OpasnetUtils/Drafts: Difference between revisions
From Opasnet
Jump to navigation
Jump to search
Line 22: | Line 22: | ||
=== Calculations === | === Calculations === | ||
====Expand_index==== | |||
<rcode name="expand_index" label="Initiate expand_index" embed=1> | |||
# This is code Op_en6007/expand_index in page [[OpasnetUtils/Drafts]] | |||
library(OpasnetUtils) | |||
#' Copies results from one location to other locations while keeping everything else constant | |||
#' @param ova ovariable to be used | |||
#' @param locations list of relevant indices. Each item is a list that has a name of an existing locations, and the content is a vector of new location names. | |||
#' @return the input ovariable with new rows containing the new locations | |||
expand_index <- function(ova, locations) { | |||
if("ovariable" %in% class(ova)) out <- ova@output else out <- ova | |||
for(i in names(locations)) { | |||
for(j in names(locations[[i]])) { | |||
addpiece <- out[out[[i]]==j,] | |||
for(k in locations[[i]][[j]]) { | |||
addpiece[[i]] <- k | |||
out <- rbind(out,addpiece) | |||
} | |||
} | |||
} | |||
if("ovariable" %in% class(ova)) ova@output <- out else ova <- out | |||
return(ova) | |||
} | |||
objects.store(expand_index) | |||
cat("Function expand_index stored.\n") | |||
</rcode> | |||
====Functions for ovariable diagnostics==== | ====Functions for ovariable diagnostics==== |
Latest revision as of 10:37, 6 March 2021
Moderator:Jouni (see all) |
|
Upload data
|
Contents
Question
Which functions are so useful that they should be taken into OpasnetUtils package? This page contains draft function which will be included when they are good enough and found important.
Answer
Call the objects stored by this code from another rode with this command:
objects.latest("Op_en6007", code_name = "answer") # Old version that fetches all objects, depreciated and not updated. objects.latest("Op_en6007", code_name = "diagnostics") # Functions for ovariable and model diagnostics: ovashapetest, showLoctable, binoptest objects.latest("Op_en6007", code_name = "webropol") # Functions for operating with Webropol data objects.latest("Op_en6007", code_name = "miscellaneous") # Functions for various tasks objects.latest("Op_en6007", code_name = "gis") # Functions for ovariable, KML and Googl maps interactions
Rationale
Calculations
Expand_index
# This is code Op_en6007/expand_index in page [[OpasnetUtils/Drafts]] library(OpasnetUtils) #' Copies results from one location to other locations while keeping everything else constant #' @param ova ovariable to be used #' @param locations list of relevant indices. Each item is a list that has a name of an existing locations, and the content is a vector of new location names. #' @return the input ovariable with new rows containing the new locations expand_index <- function(ova, locations) { if("ovariable" %in% class(ova)) out <- ova@output else out <- ova for(i in names(locations)) { for(j in names(locations[[i]])) { addpiece <- out[out[[i]]==j,] for(k in locations[[i]][[j]]) { addpiece[[i]] <- k out <- rbind(out,addpiece) } } } if("ovariable" %in% class(ova)) ova@output <- out else ova <- out return(ova) } objects.store(expand_index) cat("Function expand_index stored.\n") |
Functions for ovariable diagnostics
showind has problems with get() but this version of code was acceptable [1].
#This is code Op_en6007/diagnostics on page [OpasnetUtils/Drafts]] library(OpasnetUtils) # Shows a table about ovariables and their index and location changes compared with parents. # showind has problems with get(). showind <- function(name = ".GlobalEnv", sources = FALSE, prevresults = FALSE) { # i ovariable # k parent ovariable # l index in (parent) ovariable deptable <- data.frame() for(i in ls(name = name)) { d = list(get(i))[[1]] if(class(d) == "ovariable") { depind <- list() if(nrow(d@dependencies)>0) { dep <- paste(d@dependencies$Name, collapse = ", ") for(k in d@dependencies$Name){ if(!exists(k)) cat(k, "does not exist.\n") else { if(class(get(k)) != "ovariable") cat(k, "is not an ovariable.\n") else { ko <- list(get(k)@output)[[1]] if("Iter" %in% colnames(ko)) ko$Iter <- as.factor(max(as.numeric(as.character(ko$Iter)))) cols <- colnames(ko) if(!sources) cols <- cols[!grepl("Source$", cols)] if(!prevresults) cols <- cols[!grepl("Result$", cols)] for(l in cols) { if(l %in% names(depind)) { depind[[l]] <- union(depind[[l]], unique(ko[[l]])) } else { newind <- list(unique(ko[[l]])) names(newind) <- l depind <- c(depind, newind) } } } } } } else { dep <- "No dependencies" } curcols <- colnames(d@output) if(!sources) curcols <- curcols[!grepl("Source$", curcols)] if(!prevresults) curcols <- curcols[!grepl("Result$", curcols)] droploc <- character() for(m in curcols) { if(!is.numeric(d@output[[m]])) { drops <- setdiff(depind[[m]], unique(d@output[[m]])) if(length(drops>0)) { droploc <- paste( droploc, paste( m, paste(drops, collapse = ", "), sep = ": " ), sep = " | " ) } } } if(length(droploc)==0) droploc <- NA deptable <- rbind( deptable, data.frame( Ovariable = i, Size = nrow(d@output), Dependencies = dep, Current = paste(curcols, collapse = ", "), Dropped = paste(setdiff(names(depind), curcols), collapse = ", "), New = paste(setdiff(curcols, names(depind)), collapse = ", "), Dropped_locations = droploc ) ) } } return(deptable) } ovashapetest <- function(ova) { allr <- rownames(ova@output) uniqr <- rownames(unique(ova@output[ova@marginal])) cube <- sapply(ova@output[ova@marginal], FUN = function(x) length(unique(x))) if(length(allr) == length(uniqr)) { cat("All rows have unique marginals.