EU-kalat: Difference between revisions

From Opasnet
Jump to navigation Jump to search
Line 454: Line 454:


==== Initiate conc_pcddf for PFAS disease burden study ====
==== Initiate conc_pcddf for PFAS disease burden study ====
Bayesian approach for PCDDF, PCB, OT, PFAS.
* Model run 2021-02-07 [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=Yllb2MifHlJzu8sL]
<rcode name="pollutant_bayes" label="Initiate conc_pcddf with PFAS, OT (for developers only)" embed=0>
# This is code Op_en3104/pollutant_bayes on page [[EU-kalat]]
library(OpasnetUtils)
library(reshape2)
library(rjags) # JAGS
library(ggplot2)
library(MASS) # mvrnorm
library(car) # scatterplotMatrix
#size <- Ovariable("size", ddata="Op_en7748", subset="Size distribution of fish species")
#time <- Ovariable("time", data = data.frame(Result=2015))
#conc_pcddf <- EvalOutput(conc_pcddf,verbose=TRUE)
#View(conc_pcddf@output)
objects.latest("Op_en3104", code_name = "preprocess") # [[EU-kalat]] eu, eu2, euRatio, indices
eu2 <- EvalOutput(eu2)
# Hierarchical Bayes model.
# PCDD/F concentrations in fish.
# It uses the TEQ sum of PCDD/F (PCDDF) as the total concentration
# of dioxin and PCB respectively for PCB in fish.
# PCDDF depends on size of fish, fish species, catchment time, and catchment area,
# but we omit catchment area. In addition, we assume that size of fish has
# zero effect for other fish than Baltic herring.
# Catchment year affects all species similarly.
eu3 <- eu2[eu2$Compound %in% conl & eu2$Fish %in% fisl & eu2$Matrix == "Muscle" , ]@output
eu3 <- reshape(
  eu3,
  v.names = "eu2Result",
  idvar = c("THLcode", "Fish"),
  timevar = "Compound",
  drop = c("Matrix","eu2Source"),
  direction = "wide"
)
colnames(eu3) <- gsub("eu2Result\\.","",colnames(eu3))
oprint(head(eu3))
#> colnames(eu3)
#[1] "THLcode"        "Fish"          "N"              "Length"        "Year"         
#[6] "euResult.PCDDF" "euResult.PCB" 
eu3$MPhT <- NULL # No values > 0
eu3$DOT <- NULL # No values > 0
eu3$BDE138 <- NULL # No values > 0
conl <- as.character(colnames(eu3)[-(1:5)]) # indices$Compound.TEQ2
fisl <- as.character(unique(eu3$Fish)) # c("Baltic herring","Salmon")
C <- length(conl)
Fi <- length(fisl)
N <- 1000
conl
fisl
conc <- eu3[6:ncol(eu3)]
# Find the level of quantification for dinterval function
LOQ <- unlist(lapply(eu3[6:ncol(eu3)], FUN = function(x) min(x[x!=0], na.rm=TRUE)))
# With TEQ, there are no zeros. So this is useful only if there are congener-specific results.
#names(LOQ) <- conl
conc <- sapply(
  1:length(LOQ),
  FUN = function(x) ifelse(is.na(conc[,x]) | conc[,x]==0, 0.5*LOQ[x], conc[,x])
)
conc <- data.matrix(conc)
# It assumes that all fish groups have the same Omega but mu varies.
mod <- textConnection(
  "
  model{
  for(i in 1:S) { # S = fish sample
  #        below.LOQ[i,j] ~ dinterval(-conc[i,j], -LOQ[j])
  conc[i,1:C] ~ dmnorm(muind[i,], Omega[fis[i],,])
  muind[i,1:C] <- mu[fis[i],1:C] #+ lenp[fis[i]]*length[i] + timep*year[i]
  }
 
  # Priors for parameters
  # Time trend. Assumed a known constant because at the moment there is little time variation in data.
  # https://www.evira.fi/elintarvikkeet/ajankohtaista/2018/itameren-silakoissa-yha-vahemman-ymparistomyrkkyja---paastojen-rajoitukset-vaikuttavat/
  # PCDDF/PCB-concentations 2001: 9 pg/g fw, 2016: 3.5 pg/g fw. (3.5/9)^(1/15)-1=-0.06102282
#  timep ~ dnorm(-0.0610, 10000)
#  lenp[1] ~ dnorm(0.01,0.01) # length parameter for herring
#  lenp[2] ~ dnorm(0,10000) # length parameter for salmon: assumed zero
 
