FrankfurtReport

From Opasnet
Jump to navigation Jump to search

Case-study Frankfurt Airport

„Ermittlung externer Kosten des Flugverkehrs am Flughafen Frankfurt/Main“

7 July 2003

Stephan A. Schmid Philipp Preiss Alexander Gressmann Rainer Friedrich

  • Transport to an from airport is not considered as those external costs are allocated to cars and train directly (p. 12, 15/16)
  • Scenarios: 2000 (is-scenario), 2015 (without extension of the airport; with different scenarios for additional runways) (p. 13)
  • Total external costs for the scenarios and marginal external costs (external costs that are caused by one additional take-off and landing; needed for internalisation) (p. 13)
  • Limits
    • LTO-cycle (Landing/take-off cycle)
    • Height: ca. 600 m (corresponds with the mean boundary layer height)
    • Impacts of emissions are considered European-wide
    • Noise data modelled by Hessisches Landesamt für Umwelt und Geologie are used among other data (square of 70 km by 70 km) (p. 15)
  • External costs (methodology)
    • Bottom-up-approach and impact pathway (p. 17)
    • Categories: (p. 18)
      • air pollutants -> human health, material, crops
      • noise -> human health, annoyance
      • accidents -> human health (costs of medical treatment are considered as internalised already because they are covered by insurance)
      • nature and landscape -> different use of areas and the resulting impacts
    • monetisation of impacts (p. 19)
      • indirect methods: e.g. hedonic price method (market price approach): e.g. people pay more to live in a place where the environmental quality is better
      • direct methods: surveys (contingent valuation) ask for valuation by people  wo ist der unterschied zu wtp?
    • Classification of planes (e.g. according to noise level); number of seats in a specific type of plane can vary with the airline operating the flight (p. 22)
  • Air pollutants (p. 24)
    • Impact pathway
      • Emissions
      • Dispersion and chemical transformation
      • Exposition
      • Physical impacts (calculated by using exposure-response-functions)
      • Monetarisation of the impacts
    • Comparison of 2 scenarios at a time: a baseline scenario and a second scenario (additional runway)
    • Dispersion and chemical transformation (p. 25)
      • Local area, ca. 40 by 40 km: only chemical transformation modelled is NO -> NO2
      • European-wide: Ecosense windrose trajectory model (secondary aerosols and acid deposition); SROM-modell (ozone)