EU-kalat: Difference between revisions
Line 638: | Line 638: | ||
#dimnames(samps.j$timep) <- list(Dummy = "time", Iter = 1:N, Chain = 1:4) | #dimnames(samps.j$timep) <- list(Dummy = "time", Iter = 1:N, Chain = 1:4) | ||
##### | ##### conc_param contains expected values of the distribution parameters from the model | ||
conc_param <- list( | |||
Omega = apply(samps.j$Omega, MARGIN = 1:3, FUN = mean), | |||
# lenp = cbind( | |||
# mean = apply(samps.j$lenp, MARGIN = 1, FUN = mean), | |||
# sd = apply(samps.j$lenp, MARGIN = 1, FUN = sd) | |||
# ), | |||
mu = apply(samps.j$mu, MARGIN = 1:2, FUN = mean), | |||
# timep = cbind( | |||
# mean = apply(samps.j$timep, MARGIN = 1, FUN = mean), | |||
# sd = apply(samps.j$timep, MARGIN = 1, FUN = sd) | |||
# ) | |||
mu_nd = apply(samps.j$mu_nd, MARGIN = 1:2, FUN = mean), | |||
tau_nd = apply(samps.j$tau_nd, MARGIN = 1, FUN = mean) | |||
) | |||
# names(dimnames(conc_param$lenp)) <- c("Fish","Metaparam") | |||
# names(dimnames(conc_param$timep)) <- c("Dummy","Metaparam") | |||
conc_param <- melt(conc_param) | |||
colnames( | colnames(conc_param)[colnames(conc_param)=="value"] <- "Result" | ||
colnames( | colnames(conc_param)[colnames(conc_param)=="L1"] <- "Parameter" | ||
conc_param$Compound[conc_param$Parameter =="tau_nd"] <- conl_nd # drops out for some reason | |||
conc_param <- fillna(conc_param,"Fish") | |||
for(i in 1:ncol(conc_param)) { | |||
if("factor" %in% class(conc_param[[i]])) conc_param[[i]] <- as.character(conc_param[[i]]) | |||
} | |||
conc_param <- Ovariable("conc_param",data=conc_param) | |||
objects.store( | objects.store(conc_param) | ||
cat("Data frame | cat("Data frame conc_params stored.\n") | ||
######################3 | ######################3 | ||
Line 681: | Line 686: | ||
facet_wrap( ~ Compound, scales="free_x")+scale_x_log10() | facet_wrap( ~ Compound, scales="free_x")+scale_x_log10() | ||
scatterplotMatrix(t(exp(samps.j$pred[2,,,1])), main = paste("Predictions for several compounds for", | |||
names(samps.j$pred[,1,1,1])[2])) | |||
scatterplotMatrix(t(exp(samps.j$pred[,1,,1])), main = paste("Predictions for all fish species for", | |||
names(samps.j$pred[1,,1,1])[1])) | |||
scatterplotMatrix(t(samps.j$Omega[2,,1,,1]), main = "Omega for several compounds in Baltic herring") | |||
scatterplotMatrix(t((samps.j$pred_nd[1,,,1])), main = paste("Predictions for several compounds for", | |||
names(samps.j$pred_nd[,1,1,1])[1])) | |||
#plot(coda.samples(jags, 'Omega', N)) | |||
plot(coda.samples(jags, 'mu', N*thin, thin)) | |||
#plot(coda.samples(jags, 'lenp', N)) | |||
#plot(coda.samples(jags, 'timep', N)) | |||
plot(coda.samples(jags, 'pred', N*thin, thin)) | |||
plot(coda.samples(jags, 'mu_nd', N*thin, thin)) | |||
tst <- (coda.samples(jags, 'pred', N)) | |||
</rcode> | </rcode> | ||
<rcode name="conc_poll" label="Initiate conc_poll" embed=1> | |||
#This is code Op_en3104/conc_poll on page [[EU-kalat]] | |||
library(OpasnetUtils) | |||
#objects.latest("Op_en3104", code_name="pollutant_bayes") | |||
conc_poll <- Ovariable( | |||
"conc_poll", | |||
dependencies = data.frame( | |||
Name=c("conc_param"), #,"lengt","time"), | |||
Ident=c("Op_en3104/pollutant_bayes")#,NA,NA) | |||
), | |||
formula=function(...) { | |||
