Evolutionary origin of human traits: Difference between revisions

From Opasnet
Jump to navigation Jump to search
(→‎Calculations: data version 2 saved)
Line 16: Line 16:


===Calculations===
===Calculations===
* Data version 1: raw data in Excel from Webropol: free text columns removed [http://en.opasnet.org/en-opwiki/index.php/Special:R-tools?id=mg2Gf5eoR5FVZ8xw]
* Data version 2: cleaned with this code [http://en.opasnet.org/en-opwiki/index.php/Special:R-tools?id=Gygi7pqJFrngDdbx].


<rcode graphics="1" variables="
<rcode graphics="1" variables="
Line 25: Line 28:
library(OpasnetUtils)
library(OpasnetUtils)
library(ggplot2)
library(ggplot2)
# Fetch the stored raw data (requires a password to open it).


objects.get("mg2Gf5eoR5FVZ8xw")
objects.get("mg2Gf5eoR5FVZ8xw")


data <- objects.decode(etable, key)
data <- objects.decode(etable, key)
# Rename columns.


titles <- c(
titles <- c(
Line 35: Line 42:
"Country",
"Country",
"Education",
"Education",
"Expertise.1",
"Expertise.Anthropology",
"Expertise.2",
"Expertise.Animals",
"Expertise.3",
"Expertise.Ecology",
"Expertise.4",
"Expertise.Evolution",
"Expertise.5",
"Expertise.Genetics",
"Expertise.6",
"Expertise.Biology",
"Expertise.7",
"Expertise.Geology",
"Expertise.8",
"Expertise.Cardiovascular",
"Expertise.9",
"Expertise.Musculoskeletal",
"Expertise.10",
"Expertise.Nervous",
"Expertise.11",
"Expertise.Nurtition",
"Expertise.12",
"Expertise.Human",
"Expertise.13",
"Expertise.Paleoanthropology",
"Expertise.14",
"Expertise.Paleontology",
"Expertise.15",
"Expertise.Other",
"Publications.scientific",
"Publications.scientific",
"Publications.general",
"Publications.general",
Line 56: Line 63:
"Courses",
"Courses",
"Familiarity",
"Familiarity",
"Bipedalism.1",
"Bipedalism.Running",
"Bipedalism.2",
"Bipedalism.Orangutang",
"Bipedalism.3",
"Bipedalism.Wading",
"Bipedalism.4",
"Bipedalism.Thermoregulation",
"Bipedalism.5",
"Bipedalism.Seeing",
"Bipedalism.6",
"Bipedalism.Foraging",
"Bipedalism.7",
"Bipedalism.CarryingFood",
"Bipedalism.8",
"Bipedalism.CarryingOffspring",
"Bipedalism.9",
"Bipedalism.Tools",
"Bipedalism.10",
"Bipedalism.Sexual",
"Encephalization.1",
"Encephalization.Meat",
"Encephalization.2",
"Encephalization.Fish",
"Encephalization.3",
"Encephalization.Fire",
"Encephalization.4",
"Encephalization.Social",
"Encephalization.5",
"Encephalization.Hunting",
"Encephalization.6",
"Encephalization.Speech",
"Encephalization.7",
"Encephalization.Warfare",
"Encephalization.8",
"Encephalization.Neoteny",
"Encephalization.9",
"Encephalization.Bipedalism",
"Encephalization.10",
"Encephalization.Nakedness",
"Naked.1",
"Naked.OffspringContact",
"Naked.2",
"Naked.SexContact",
"Naked.3",
"Naked.Hygiene",
"Naked.4",
"Naked.Extoparasite",
"Naked.5",
"Naked.Swimming",
"Naked.6",
"Naked.Cooling",
"Naked.7",
"Naked.Size",
"Naked.8",
"Naked.Clothes",
"SubcutaneousFat.1",
"SubcutaneousFat.Storage",
"SubcutaneousFat.2",
"SubcutaneousFat.Insulation",
"SubcutaneousFat.3",
"SubcutaneousFat.Thermoregulation",
"SubcutaneousFat.4",
"SubcutaneousFat.Sexual",
"Larynx.1",
"Larynx.Speech",
"Larynx.2",
"Larynx.SexualVoice",
"Larynx.3",
"Larynx.Diving",
"Speech.1",
"Speech.Larynx",
"Speech.2",
"Speech.WaterCommunication",
"Speech.3",
"Speech.VoluntaryBreathing",
"Speech.4",
"Speech.Reassuring",
"Speech.5",
"Speech.Social",
"Speech.6",
"Speech.Hunting",
"Speech.7",
"Speech.Culture",
"BabySwim",
"BabySwim",
"Nose",
"Nose",
Line 107: Line 114:
"DivingReflex",
"DivingReflex",
"Bathing",
"Bathing",
"AAH.1",
"AAH.AgainstProcess",
"AAH.2",
"AAH.EnvironDeterminism",
"AAH.3",
"AAH.Redundant",
"AAH.4",
"AAH.ComparativeAnatomy",
"AAH.5",
"AAH.FurryAquatics",
"AAH.6",
"AAH.Concidence",
"AAH.7",
"AAH.ApesSwim",
"AAH.8",
"AAH.SimplyFalse",
"AAH.9",
"AAH.NoFossils",
"AAH.10",
"AAH.FossilsAreTerrestrial",
"AAH.11",
"AAH.WhenAndWhere",
"AAH.12",
"AAH.NoTime",
"AAH.13",
"AAH.Simplistic",
"AAH.14",
"AAH.LessParsimonius",
"AAH.15",
"AAH.LessConsistent",
"AAH.16",
"AAH.Nonpredictive",
"AAH.17",
"AAH.Feministic",
"AAH.18",
"AAH.NotPeerReviewed",
"AAH.19",
"AAH.NotProfessional",
"AAH.20",
"AAH.Pseudoscience",
"AAHFamiliarity",
"AAHFamiliarity",
"AAHSource.1",
"AAHSource.Articles",
"AAHSource.2",
"AAHSource.Morgan",
"AAHSource.3",
"AAHSource.Books",
"AAHSource.4",
"AAHSource.Media",
"AAHSource.5",
"AAHSource.Courses",
"AAHSource.6",
"AAHSource.Personal",
"AAHSource.7",
"AAHSource.Blogs",
"AAHSource.8",
"AAHSource.Wikipedia",
"AAHAttitude.1",
"AAHAttitude.Rejected",
"AAHAttitude.2",
"AAHAttitude.Described",
"AAHAttitude.3"
"AAHAttitude.Plausible"
)
)


