Guidance and methods for indicator selection and specification: Difference between revisions

From Opasnet
Jump to navigation Jump to search
(drafts of intro, definitions and approaches)
Line 23: Line 23:
This full chain development represents the source-impact chain, which is based on different frameworks developed from the pressure-state-response (PSR) concept originally proposed by the US-EPA (e.g. DPSIR, DPSEEA) and the source-receptor models widely used to represent the fate of pollutants in the environment. [[Scoping for policy assessments (Intarese method)|(D. Briggs, 16.5.06)]]
This full chain development represents the source-impact chain, which is based on different frameworks developed from the pressure-state-response (PSR) concept originally proposed by the US-EPA (e.g. DPSIR, DPSEEA) and the source-receptor models widely used to represent the fate of pollutants in the environment. [[Scoping for policy assessments (Intarese method)|(D. Briggs, 16.5.06)]]


This is a guidance document for developing policy-relevant indicators within the Intarese approach to integrated risk assessment, taking into account both the emphasis on causality in the full-chain approach and the applicability of the indicators in relation policy needs.
This is a guidance document for developing policy-relevant indicators within the Intarese approach to integrated risk assessment, taking into account both the emphasis on causality in the full-chain approach and the applicability of the indicators in relation to policy needs.


==What are indicators?==
==What are indicators?==


*what are indicators used for?
Indicator selection provides the bridge between the issue framework and the assessment process. It involves specifying the outcome measures to be used as a basis for risk characterisation. Indicators should ideally represent all the main nodes and links that make up the source-impact chain, and should be internally coherent – i.e. they should have clear and definable relationships within the context of this chain. [[Scoping for policy assessments (Intarese method)|(D. Briggs, 16.5.06)]]


Indicators are variables of specific interest.
More generally indicators can be defined as '''variables which are of specific interest'''. The specific interest can be defined by identifying the use purpose and the users of the assessment, which further leads to identifying which are the variables of specific interest in each assessment. The full-chain description consists of variables. The main nodes and links that make up the source-impact chain are variables of specific interest and are referred to as indicators.


Indicator selection provides the bridge between the issue framework and the assessment process.  It involves specifying the outcome measures to be used as a basis for risk characterisation. Indicators should ideally represent all the main nodes and links that make up the source-impact chain, and should be internally coherent – i.e. they should have clear and definable relationships within the context of this chain. [[Scoping for policy assessments (Intarese method)|(D. Briggs, 16.5.06)]]
*Purpose of indicators
**highlighting the most significant parts of assessment
**enhancing communication (to various audiences)
**inter-assessment coherence???


==Types of indicators==


Indicators can take very different forms. Detailed categorisation of different types of indicator is fraught with difficulty, and is unlikely to be helpful. In terms of environmental health, a distinction has sometimes been made, however, between exposure-side indicators and health-side indicators. This distinction is useful in relation to INTARESE, because it discriminates between the forward looking indicators of exposure (i.e. those that presage, and need to be linked to, a potential health effect) and the backward looking indicators of outcome or effect (i.e. those that imply, and need to be attributed to, an exposure or source).
===Types of indicators===


Exposure-side indicators are clearly relevant for policy, since they often provide the first indications of the potential for health risk, and the first evidence of the effects of intervention (since many policies are focused on the upper links in the source-impact chain). To be meaningful in the context of health risks, however, they must relate to factors with definable (or at least strongly plausible) links to health outcome.  
Indicators can take very different forms. Detailed categorisation of different types of indicator is fraught with difficulty, and is unlikely to be helpful. In terms of environmental health, a distinction has sometimes been made, however, between exposure-side indicators and health-side indicators. This distinction is useful in relation to INTARESE, because it discriminates between the forward looking indicators of exposure (i.e. those that presage, and need to be linked to, a potential health effect) and the backward looking indicators of outcome or effect (i.e. those that imply, and need to be attributed to, an exposure or source). [[Scoping for policy assessments (Intarese method)|(D. Briggs, 16.5.06)]]


Health-side (or outcome) indicators represent the consequences of exposures in terms of health effect (e.g. mortality, morbidity, DALYs) or its further societal impacts (e.g. economic costs, quality of life). Again, to be meaningful in the context of the full-chain approach, they need to have an explicit link back to causal environmental exposures and risk factors.  
Exposure-side indicators are clearly relevant for policy, since they often provide the first indications of the potential for health risk, and the first evidence of the effects of intervention (since many policies are focused on the upper links in the source-impact chain). To be meaningful in the context of health risks, however, they must relate to factors with definable (or at least strongly plausible) links to health outcome. [[Scoping for policy assessments (Intarese method)|(D. Briggs, 16.5.06)]]
 
