EU-kalat: Difference between revisions
(→Bayes model for dioxin concentrations: now works but mixing is still not great) |
(→Bayes model for dioxin concentrations: length and year in model) |
||
Line 275: | Line 275: | ||
# It uses the TEQ sum of PCDD/F (PCDDF) as the total concentration | # It uses the TEQ sum of PCDD/F (PCDDF) as the total concentration | ||
# of dioxin and PCB respectively for PCB in fish. | # of dioxin and PCB respectively for PCB in fish. | ||
# PCDDF depends on | # PCDDF depends on size of fish, fish species, catchment time, and catchment area, | ||
# but we | # but we omit catchment area. In addition, we assume that size of fish has | ||
# | # zero effect for other fish than Baltic herring. | ||
# Catchment year affects all species similarly. | |||
eu2 <- eu2[eu2$Compound %in% conl & eu2$Fish %in% fisl & eu2$Matrix == "Muscle" , ] | |||
eu3 <- reshape( | eu3 <- reshape( | ||
eu2@output, | |||
v.names = "euResult", | v.names = "euResult", | ||
idvar = c("THLcode", "Fish"), | idvar = c("THLcode", "Fish"), | ||
Line 295: | Line 296: | ||
#[6] "euResult.PCDDF" "euResult.PCB" | #[6] "euResult.PCDDF" "euResult.PCB" | ||
conc <- data.matrix(eu3[6:ncol(eu3)]) | |||
if(FALSE){ | if(FALSE){ | ||
Line 302: | Line 303: | ||
# With TEQ, there are no zeros. So this is useful only if there are congener-specific results. | # With TEQ, there are no zeros. So this is useful only if there are congener-specific results. | ||
names(LOQ) <- conl | names(LOQ) <- conl | ||
conc <- sapply( | |||
1:length(LOQ), | 1:length(LOQ), | ||
FUN = function(x) ifelse( | FUN = function(x) ifelse(conc[,x]==0, 0.5*LOQ[x], conc[,x]) | ||
) | ) | ||
} | } | ||
# This version of the model looks only at Baltic | # This version of the model looks only at Baltic herring and salmon. | ||
# It assumes that all fish groups have the same Omega but mu varies. | # It assumes that all fish groups have the same Omega but mu varies. | ||
Line 316: | Line 317: | ||
model{ | model{ | ||
for(i in 1:S) { # S = fish sample | for(i in 1:S) { # S = fish sample | ||
# below.LOQ[i,j] ~ dinterval(- | # below.LOQ[i,j] ~ dinterval(-conc[i,j], -LOQ[j]) | ||
conc[i,1:C] ~ dmnorm(muind[i,], Omega[fis[i],,]) | |||
muind[i,1:C] <- mu[fis[i],1:C] + lenp[fis[i]]*length[i] | muind[i,1:C] <- mu[fis[i],1:C] + lenp[fis[i]]*length[i] + timep*year[i] | ||
} | } | ||
# Priors for parameters | # Priors for parameters | ||
# | # Time trend. Assumed a known constant because at the moment there is little time variation in data. | ||
# https://www.evira.fi/elintarvikkeet/ajankohtaista/2018/itameren-silakoissa-yha-vahemman-ymparistomyrkkyja---paastojen-rajoitukset-vaikuttavat/ | |||
# PCDDF/PCB-concentations 2001: 9 pg/g fw, 2016: 3.5 pg/g fw. (3.5/9)^(1/15)-1=-0.06102282 | |||
timep ~ dnorm(-0.0610, 10000) | |||
lenp[1] ~ dnorm(0.01,0.01) # length parameter for herring | |||
lenp[2] ~ dnorm(0,10000) # length parameter for salmon: assumed zero | |||
for(i in 1:Fi) { # Fi = fish species | for(i in 1:Fi) { # Fi = fish species | ||
Omega[i,1:C,1:C] ~ dwish(Omega0[1:C,1:C],S) | |||
pred[i,1:C] ~ dmnorm(mu[i,1:C]+lenp[i]*lenpred[i | pred[i,1:C] ~ dmnorm(mu[i,1:C]+lenp[i]*lenpred+timep*timepred, Omega[i,,]) # Model prediction. | ||
for(j in 1:C) { | for(j in 1:C) { | ||
mu[i,j] ~ dnorm(0, 0.0001) # mu1[j], tau1[j]) # Congener-specific mean for fishes | |||
} | } | ||
} | } | ||
} | } | ||
") | ") | ||
jags <- jags.model( | jags <- jags.model( | ||
Line 341: | Line 346: | ||
C = C, | C = C, | ||
Fi = Fi, | Fi = Fi, | ||
conc = log(conc), | |||
length = eu3$Length, | length = eu3$Length-170, # Subtract average herring size | ||
year = eu3$Year-2009, # Substract baseline year | |||
fis = match(eu3$Fish, fisl), | fis = match(eu3$Fish, fisl), | ||
lenpred = | lenpred = 233-170, | ||
timepred = 2009-2009, | |||
