Helsinki energy production
Moderator:Heta (see all) |
|
Upload data
|
Question
What is the amount of energy produced (including distributed production) in Helsinki? Where is it produced (-> emissions)? Which processes are used in its production?
Answer
This code is used to fetch the ovariables on this page for modelling.
Rationale
This page contains data about the heat plants in Helsinki. It tells, how much and what type of energy a plant produces per unit of fuel, how much the plants cost and the locations of the power plant emissions. This data is then further used in the model.
Amount produced is determined largely by the energy balance in Helsinki and Helsinki energy consumption. The maximum energy produced and fuels used by of all Helen's power plants can be found here: https://www.helen.fi/kotitalouksille/neuvoa-ja-tietoa/tietoa-meista/energiantuotanto/voimalaitokset/
Energy processes
Obs | Plant | Burner | Electricity | Electricity_taxed | Heat | Cooling | Coal | Gas | Fuel oil | Biofuel | Description |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Biofuel heat plants | Large fluidized bed | 0 | 0 | 0.85-0.91 | 0 | 0 | 0 | 0 | -1 | |
2 | CHP diesel generators | Diesel engine | 0.3 | 0 | 0.3-0.5 | 0 | 0 | 0 | -1 | 0 | Efficiency not known well in practice |
3 | Data center heat | None | 0 | -0.27 - -0.23 | 1 | 0 | 0 | 0 | 0 | 0 | Same as Neste without transport of heat |
4 | Deep-drill heat | None | 0 | -0.4 - -0.1 | 1 | 0 | 0 | 0 | 0 | 0 | Experimental technology |
5 | Hanasaari | Large fluidized bed | 0.31 | 0 | 0.60 | 0 | -1 | 0 | 0 | 0 | Assume 91 % efficiency. Capacity: electricity 220 MW heat 420 MW Loss 64 MW |
6 | Household air heat pumps | None | 0 | -0.7 - -0.2 | 1 | 0 | 0 | 0 | 0 | 0 | The efficiency of heat pumps is largely dependent on outside air temperature, it's feasible for a household air heat pump to reach COP 5 at 10 °C and COP 1.5 at -25 °C. |
7 | Household air conditioning | None | 0 | -0.7 - -0.2 | 0 | 1 | 0 | 0 | 0 | 0 | |
8 | Household geothermal heat | None | 0 | -0.36 - -0.31 | 1 | 0 | 0 | 0 | 0 | 0 | Motiva 2014 |
9 | Katri Vala cooling | None | 0 | -0.36 - -0.31 | 0 | 1 | 0 | 0 | 0 | 0 | District cooling produced by absorption (?) heat pumps. Same as heat pumps for heating, Motiva 2014. |
10 | Katri Vala heat | None | 0 | -0.36 - -0.31 | 1 | 0 | 0 | 0 | 0 | 0 | Heat from cleaned waste water and district heating network's returning water. Motiva 2014 |
11 | Kellosaari back-up plant | Large fluidized bed | 0.3 - 0.5 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | Only produces electric power |
12 | Kymijoki River's plants | None | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Hydropower |
13 | Loviisa nuclear heat | None | 0 | -0.4 - -0.1 | 1 | 0 | 0 | 0 | 0 | 0 | Assumes that for each MWh heat produced, 0.1-0.2 MWh electricity is lost in either production or when heat is pumped to Helsinki. |
14 | Neste oil refinery heat | None | 0 | -0.31 - -0.27 | 1 | 0 | 0 | 0 | 0 | 0 | Motiva 2014 |
15 | Salmisaari A&B | Large fluidized bed | 0.32 | 0 | 0.59 | 0 | -1 | 0 | 0 | 0 | Capacity: electricity 160 MW heat 300 MW loss 46 MW |
16 | Sea heat pump | None | 0 | -0.36 - -0.31 | 1 | 0 | 0 | 0 | 0 | 0 | Motiva 2014 |
17 | Sea heat pump for cooling | None | 0 | -0.36 - -0.31 | 0 | 1 | 0 | 0 | 0 | 0 | Assuming the same as for heating |
18 | Small-scale wood burning | Household | 0 | 0 | 0.5 - 0.9 | 0 | 0 | 0 | 0 | -1 | |
19 | Small gas heat plants | Large fluidized bed | 0 | 0 | 0.91 | 0 | 0 | -1 | 0 | 0 | |
20 | Small fuel oil heat plants | Large fluidized bed | 0 | 0 | 0.91 | 0 | 0 | 0 | -1 | 0 | |