\n") } else { cat("Warning. All rows do not have unique marginals. Make sure that this is what you want.\n") } cat("Number of all rows:", length(allr), "\n") cat("Number of all rows without Iter: Iter==1", length(ova$Iter[ova$Iter=="1"]), "nrow/N", length(allr)/openv$N, "\n") cat("Number of unique rows:", length(uniqr), "\n") cat("Number of rows in a full array:", prod(cube), "\n") oprint(cube) nonuniqr <- setdiff(allr, uniqr) # cat("Non-unique rows:", nonuniqr, "\n") # oprint(head(ova@output[rownames(ova@output) %in% nonuniqr , ])) cubesm <- cube[cube>1 & cube<50] cubn <- names(cubesm) for(i in 2:(length(cubn))) { for(j in 1:(i-1)){ oprint(c(cubn[i], cubn[j])) oprint(table(ova@output[[cubn[i]]], ova@output[[cubn[j]]], useNA="ifany")) } } for(i in colnames(ova@output)[ova@marginal]) { locs <- ova@output[[i]] exper <- prod(cube[names(cube) != i]) oprint(c(i, exper)) for(j in unique(ova@output[[i]])) { cat(j, length(locs[locs == j]), ",") } } } ##################################### # This function can be used to quickly locate indices that do not match between # two ovariables and thus result in an output with 0 rows. binoptest <- function(x, y) { if(nrow(x@output) == 0) cat(paste("Ovariable", x@name,"has 0 rows in output.\n")) if(nrow(y@output) == 0) cat(paste("Ovariable", y@name,"has 0 rows in output.\n")) commons <- intersect(colnames(x@output), colnames(y@output)) commons <- commons[!grepl("Result$", commons)] cat("Ovariables have these common columns:\n") xt <- x@output yt <- y@output for (i in commons) { cat(i, "with shared locations\n") locs <- intersect(x@output[[i[1]]], y@output[[i[1]]]) if(length(locs)>50) cat(">50 of them\n") else cat(locs, "\n") xt <- xt[xt[[i]] %in% locs , ] yt <- yt[yt[[i]] %in% locs , ] cat("Rows remaining", x@name, nrow(xt), y@name, nrow(yt), "\n") } } #### showLoctable lists locations of each index in the evaluated ovariables in the global environment. showLoctable <- function(name = ".GlobalEnv") { loctable <- data.frame() for(i in ls(name = name)) { if(class(get(i)) == "ovariable") { for(j in colnames(get(i)@output)) { if(!(grepl("Source", j) | grepl("Result", j))) { loctable <- rbind( loctable, data.frame( Ovariable = i, Index = j, Class = paste(class(get(i)@output[[j]]), collapse=" "), Marginal = j %in% colnames(get(i)@output)[get(i)@marginal], NumLoc = length(unique(get(i)@output[[j]])), Locations = paste(head(unique(get(i)@output[[j]])), collapse = " ") ) ) } } } } return(loctable) } objects.store(showind, binoptest, showLoctable, ovashapetest) cat("Functions showind, binoptest, showLoctable, ovashapetest stored.\n") |
Functions for Webropol data
#This is code Op_en6007/webropol on page [OpasnetUtils/Drafts]] library(OpasnetUtils) ### webropol.convert converts a csv file from Webropol into a useful data.frame. webropol.convert <- function( data, # Data.frame created from a Webropol csv file. The first row should contain headings. rowfact, # Row number where the factor levels start (in practice, last row + 3) textmark = "Other open" # The text that is shown in the heading if there is an open sub-question. ) { out <- dropall(data[2:(rowfact - 3) , ]) subquestion <- t(data[1 , ]) subquestion <- gsub("\xa0", " ", subquestion) subquestion <- gsub("\xb4", " ", subquestion) subquestion <- gsub("\n", " ", subquestion) # subquestion <- gsub("\\(", " ", subquestion) # subquestion <- gsub("\\)", " ", subquestion) textfield <- regexpr(textmark, subquestion) != -1 subquestion <- strsplit(subquestion, ":") # Divide the heading into a main question and a subquestion. subqtest <- 0 # The previous question name. for(i in 1:ncol(out)) { #print(i) if(subquestion[[i]][1] != subqtest) { # If part of previous question, use previous fact. fact <- as.character(data[rowfact:nrow(data) , i]) # Create factor levels from the end of Webropol file. fact <- fact[fact != ""] # Remove empty rows fact <- gsub("\xa0", " ", fact) fact <- gsub("\xb4", " ", fact) fact <- gsub("\n", " ", fact) fact <- strsplit(fact, " = ") # Separate value (level) and interpretation (label) } if(length(fact) != 0 & !textfield[i]) { # Do this only if the column is not a text type column. out[[i]] <- factor( out[[i]], levels = unlist(lapply(fact, function(x) x[1])), labels = unlist(lapply(fact, function(x) x[2])), ordered = TRUE ) } subqtest <- subquestion[[i]][1] } return(out) } # merge.questions takes a multiple checkbox question and merges that into a single factor. # First levels in levs have priority over others, if several levels apply to a row. merge.questions <- function( dat, # data.frame with questionnaire data cols, # list of vectors of column names or numbers to be merged into one level in the factor levs, # vector (with the same length as cols) of levels of factors into which questions are merged. name # text string for the name of the new factor column in the data. ) { for(i in length(cols):1) { temp <- FALSE for(j in rev(cols[[i]])) { temp <- temp | !is.na(dat[[j]]) } dat[[name]][temp] <- levs[i] } dat[[name]] <- factor(dat[[name]], levels = levs, ordered = TRUE) return(dat) } objects.store(webropol.convert, merge.questions) cat("Functions webropol.convert, merge.questions stored.\n") |
HNH2035 functions
These are functions that were needed and developed for the op_fi:Hiilineutraali Helsinki 2035 work.