require(MASS) | |||
tmp1 <- conc_param + Ovariable(data=data.frame(Result="0-1")) # Ensures Iter # lengt + time + | |||
tmp2 <- unique(tmp1@output[setdiff( | |||
colnames(tmp1@output)[tmp1@marginal], | |||
c("Compound","Compound2","Metaparam","Parameter") | |||
)]) | |||
tmp2$Row <- 1:nrow(tmp2) | |||
tmp3 <- merge(tmp2,tmp1@output) | |||
out <- data.frame() | |||
for(i in 1:nrow(tmp2)) { | |||
tmp <- tmp3[tmp3$Row == i , ] | |||
Omega <- solve(tapply( # Is it sure that PCDDF and PCB are not mixed to wrong order? | |||
tmp$conc_paramResult[tmp$Parameter=="Omega"], | |||
tmp[tmp$Parameter=="Omega", c("Compound","Compound2")], | |||
sum # Equal to identity because only 1 row per cell. | |||
)) # Precision matrix | |||
con <- names(Omega[,1]) | |||
mu <- tmp$conc_paramResult[tmp$Parameter=="mu"][match(con,tmp$Compound[tmp$Parameter=="mu"])] # + # baseline | |||
# rnorm(1, | |||
# tmp$conc_paramResult[tmp$Parameter=="lenp" & tmp$Metaparam=="mean"][1], | |||
# tmp$conc_paramResult[tmp$Parameter=="lenp" & tmp$Metaparam=="sd"][1] | |||
# ) * (tmp$lengtResult[1]-170) + # lengt | |||
# rnorm(1, | |||
# tmp$conc_paramResult[tmp$Parameter=="timep" & tmp$Metaparam=="mean"][1], | |||
# tmp$conc_paramResult[tmp$Parameter=="timep" & tmp$Metaparam=="sd"][1] | |||
# )* (tmp$timeResult[1]-2009) # time | |||
rnd <- exp(mvrnorm(1, mu, Omega)) | |||
out <- rbind(out, merge(tmp2[i,], data.frame(Compound=con,Result=rnd))) | |||
} | |||
out$Row <- NULL | |||
# temp <- aggregate( | |||
# out["Result"], | |||
# by=out[setdiff(colnames(out), c("Result","Compound"))], | |||
# FUN=sum | |||
# ) | |||
# temp$Compound <- "TEQ" | |||
out <- Ovariable( | |||
output = out, # rbind(out, temp), | |||
marginal = colnames(out) != "Result" | |||
) | |||
return(out) | |||
} | |||
) | |||
objects.store(conc_poll) | |||
cat("Ovariable conc_poll stored.\n") | |||
</rcode> | |||
NOTE! This is not a probabilistic approach. Species and area-specific distributions should be created. | NOTE! This is not a probabilistic approach. Species and area-specific distributions should be created. |
Revision as of 07:01, 11 March 2021
This page is a study.
The page identifier is Op_en3104 |
---|
Moderator:Arja (see all) |
|
Upload data
|
EU-kalat is a study, where concentrations of PCDD/Fs, PCBs, PBDEs and heavy metals have been measured from fish
Question
The scope of EU-kalat study was to measure concentrations of persistent organic pollutants (POPs) including dioxin (PCDD/F), PCB and BDE in fish from Baltic sea and Finnish inland lakes and rivers. [1] [2] [3].
Answer
The original sample results can be acquired from Opasnet base. The study showed that levels of PCDD/Fs and PCBs depends especially on the fish species. Highest levels were on salmon and large sized herring. Levels of PCDD/Fs exceeded maximum level of 4 pg TEQ/g fw multiple times. Levels of PCDD/Fs were correlated positively with age of the fish.
Mean congener concentrations as WHO2005-TEQ in Baltic herring can be printed out with this link or by running the codel below.
Rationale
Data
Data was collected between 2009-2010. The study contains years, tissue type, fish species, and fat content for each concentration measurement. Number of observations is 285.
