectionclinical Guillian-Barré syndrome0.000066
32campylobacter infectionresidual Guillian Barré syndrome0.000066
33campylobacter infectionreactive arthritis0.0066
34campylobacter infectiondeath0.000131
35E.coli O157:H7 infectiongastroenteritis0.4346
36E.coli O157:H7 infectionhemorrhagic colitis0.3854
37E.coli O157:H7 infectionhaemolytic uraemic syndrome0.0082
38E.coli O157:H7 infectionend stage renal disease0.0009676
39E.coli O157:H7 infectiondeath0.00062238

⇤--arg6688: . Find out the units of the parameters to understand the functions precisely. --Jouni (talk) 12:54, 11 July 2019 (UTC) (type: truth; paradigms: science: attack)

----arg2087: . The ERF and Threshold numbers in the tables correspond to parameters called alpha and beta respectively in the papers cited below in the cases of campylo, rota, noro and crypto. The equations alpha and beta are used in in the papers don't (seem to) match the equations below. At least for campylo the equations are significantly more complicated. For giardia the value in ERF does seem to be used in the paper it's from in the way the exponential equation shows. In the paper it's marked as r, the probability of infection. The equation in the paper uses "mean number per portion" where Dose is in this equation. E.coli is the biggest mystery: I wasn't able to find the numbers in the table above from the paper sited for it at all. --Heta (talk) 10:32, 12 July 2019 (UTC) (type: truth; paradigms: science: comment)

In these equations, Param1 and Param2 are in ERF and Threshold, respectively.

  • Beta Poisson approximation: 1-(1+Dose/Param2)^-Param1
  • Exact beta Poisson: 1-exp(-(Param1/(Param1+Param2))*Dose)
  • Exponential: 1-exp(-Param1*Dose)
Pathogen Reference
Campylobacter [1] [2]
Rotavirus [3] [2]
Norovirus [4]
Sapovirus [5]
Cryptosporidium [6][2]
Giardia [7]
E.coli O157:H7 [8]

Calculations

+ Show code

+ Show code


+ Show code

⇤--arg5268: . The code below is old and does not work with the new ERF table. --Jouni (talk) 12:54, 11 July 2019 (UTC) (type: truth; paradigms: science: attack)

+ Show code

See also

References

  1. Teunis, P., van den Brandhof, W., Nauta, M., Wagenaar, J., van den Kerkhof, H. and van Pelt, W. 2005. A reconsideration of the Campylobacter dose–response relation. Epidemiol. Infec. 133, 583-592. DOI: https://doi.org/10.1017/S0950268805003912
  2. 2.0 2.1 2.2 WHO Guidelines for drinking-water quality 2017. ISBN 978-92-4-154995-0 [1]
  3. Teunis, P. F. M. and Havelaar, A. 2000. "The beta Poisson dose‐response model is not a single hit model."Risk Analysis 20(4): 513-520. https://doi.org/10.1111/0272-4332.204048
  4. Teunis P.F.M., Moe, C.L., Liu, P., Miller, S.E., Lindesmith, L., Baric, R.S., Le Pendu, J., Calderon, R.L. 2008. Norwalk Virus: How Infectious is It? Journal of Medical Virology 80:1468-1476. https://doi.org/10.1002/jmv.21237
  5. Teunis P.F.M., Moe, C.L., Liu, P., Miller, S.E., Lindesmith, L., Baric, R.S., Le Pendu, J., Calderon, R.L. 2008. Norwalk Virus: How Infectious is It? Journal of Medical Virology 80:1468-1476. https://doi.org/10.1002/jmv.21237
  6. Teunis, P.F.M., Chappell, C.L., Okhuysen, P.C. 2002. Cryptosporidium Dose Response Studies: Variation Between Isolates. Risk Analysis 22(1) 175-183 https://doi.org/10.1111/0272-4332.00014
  7. Teunis, P.F.M., van der Heijden, O.G., van der Giessen, J.W.B., Havelaar, A.H. 1996. The dose-response relation in human volunteers for gastro-intestinal pathogens. RIVM report No. 284550002. http://hdl.handle.net/10029/9966
  8. Teunis, P., Takumi, K. and Shinagawa, K. 2004. "Dose response for infection by Escherichia coli O157:H7 from outbreak data." Risk Analysis 24(2): 401‐407. https://doi.org/10.1111/j.0272-4332.2004.00441.x