EU-kalat: Difference between revisions
Line 457: | Line 457: | ||
Bayesian approach for PCDDF, PCB, OT, PFAS. | Bayesian approach for PCDDF, PCB, OT, PFAS. | ||
* Model run 2021-03-08 [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=ZvJDOo7xL8d7x7EI] | * Model run 2021-03-08 [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=ZvJDOo7xL8d7x7EI] | ||
* Model run 2021-03-08 [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=VpSUS4pfGavspLG9] with the fish needed in PFAS assessment | |||
<rcode name="pollutant_bayes" label="Initiate conc_pcddf with PFAS, OT (for developers only)" embed=0 graphics=1> | <rcode name="pollutant_bayes" label="Initiate conc_pcddf with PFAS, OT (for developers only)" embed=0 graphics=1> | ||
Line 516: | Line 517: | ||
eu3$PFAS <- eu3$PFOA + eu3$PFOS | eu3$PFAS <- eu3$PFOA + eu3$PFOS | ||
conl_nd <- c("PFAS","PFOA","PFOS","DBT","MBT","TBT","DPhT","TPhT") | #conl_nd <- c("PFAS","PFOA","PFOS","DBT","MBT","TBT","DPhT","TPhT") | ||
conl_nd <- c("PFAS","PFOS","TBT") | |||
fisl <- fisl_nd <- c("Baltic herring","Bream","Flounder","Perch","Roach","Salmon","Whitefish") | |||
eu4 <- eu3[rowSums(is.na(eu3[conl_nd]))<length(conl_nd) & eu3$Fish %in% fisl_nd , | |||
conl <- colnames(eu3)[-(1:5)] | c(1:5,match(conl_nd,colnames(eu3)))] | ||
fisl <- as.character(unique(eu3$Fish)) | #fisl_nd <- as.character(unique(eu4$Fish)) | ||
conc_nd <- add_loq(eu4[eu4$Fish %in% fisl_nd , 6:ncol(eu4)]) | |||
conl <- c("TEQ","PCDDF","PCB") # setdiff(colnames(eu3)[-(1:5)], conl_nd) | |||
eu3 <- eu3[!is.na(eu3$PCDDF) & eu3$Fish %in% fisl , c(1:5, match(conl,colnames(eu3)))] | |||
#conl <- colnames(eu3)[-(1:5)] | |||
#fisl <- as.character(unique(eu3$Fish)) | |||
oprint(head(eu3)) | oprint(head(eu3)) | ||
Line 531: | Line 538: | ||
Fi <- length(fisl) | Fi <- length(fisl) | ||
N <- 200 | N <- 200 | ||
thin <- 100 | |||
conl | conl | ||
fisl | fisl | ||
conl_nd | |||
fisl_nd | |||
conc <- add_loq(eu3[rowSums(is.na(eu3))==0 , 6:ncol(eu3)]) # Remove rows with missing data. | conc <- add_loq(eu3[rowSums(is.na(eu3))==0 , 6:ncol(eu3)]) # Remove rows with missing data. | ||
Line 569: | Line 579: | ||
} | } | ||
# Non-dioxins | # Non-dioxins | ||
for( | for(j in 1:C_nd) { | ||
for( | tau_nd[j] ~ dgamma(0.001,0.001) | ||
for(i in 1:Fi_nd) { # Fi = fish species | |||
pred_nd[i,j] ~ dnorm(mu[i,j], tau_nd[j]) | pred_nd[i,j] ~ dnorm(mu[i,j], tau_nd[j]) | ||
mu_nd[i,j] ~ dnorm(0, 0.0001) | mu_nd[i,j] ~ dnorm(0, 0.0001) | ||
} | } | ||
} | } | ||
} | } | ||
Line 604: | Line 612: | ||
) | ) | ||
update(jags, | update(jags, 1000) | ||
samps.j <- jags.samples( | samps.j <- jags.samples( | ||
Line 618: | Line 626: | ||
'tau_nd' | 'tau_nd' | ||
), | ), | ||
thin=thin, | |||
N | N*thin | ||
) | ) | ||
dimnames(samps.j$Omega) <- list(Fish = fisl, Compound = conl, Compound2 = conl, Iter=1:N, Chain=1:4) | dimnames(samps.j$Omega) <- list(Fish = fisl, Compound = conl, Compound2 = conl, Iter=1:N, Chain=1:4) | ||
Line 652: | Line 660: | ||