#This is code Op_en6007/hnh2035 on page [OpasnetUtils/Drafts]] library(OpasnetUtils) # pushIndicatorGraph was moved to package https://github.com/jtuomist/CNH-energy # Colors from the Helsinki theme colhki <- rep(c("#0072c6","#00d7a7","#c2a251","#9fc9eb","#ffc61e","#009246"),5) #' Remove overlap with happened and scenarios, and then combine lines #' @param ova ovariable where lines are combined #' @param measured name for the scenario that contain actual data about measured things combineLines <- function(ova, measured="toteutunut") { tst <- unique(ova[ova$Scenario==measured,]$Year) # Years with data out <- ova[ova$Scenario==measured | !ova$Year %in% tst,] # Remove scenarios if data tmp <- out[out$Scenario==measured & out$Year == max(tst),colnames(out@output)!="Scenario"] tmp <- tmp * Ovariable( output=data.frame( Scenario=setdiff(unique(out$Scenario),measured), Result=1 ), marginal=c(TRUE,FALSE) ) out <- combine(tmp,out, name=ova@name) return(out) } objects.store(combineLines, colhki) cat("Function combineLines and colour vector colhki stored.\n") |
Miscellaneous functions
#This is code Op_en6007/miscellaneous on page [OpasnetUtils/Drafts]] library(OpasnetUtils) ############ Shuffles columns of a data.frame so that they match a pre-defined correlation matrix #### THIS SHOULD BE UPDATED FOR OVARIABLES AS WELL: SHUFFLING ACROSS Iter WITH #### CORRELATION MATRIX ACROSS DEFINED INDICES AND THEIR LOCATIONS. OTHER INDICES ARE #### KEPT UNCHANGED, SO THE SHUFFLING HAS TO HAPPEN WITHIN EACH UNIQUE LOCATION COMBINATION. correlvar <- function( vars, # multivariable object to be correlated. Sigma # covariance matrix wanted. ) { # Method from http://www.r-bloggers.com/easily-generate-correlated-variables-from-any-distribution-without-copulas/ require(MASS) mu <- rep(0,ncol(vars)) rawvars <- as.data.frame(mvrnorm(n = nrow(vars), mu = mu, Sigma = Sigma)) out <- as.data.frame( lapply( 1:ncol(vars), FUN = function(i, vars, rawvars) { pvars <- rank(rawvars[[i]], ties.method = "random") tmp <- sort(vars[[i]]) # Make sure you start with ordered data. tmp <- tmp[pvars] # Order based on correlated ranks return(tmp) }, vars = vars, rawvars = rawvars ) ) colnames(out) <- colnames(vars) return(out) } ##################### Forgets decisions so that decision indices will be recreated. forgetDecisions <- function() { for(i in ls(envir = openv)) { if("dec_check" %in% names(openv[[i]])) openv[[i]]$dec_check <- FALSE } return(cat("Decisions were forgotten.\n")) } ################## Sähkön hinta tunneittain #price <- opbase.data(ident="op_en7353") #temperature <- opbase.data("op_en6315.2014_5_2015") #temperature$Date <- substr(temperature$Date, 0, 11) #price$Date <- substr(price$Date, 0, 11) #mon <- c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec") #for (i in mon) { # price$Date <- gsub(i, which(mon == i), as.character(price$Date)) #} #for (i in mon) { # temperature$Date <- gsub(i, which(mon == i), as.character(temperature$Date)) #} #price$Hours <- substr(price$Hours, 0, 2) #price$Hours <- paste(price$Hours, ":00:00", sep="") #temperature$Time <- paste(temperature$Time, ":00", sep="") #as.character(temperature$Result) #as.numeric(temperature$Result) #cut(temperature$Result, breaks = c(-21, -18, -15, -12, -9, -6, -3, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30), #include.lowest=TRUE) #DateTime <- as.POSIXct(paste(temperature$Date, temperature$Time), format="%Y-%m-%d %H:%M:%S") #DateHours <- as.POSIXct(paste(price$Date, price$Hours), format="%Y-%m-%d %H:%M:%S") # fillna takes a data.frame and fills the cells with NA with each level in that column. # fillna was updated in OpasnetUtils and therefore removed from here. ## collapsemarg is a placeholder for a better functionality within CollapseMarginals. ## It takes an ovariable, and summarises all indices in cols using tapply and a user-defined function. ## However, you can also use function "pick" to select locations defined in a list picks found in indices cols. ## Function "unkeep" simply drops the unkept indices without any other operation. ## The output is an ovariable with the same name as the input. ## This was first created for [[:op_fi:Radonin terveysvaikutukset]] collapsemarg <- function(variable, cols, fun = "sum", picks = list(), ...) { # cols is a character vector, while probs is a list out <- dropall(variable@output) marginals <- colnames(out)[variable@marginal] if(tolower(fun) == "unkeep") { # The function must be a string, otherwise this row will fail. out <- out[!colnames(out) %in% cols] } else { if(tolower(fun) == "pick") { for(i in cols) { out <- out[out[[i]] %in% picks[[match(i, cols)]] , ] } cols <- "" # Those