colnames(data) <- titles
colnames(data) <- titles


data <- data[-(1:2) , ]
data <- data[-(1:2) , ] # Remove old heading rows.
#oprint(head(data))


data <- dropall(data)
# Replace answer numbers with actual responses, and turn them into factors.


leve <- list()
leve <- list()
Line 152: Line 158:
leve[[2]] <- c("29 or less", "30-39", "40-49", "50-59", "60 or more")
leve[[2]] <- c("29 or less", "30-39", "40-49", "50-59", "60 or more")
leve[[3]] <- c("None", "Bachelor's degree", "Master's degree", "Doctor's degree")
leve[[3]] <- c("None", "Bachelor's degree", "Master's degree", "Doctor's degree")
leve[[4]] <- c("Anthropology or archaeology", "Biology (animal physiology, anatomy or morphology)", "Biology (ecology)", "Biology (evolution)", "Biology (genetics or molecular biology)", "Biology (other, please specify)", "Geology", "Human cardiovascular or respiratory system", "Human musculoskeletal system", "Human nervous system", "Human nutrition", "Other aspects of human biology (please specify)", "Paleoanthropology", "Paleontology", "Other, please specify")
leve[[4]] <- c("Anthropology or archaeology", "Biology (animal physiology, anatomy or morphology)", "Biology (ecology)",  
"Biology (evolution)", "Biology (genetics or molecular biology)", "Biology (other, please specify)", "Geology",  
"Human cardiovascular or respiratory system", "Human musculoskeletal system", "Human nervous system", "Human nutrition",  
"Other aspects of human biology (please specify)", "Paleoanthropology", "Paleontology", "Other, please specify")
leve[[5]] <- c("none", "1-10", "11-40", "41 or more")
leve[[5]] <- c("none", "1-10", "11-40", "41 or more")
leve[[6]] <- c("Yes", "No")
leve[[6]] <- c("Yes", "No")
Line 161: Line 170:
leve[[11]] <- c("Considerably", "A little", "Not at all")
leve[[11]] <- c("Considerably", "A little", "Not at all")
leve[[12]] <- c("Common", "Rare", "Not seen")
leve[[12]] <- c("Common", "Rare", "Not seen")
# Which answer list is used for which question (NA: do not use an answer list. This applies to country).