colnames(conc.param)[colnames(conc.param)=="value"] <- "Result" | colnames(conc.param)[colnames(conc.param)=="value"] <- "Result" | ||
colnames(conc.param)[colnames(conc.param)=="L1"] <- "Parameter" | colnames(conc.param)[colnames(conc.param)=="L1"] <- "Parameter" | ||
conc.param$Compound[conc.param$Parameter =="tau_nd"] <- conl_nd # drops out for some reason | |||
objects.store(conc.param) | objects.store(conc.param) | ||
Line 672: | Line 681: | ||
facet_wrap( ~ Compound, scales="free_x")+scale_x_log10() | facet_wrap( ~ Compound, scales="free_x")+scale_x_log10() | ||
scatterplotMatrix(t(exp(samps.j$pred[2, | scatterplotMatrix(t(exp(samps.j$pred[2,,,1])), main = paste("Predictions for several compounds for", | ||
names(samps.j$pred[,1,1,1])[2])) | names(samps.j$pred[,1,1,1])[2])) | ||
scatterplotMatrix(t(exp(samps.j$pred[, | scatterplotMatrix(t(exp(samps.j$pred[,1,,1])), main = paste("Predictions for all fish species for", | ||
names(samps.j$pred[1,,1,1])[ | names(samps.j$pred[1,,1,1])[1])) | ||
scatterplotMatrix(t(samps.j$Omega[2, | scatterplotMatrix(t(samps.j$Omega[2,,1,,1]), main = "Omega for several compounds in Baltic herring") | ||
scatterplotMatrix(t((samps.j$pred_nd[1,,,1])), main = paste("Predictions for several compounds for", | scatterplotMatrix(t((samps.j$pred_nd[1,,,1])), main = paste("Predictions for several compounds for", | ||
Line 682: | Line 691: | ||
#plot(coda.samples(jags, 'Omega', N)) | #plot(coda.samples(jags, 'Omega', N)) | ||
plot(coda.samples(jags, 'mu', N*thin, thin)) | |||
#plot(coda.samples(jags, 'lenp', N)) | #plot(coda.samples(jags, 'lenp', N)) | ||
#plot(coda.samples(jags, 'timep', N)) | #plot(coda.samples(jags, 'timep', N)) | ||
plot(coda.samples(jags, 'pred', N*thin, thin)) | |||
plot(coda.samples(jags, 'mu_nd', N*thin, thin)) | |||
tst <- (coda.samples(jags, 'pred', N)) | |||
</rcode> | </rcode> | ||
Revision as of 20:26, 8 March 2021
This page is a study.
The page identifier is Op_en3104 |
---|
Moderator:Arja (see all) |
|
Upload data
|
EU-kalat is a study, where concentrations of PCDD/Fs, PCBs, PBDEs and heavy metals have been measured from fish
Question
The scope of EU-kalat study was to measure concentrations of persistent organic pollutants (POPs) including dioxin (PCDD/F), PCB and BDE in fish from Baltic sea and Finnish inland lakes and rivers. [1] [2] [3].
Answer
The original sample results can be acquired from Opasnet base. The study showed that levels of PCDD/Fs and PCBs depends especially on the fish species. Highest levels were on salmon and large sized herring. Levels of PCDD/Fs exceeded maximum level of 4 pg TEQ/g fw multiple times. Levels of PCDD/Fs were correlated positively with age of the fish.
Mean congener concentrations as WHO2005-TEQ in Baltic herring can be printed out with this link or by running the codel below.
Rationale
Data
Data was collected between 2009-2010. The study contains years, tissue type, fish species, and fat content for each concentration measurement. Number of observations is 285.
There is a new study EU-kalat 3, which will produce results in 2016.
