Sudoku solver: Difference between revisions
Jump to navigation
Jump to search
(→Formula: first step works but solution is not found) |
(→Formula: new clearly better version that also works) |
||
Line 186: | Line 186: | ||
=== Formula === | === Formula === | ||
<rcode | <rcode variables="name:userdata|description:Enter sudoku as a string, with spaces in empty cells|type:text"> | ||
# Maailman vaikein | |||
data <- | data <- " | ||
8 | |||
36 | |||
7 9 2 | |||
5 7 | |||
457 | |||
1 3 | |||
1 68 | |||
85 1 | |||
9 4 | |||
" | |||
data <- " | data <- " | ||
Line 219: | Line 225: | ||
3 2 6 | 3 2 6 | ||
" | " | ||
data <- | |||
data <- " | |||
45 81 | |||
2 6 5 4 | |||
9 1 | |||
4 9 8 | |||
89 2 45 | |||
5 8 9 | |||
6 2 | |||
1 7 9 3 | |||
35 41 | |||
" | |||
# Neljä tähteä | |||
data <- " | |||
23 9 | |||
5 6 | |||
9 76 5 | |||
6 38 | |||
4 523 7 | |||
39 4 | |||
2 94 8 | |||
4 3 | |||
5 72 | |||
" | |||
if(!is.null(userdata)) data <- userdata | |||
data | |||
hypotheses <- data.frame( | hypotheses <- data.frame( | ||
Line 234: | Line 264: | ||
library(OpasnetUtils) | library(OpasnetUtils) | ||
hypotheses <- tidy(opbase.data("Op_en5817.hypotheses")) | |||
for(i in 1:3) { | |||
hypotheses[[i]] <- ifelse(hypotheses[[i]] == "", NA, as.integer(as.character(hypotheses[[i]]))) | |||
} | |||
hypotheses <- unique(fillna(hypotheses, marginals = c(1, 2, 3))) | |||
# Get the sudoku data | # Get the sudoku data | ||
# data <- tidy(opbase.data("Op_en5817.sudoku"), objname="data") | # data <- tidy(opbase.data("Op_en5817.sudoku"), objname="data") | ||
# data$SudRow <- as.numeric(data$SudRow) | |||
# data$SudCol <- as.numeric(data$SudCol) | |||
out <- merge(hypotheses, data) | SudMake <- function(hypotheses, data) { | ||
out$dataResult <- as.character(out$dataResult) | |||
out$Result <- ifelse(out$dataResult == "", out$Result, (as.character(out$dataResult) == as.character(out$Hypothesis))) | hypotheses$SudRow <- as.numeric(hypotheses$SudRow) | ||
hypotheses$SudCol <- as.numeric(hypotheses$SudCol) | |||
hypotheses$SudCell = hypotheses$SudRow + (hypotheses$SudCol - 1) * 9 | |||
hypotheses$SudArea = ceiling(hypotheses$SudRow / 3) + (ceiling(hypotheses$SudCol / 3) - 1) * 3 | |||
hypotheses$Result <- as.logical(hypotheses$Result) | |||
data <- data.frame( | |||
SudRow = rep(1:9, each = 9), | |||
SudCol = rep(1:9, times = 9), | |||
dataResult = gsub(" ", "", strsplit(gsub("\n", "", data), split = "")[[1]]) | |||
) | |||
# oprint(tapply(data["Hypothesis"], data[c("SudRow", "SudCol")], function(x) paste(x, sep = "", collapse = ""))) | |||
out <- merge(hypotheses, data) | |||
out$dataResult <- as.character(out$dataResult) | |||
out$Result <- ifelse(out$dataResult == "", out$Result, (as.character(out$dataResult) == as.character(out$Hypothesis))) | |||
return(out) | |||
} | |||
SudSolve <- function(sudoku) { | SudSolve <- function(sudoku) { | ||
ykköskarsinta <- function(out2, condition) { | |||
valinta <- as.data.frame(as.table(tapply(out2$Result, out2[c("Hypothesis", condition)], sum) == 1)) # haetaan ehto-hypoteesikombinaatiot | |||
valinta <- valinta[valinta$Freq, colnames(valinta) != "Freq"] # rajataan ainoisiin ratkaisuihin | |||
valinta <- merge(valinta, out2) # yhdistetään SudCell-tietoon | |||
valinta <- valinta[valinta$Result , ] # poistetaan turhat | |||
out2[out2$SudCell %in% valinta$SudCell , ]$Result <- FALSE #hylätään aluksi kaikki hypoteesit ykkösruuduista | |||
out2[paste(out2$Hypothesis, out2$SudCell) %in% paste(valinta$Hypothesis, valinta$SudCell) , ]$Result <- TRUE # palautetaan oikea vastaus ykkösruutuihin | |||
return(out2) | |||
} | } | ||
temp2 <- data.frame(Result = rep(NA, 9^2)) | # temp <- sudoku["Result"] | ||
temp3 <- rep(NA, 9^3) | # for(m in 1:nrow(sudoku)) { | ||
# a <- sudoku[m , ] | |||
# if(a$Result) { | |||
# temp[[m]] <- ifelse(a$SudRow == sudoku$SudRow & a$Hypothesis == sudoku$Hypothesis, FALSE, sudoku$Result) | |||
# temp[[m]] <- ifelse(a$SudCol == sudoku$SudCol & a$Hypothesis == sudoku$Hypothesis, FALSE, temp[[m]]) | |||
# temp[[m]] <- ifelse(a$SudArea == sudoku$SudArea & a$Hypothesis == sudoku$Hypothesis, FALSE, temp[[m]]) | |||
# } else { | |||
# temp[[m]] <- FALSE | |||
# } | |||
# temp[[m]] <- ifelse(a$SudCell == sudoku$SudCell, NA, temp[[m]]) | |||
# } | |||
for(i in 1:5) { | |||