21 | Suvilahti power storage | None | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
22 | Suvilahti solar | None | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
23 | Vanhakaupunki museum | None | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Hydropower |
24 | Vuosaari A | Large fluidized bed | 0.455 | 0 | 0.455 | 0 | 0 | -1 | 0 | 0 | Capacity: electricity 160 MW heat 160 MW loss 30 MW |
25 | Vuosaari B | Large fluidized bed | 0.5 | 0 | 0.41 | 0 | 0 | -1 | 0 | 0 | Capacity: electricity 500 MW heat 424 MW loss 90 MW |
26 | Vuosaari C biofuel | Large fluidized bed | 0.47 | 0 | 0.44 | 0 | 0 | 0 | 0 | -1 | |
27 | Wind mills | None | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Notes about the data in the table:
- Household air heat pumps data from heat pump comparison[1]
- Household geothermal heat data from Energy Department of the United States: Geothermal Heat Pumps[2]
- Small-scale wood burning data from Energy Department of the United States: Wood and Pellet Heating[3]
- Loss of thermal energy through distribution is around 10 %. From Norwegian Water Resources and Energy Directorate: Energy in Norway.[4]
- Sustainable Energy Technology at Work: Use of waste heat from refining industry, Sweden.[5]
- Chalmers University of Technology: Towards a Sustainable Oil Refinery, Pre-study for larger co-operation projects[6]
- CHP diesel generators are regular diesel generators, but they are located in apartment houses and operated centrally. This way, it is possible to produce electricity when needed and use the excess heat, instead of district heat, to warm up the hot water of the house.
- Motiva estimates for heat pumps processes and costs for heating:[7]
- Mechanical heat pumps usually have COP (coefficient of performance, thermal output energy per electric input energy needed) is 2.5 - 7.5.
- In district heating, mechanical heat pumps have typically COP around 3.
- Absorption heat pumps have COP typically 1.5 - 1.8. They do not use much electricity but they need either hot water or steam to operate. Therefore, they are not suitable for producing district heat from warm water with temperatures in the range of 25 - 30 °C (Neste) or 10-15 °C (sea heat).
- The report uses these values for energy prices (€/MWh): bought electricity 50, process steam 25, wood chip 20, district heating 40, own excess heat 0.
- The investment cost of a heat pump system (ominaiskustannus) in the cases described in this report were 0.47-0.73 M€/MWth for mechanical heat pumps and 0.072 - 0.102 M€/MWth for absorption heat pumps. These values do not include the pipelines needed, which may vary a lot; in these cases the pipeline costs were 0.1 - 2.5 times the cost of the heat pump.
- The energy efficiency is theoretically COP = Tout / (Tout - Tin), and the actual COP values are typically 65 - 75 % of that. If we assume that we want 95 °C district heat out, we get
- for sea heat pumps: COP = 368 K / (368 K - 283 K) = 4.3 ideally and in practice 2.8 - 3.2. Electricity needed per 1 MWh output: 0.31 - 0.36 MWh.
- Neste process heat: COP = 368 K / (368 K - 303 K) = 5.7 ideally and in practice 3.7 - 4.2. Electricity needed per 1 MWh output: 0.23 - 0.27 MWh (plus what is needed for pumping the heat for 25 km, say + 0.04 MWh)
Plant specifications
These equations below aim to reflect the energy production facilities and capabilities. The min and max values tell about the range of energy production of the plant, and the cost values tell the costs of building and running the powerplant.