chooselevel <- c(1, 2, NA, 3, rep(4, 15), rep(5, 4), 6, 7, rep(8, 51), rep(9, 20), 10, rep(11, 8), rep(12, 3))
chooselevel <- c(1, 2, NA, 3, rep(4, 15), rep(5, 4), 6, 7, rep(8, 51), rep(9, 20), 10, rep(11, 8), rep(12, 3))
Line 168: Line 179:
}
}


data[[3]] <- paste(toupper(substring(data[[3]], 1, 1)), tolower(substring(data[[3]], 2)), sep = "")
## New function for making uppercase Initials. See http://127.0.0.1:21251/library/base/html/chartr.html
 
capwords <- function(s, strict = FALSE) {
    cap <- function(s) paste(toupper(substring(s,1,1)),
                  {s <- substring(s,2); if(strict) tolower(s) else s},
                            sep = "", collapse = " " )
    sapply(strsplit(s, split = " "), cap, USE.NAMES = !is.null(names(s)))
}
 
# Rename written country names into standard names and turn into a factor.
 
data[[3]] <- ifelse(is.na(data[[3]]), "", as.character(data[[3]]))
 
data[[3]] <- capwords(data[[3]], strict = TRUE)


data[[3]] <- ifelse(data[[3]] == "Brasil", "Brazil", data[[3]])
data[[3]] <- ifelse(data[[3]] == "Brasil", "Brazil", data[[3]])
 
data[[3]] <- ifelse(data[[3]] == "Canada And France", "Canada", data[[3]])
data[[3]] <- ifelse(data[[3]] == "Ch", "Switzerland", data[[3]])
data[[3]] <- ifelse(data[[3]] == "Ch", "Switzerland", data[[3]])
data[[3]] <- ifelse(data[[3]] == "Czech republich", "Czech Republic", data[[3]])
data[[3]] <- ifelse(data[[3]] == "Czech Republich", "Czech Republic", data[[3]])
data[[3]] <- ifelse(data[[3]] == "Korea, south", "Korea", data[[3]])
data[[3]] <- ifelse(data[[3]] == "Iyaly", "Italy", data[[3]])
data[[3]] <- ifelse(data[[3]] == "Korea, South", "Korea", data[[3]])
data[[3]] <- ifelse(data[[3]] == "Mexi", "Mexico", data[[3]])
data[[3]] <- ifelse(data[[3]] == "Mexi", "Mexico", data[[3]])
data[[3]] <- ifelse(data[[3]] == "Northern ireland. u.k.", "UK", data[[3]])
data[[3]] <- ifelse(data[[3]] == "Northern Ireland. U.k.", "UK", data[[3]])
data[[3]] <- ifelse(data[[3]] == "Scotland uk", "UK", data[[3]])
data[[3]] <- ifelse(data[[3]] == "Scotland Uk", "UK", data[[3]])
data[[3]] <- ifelse(data[[3]] == "Sweden (currently, but of u.s. origin)", "Sweden", data[[3]])
data[[3]] <- ifelse(data[[3]] == "Sweden (currently, But Of U.s. Origin)", "Sweden", data[[3]])
data[[3]] <- ifelse(data[[3]] == "The uk", "UK", data[[3]])
data[[3]] <- ifelse(data[[3]] == "The Uk", "UK", data[[3]])
data[[3]] <- ifelse(data[[3]] == "United kingdom", "UK", data[[3]])
data[[3]] <- ifelse(data[[3]] == "United Kingdom", "UK", data[[3]])
data[[3]] <- ifelse(data[[3]] == "U,.s.", "USA", data[[3]])
data[[3]] <- ifelse(data[[3]] == "U,.s.", "USA", data[[3]])
data[[3]] <- ifelse(data[[3]] == "U. s. a.", "USA", data[[3]])
data[[3]] <- ifelse(data[[3]] == "U. S. A.", "USA", data[[3]])
data[[3]] <- ifelse(data[[3]] == "U.s.a.", "USA", data[[3]])
data[[3]] <- ifelse(data[[3]] == "U.k.", "UK", data[[3]])
data[[3]] <- ifelse(data[[3]] == "U.k.", "UK", data[[3]])
data[[3]] <- ifelse(data[[3]] == "United states", "USA", data[[3]])
data[[3]] <- ifelse(data[[3]] == "United States", "USA", data[[3]])
data[[3]] <- ifelse(data[[3]] == "United states of america", "USA", data[[3]])
data[[3]] <- ifelse(data[[3]] == "United States Of America", "USA", data[[3]])
data[[3]] <- ifelse(data[[3]] == "U.s.", "USA", data[[3]])
data[[3]] <- ifelse(data[[3]] == "U.s.", "USA", data[[3]])
data[[3]] <- ifelse(data[[3]] == "Us", "USA", data[[3]])
data[[3]] <- ifelse(data[[3]] == "Usaf", "USA", data[[3]])
data[[3]] <- ifelse(data[[3]] == "Usaf", "USA", data[[3]])
data[[3]] <- ifelse(data[[3]] == "Wales, uk", "UK", data[[3]])
data[[3]] <- ifelse(data[[3]] == "Wales, Uk", "UK", data[[3]])