locations that were picked are still marginals. } else { margtemp <- colnames(out)[colnames(out) %in% marginals & !colnames(out) %in% cols] # You must leave at least one index. out <- as.data.frame(as.table(tapply(result(variable), out[margtemp], fun))) out <- out[!is.na(out$Freq) , ] colnames(out)[colnames(out) == "Freq"] <- ifelse( length(variable@name) == 0, "Result", paste(variable@name, "Result", sep = "") ) } } variable@output <- out variable@marginal <- colnames(out) %in% marginals & ! colnames(out) %in% cols return(variable) } # Merge all but show_bins largest bins of indices cols to 'Other'. truncateIndex <- function( # Truncates indices to contain only the largest index bins. obj, # ovariable to use. cols, # names of the columns to truncate. bins = rep(10, length(cols)), # Number of bins to show, including Others. Smallest locations will be lumped to bin "Other". sum_others = TRUE # Should "Other" be summed to maintain marginal status ) { if(nrow(obj@output) == 0) stop("Ovariable ", obj@name, " not evaluated.\n") test <- oapply(abs(obj), INDEX = cols, sum, na.rm = TRUE) if(length(cols) > 1 & length(bins) == 1) bins <- rep(bins, length(cols)) for(i in 1:length(cols)) { test2 <- oapply(test, INDEX = cols[i], sum) test2@output <- test2@output[result(test2) > 0 , ] temp <- as.factor(obj@output[[cols[i]]]) location_weight_order <- order(result(test2), decreasing = TRUE) keeps <- test2@output[[cols[i]]][location_weight_order[0:min(bins[i] - 1, nrow(test2@output))]] levels(temp)[!levels(temp) %in% keeps] <- "Other" temp <- factor(temp, levels = c(levels(temp)[levels(temp) != "Other"], "Other")) obj@output[[cols[i]]] <- temp } # After changing some locations to "Other", sum along indices to avoid problems if(sum_others) { obj <- oapply(obj, cols = "", FUN = sum, na.rm = TRUE) } return(obj) } findrest <- function (X, cols, total = 1) { # findrest input is an ovariable that can be integrated over indices cols to result in total. # Often it is used with uncertain fractions. One (often the largest) fraction is # omitted or NA, and it is replaced by whatever is missing from the total. if (nrow(X@output) == 0) X <- EvalOutput(X) rescol <- paste(X@name, "Result", sep = "") marginals <- colnames(X@output)[X@marginal] # temp is the amount that is still missing from the total. temp <- total - oapply(X, cols = cols, FUN = function(x) sum(x, na.rm = TRUE)) # Remove old rescol because it would cause trouble later. if(rescol != paste(temp@name, "Result", sep = "")) temp <- unkeep(temp, cols = rescol) colnames(temp@output)[colnames(temp@output) == paste(temp@name, "Result", sep = "")] <- "tempResult" temp@name <- "temp" # This is to make sure that merge works. out <- merge(X, temp)@output # Replace missing values with values from temp. out[[rescol]] <- ifelse(is.na(out[[rescol]]), out$tempResult, out[[rescol]]) # Result comes from temp out$tempResult <- NULL X@output <- out X@marginal <- colnames(X@output) %in% marginals return(X) } timing <- function(dat, timecol = NA, weeks = 6, tz = "EET") # timing converts character or numeric inputs into times using a few default formats { if(is.data.frame(dat)) # Turn dat into a data.frame in all cases. { timesall <- (dat[timecol]) } else { timesall <- data.frame(Timecol = dat) timecol <- "Timecol" } temprow <- character() # A whole row of timesall collapsed into a string. for(i in 1:nrow(timesall)) { temprow[i] <- tolower(paste(t(timesall)[ , i], collapse = "")) } weekdays <- data.frame( Name = c("su", "ma", "ti", "ke", "to", "pe", "la", "sun", "mon", "tue", "wed", "thu", "fri", "sat", "sön", "mon", "tis", "ons", "tor", "fre", "lör"), Number = rep(0:6, times = 3) ) # day is the number of the weekday in case of repeating events. day <- rep(NA, nrow(timesall)) for(i in 1:nrow(weekdays)) { temp1 <- grepl(weekdays$Name[i], temprow) # Is any weekday mentioned in temprow? day <- ifelse(is.na(day) & temp1, weekdays$Number[i], day) # Find the weekday number. } # repall are repeating events, x are non-repeating events. repall <- timesall[!is.na(day) , ] xall <- timesall[is.na(day) , ] starting <- NA ########### First, change non-repeating timedates. # Change timedate into POSIXct assuming formats 15.3.2013 or 2013-03-15 and 15:24 or 15.24. # Note! 13 and 2013 mean 1.1.2013 and 3.2013 means 1.3.2013 if(nrow(xall) > 0) { xout <- data.frame(Datrow = (1:nrow(timesall))[is.na(day)]) # Row numbers from dat. for(j in colnames(xall)) { x <- xall[[j]] if(is.factor(x)) x <- levels(x)[x] x <- ifelse(grepl("^[0-9][0-9]$", x), paste("20", x, sep = ""), x) x <- ifelse(grepl("^[0-9][0-9][0-9][0-9]$", x), paste("1.1.", x, sep = ""), x) x <- ifelse(grepl("^[0-9].