Omega0 = diag(C)/100000 | Omega0 = diag(C)/100000 | ||
), | ), | ||
Line 362: | Line 367: | ||
'lenp',# parameters for length | 'lenp',# parameters for length | ||
'timep', # parameter for Year | 'timep', # parameter for Year | ||
'pred' # predicted concentration for year 2009 and 17 cm | 'pred' # predicted concentration for year 2009 and length 17 cm | ||
), | ), | ||
# thin=1000, | # thin=1000, | ||
N | N | ||
) | ) | ||
dimnames(samps.j$Omega) <- list(Fish = fisl, Compound = conl, Compound2 = conl, Iter=1:N, Chain=1:4) | |||
dimnames(samps.j$mu) <- list(Fish = fisl, Compound = conl, Iter = 1:N, Chain = 1:4) | dimnames(samps.j$mu) <- list(Fish = fisl, Compound = conl, Iter = 1:N, Chain = 1:4) | ||
dimnames(samps.j$lenp) <- list(Fish = fisl, Iter = 1:N, Chain = 1:4) | dimnames(samps.j$lenp) <- list(Fish = fisl, Iter = 1:N, Chain = 1:4) | ||
dimnames(samps.j$pred) <- list(Fish = fisl, Compound = conl, Iter = 1:N, Chain = 1:4) | dimnames(samps.j$pred) <- list(Fish = fisl, Compound = conl, Iter = 1:N, Chain = 1:4) | ||
dimnames(samps.j$ | dimnames(samps.j$timep) <- list(Param = "time", Iter = 1:N, Chain = 1:4) | ||
##### conc.param contains expected values of the distribution parameters from the model | ##### conc.param contains expected values of the distribution parameters from the model | ||
conc.param <- list( | conc.param <- list( | ||
Omega = apply(samps.j$Omega | Omega = apply(samps.j$Omega, MARGIN = 1:3, FUN = mean), | ||
lenp.mean = apply(samps.j$lenp | lenp.mean = apply(samps.j$lenp, MARGIN = 1, FUN = mean), | ||
lenp.sd = apply(samps.j$lenp | lenp.sd = apply(samps.j$lenp, MARGIN = 1, FUN = sd), | ||
mu = apply(samps.j$mu | mu = apply(samps.j$mu, MARGIN = 1:2, FUN = mean), | ||
timep.mean = apply(samps.j$timep, MARGIN = 1, FUN = mean), | |||
timep.sd = apply(samps.j$timep, MARGIN = 1, FUN = sd) | |||
) | ) | ||
if(FALSE){ | |||
objects.store(conc.param, samps.j) | objects.store(conc.param, samps.j) | ||
cat("Lists conc.params and samps.j stored.\n") | cat("Lists conc.params and samps.j stored.\n") | ||
Line 397: | Line 404: | ||
#)) | #)) | ||
ggplot(eu2@output | ggplot(eu2@output, aes(x = euResult, colour=Compound))+stat_ecdf()+ | ||
facet_wrap( ~ Fish)+scale_x_log10() | facet_wrap( ~ Fish)+scale_x_log10() | ||
} | |||
fislen <- c(233, 170) | |||
jsp <- lapply(1:length(conc.param$mu[, 1]), FUN = function(x) { | |||
temp <- exp(mvrnorm( | |||
openv$N, | |||
conc.param$mu[x, ]+conc.param$lenp.mean*(fislen[x]-170)+conc.param$timep.mean*(2009-2009), | |||
solve(conc.param$Omega[x, , ]) | |||
) | )) | ||
dimnames(temp) <- c(list(Iter = 1:openv$N), dimnames(conc.param$mu)[2]) | |||
return(temp) | |||
}) | |||
names(jsp) <- dimnames(conc.param$mu)[[1]] | |||
jsp <- melt(jsp, value.name = "Result") | |||
colnames(jsp)[colnames(jsp) == "L1"] <- "Fish" | |||
ggplot()+ | |||
stat_ecdf(data=eu2@output, aes(x=euResult, colour="Data"))+ | |||
stat_ecdf(data=melt(exp(samps.j$pred[,,,1])), aes(x=value, colour="Bayes estimate"))+ | |||
stat_ecdf(data=jsp, aes(x=Result, colour="MC estimate"))+ | |||
facet_grid(Compound ~ Fish)+scale_x_log10() | |||
ggplot(eu2@output, | |||
aes(x = Length, y = euResult, colour=Compound))+geom_point()+ | |||
facet_grid(Compound ~ Fish, scale="free_x")+scale_y_log10() | |||
scatterplotMatrix(t(exp(samps.j$pred[1,,,1])), main = "Predictions for all compounds for Baltic herring") | |||
scatterplotMatrix(t(exp(samps.j$pred[,1,,1])), main = "Predictions for all fish species for PCDDF") | |||
) | |||
plot(coda. | plot(coda.samples(jags, 'Omega', N)) | ||
plot(coda.samples(jags, 'mu', N)) | |||
plot(coda.samples(jags, 'lenp', N)) | |||
plot(coda.samples(jags, 'timep', N)) | |||
plot(coda.samples(jags, 'pred', N)) | |||
</rcode> | </rcode> | ||
Revision as of 11:07, 24 March 2018
This page is a study.