  for(i in 1:Fi) { # Fi = fish species
  Omega[i,1:C,1:C] ~ dwish(Omega0[1:C,1:C],S)
  pred[i,1:C] ~ dmnorm(mu[i,1:C], Omega[i,,]) #+lenp[i]*lenpred+timep*timepred, Omega[i,,]) # Model prediction.
  for(j in 1:C) {
  mu[i,j] ~ dnorm(0, 0.0001) # mu1[j], tau1[j]) # Congener-specific mean for fishes
  }
  }
  }
  ")
jags <- jags.model(
  mod,
  data = list(
    S = nrow(eu3),
    C = C,
    Fi = Fi,
    conc = log(conc),
#    length = eu3$Length-170, # Subtract average herring size
#    year = eu3$Year-2009, # Substract baseline year
    fis = match(eu3$Fish, fisl),
#    lenpred = 233-170,
#    timepred = 2009-2009,
    Omega0 = diag(C)/100000
  ),
  n.chains = 4,
  n.adapt = 100
)
update(jags, 1000)
samps.j <- jags.samples(
  jags,
  c(
    'mu', # mean by fish and compound
    'Omega', # precision matrix by compound
#    'lenp',# parameters for length
#    'timep', # parameter for Year
    'pred' # predicted concentration for year 2009 and length 17 cm
  ),
  #  thin=1000,
  N
)
dimnames(samps.j$Omega) <- list(Fish = fisl, Compound = conl, Compound2 = conl, Iter=1:N, Chain=1:4)
dimnames(samps.j$mu) <- list(Fish = fisl, Compound = conl, Iter = 1:N, Chain = 1:4)
#dimnames(samps.j$lenp) <- list(Fish = fisl, Iter = 1:N, Chain = 1:4)
dimnames(samps.j$pred) <- list(Fish = fisl, Compound = conl, Iter = 1:N, Chain = 1:4)
#dimnames(samps.j$timep) <- list(Dummy = "time", Iter = 1:N, Chain = 1:4)
##### conc.param contains expected values of the distribution parameters from the model
conc.param <- Ovariable(
  "conc.param",
  dependencies = data.frame(Name = "samps.j", Ident=NA),
  formula = function(...) {
    conc.param <- list(
      Omega = apply(samps.j$Omega, MARGIN = 1:3, FUN = mean),
#      lenp = cbind(
#        mean = apply(samps.j$lenp, MARGIN = 1, FUN = mean),
#        sd = apply(samps.j$lenp, MARGIN = 1, FUN = sd)
#      ),
      mu = apply(samps.j$mu, MARGIN = 1:2, FUN = mean)#,
#      timep = cbind(
#        mean = apply(samps.j$timep, MARGIN = 1, FUN = mean),
#        sd = apply(samps.j$timep, MARGIN = 1, FUN = sd)
#      )
    )
#    names(dimnames(conc.param$lenp)) <- c("Fish","Metaparam")
#    names(dimnames(conc.param$timep)) <- c("Dummy","Metaparam")
    conc.param <- melt(conc.param)
    colnames(conc.param)[colnames(conc.param)=="value"] <- "Result"
    colnames(conc.param)[colnames(conc.param)=="L1"] <- "Parameter"
    conc.param$Dummy <- NULL
#    conc.param$Metaparam <- ifelse(is.na(conc.param$Metaparam), conc.param$Parameter, as.character(conc.param$Metaparam))
    return(Ovariable(output=conc.param, marginal=colnames(conc.param)!="Result"))
  }
)
objects.store(conc.param, samps.j)
cat("Lists conc.params and samps.j stored.\n")
######################3
cat("Descriptive statistics:\n")
# Leave only the main fish species and congeners and remove others
#oprint(summary(
#  eu2[eu2$Compound %in% indices$Compound.PCDDF14 & eu$Fish %in% fisl , ],
#  marginals = c("Fish", "Compound"), # Matrix is always 'Muscle'
#  function_names = c("mean", "sd")
#))
tmp <- eu2[eu2$Compound %in% c("PCDDF","PCB","BDE153","PBB153","PFOA","PFOS","DBT","MBT","TBT"),]@output
ggplot(tmp, aes(x = eu2Result, colour=Fish))+stat_ecdf()+
  facet_wrap( ~ Compound, scales="free_x")+scale_x_log10()
conc.param <- EvalOutput(conc.param)
if(FALSE) {
scatterplotMatrix(t(exp(samps.j$pred[1,,,1])), main = "Predictions for all compounds for Baltic herring")
scatterplotMatrix(t(exp(samps.j$pred[,1,,1])), main = "Predictions for all fish species for PCDDF")
scatterplotMatrix(t(samps.j$Omega[,1,1,,1]))
#scatterplotMatrix(t(cbind(samps.j$Omega[1,1,1,,1],samps.j$mu[1,1,,1])))
plot(coda.samples(jags, 'Omega', N))
plot(coda.samples(jags, 'mu', N))
plot(coda.samples(jags, 'lenp', N))
plot(coda.samples(jags, 'timep', N))
plot(coda.samples(jags, 'pred', N))
}
</rcode>


NOTE! This is not a probabilistic approach. Species and area-specific distributions should be created.
NOTE! This is not a probabilistic approach. Species and area-specific distributions should be created.

Revision as of 14:56, 7 March 2021


EU-kalat is a study, where concentrations of PCDD/Fs, PCBs, PBDEs and heavy metals have been measured from fish

Question

The scope of EU-kalat study was to measure concentrations of persistent organic pollutants (POPs) including dioxin (PCDD/F), PCB and BDE in fish from Baltic sea and Finnish inland lakes and rivers. [1] [2] [3].