samerow <- matrix(sudoku$SudRow, nrow = nrow(sudoku), ncol = nrow(sudoku)) | |||
samerow <- samerow == t(samerow) | |||
samecol <- matrix(sudoku$SudCol, nrow = nrow(sudoku), ncol = nrow(sudoku)) | |||
samecol <- samecol == t(samecol) | |||
samearea <- matrix(sudoku$SudArea, nrow = nrow(sudoku), ncol = nrow(sudoku)) | |||
samearea <- samearea == t(samearea) | |||
samehypo <- matrix(sudoku$Hypothesis, nrow = nrow(sudoku), ncol = nrow(sudoku)) | |||
samehypo <- samehypo == t(samehypo) | |||
samecell <- matrix(sudoku$SudCell, nrow = nrow(sudoku), ncol = nrow(sudoku)) | |||
samecell <- samecell == t(samecell) | |||
rule1 <- ! (samerow & samehypo) | |||
rule2 <- ! (samecol & samehypo) | |||
rule3 <- ! (samearea & samehypo) | |||
# rule4 <- ifelse(samecell, NA, TRUE) | |||
temp <- sudoku$Result & rule1 & rule2 & rule3 #& rule4 | |||
temp <- ifelse(samecell, NA, temp) # Tämän säännön täytyy ajaa yli kaikkien muiden. | |||
# temp2 <- data.frame(Result = rep(NA, 9^2)) | |||
# temp3 <- rep(NA, 9^3) | |||
# temp <- as.data.frame(temp) | |||
# for(m in 1:nrow(sudoku)) {temp2[m] <- tapply(temp[[m]], sudoku$SudCell, any)} | |||
temp2 <- apply(temp, 2, function(x) tapply(x, sudoku$SudCell, any)) | |||
for(n in 1:nrow(sudoku)) { | |||
# for(n in 1:nrow(sudoku)) { | |||
# temp2[[n]] <- ifelse(is.na(temp2[[n]]), TRUE, temp2[[n]]) | |||
# temp3[n] <- all(temp2[[n]]) | |||
# } | |||
temp3 <- apply(temp2, 2, function(x) { | |||
x <- ifelse(is.na(x), TRUE, x) | |||
return(all(x)) | |||
}) | |||
sudoku$Result <- ifelse(sudoku$Result, temp3, sudoku$Result) | |||
sudoku <- ykköskarsinta(sudoku, "SudCol") | |||
sudoku <- ykköskarsinta(sudoku, "SudRow") | |||
sudoku <- ykköskarsinta(sudoku, "SudArea") | |||
} | } | ||
return(sudoku) | return(sudoku) | ||
} | } | ||
Line 294: | Line 392: | ||
} | } | ||
oprint(SudShow( | oprint(SudShow(SudSolve(SudMake(hypotheses, data)))) | ||
</rcode> | </rcode> | ||
==See also== | ==See also== |
Revision as of 07:52, 5 May 2013
Moderator:Jouni (see all) |
This page is a stub. You may improve it into a full page. |
Upload data
|
Question
How to describe a sudoku and the sudoku rules in Opasnet so that it can be solved automatically?
Answer
You need the following tables.
Row | Column | Result | Description |
---|---|---|---|
All | All | 1,2,3,4,5,6,7,8,9 | For all row and column locations it applies that the plausible hypotheses are a single integer between 1 and 9 (unless more information is available). |
Row | Column | Area |
---|---|---|
1 | 1 | A |
1 | 2 | A |
1 | 3 | A |
1 | 4 | B |
… | ||
2 | 1 | A |
… | ||
4 | 1 | D |
… | ||
9 | 9 | I |
Property1 | Condition1 | Property2 | Condition2 | Rule | Description |
---|---|---|---|---|---|
Row | Same | Column | Different | Same integer not allowed | Two cells with the same row and different column are not allowed to have the same integer. |
Row | Different | Column | Same | Same integer not allowed | Two cells with the different row and same column are not allowed to have the same integer. |
Area | Same | Column | Different | Same integer not allowed | Two cells with the same area and different column are not allowed to have the same integer. |
Area | Same | Row | Different | Same integer not allowed | Two cells with the same area and different row are not allowed to have the same integer. |
Row | Column | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
1 | 8 | ||||||||
2 | 3 | 6 | |||||||
3 | 7 | 9 | 2 | ||||||
4 | 5 | 7 | |||||||
5 | 4 | 5 | 7 | ||||||
6 | 1 | 3 | |||||||
7 | 1 | 6 | 8 | ||||||
8 | 8 | 5 | 1 | ||||||
9 | 9 | 4 |
Procedure
The following terms are used:
- The possible space of solutions is described by a logical vector A, which contains all possible values given the current information. A is indexed by h, i, j, k, and l. A develops in time, when more information occurs or is processed. In the beginning, all hypotheses are considered as potentially TRUE.