Note! Maintenance cost only contains costs that do not depend on activity. Operational cost contains costs that depend on activity but NOT fuel price; those are calculated separately based on energy produced.
Obs | Years_active | Plant | Min | Max | Investment cost | Management cost | Operation cost | Description |
---|---|---|---|---|---|---|---|---|
1 | 2017-2070 | Biofuel heat plants | 0 | 100-300 | 360 | 10 | 4-12 | biofuels (pellets, wood chips and possibly biochar) |
2 | 2025-2070 | CHP diesel generators | 0 | 1441 | 144 | 1 | 1 | Assuming all of Helsinki's apartment houses were fitted with 100 kW generators. |
3 | 2025-2080 | Deep-drill heat | 0 | 300 | 300-900 | 9.6 | 40 | Investment cost from ETSAP |
4 | 1965-2040 | Hanasaari | 0 | 640 | 0 | 9.6 | 8 | 95% coal, 5% pellets. Assume cost of running and maintenance in coal plants 15€/kW (Sähköenergian kustannusrakenne) |
5 | 2010-2060 | Household air heat pumps | 0 | 112 | 200-300 | 10 | 5 | Assuming all of Helsinki's detached and row houses were fitted with air heat pumps |
6 | 2010-2060 | Household air conditioning | 0 | 67 | 150-200 | 10 | 5 | |
7 | 2016-2060 | Household geothermal heat | 0 | 335 | 380-450 | 10 | 5 | Assuming all of Helsinki's detached and row houses were fitted with geothermal heat pumps |
8 | 2020-2035 | Household solar | 0 | 105 | 220-250 | 5 | 5 | Assuming 700000 m2 suitable for solar panels. |
9 | 2010-2070 | Katri Vala cooling | 0 | 60 | 0 | 10 | 3 | waste water. Max from Helen |
10 | 2005-2065 | Katri Vala heat | 0 | 90 | 0 | 10 | 3 | waste water. Max from Helen |
11 | 1980-2050 | Kellosaari back-up plant | 0 | 120 | 0 | 10 | 20 | oil |
12 | 1980-2070 | Kymijoki River's plants | 0 | 60 | 0 | 10 | 1-4 | hydropower |
13 | 2022-2080 | Loviisa nuclear heat | 0 | 1800-2600 | 400-4000 | 10 | 5 | Investment cost includes energy tunnel (double of Neste) but NOT building cost of plant. Some estimate for typical district heat pipes on ground is 2 M€/km; this is clearly a minimum for this project. |
14 | 2020-2060 | Neste oil refinery heat | 0 | 300 | 200-500 | 10 | 5 | |
15 | 1975-2050 | Salmisaari A&B | 0 | 506 | 0 | 7.6 | 8 | 95% coal, 5% pellets |
16 | 2020-2070 | Sea heat pump | 0 | 225 | 280 | 10 | 4 | |
17 | 2020-2070 | Sea heat pump for cooling | 0 | 225 | 280 | 10 | 4 | |
18 | 1980-2070 | Small-scale wood burning | 78 | 78 | 0 | 1 | 0 | Assuming 70% of Helsinki's detached and row houses have a working fireplace. Operation costs for consumer assumed to be 0. |
19 | 1980-2070 | Small gas heat plants | 0 | 600 | 0 | 5 | 5 | |
20 | 1980-2070 | Small fuel oil heat plants | 0 | 1600 | 0 | 5 | 5 | |
21 | 2015-2040 | Suvilahti power storage | -1.2 | 1.2 | 100 | 10 | 5 | electricity storage 0.6 MWh |
22 | 2013-2070 | Suvilahti solar | 0 | 0.34 | 0 | 10 | 5 | |
23 | 1880-2070 | Vanhakaupunki museum | 0 | 0.2 | 0 | 10 | 0 | water |
24 | 1991-2070 | Vuosaari A | 0 | 320 | 0 | 5 | 5 | natural gas |
25 | 1998-2070 | Vuosaari B | 0 | 924 | 0 | 5 | 5 | natural gas |
26 | 2018-2070 | Vuosaari C biofuel | 0 | 1331 | 650 | 10 | 9 | 80-100% biofuels, rest coal |
27 | 2017-2060 | Wind mills | 0 | 10 | 12 | 0.07-0.15 | 7-13 | upper limit from EWEA-report: The economics of wind energy |
28 | 2016-2070 | Data center heat | 0 | 150 | 70.5-109.5 | 5 | 0 | Investment cost 0.47-0.73 M€/MWth based on Motiva 2014. Cooling is needed anyway, so assumes operation costs to be 0. |
Notes:
- Neste excess heat in Opasnet
- Helens’s windpower [8]
- Suvilahti solar [9]