The page identifier is Op_en3104 |
---|
Moderator:Arja (see all) |
|
Upload data
|
EU-kalat is a study, where concentrations of PCDD/Fs, PCBs, PBDEs and heavy metals have been measured from fish
Question
The scope of EU-kalat study was to measure concentrations of persistent organic pollutants (POPs) including dioxin (PCDD/F), PCB and BDE in fish from Baltic sea and Finnish inland lakes and rivers. [1] [2] [3].
Answer
The original sample results can be acquired from Opasnet base. The study showed that levels of PCDD/Fs and PCBs depends especially on the fish species. Highest levels were on salmon and large sized herring. Levels of PCDD/Fs exceeded maximum level of 4 pg TEQ/g fw multiple times. Levels of PCDD/Fs were correlated positively with age of the fish.
Mean congener concentrations as WHO2005-TEQ in Baltic herring can be printed out with this link or by running the codel below.
Rationale
Data
Data was collected between 2009-2010. The study contains years, tissue type, fish species, and fat content for each concentration measurement. Number of observations is 285.
There is a new study EU-kalat 3, which will produce results in 2016.
Calculations
Preprocess
- Preprocess model 22.2.2017 [4]
- Objects used in Benefit-risk assessment of Baltic herring and salmon intake
- Model run 25.1.2017 [5]
- Model run 22.5.2017 with new ovariables euRaw, euAll, euMain, and euRatio [6]
- Model run 23.5.2017 with adjusted ovariables euRaw, eu, euRatio [7]
- Model run 11.10.2017: Small herring and Large herring added as new species [8]
- Model rerun 15.11.2017 because the previous stored run was lost in update [9]
- Model run 21.3.2018: Small and large herring replaced by actual fish length [10]
Bayes model for dioxin concentrations
- Model run 28.2.2017 [11]
- Model run 28.2.2017 with corrected survey model [12]
- Model run 28.2.2017 with Mu estimates [13]
- Model run 1.3.2017 [14]
- Model run 23.4.2017 [15] produces list conc.param and ovariable concentration
- Model run 24.4.2017 [16]
- Model run 19.5.2017 without ovariable concentration [17] ⇤--#: . The model does not mix well, so the results should not be used for final results. --Jouni (talk) 19:37, 19 May 2017 (UTC) (type: truth; paradigms: science: attack)
- Model run 22.5.2017 with TEQdx and TEQpcb as the only Compounds [18]
- Model run 23.5.2017 debugged [19] [20] [21]
- Model run 24.5.2017 TEQdx, TECpcb -> PCDDF, PCB [22]
- Model run 11.10.2017 with small and large herring [23] (removed in update)
- Model run 12.3.2018: bugs fixed with data used in Bayes. In addition, redundant fish species removed and Omega assumed to be the same for herring and salmon. [24]
- Model run 22.3.2018 [25] Model does not mix well. Thinning gives little help?
Initiate conc_pcddf
- Model run 19.5.2017 [26]
- Model run 23.5.2017 with bugs fixed [27]
- Model run 12.10.2017: TEQ calculation added [28]
- Model rerun 15.11.2017 because the previous stored run was lost in update [29]
- 12.3.2018 adjusted to match the same Omega for all fish species [30]
⇤--#: . These codes should be coherent with POPs in Baltic herring. --Jouni (talk) 12:14, 7 June 2017 (UTC) (type: truth; paradigms: science: attack)
See also
References
- ↑ A. Hallikainen, H. Kiviranta, P. Isosaari, T. Vartiainen, R. Parmanne, P.J. Vuorinen: Kotimaisen järvi- ja merikalan dioksiinien, furaanien, dioksiinien kaltaisten PCB-yhdisteiden ja polybromattujen difenyylieettereiden pitoisuudet. Elintarvikeviraston julkaisuja 1/2004. [1]
- ↑ E-R.Venäläinen, A. Hallikainen, R. Parmanne, P.J. Vuorinen: Kotimaisen järvi- ja merikalan raskasmetallipitoisuudet. Elintarvikeviraston julkaisuja 3/2004. [2]
- ↑ Anja Hallikainen, Riikka Airaksinen, Panu Rantakokko, Jani Koponen, Jaakko Mannio, Pekka J. Vuorinen, Timo Jääskeläinen, Hannu Kiviranta. Itämeren kalan ja muun kotimaisen kalan ympäristömyrkyt: PCDD/F-, PCB-, PBDE-, PFC- ja OT-yhdisteet. Eviran tutkimuksia 2/2011. ISSN 1797-2981 ISBN 978-952-225-083-4 [3]