- h = {1, 2, ..., 9}, i = {1, 2, ..., 9}, j = {1, 2, ..., 9}, k = {1, 2, ..., 9}, l = {1, 2, ..., 81} are indices for hypothesis, row, column, area, and cell, respectively. Note l is just another way to say (i,j), as l = i + (j-1)*9. Also, k is known if (i,j) is known, as k = ceiling(i/3) + (ceiling(j/3)-1)*3. However, k does not contain all information that (i,j) or l contains.
- ah and bh are sub-vectors of A in such a way that ah = Ah,m and bh = Ah,n, where m and n (m < n) are values from index l.
- Expand the missing index values of the Hypotheses table to create the full A.
- Take the sudoku data table and replace hypotheses with data, if available.
- Compare two cells a and b in the sudoku. Make a for-loop for the first cell a: for(m in 1:nrow(l))).
- Make another for-loop for the second cell b: for(n in (m+1):nrow(l)).
- Make a third for-loop for the hypotheses of a: for(h in 1:nrow(a))
- Make a fourth for-loop for the rules: for(r in 1:nrow(rules)).
- Test for the rule with the pair of cells, creating a set of plausible hypothesis for the other cell b conditional on the first cell a.
- If the set of plausible hypotheses for b is empty, the condition is implausible; remove the condition and thus that hypothesis from the first cell a.
- Take the union of plausible hypothesis for b (which then covers all plausible hypotheses unconditionally) and replace the current hypotheses of b with the new hypotheses.
- Make a fourth for-loop for the rules: for(r in 1:nrow(rules)).
- Do the third for-loop again but now with the other cell b.
- Make a third for-loop for the hypotheses of a: for(h in 1:nrow(a))
- Make another for-loop for the second cell b: for(n in (m+1):nrow(l)).
- Do the second and first loops for all values of m and n.
- Do another set of loops for each row, column, and area to test whether there is exactly one cell where each hypothesis is plausible. (Remember, that in sudoku, unlike in most parts of the world, we know that each hypothesis is correct at exactly one cell). If a unique cell is found, remove all other hypotheses from that cell.
- Make a loop for each row and then hypothesis.
- Make a loop for each column and then hypothesis.
- Make a loop for each area and then hypothesis.
- If a unique solution was not found and if the current set of hypotheses is not the same as the previous set, save the current set as "previous set" and go to number 2.
- Calculate the number of different solutions still plausible and print it.
- If the number is smaller than 100, print also the solutions.
Rationale
Data
This table will be expanded by fillna to be a 9*9*9 array (formatted as data.frame). As default, each hypothesis is assumed to be true unless shown otherwise.
Obs | SudRow | SudCol | Hypothesis | Result |
---|---|---|---|---|
1 | 1 | TRUE | ||
2 | 2 | TRUE | ||
3 | 3 | TRUE | ||
4 | 4 | TRUE | ||
5 | 5 | TRUE | ||
6 | 6 | TRUE | ||
7 | 7 | TRUE | ||
8 | 8 | TRUE | ||
9 | 9 | TRUE | ||
10 | 1 | TRUE | ||
11 | 2 | TRUE | ||
12 | 3 | TRUE | ||
13 | 4 | TRUE | ||
14 | 5 | TRUE | ||
15 | 6 | TRUE | ||
16 | 7 | TRUE | ||
17 | 8 | TRUE | ||
18 | 9 | TRUE | ||
19 | 1 | TRUE | ||
20 | 2 | TRUE | ||
21 | 3 | TRUE | ||
22 | 4 | TRUE | ||
23 | 5 | TRUE | ||
24 | 6 | TRUE | ||
25 | 7 | TRUE | ||
26 | 8 | TRUE | ||
27 | 9 | TRUE |
- Sudoku data
Obs | SudRow | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 8 | ||||||||
2 | 2 | 3 | 6 | |||||||
3 | 3 | 7 | 9 | 2 | ||||||
4 | 4 | 5 | 7 | |||||||
5 | 5 | 4 | 5 | 7 | ||||||
6 | 6 | 1 | 3 | |||||||
7 | 7 | 1 | 6 | 8 | ||||||
8 | 8 | 8 | 5 | 1 | ||||||
9 | 9 | 9 | 4 |
Formula
See also
- file:Sudoku solver.ANA (a draft solver using Analytica)
Keywords
References
Related files
<mfanonymousfilelist></mfanonymousfilelist>