- Loviisan sanomat: Loviisan ydinvoimalan tehoja aiotaan nostaa 52 megawattia. [10]
- Loviisa 3 periaatepäätös [11]
- Sähköenergian kustannusrakenne [12]
- European Wind Energy Association (EWEA): The economics of wind energy [13]
- Operation costs (€/MWh) of nuclear, wind, coal, and wood based biomass [14]
- Sea heat capacity and cost estimated using case Drammen. [15] [16][17]
- Cost of household solar estimated using [1] and [2]
- Deep drill heat
- Energy Technology Systems Analysis Programme (ETSAP)[18]
- Small heat plants' capacities [19]
Obs | Plant | Burner | Fuel | 2015 | 2025 | 2035 | 2045 | 2055 | 2065 |
---|---|---|---|---|---|---|---|---|---|
1 | Suvilahti solar | None | Electricity | 5 | 5 | 10 | 10 | 10 | 10 |
2 | Wind mills | None | Electricity | 5 | 5 | 10 | 10 | 10 | 10 |
Fuel availability
Wood
The byproducts of forest industry make up the bulk of fuel wood, and its quantity is almost completely dependent of the production of the forest industry's main products. Therefore it makes sense to calculate the amount of fuel wood usable in the future using the predictions about the volume of forest industry's production in coming years.
For example, the maximum potential production of woodchips is calibrated so, that it will reach 25 TWh in year 2020, and it is expected slowly increase to 33 TWh by year 2050. The production potential for firewood (for small scale heating) is expected to remain about the same at just under 60 PJ. The import of wood fuels is estimated to be 3 TWh at most. [20]
Fuel use by heating type
Helsinki-specific data about connections between Heating and fuel usage. Generic data should be taken from Energy balance. Because all Helsinki-specific data is given in the energyProcess table, this only contains dummy data.
Obs | Heating | Burner | Fuel | Fraction | Description |
---|---|---|---|---|---|
1 | Dummy | None | Coal | 0 |
This R code creates an ovariable for calculating the shares of different fuels used in heating processes.
Fuel data from HSY
Data downloaded from [3] on 27 Nov 2018.
Show details | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Emission locations
Emission locations per plant. The values of emission sites are based on locations of city areas.
Obs | Plant | Emission site | Emission height | Description |
---|---|---|---|---|
1 | Biofuel heat plants | 010 | Low | |
2 | CHP diesel generators | 010 | Ground | |
3 | Deep-drill heat | 010 | ||
4 | Hanasaari | 010 | High | |
5 | Household air heat pumps | 010 | ||
6 | Household air conditioning | 010 | ||
7 | Household geothermal heat | 010 | ||
8 | Household solar | 010 | ||
9 | Katri Vala cooling | 010 | ||
10 | Katri Vala heat | 010 | ||
11 | Kellosaari back-up plant | 010 | High | |
12 | Kymijoki River's plants | 010 | ||
13 | Loviisa nuclear heat | 010 | ||
14 | Neste oil refinery heat | 010 | High | |
15 | Salmisaari A&B | 010 | High | |
16 | Sea heat pump | 010 | ||
17 | Sea heat pump for cooling | 010 | ||
18 | Small-scale wood burning | 010 | Ground | |
19 | Small gas heat plants | 010 | Low | |
20 | Small fuel oil heat plants | 010 | Low | |
21 | Suvilahti power storage | 010 | ||
22 | Suvilahti solar | 010 | ||
23 | Vanhakaupunki museum | 010 | High | |
24 | Vuosaari A | 010 | High | |
25 | Vuosaari B | 010 | High | |
26 | Vuosaari C biofuel | 010 | High | |
27 | Wind mills | 010 | ||
28 | Data center heat | 010 | ||
29 | Unidentified | At site of consumption | Ground |
This R code creates an ovariable for emission locations per plant.