[0-9][0-9][0-9][0-9]$", x), paste("1.", x, sep = ""), x) x <- ifelse(grepl("^[0-9][0-9].[0-9][0-9][0-9][0-9]$", x), paste("1.", x, sep = ""), x) temp <- x x <- as.POSIXct(temp, format = "%d.%m.%Y %H:%M", tz = tz) x <- ifelse(!is.na(x), x, as.POSIXct(temp, format = "%d.%m.%Y %H.%M", tz = tz)) x <- ifelse(!is.na(x), x, as.POSIXct(temp, format = "%Y-%m-%d %H:%M", tz = tz)) x <- ifelse(!is.na(x), x, as.POSIXct(temp, format = "%Y-%m-%d %H.%M", tz = tz)) x <- ifelse(!is.na(x), x, as.POSIXct(temp, format = "%d.%m.%Y", tz = tz)) x <- ifelse(!is.na(x), x, as.POSIXct(temp, format = "%d.%m.%y", tz = tz)) xout <- cbind(xout, X = as.POSIXct(x, origin = "1970-01-01", tz = tz)) # Intermediate values turn into numeric, therefore turned back to POSIX. starting <- min(c(starting, xout$X), na.rm = TRUE) colnames(xout)[colnames(xout) == "X"] <- j } } ############## Then, change weekly repeating timedates. # repall must have format ma 9:00 or TUESDAY 8.24. Weekday is case-insensitive and can be abbrevieated. # The start and end times are assumed to be on the same day. The name of day can be on either column. if(nrow(repall) > 0) { for(j in colnames(repall)) { reptime <- gsub("[[:alpha:] ]", "", repall[[j]]) # Remove alphabets and spaces. reptime <- gsub("\\.", ":", reptime) reptime <- strsplit(reptime, split = ":") temp2 <- numeric() for(i in 1:length(reptime)) { temp2[i] <- as.numeric(reptime[[i]][1]) * 3600 + as.numeric(reptime[[i]][2]) * 60 } reptime <- temp2 if(is.na(starting)) starting <- paste(format(Sys.Date(), format = "%Y"), "-01-01", sep = "") starting <- as.POSIXlt(starting, origin = "1970-01-01") # First day of year. starting$mday <- starting$mday - as.numeric(format(starting, format = "%w")) + day[!is.na(day)] # Previous Sunday plus weekdaynumber. reps <- data.frame() temp3 <- starting for(i in 1:weeks) { reps <- rbind(reps, data.frame( Datrow = (1:nrow(timesall))[!is.na(day)], X = as.POSIXct(temp3, origin = "1970-01-01", tz = tz) + reptime )) temp3$mday <- temp3$mday + 7 # Make a weekly event. } colnames(reps)[colnames(reps) == "X"] <- j if(j == colnames(repall)[1]) repout <- reps else repout <- cbind(repout, reps[j]) } } out <- rbind(xout, repout) if(is.data.frame(dat)) { dat$Datrow <- 1:nrow(dat) dat <- dat[!colnames(dat) %in% timecol] out <- merge(dat, out) out <- out[colnames(out) != "Datrow"] } else { out <- out[[timecol]] } return(out) } # Funktio makeTimeline ottaa tapahtumalistauksen ja rakentaa siitä aikajanan. Parametrit: # event = data.framena tapahtumalistaus, joka sisältää ainakin alku- ja loppuajan (Alku, Loppu) ja # tapahtumatiedon sekä mahdollisesti toiston ja keston (Toisto = aikaväli päivinä, # Kesto = viimeinen tapahtuma-aika). # timeformat = jos TRUE, oletetaan POSIX-muotoiseksi ja muutetaan operointia varten sekunneiksi. # Jos FALSE, oletetaan reaaliluvuksi ja operoidaan suoraan luvuilla. makeTimeline <- function(event, timeformat = TRUE) { # eventiin luodaan Toisto ja Kesto, jos jompikumpi puuttuu. if(!all(c("Toisto", "Kesto") %in% colnames(event))) { event$Toisto <- NA event$Kesto <- NA } if(timeformat) { for(m in c("Alku", "Loppu", "Kesto")) { event[[m]] <- as.double(as.POSIXct(event[[m]])) # Muutetaan aika sekunneiksi. } event$Toisto <- event$Toisto * 3600 * 24 # Muutetaan Toisto päivistä sekunneiksi. } # Jos on puuttuvaa tietoa kestosta tai toistosta, korvataan inertillä datalla. test <- event$Toisto == 0 | event$Kesto == 0 | is.na(event$Toisto) | is.na(event$Kesto) event$Toisto <- ifelse(test, 1, event$Toisto) event$Kesto <- ifelse(test, event$Alku, event$Kesto) # Luodaan aikajanan alkupiste. Eventrow otetaan aikanaan tyhjältä riviltä. timeline <- data.frame(Time = min(event$Alku), Eventrow = nrow(event)+1) for(i in 1:nrow(event)) { # Toista jokaiselle havaintoriville times <- 0:floor((event$Kesto[i] - event$Alku[i]) / event$Toisto[i]) # Toistojen määrä # Toista tapahtumaa Kestoon asti. temp <- data.frame( Time = event$Alku[i] + times * event$Toisto[i], End = event$Loppu[i] + times * event$Toisto[i], EventrowStart = i ) timeline <- merge(timeline, temp[ , c("Time", "EventrowStart")], all = TRUE) # Lisätään tapahtumat aikajanaan. colnames(temp) <- c("Remove", "Time", "EventrowEnd") # Muutetaan otsikot, koska nyt halutaan mergata loppuhetket aikajanaan. timeline <- merge(timeline, temp[, c("Time", "EventrowEnd")], all = TRUE) for(j in 2:nrow(timeline)) { # Tämä luuppi käy aikajanan läpi ja täydentää tapahtumat. # Ensin kaikkiin uusiin aikapisteisiin jatketaan sitä aiempaa toimintaa, joka oli menossa edellisessä pisteessä. if(is.na(timeline$Eventrow[j])) { timeline$Eventrow[j] <- timeline$Eventrow[j-1] } # Sitten jatketaan uutta toimintaa