data[[3]] <- ifelse(data[[3]] == "Usa", "USA", data[[3]])
data[[3]] <- ifelse(data[[3]] == "Usa", "USA", data[[3]])
data[[3]] <- ifelse(data[[3]] == "Uk", "UK", data[[3]])
data[[3]] <- ifelse(data[[3]] == "Uk", "UK", data[[3]])
data[[3]] <- ifelse(data[[3]] == "South africa", "South Africa", data[[3]])


data[[3]] <- ifelse(data[[3]] == "", NA, data[[3]])
data[[3]] <- as.factor(data[[3]])
data[[3]] <- as.factor(data[[3]])
data[[3]]


#MPF-731
#MPF-731
Line 202: Line 228:
#Orivesi-Jämsä itään n. 150 km/h
#Orivesi-Jämsä itään n. 150 km/h


oprint(head(data))
# Print and plot examples of the cleaned data.
 
# oprint(head(data))


X <- colnames(data)[X]
X <- colnames(data)[X]
Line 211: Line 239:
geom_bar(position = "fill", na.rm = TRUE) +  
geom_bar(position = "fill", na.rm = TRUE) +  
theme_grey(base_size = 24)
theme_grey(base_size = 24)
# Save the cleaned data table in a secure format.
etable <- objects.encode(data, key)
objects.put(etable)
cat("Cleaned table 'etable' successfully saved.\n")
</rcode>
</rcode>



Revision as of 20:59, 10 March 2013



Question

Why and how did humans become so different from other apes?

Answer

Rationale

There are conflicting hypotheses to explain why the traits that so clearly distinguish humans from other primates originally evolved. One idea is that the ancestors of humans came to live in a different kind of environment than the ancestors of chimpanzees and gorillas, and hence experienced different selection pressures and obtained a suite of unique traits as adaptations to the new environment. What that new environment was and which selection pressures were most important has been debated, however, and a number of hypotheses based on ideas other than environmental adaptation have also been proposed. To date, general discussion on the topic seems mostly to have focused on finding merit or flaws in one hypothesis at a time. The purpose of this page is to provide a structured forum for the general evaluation and comparison of the different hypotheses on human origins.

Calculations

  • Data version 1: raw data in Excel from Webropol: free text columns removed [1]
  • Data version 2: cleaned with this code [2].

number of X column:

number of Y column:

number of fill column:

Encryption key:

+ Show code

See also

Human evolution hypotheses described in Wikipedia:

Keywords

References


Related files

<mfanonymousfilelist></mfanonymousfilelist>