There is a new study EU-kalat 3, which will produce results in 2016.
Calculations
Preprocess
- Preprocess model 22.2.2017 [4]
- Objects used in Benefit-risk assessment of Baltic herring and salmon intake
- Model run 25.1.2017 [5]
- Model run 22.5.2017 with new ovariables euRaw, euAll, euMain, and euRatio [6]
- Model run 23.5.2017 with adjusted ovariables euRaw, eu, euRatio [7]
- Model run 11.10.2017: Small herring and Large herring added as new species [8]
- Model rerun 15.11.2017 because the previous stored run was lost in update [9]
- Model run 21.3.2018: Small and large herring replaced by actual fish length [10]
- Model run 26.3.2018 eu2 moved here [11]
See an updated version of preprocess code for eu on Health effects of Baltic herring and salmon: a benefit-risk assessment#Code for estimating TEQ from chinese PCB7
Bayes model for dioxin concentrations
- Model run 28.2.2017 [12]
- Model run 28.2.2017 with corrected survey model [13]
- Model run 28.2.2017 with Mu estimates [14]
- Model run 1.3.2017 [15]
- Model run 23.4.2017 [16] produces list conc.param and ovariable concentration
- Model run 24.4.2017 [17]
- Model run 19.5.2017 without ovariable concentration [18] ⇤--#: . The model does not mix well, so the results should not be used for final results. --Jouni (talk) 19:37, 19 May 2017 (UTC) (type: truth; paradigms: science: attack)
- Model run 22.5.2017 with TEQdx and TEQpcb as the only Compounds [19]
- Model run 23.5.2017 debugged [20] [21] [22]
- Model run 24.5.2017 TEQdx, TECpcb -> PCDDF, PCB [23]
- Model run 11.10.2017 with small and large herring [24] (removed in update)
- Model run 12.3.2018: bugs fixed with data used in Bayes. In addition, redundant fish species removed and Omega assumed to be the same for herring and salmon. [25]
- Model run 22.3.2018 [26] Model does not mix well. Thinning gives little help?
- Model run 25.3.2018 with conc.param as ovariable [27]
Initiate conc_pcddf for PFAS disease burden study
Bayesian approach for PCDDF, PCB, OT, PFAS.
NOTE! This is not a probabilistic approach. Species and area-specific distributions should be created.
Initiate conc_pcddf for Goherr
- Model run 19.5.2017 [30]
- Model run 23.5.2017 with bugs fixed [31]
- Model run 12.10.2017: TEQ calculation added [32]
- Model rerun 15.11.2017 because the previous stored run was lost in update [33]
- 12.3.2018 adjusted to match the same Omega for all fish species [34]
- 26.3.2018 includes length and time as parameters, lengt ovariable initiated here [35]
⇤--#: . These codes should be coherent with POPs in Baltic herring. --Jouni (talk) 12:14, 7 June 2017 (UTC) (type: truth; paradigms: science: attack)
See also
References
- ↑ A. Hallikainen, H. Kiviranta, P. Isosaari, T. Vartiainen, R. Parmanne, P.J. Vuorinen: Kotimaisen järvi- ja merikalan dioksiinien, furaanien, dioksiinien kaltaisten PCB-yhdisteiden ja polybromattujen difenyylieettereiden pitoisuudet. Elintarvikeviraston julkaisuja 1/2004. [1]
- ↑ E-R.Venäläinen, A. Hallikainen, R. Parmanne, P.J. Vuorinen: Kotimaisen järvi- ja merikalan raskasmetallipitoisuudet. Elintarvikeviraston julkaisuja 3/2004. [2]
- ↑ Anja Hallikainen, Riikka Airaksinen, Panu Rantakokko, Jani Koponen, Jaakko Mannio, Pekka J. Vuorinen, Timo Jääskeläinen, Hannu Kiviranta. Itämeren kalan ja muun kotimaisen kalan ympäristömyrkyt: PCDD/F-, PCB-, PBDE-, PFC- ja OT-yhdisteet. Eviran tutkimuksia 2/2011. ISSN 1797-2981 ISBN 978-952-225-083-4 [3]