Calculations
Preprocess
- Preprocess model 22.2.2017 [4]
- Objects used in Benefit-risk assessment of Baltic herring and salmon intake
- Model run 25.1.2017 [5]
- Model run 22.5.2017 with new ovariables euRaw, euAll, euMain, and euRatio [6]
- Model run 23.5.2017 with adjusted ovariables euRaw, eu, euRatio [7]
- Model run 11.10.2017: Small herring and Large herring added as new species [8]
- Model rerun 15.11.2017 because the previous stored run was lost in update [9]
- Model run 21.3.2018: Small and large herring replaced by actual fish length [10]
- Model run 26.3.2018 eu2 moved here [11]
See an updated version of preprocess code for eu on Health effects of Baltic herring and salmon: a benefit-risk assessment#Code for estimating TEQ from chinese PCB7
Bayes model for dioxin concentrations
- Model run 28.2.2017 [12]
- Model run 28.2.2017 with corrected survey model [13]
- Model run 28.2.2017 with Mu estimates [14]
- Model run 1.3.2017 [15]
- Model run 23.4.2017 [16] produces list conc.param and ovariable concentration
- Model run 24.4.2017 [17]
- Model run 19.5.2017 without ovariable concentration [18] ⇤--#: . The model does not mix well, so the results should not be used for final results. --Jouni (talk) 19:37, 19 May 2017 (UTC) (type: truth; paradigms: science: attack)
- Model run 22.5.2017 with TEQdx and TEQpcb as the only Compounds [19]
- Model run 23.5.2017 debugged [20] [21] [22]
- Model run 24.5.2017 TEQdx, TECpcb -> PCDDF, PCB [23]
- Model run 11.10.2017 with small and large herring [24] (removed in update)
- Model run 12.3.2018: bugs fixed with data used in Bayes. In addition, redundant fish species removed and Omega assumed to be the same for herring and salmon. [25]
- Model run 22.3.2018 [26] Model does not mix well. Thinning gives little help?
- Model run 25.3.2018 with conc.param as ovariable [27]
Initiate conc_pcddf for PFAS disease burden study
Bayesian approach for PCDDF, PCB, OT, PFAS.
NOTE! This is not a probabilistic approach. Species and area-specific distributions should be created.
Initiate conc_pcddf for Goherr
- Model run 19.5.2017 [30]
- Model run 23.5.2017 with bugs fixed [31]
- Model run 12.10.2017: TEQ calculation added [32]
- Model rerun 15.11.2017 because the previous stored run was lost in update [33]
- 12.3.2018 adjusted to match the same Omega for all fish species [34]
- 26.3.2018 includes length and time as parameters, lengt ovariable initiated here [35]
⇤--#: . These codes should be coherent with POPs in Baltic herring. --Jouni (talk) 12:14, 7 June 2017 (UTC) (type: truth; paradigms: science: attack)
See also
References
- ↑ A. Hallikainen, H. Kiviranta, P. Isosaari, T. Vartiainen, R. Parmanne, P.J. Vuorinen: Kotimaisen järvi- ja merikalan dioksiinien, furaanien, dioksiinien kaltaisten PCB-yhdisteiden ja polybromattujen difenyylieettereiden pitoisuudet. Elintarvikeviraston julkaisuja 1/2004. [1]
- ↑ E-R.Venäläinen, A. Hallikainen, R. Parmanne, P.J. Vuorinen: Kotimaisen järvi- ja merikalan raskasmetallipitoisuudet. Elintarvikeviraston julkaisuja 3/2004. [2]
- ↑ Anja Hallikainen, Riikka Airaksinen, Panu Rantakokko, Jani Koponen, Jaakko Mannio, Pekka J. Vuorinen, Timo Jääskeläinen, Hannu Kiviranta. Itämeren kalan ja muun kotimaisen kalan ympäristömyrkyt: PCDD/F-, PCB-, PBDE-, PFC- ja OT-yhdisteet. Eviran tutkimuksia 2/2011. ISSN 1797-2981 ISBN 978-952-225-083-4 [3]