Data not used
This data is not used in the model's calculations, but is important enough to be kept on the page.
Emission location and height by heating type. The values of emission sites are based on locations of city areas.
Obs | Heating | Emission_site | Emission_height | Dummy |
---|---|---|---|---|
1 | District | 010 | High | |
2 | Electricity | 010 | High | |
3 | Geothermal | 010 | High | |
4 | Oil | At site of consumption | Ground | |
5 | Wood | At site of consumption | Ground | |
6 | Gas | At site of consumption | Ground | |
7 | Coal | At site of consumption | Ground |
This code creates technical ovariables emissionLocations and heatingShares that are needed to run the Building model and its ovariables buildings and heatingEnergy.
Plant | Min (MW) | Max (MW) | Fuel | Description |
---|---|---|---|---|
Hanasaari back up plant | 0 | 280 | heavy fuel oil | |
Salmisaari back up plant | 0 | 120 | heavy fuel oil | |
Vuosaari back up plant | 0 | 120 | light fuel oil | |
Lassila | 0 | 420 | heavy fuel oil and gas | |
Munkkisaari | 0 | 235 | heavy and light fuel oil | |
Myllypuro | 0 | 240 | light fuel oil | |
Patola | 0 | 240 | heavy fuel oil and gas | |
Ruskeasuo | 0 | 272 | heavy and light fuel oil | |
Alppila | 0 | 180 | light fuel oil | |
Jakomäki | 0 | 62 | heavy fuel oil |
Electricity | 7145 |
District heat and steam | 6807 |
District cooling | 116 |
See also
- The model for small-scale energy production in Helsinki Metropolitan area is made by Gabi 4.3 - life cycle assessment software. It is a versatile program which can be used for life cycle assessment, cost analysis, efficiency analysis, Global Reporting Initiative-reports (GRI) and companies annual reports.
- Pohjoismaiden suurin sähkövarasto nousee Helsinkiin - toimintaperiaate kuin kännykän akulla YLE 23.6.2015
Useful sources about heat pumps:
- Katri Vala heat pumps in Helsinki
- Absorption heat pumps in Sweden
- EnergyGroove: heat pumps
- Industrial heat pumps
Keywords
References
- ↑ Scanoffice.fi: VTT:n testiraportit - Ilmalämpöpumppuvertailu. http://www.scanoffice.fi/fi/tuotteet/tuoteryhmat/ilmalampopumput/raportit-ja-sertifikaatit/vttn-testiraportit
- ↑ Energy.gov: Geothermal heat pumps. U.S. department of energy. http://energy.gov/energysaver/geothermal-heat-pumps
- ↑ Energy.gov: Wood and pellet heating. U.S. department of energy http://energy.gov/energysaver/wood-and-pellet-heating
- ↑ Norwegian Water Resources and Energy Directorate: Energy in Norway, an brief annual presentation, 2009. http://www.nve.no/global/energi/analyser/energi%20i%20norge%20folder/energy%20in%20norway%202009%20edition.pdf
- ↑ Sustainable Energy Technology at Work -project: Use of waste heat from refining industry, Sweden. Preem AB, H Samuelsson. http://www.setatwork.eu/database/products/R179.htm
- ↑ Berntsson T, Persson Elmeroth L, Algehed J, Hektor E, Franck PÅ, Åsblad A, Johnsson F, Lyngfelt A, Gevert B, Richards T: Towards a Sustainable Oil Refinery - Pre-study for larger co-operation projects. Chalmers Energy Centre (CEC) Report 2008:1. Chalmers University of Technology. http://publications.lib.chalmers.se/records/fulltext/69752.pdf
