Drinking water chlorination efficiency: Difference between revisions

From Opasnet
Jump to navigation Jump to search
(Created page with "{{variable|moderator=Päivi Meriläinen}} Category:Contains R code == Question == How does chlorination affect the concentrations of pathogens in drinking water, reporte...")
 
Line 120: Line 120:
label="Initialize chlorine dose"
label="Initialize chlorine dose"
>
>
#This is code "Op_en7956/dose" on page [[Drinking water chlorination efficiency]]
library(OpasnetUtils)
library(OpasnetUtils)


Line 133: Line 134:
label="Initialize chlorinazion efficiency"
label="Initialize chlorinazion efficiency"
>
>
# This is code "Op_en7956/efficiency" on page [[Drinking water chlorination efficiency]]
library(OpasnetUtils)
library(OpasnetUtils)
library(reshape2)
library(reshape2)

Revision as of 05:58, 5 July 2019

Question

How does chlorination affect the concentrations of pathogens in drinking water, reported in log-decrese?

Answer

Pathogen Log-dercease
Campylobacter 8.837981871
E.coli O157:H7 7.182699561
Rotavirus 11.97117474
Norovirus 13.55252482
Cryptosporidium 0
Giardia 0.095329311

Rationale

Chloriantion efficiency, or chlorine's capacity to destroy microbes, depends on many factors: the form of the chlorine, temperature, retention period, pH and concentration as well as other chemicals in the water. In some circumstances it might efficiently kill all indicator organisms, but some active viruses, protists or their cysts may remain in the water. The meter to measure the efficiency of chlorination is kloorikokema ⇤--arg5411: . Someone else has to translate this --Heta (talk) 14:31, 4 July 2019 (UTC) (type: truth; paradigms: science: attack), which is the concentration multiplied by retention period, so called CT-value. The required CT-value depends on the temperature: the lower the temperature, the higher the CT-value has to be.

[1]

Data

Function Log credits by inactivation (Log_credits_by_inac1) in the model Tiedosto:Vesiopas.ANA:

  • Parametrit (ct,sensitivity), jossa
    • ct is Ct distribution (Ct_distribution1), which is the distribution of CT_values)
    • sensitivity on Chlorine sensitivity by pathogen, the table on this page
Var Lr:=0;
Var ct1:= sensitivity[@Ct_for_log_reduction=1];
Var ct2:sensitivity[@Ct_for_log_reduction=2];
Var ct3:=sensitivity[@Ct_for_log_reduction=3];
Var ct4:=sensitivity[@Ct_for_log_reduction=4];
Var ct5:=sensitivity[@Ct_for_log_reduction=5];
Lr:=if ct < ct1 and ct1>0           then     ct     *(1/ ct1)       else Lr;
Lr:=If ct >=ct1 and ct1>0           then (1+(ct-ct1)*(1/(ct2-ct1))) else Lr;
Lr:=If ct >=ct2 and ct2>0           then (2+(ct-ct2)*(1/(ct3-ct2))) else Lr;
Lr:=If ct >=ct3 and ct3>0           then (3+(ct-ct3)*(1/(ct4-ct3))) else Lr;
Lr:=If ct >=ct3 and ct3>0 and ct4=0 then (3+(ct-ct3)*(1/(ct3-ct2))) else Lr;
Lr:=If ct >=ct4 and ct4>0           then (4+(ct-ct4)*(1/(ct5-ct4))) else Lr;
Lr:=If ct >=ct4 and ct4>0 and ct5=0 then (4+(ct-ct4)*(1/(ct4-ct3))) else Lr;
Lr:=If ct >=ct5 and ct5>0           then  5                         else Lr;
Lr

Nähdäkseni funktio käy läpi kullekin patogeenille taulukon arvot CT1:stä CT5:een niin kauan, kunnes tulee nolla vastaan. Eli laskennassa käytetään ainoastaan viimeistä ehdot täyttävää yhtälöä. Jos taulukossa olevan luvun tulkinta on tämä: "CT-arvo, joka aiheuttaa 1/2/jne logaritmisen vähenemän patogeenipitoituudessa", niin silloin tässä olisi järkeä. Ensimmäinen yhtälö laskee, minkä osuuden 10-kertaisesta vähenemästä ct saa aikaan; toinen yhtälö laskee sen osuuden CT-arvosta, joka jää vielä yli ja katsoo, millaisen lisävähenemän sillä saa aikaan jne. Lopputuloksena on Log reduction by Proposed method.


Template:Vastusta pätemätön

Template:Vastusta

Pathogen sensitivity to chlorine:

Drinking water chlorination efficiency: Difference between revisions((mg/l)*min)
ObsPathogenCt 1 Log decreaseCt 2 Log decreaseCt 3 Log decreaseCt 4 Log decreaseCt 5 Log decrease
1Campylobacter 0.152 0.294 0.436 0 0
2E.coli O157:H7 0.17 0.34 0.52 1.06 0
3Rotavirus 0.12 0.16 0.2 0.3 0
4Norovirus 0.09 0.18 0.245 0.314 0
5Cryptosporidium 0 0 0 0 0
6Giardia 75 150 216 0 0
Pathogen Reference
Campylobacter [2]; [3]
E.coli O157:H7 [4]; [5]
Rotavirus [6]
Norovirus [7]
Cryptosporidium [8]
Giardia [9]

Causality


Unit

logarithmic decrease

Calculations

CT-value = Chlorine residue concentration (mg/l)* time (min)

+ Show code

+ Show code

See also

References

  1. Valve, M ja Isomäki, E. 2007. Klooraus - Tuttu ja turvallinen? Vesitalous 4/2007.
  2. Blaser, M. J., Smith, P. F., Wang, W.‐L. L. and Hoff, J. C. (1986). "Inactivation of Campylobacter jejuni by Chlorine and Monochloramine." Applied and Environmental Microbiology 51(2): 307‐311.
  3. Lund, V. (1996). "Evaluation of E. coli as an indicator for the presence of Campylobacter jejuni and Yersinia enterocolitica in chlorinated and untreated oligotrophic lake water." Water Research 30(6): 1528‐ 1534.
  4. Blaser, M. J., Smith, P. F., Wang, W.‐L. L. and Hoff, J. C. (1986). "Inactivation of Campylobacter jejuni by Chlorine and Monochloramine." Applied and Environmental Microbiology 51(2): 307‐311.
  5. Lund, V. (1996). "Evaluation of E. coli as an indicator for the presence of Campylobacter jejuni and Yersinia enterocolitica in chlorinated and untreated oligotrophic lake water." Water Research 30(6): 1528‐ 1534.
  6. Rice, E. W., Hoff, J. C. and III, F. W. S. (1982). "Inactivation of Giardia cysts by chlorine." Applied and Environmental Microbiology 43(1): 250‐251
  7. Keswick, B. H., Satterwhite, T. K., Johnson, P. C., DuPont, H. L., Secor, S. L., Bitsura, J. A., Gary, G. W. and Hoff, J. C. (1985). Inactivation of norwalk virus in drinking water by chlorine. Applied and Environmental Microbiology 50(2): 261-264.
  8. Benito Corona-Vasquez, Amy Samuelson, Jason L. Rennecker and Benito J. Mariñas (2002): Inactivation of Cryptosporidium parvum oocysts with ozone and free chlorine. Water Research 36, 4053-4063
  9. Rice, E. W., Hoff, J. C. and III, F. W. S. (1982). "Inactivation of Giardia cysts by chlorine." Applied and Environmental Microbiology 43(1): 250‐251

Class:Drinking water