niihin uusiin pisteisiin, jotka eivät ole loppupisteitä. if(is.na(timeline$EventrowStart[j]) & is.na(timeline$EventrowEnd[j])) { timeline$EventrowStart[j] <- timeline$EventrowStart[j-1] } } # Jos uutta toimintaa on olemassa, statuksena käytetään sitä, muutoin statusta eli aiempaa toimintaa. timeline$Eventrow <- ifelse(!is.na(timeline$EventrowStart), timeline$EventrowStart, timeline$Eventrow) # Leikataan turhat sarakkeet pois ja siirrytään seuraavalle event-riville timeline <- timeline[ , c("Time", "Eventrow")] } event <- rbind(event, rep(NA, ncol(event))) # Lisää rivi loppuhetkeä varten event$Alku[nrow(event)] <- max(timeline$Time) event$Eventrow <- row(event)[ , 1] timeline <- merge(timeline, event) # Yhdistetään Statuksen eli eventin rivinumeron avulla. timeline <- timeline[!colnames(timeline) %in% c("Eventrow", "Alku", "Loppu", "Toisto", "Kesto")] timeline <- timeline[order(timeline$Time) , ] if(timeformat) timeline$Time <- as.POSIXct(timeline$Time, origin = "1970-01-01") return(timeline) } # Calculate the cumulative impact of the events on building stock to given years timepoints <- function( # Function timepoints takes an event list and turns that into existing crosscutting situations at # timepoints defined by years. The output will have index Time. # In other words, this will integrate over obstime at specified timepoints. X, # X must be an ovariable with a column of the same name as obstime. obstime, # obstime must be a single-column data.frame of observation times. sumtimecol = TRUE # Should the timecol be summed up? # obstime and timecol may be numeric (by coercion) or POSIXt. ) { timecol <- colnames(obstime) marginals <- colnames(X@output)[X@marginal] # tapply (and therefore possibly oapply) changes continuous indices to factors! Must change back by hand. if("factor" %in% c(class(obstime[[timecol]]), class(X@output[[timecol]]))) { X@output[[timecol]] <- as.numeric(as.character(X@output[[timecol]])) obstime[[timecol]] <- as.numeric(as.character(obstime[[timecol]])) } out <- data.frame() if(sumtimecol) by <- setdiff(marginals, timecol) else by <- marginals for(i in obstime[[timecol]]) { temp <- X@output[X@output[[timecol]] <= i , ] if(nrow(temp) > 0) { temp <- aggregate( temp[paste(X@name, "Result", sep = "")], by = temp[colnames(temp) %in% by], FUN = sum ) } if(nrow(temp) > 0) out <- rbind(out, data.frame(Time = i, temp)) } X@output <- out X@marginal <- colnames(out) %in% c("Time", marginals) # Add Time to marginal return(X) } # ana2ova takes in variable tables from Analytica (produced with Copy Table). The output is a data.frame in long format. ana2ova <- function(dat) { i <- 1 # Number of indices cols <- character() # Names of indices locs <- list() # Vectors of locations for each index. out <- data.frame() # output repeat{ # Find out cols and locs from dat. temp <- strsplit(dat[i + 1], split = "\t")[[1]] cols[i] <- temp[1] if(length(temp) == 1) break locs[[i]] <- temp[2:length(temp)] i <- i + 1 } locs[[i]] <- NA # The innermost index should have its place in locs even if the locations are not yet known. inner <- (1:length(dat))[dat %in% cols[i]] # Places where the innermost index is mentioned (the data starts from the next row). if(!all(dat[inner - 1] == dat[i]) & i > 1) stop("Structure incorrect\n") if(length(inner) == 1) # len is the length of the innermost index. { len <- length(dat) - i - 1 } else { len <- inner[2] - inner[1] - i } for(k in inner) # Go through each table with the inner and second most inner indices. { ins <- strsplit(dat[(k + 1):(k + len)], split = "\t") # Make a data.frame. ins <- data.frame(matrix(unlist(ins), nrow = len, byrow = TRUE)) if(i == 1) cn <- "value" else cn <- locs[[i - 1]] colnames(ins) <- c(cols[i], cn) # Give location names to columns if(i > 1) ins <- melt(ins, id.vars = cols[i], variable.name = cols[i - 1]) # If several columns. if(i > 2) # If there are several tables. { uplocs <- data.frame(Removethis = 0) for(l in 1:(i - 2)) { uplocs[[cols[l]]] <- strsplit(dat[k - i + l], split = "\t")[[1]][2] } out <- rbind(out, cbind(uplocs, ins)) # Collects all tables into a data.frame. } else { out <- ins } } out$Removethis <- NULL colnames(out)[colnames(out) == "value"] <- "Result" return(out) } rm(wiki_username) objects.store(list = ls()) cat("All objects in the global namespace were stored:", ls(), "\n") |
Functions for GIS data