- ↑ Ilkka Maaskola, Matti Kataikko: Ylijäämälämmön taloudellinen hyödyntäminen. Lämpöpumppu- ja ORC-sovellukset. Motiva, Helsinki, 2014. http://www.motiva.fi/files/10217/Ylijaamalammon_taloudellinen_hyodyntaminen_Lampopumppu-_ja_ORC-sovellukset.pdf
- ↑ Helen: Lisäämme tuulivoimalla tuotetun energian määrää. https://www.helen.fi/kotitalouksille/neuvoa-ja-tietoa/vastuullisuus/hiilineutraali-tulevaisuus/lisaa-tuulivoimaa/
- ↑ Helen: Aurinkovoiman tuotanto on käynnistynyt Suvilahdessa. 10.3.2015 https://www.helen.fi/uutiset/2015/aurinkovoiman-tuotanto-on-kaynnistynyt-helsingin-suvilahdessa/
- ↑ Loviisan sanomat: Loviisan ydinvoimalan tehoja aiotaan nostaa 52 megawattia. 13.1.2012 http://www.loviisansanomat.net/lue.php?id=5361
- ↑ Valtioneuvoston periaatepäätös Loviisa 3 -ydinvoimalasta. 6.5.2010 https://www.tem.fi/files/26809/PAP_FPH_LO3.pdf
- ↑ Lähdeaho Marika, Meskanen Jukka, Yrjänäinen Heli: Sähköenergian kustannusrakenne: vertailuna vesivoima, hiilivoima ja ydinvoima. Seminaarityö. Tampere university of technology. http://www.tut.fi/smg/tp/kurssit/SMG-4050/seminaarit07/sahkoenergian_kustannusrakenne.pdf
- ↑ Krohn S (editor), Morthorst PE, Awerbuch S: The Economics of Wind Energy. European Wind Energy Association (EWEA). March 2009 [http://www.ewea.org/fileadmin/files/library/publications/reports/Economics_of_Wind_Energy.pdf
- ↑ Vainio Tuukka: Sähkön tuotantokustannusvertailu. Aalto-yliopisto, Insinööritieteiden korkeakoulu, energiatekniikan laitos. 2011 https://aaltodoc.aalto.fi/bitstream/handle/123456789/4969/isbn9789526041353.pdf?sequence=1
- ↑ Hawkings, Will: An affordable district heating system in Norway. Heat Pupms Today. 10.3.2014 http://www.heatpumps.media/features/an-affjordable-district-heating-system-in-norway
- ↑ Kenneth Hoffmann MSc, David Forbes Pearson MInstR: Ammonia Heat Pumps for District Heating in Norway – a case study. The Institute of Refrigeration (IOR). 2011 http://www.ammonia21.com/web/assets/link/Hoffman7thApril2011London%20colour.pdf
- ↑ European Heat Pump Association: The World's Largest “Natural” District Heat Pump. 6.3.2015 http://www.ehpa.org/about/news/article/the-worlds-largest-natural-district-heat-pump/
- ↑ Lako, Paul: Geothermal heat and power. Energy technology systems analysis programme, IEA. 2010. http://www.etsap.org/E-techDS/PDF/E06-geoth_energy-GS-gct.pdf
- ↑ Helen Oy: Lämpölaitosten turvallisuustiedote. 17.6.2015 https://www.helen.fi/globalassets/ymparisto/turvallisuustiedote-lampolaitokset.pdf
- ↑ Lehtilä A, Koljonen T, Airaksinen M, Tuominen P, Järvi T, Laurikko J, Similä L, Grandell L: Energiajärjestelmien kehityspolut kohti vähähiilistä yhteiskuntaa. Low Carbon Finland 2050 -platform. VTT. 2014. http://en.opasnet.org/en-opwiki/images/d/d1/Low_Carbon_Finland_Platform.pdf
- ↑ Helsingin ympäristötilasto