Answer

Dioxin concentrations in Baltic herring.

The original sample results can be acquired from Opasnet base. The study showed that levels of PCDD/Fs and PCBs depends especially on the fish species. Highest levels were on salmon and large sized herring. Levels of PCDD/Fs exceeded maximum level of 4 pg TEQ/g fw multiple times. Levels of PCDD/Fs were correlated positively with age of the fish.

Mean congener concentrations as WHO2005-TEQ in Baltic herring can be printed out with this link or by running the codel below.

+ Show code

Rationale

Data

Data was collected between 2009-2010. The study contains years, tissue type, fish species, and fat content for each concentration measurement. Number of observations is 285.

There is a new study EU-kalat 3, which will produce results in 2016.

Calculations

Preprocess

  • Preprocess model 22.2.2017 [4]
  • Model run 25.1.2017 [5]
  • Model run 22.5.2017 with new ovariables euRaw, euAll, euMain, and euRatio [6]
  • Model run 23.5.2017 with adjusted ovariables euRaw, eu, euRatio [7]
  • Model run 11.10.2017: Small herring and Large herring added as new species [8]
  • Model rerun 15.11.2017 because the previous stored run was lost in update [9]
  • Model run 21.3.2018: Small and large herring replaced by actual fish length [10]
  • Model run 26.3.2018 eu2 moved here [11]

See an updated version of preprocess code for eu on Health effects of Baltic herring and salmon: a benefit-risk assessment#Code for estimating TEQ from chinese PCB7

+ Show code

Bayes model for dioxin concentrations

  • Model run 28.2.2017 [12]
  • Model run 28.2.2017 with corrected survey model [13]
  • Model run 28.2.2017 with Mu estimates [14]
  • Model run 1.3.2017 [15]
  • Model run 23.4.2017 [16] produces list conc.param and ovariable concentration
  • Model run 24.4.2017 [17]
  • Model run 19.5.2017 without ovariable concentration [18] ⇤--#: . The model does not mix well, so the results should not be used for final results. --Jouni (talk) 19:37, 19 May 2017 (UTC) (type: truth; paradigms: science: attack)
----#: . Maybe we should just estimate TEQs until the problem is fixed. --Jouni (talk) 19:37, 19 May 2017 (UTC) (type: truth; paradigms: science: comment)
  • Model run 22.5.2017 with TEQdx and TEQpcb as the only Compounds [19]
  • Model run 23.5.2017 debugged [20] [21] [22]
  • Model run 24.5.2017 TEQdx, TECpcb -> PCDDF, PCB [23]
  • Model run 11.10.2017 with small and large herring [24] (removed in update)
  • Model run 12.3.2018: bugs fixed with data used in Bayes. In addition, redundant fish species removed and Omega assumed to be the same for herring and salmon. [25]
  • Model run 22.3.2018 [26] Model does not mix well. Thinning gives little help?
  • Model run 25.3.2018 with conc.param as ovariable [27]

+ Show code

Initiate conc_pcddf for PFAS disease burden study

Bayesian approach for PCDDF, PCB, OT, PFAS.

  • Model run 2021-02-07 [28]

+ Show code


NOTE! This is not a probabilistic approach. Species and area-specific distributions should be created.

+ Show code

Initiate conc_pcddf for Goherr

  • Model run 19.5.2017 [29]
  • Model run 23.5.2017 with bugs fixed [30]
  • Model run 12.10.2017: TEQ calculation added [31]
  • Model rerun 15.11.2017 because the previous stored run was lost in update [32]
  • 12.3.2018 adjusted to match the same Omega for all fish species [33]
  • 26.3.2018 includes length and time as parameters, lengt ovariable initiated here [34]

+ Show code

⇤--#: . These codes should be coherent with POPs in Baltic herring. --Jouni (talk) 12:14, 7 June 2017 (UTC) (type: truth; paradigms: science: attack)

See also

References

  1. A. Hallikainen, H. Kiviranta, P. Isosaari, T. Vartiainen, R. Parmanne, P.J. Vuorinen: Kotimaisen järvi- ja merikalan dioksiinien, furaanien, dioksiinien kaltaisten PCB-yhdisteiden ja polybromattujen difenyylieettereiden pitoisuudet. Elintarvikeviraston julkaisuja 1/2004. [1]
  2. E-R.Venäläinen, A. Hallikainen, R. Parmanne, P.J. Vuorinen: Kotimaisen järvi- ja merikalan raskasmetallipitoisuudet. Elintarvikeviraston julkaisuja 3/2004. [2]
  3. Anja Hallikainen, Riikka Airaksinen, Panu Rantakokko, Jani Koponen, Jaakko Mannio, Pekka J. Vuorinen, Timo Jääskeläinen, Hannu Kiviranta. Itämeren kalan ja muun kotimaisen kalan ympäristömyrkyt: PCDD/F-, PCB-, PBDE-, PFC- ja OT-yhdisteet. Eviran tutkimuksia 2/2011. ISSN 1797-2981 ISBN 978-952-225-083-4 [3]