#This is code Op_en6007/gis on page [OpasnetUtils/Drafts]] library(OpasnetUtils) MyPointKML <- function( # The function creates a KML fille from a SpatialPointsDataFrame object. obj = NULL, # Spatial object with the data. A SpatialPointsDataFrame. kmlname = "", # Name of the KML fille (does this show on the map?) kmldescription = "", # Description of the KML fille (does this show on the map?) name = NULL, # Name for each datapoint (vector with the same length as data in obj). description = "", # Descrtion of each datapoint (vector with the same length as data in obj). icon = "http://maps.google.com/mapfiles/kml/pal4/icon24.png", # Icon shown on pin (?) col=NULL # I don't know what this does. ) { cat("This function MyPointKML is depreciated. Use google.point_kml in OpasnetUtilsExt instead.\n") if (is.null(obj)) return(list(header = c("<?xml version=\"1.0\" encoding=\"UTF-8\"?>", "<kml xmlns=\"http://earth.google.com/kml/2.2\">", "<Document>", paste("<name>", kmlname, "</name>", sep = ""), paste("<description><![CDATA[", kmldescription, "]]></description>", sep = "")), footer = c("</Document>", "</kml>"))) if (class(obj) != "SpatialPointsDataFrame") stop("obj must be of class 'SpatialPointsDataFrame' [package 'sp']") if (is.null(name)) { name = c() for (i in 1:nrow(obj)) name <- append(name, paste("site", i)) } if (length(name) < nrow(obj)) { if (length(name) > 1) warning("kmlPoints: length(name) does not match nrow(obj). The first name will be replicated.") name <- rep(name, nrow(obj)) } if (length(description) < nrow(obj)) { if (length(description) > 1) warning("kmlPoints: length(description) does not match nrow(obj). The first description will be replicated.") description <- rep(description, nrow(obj)) } if (length(icon) < nrow(obj)) { if (length(icon) > 1) warning("kmlPoints: length(icon) does not match nrow(obj). Only the first one will be used.") icon <- icon[1] } # This is some kind of a colour definition col2kmlcolor <- function(col) paste(rev(sapply( col2rgb(col, TRUE), function(x) sprintf("%02x", x)) ), collapse = "") kml <- kmlStyle <- "" # Create the KML fille. kmlHeader <- c("<?xml version=\"1.0\" encoding=\"UTF-8\"?>","<kml xmlns=\"http://earth.google.com/kml/2.2\">", "<Document>") kmlFooter <- c("</Document>", "</kml>") # Create rows to the KML fille from data in obj. for (i in 1:nrow(obj)) { point <- obj[i, ] pt_style <- paste("#style", ifelse(length(icon) == 1, 1, i), sep = "") kml <- append(kml, "<Placemark>") kml <- append(kml, paste( " <description><![CDATA[", name[i], ": ", description[i], "]]></description>", sep = "" )) #kml <- append(kml, "<Style><IconStyle>") #kml <- append(kml, paste("<color>", col2kmlcolor(col[i]), "</color>", sep ="")) #kml <- append(kml, paste(" <Icon><href>", icon, "</href></Icon>", sep = "")) #kml <- append(kml, "<scale>0.300000</scale>") #kml <- append(kml, "</IconStyle></Style>") kml <- append(kml, " <Point>") kml <- append(kml, " <coordinates>") kml <- append(kml, paste(point@coords[1], point@coords[2], sep = ",")) kml <- append(kml, " </coordinates>") kml <- append(kml, " </Point>") kml <- append(kml, "</Placemark>") } return(paste(paste(c(kmlHeader, kmlStyle, kml, kmlFooter), sep = "", collapse = "\n"), collapse="\n", sep = "")) } ova2spat <- function( # This function converts an ovariable or a data.frame into a SpatialPointsDataFrame. dat, # An evaluated ovariable or data.frame that has coordinate indices. coords = c("LO", "LA"), # The names of the coordinate indices as a character vector, first x then y. proj4string = NULL # Projection identifier or specification as character string. See http://spatialreference.org/ # If proj4string is NULL, longitude-latitude system is assumed. ) { if(class(dat) == "ovariable") temp <- dat@output else if(is.data.frame(dat)) temp <- dat else stop("object must be either evaluated ovariable or data.frame\n") # Transform coordinates into numeric format. for(i in coords) { temp[[i]] <- as.numeric(as.character(temp[[i]])) } # Define the coordinate points first, then add other ovariable output to it. if(is.null(proj4string)) { sp <- SpatialPoints(temp[coords], CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")) } else { sp <- SpatialPoints(temp[coords], CRS(proj4string)) } out <- SpatialPointsDataFrame(sp, temp[!colnames(temp) %in% coords]) #Transform the projection to longitude-latitude system. if(!is.null(proj4string)) { epsg4326String <- CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs") out <- spTransform(out,epsg4326String) } return(out) } # MyRmap is a function for creating static Google maps as png. # It is based on MyMap function without the "file destination" parameter # Requires RgoogleMaps package MyRmap <- function ( shp, # a spatial data object plotvar, # Name of the column that has the values to be illustrated on the map pch = 19, # Shape of the point (19: circle) cex = 0.3, # Size of the point legend_title = "", # Title of the legend legend_position = "topleft", numbins = 8, # Number of colour bins in graph center, # center of the map size = c(640, 480), # size of the map. This produces the right dimensions in Opasnet. MINIMUMSIZE = FALSE, RETURNIMAGE = TRUE, GRAYSCALE = FALSE, NEWMAP = TRUE, zoom, verbose = 1, ... ) { plotvar <- shp[[plotvar]] plotclr <- brewer.pal(numbins, "Spectral") classes <- classIntervals(plotvar, numbins, style = "quantile") colcode <- findColours(classes, plotclr) latR <- shp@coords[ , 2] lonR <- shp@coords[ , 1] #get the bounding box: bb <- qbbox(lat = latR, lon = lonR) if (missing(zoom)) zoom <- min(MaxZoom(latR, lonR, size)) if (missing(center)) { lat.center <- mean(latR) lon.center <- mean(lonR) } else { lat.center <- center[1] lon.center <- center[2] } if (MINIMUMSIZE) { ll <- LatLon2XY(latR[1], lonR[1], zoom) # I think the latR and lonR are used here differently than how they ur <- LatLon2XY(latR[2], lonR[2], zoom) # are used elsewhere. Thus, if MINIMUMSIZE = TRUE, you may see problems. cr <- LatLon2XY(lat.center, lon.center, zoom) ll.Rcoords <- Tile2R(ll, cr) ur.Rcoords <- Tile2R(ur, cr) if (verbose > 1) { cat("ll:") print(ll) print(ll.Rcoords) cat("ur:") print(ur) print(ur.Rcoords) cat("cr:") print(cr) } size[1] <- 2 * max(c(ceiling(abs(ll.Rcoords$X)), ceiling(abs(ur.Rcoords$X)))) + 1 size[2] <- 2 * max(c(ceiling(abs(ll.Rcoords$Y)), ceiling(abs(ur.Rcoords$Y)))) + 1 if (verbose) cat("new size: ", size, "\n") } MyMap <- GetMap( center = c(lat.center, lon.center), zoom = zoom, size = size, RETURNIMAGE = RETURNIMAGE, GRAYSCALE = GRAYSCALE, verbose = verbose, ... ) PlotOnStaticMap(MyMap) # Plot an empty map. PlotOnStaticMap( # Plot the data points on the map. MyMap, lat = latR, lon = lonR, pch = pch, cex = cex, col = colcode, add = T ) legend( # Plot the legend on the map. legend_position, legend = names(attr(colcode, "table")), title = legend_title, fill = attr(colcode, "palette"), cex = 1.0, bty = "y", bg = "white" ) } MyPlotKML <- function( shp, # a SpatialPointDataFrame object. result = "Result", # The name of result column in shp. rasterization = TRUE, # Whether to rasterize the data or not. ncols = 32, # Number or columns in the raster. nrows = 32, # Number of rows in the raster. fun = mean # function to aggregate data points to the raster. ) { cat("Consider merging this function MyPolotKML with google.show_raster_on_maps in OpasnetUtilsExt.\n") if(rasterization) { #Create blank raster rast <- raster() #Set raster extent to that of point data extent(rast) <-extent(shp) #Choose number of columns and rows ncol(rast) <- ncols nrow(rast) <- nrows #Rasterize point data rast2 <- rasterize(shp, rast, shp[[result]], fun = fun) } start <- 0 # min(shp[[result]]) end <- max(shp[[result]]) steps <- approx(c(start,end),n=6)$y colors <- rev(rainbow(length(steps), start=0, end=0.50)) # Create the colorstrip below the map. par(mfrow=c(6,1), mar=c(3,1,0,1), cex = 1.5) colorstrip <- function(colors, labels) { count <- length(colors) image( matrix(1:count, count, 1), col = colors, ylab = "", axes = FALSE ) axis(1,approx(c(0, 1), n=length(labels))$y, labels) } colorstrip(colors, steps) #Plot data google.show_raster_on_maps(rast2, col = colors, style = "height:500px;") } objects.store(MyPointKML, ova2spat, MyRmap, MyPlotKML) cat("Functions MyPointKML, ova2spat, MyRmap, MyPlotKML stored.\n") |
Timelineplot
# This is code Op_en6007/timelineplot on page [[OpasnetUtils/Drafts]] library(OpasnetUtils) #' @description plots timeline for an ovariable or data frame. #' @param ova an ovariable #' @param noshow character vector of Work items that are not shown on graph. timelineplot <- function(ova, noshow=c("Ulos","Out")) { require(ggplot2) resn <- paste0(ova@name,"Result") if(class(ova)=="ovariable") out <- ova@output else out <- ova colnames(out)[colnames(out)==resn] <- "Time" # Make sure that data is ordered correcly. out <- out[order(out$Person, out$Time) , ] out$Row <- 1:nrow(out) # Make endpoint for each task. b <- cbind( out[!colnames(out) %in% c("Work","Row")], Work=c(NA,as.character(out$Work)[1:(nrow(out)-1)]), Row =c(NA,out$Row[1:(nrow(out)-1)]) ) b$Work[match(unique(b$Person),b$Person)] <- NA out <- rbind(out,b) out <- na.omit(out[!out$Work %in% noshow , ]) if(is.numeric(out$Time)) out$Time <- as.POSIXct(out$Time, origin="1970-01-01 00:00:00") pl <- ggplot(out, aes(x=Time,y=Person,colour=Work,group=Row))+geom_line(size=5) return(pl) } objects.store(timelineplot) cat("Function timelineplot stored.\n") |
See also
- OpasnetUtils/Ograph, a previous code, now depreciated.
- en:Matrix multiplication in Wikipedia, Matmult in R
References
Related files
<mfanonymousfilelist></mfanonymousfilelist>