ERF of outdoor air pollution: Difference between revisions

From Opasnet
Jump to navigation Jump to search
Line 54: Line 54:


===Calculations===
===Calculations===
This code gets the ovariable of this page and calculates some basic results.


<rcode graphics="1">
<rcode graphics="1">
Line 65: Line 67:
Concentration_responsetoPM2.5 <- EvalOutput(Concentration_responsetoPM2.5)
Concentration_responsetoPM2.5 <- EvalOutput(Concentration_responsetoPM2.5)


print(xtable(Concentration_responsetoPM2.5@output),type='html') # Show a result table
print(xtable(Concentration_responsetoPM2.5@output),type = 'html') # Show a result table


ggplot(Concentration_responsetoPM2.5@output, #Show a bar chart
ggplot(Concentration_responsetoPM2.5@output, #Show a bar chart
aes(x = Exposuremetric,y=ERFResults)) +
aes(x = Exposuremetric, y = ERFResults)) +
geom_bar(position="dodge") +  
geom_bar(position = "dodge" ) +  
theme_grey(base_size = 24)
theme_grey(base_size = 24)



Revision as of 08:59, 31 January 2013




Question

What is the the quantitative dose-response relationships between outdoor air PM2.5 concentration and mortality due to cardio-pulmonary, lung cancer, and other non-accidental causes (index Cause of death 2)?

Answer

This code gets the ovariable of this page and calculates some basic results.


+ Show code

Default run

Rationale

Causality

List of parents:

  • None

Data

Concentration-response function

ERF of outdoor air pollution: Difference between revisions(relative increase of mortality per µg/m3)
ObsDiseaseResponse metricExposure routeExposure metricExposure unitThresholdERF parameterERFDescription
1CardiopulmonaryMortalityInhalationAnnual average outdoor concentrationµq/m30Relative increase0.0128Dockery et al. 1993 and Pope et al. 2002:0.0128 (-0.0036-0.0375)
2Lung cancerMortalityInhalationAnnual average outdoor concentrationµq/m30Relative increase0.0150Dockery et al. 1993 and Pope et al. 2002:0.0150 (-0.0350-0.0728)
3Other causesMortalityInhalationAnnual average outdoor concentrationµq/m30Relative increase0.0008Dockery et al. 1993 and Pope et al. 2002:0.0008 (-0.0232-0.0252)
4All causesMortalityInhalationAnnual average outdoor concentrationµq/m30Relative increase0.0091Dockery et al. 1993 and Pope et al. 2002:0.0091 (-0.0019-0.0289)


Calculations

This code gets the ovariable of this page and calculates some basic results.

+ Show code

Default run

Unit

m3/μg D↷




Uncertainties:

  • Mortality estimate from Hoek et al. (2002)[1] was not included due to many confounding factors related to mortality, e.g. road noise.
  • Probability for PM2.5 assumed to be the true cause of the effects in 70 %, 90 %, and 10 % for cardiopulmonary, lung cancer and all other mortality, respectively (author judgement).
  • Toxicity differences between ambient air particles and the particles generated by different bus types were not taken into account due to lack of comprehensive data. [2] [3]
  • No threshold was assumed in the dose-response relationship. [4] [5]

ERF for chronic PM2.5 exposure

Cause of death RR 95% Cl
All-cause 1.06 1.02-1.11
Cardiopulmonary 1.09 1.03-1.16
Lung cancer 1.14 1.04-1.23

See also

References

  1. Hoek, G, Brunekreef, B, Goldbohm, S, Fischer, P, &amp; van den Brandt, P. A. (2002). Association between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study. Lancet, 360 (9341), 1203-1209.
  2. Laden, F., Neas, L. M., Dockery, D. W., &amp; Schwartz, J. (2000). Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environmental Health Perspectives, 108, 941-947.
  3. Mar, T. F., Norris, G. A., Koenig, J. Q., &amp; Larson, T. V. (2000). Associations between air pollution and mortality in Phoenix, 1995-1997. Environmental Health Perspectives, 108(4), 347-353.
  4. WHO Regional Office for Europe (2003). Health Aspects of Air Pollution with Particulate Matter, Ozone and Nitrogen Dioxide, Report on a WHO Working Group. Report on a WHO working group, Bonn, Germany, January 13-15 2003. Copenhagen. 98 pages. Available at http://www.euro.who.int/eprise/main/who/progs/aiq/newsevents/20030115_2
  5. Schwartz, J., Laden, F., &amp; Zanobetti, A. (2002). The concentration-response relation between PM2.5 and daily deaths. Environmental Health Perspectives, 110(10), 1025-1029.