Health-side (or outcome) indicators represent the consequences of exposures in terms of health effect (e.g. mortality, morbidity, DALYs) or its further societal impacts (e.g. economic costs, quality of life). Again, to be meaningful in the context of the full-chain approach, they need to have an explicit link back to causal environmental exposures and risk factors. [[Scoping for policy assessments (Intarese method)|(D. Briggs, 16.5.06)]]


In each case, the indicators may be expressed in different ways, depending on:  
In each case, the indicators may be expressed in different ways, depending on:  
*Whether they are static (state, condition) or dynamic (process, flux) indicators;  
*Whether they are static (state, condition) or dynamic (process, flux) indicators;  
*Whether they are expressed in quantitative (‘objective’) or qualitative (perception) measures;  
*Whether they are expressed in quantitative (‘objective’) or qualitative (perception) measures;  
*Whether or not they relate to a formal (and internal) reference level or target (performance indicators). [[Scoping for policy assessments (Intarese method)|(D. Briggs, 16.5.06)]]
*Whether or not they relate to a formal (and internal) reference level or target (performance indicators).[[Scoping for policy assessments (Intarese method)|(D. Briggs, 16.5.06)]]


==Indicators in the full-chain approach==
==Indicators in the full-chain approach==


The full chain consists of variables. The main nodes and links that make up the source-impact chain are variables of specific interest and are also known as indicators.
Based on the developments onIntarese assessment framework and the Intarese general method, two approaches for selecting and specifying indicators applying the full-chain approach can be identified and distinguished. The distinction is made based on the point in development where causal linkages between variables are defined and how strictly the causality throughout the full-chain description is emphasized. The two views are described briefly below.


Based on the Intarese assessment framework and the Intarese general method, two approaches for full chain development can be distinguished, based on the point in development where causal linkages between variables are formulated.
 
<center>
[[image:Causal links defined with variables.PNG]]
[[image:Causal links defined with variables.PNG]]


Figure 1: Causal linkages are defined in line with variable development, all variables always causally linked to the full-chain
Figure 1: Causal linkages are defined in line with variable development, all variables are always causally linked throughout the full-chain
</center>
 


The first approach described in figure 1 starts from the issue framing by translating it into a set of variables (circles) and their  causal relations (connecting arrows), representing the outline of the system to be assessed. The result of this is a (draft) causal chain description of the phenomena to be assessed, on a relatively high level of abstraction, representing the determinants across the chain as variables. At this point the variables do not necessarily need to be specified into any more detail than to have a name and to have some draft specification of its scope. Also the causal relations at this point need not be any more detailed than to just imply that a causal relation between certain variables exists.
The causal chain description can naturally be further improved as seen necessary by combining (too detailed level) variables into more general variables, dividing (too general level) variables into more detailed ones, adding needed variables to the chain, removing variables that turn out irrelevant, changing the causal links etc.
When the causal chain has been described, the indicators, the variables of specific interest, can be chosen among the set of variables. (If necessary, new indicator variables can be added to the description. This may be the case for example if a desired indicator is e.g. a ratio of two variable's result values, but this indicator is not relevant in estimating the endpoint variables downstream in the causal chain.)
Then the variables used in the assessment process should also be defined and described. This also helps in ensuring that all the terms used in the assessment are consistent and explicit. Descriptions should cover the scope of each variable, methods/models used to compute or derive the variable, and the data (and associated data sources) on which these are based. Variables in this context may take different forms and serve different roles (often simultaneously). They may represent inputs to models (derived variables), interim steps in the calculation process (derived variables) and outputs for reporting (indicators).
The first approach described above could be referred to as developing indicators as a continuous, iterative process.
*change of the whole description in time
**estimate (data, measurement, calculation) <-> causality
**based on the ideas of:
***infinitely improving description of variable (+ of causal chain)
***formal re-usability of previous work
<center>
[[image:Causal links defined after variables.PNG]]
[[image:Causal links defined after variables.PNG]]
   
   
Figure 2: Variables are defined as individual objects and subsequently linked
Figure 2: Variables are defined as individual objects and subsequently linked
</center>
The first approach in figure 1 starts from the assessment framework and translates this into a set of variables (circles) and functions (connecting arrows), representing the main elements of the system that will be assessed.
 


To supplement this, and to ensure that all the terms used in the assessment are consistent and explicit, the variables used in the assessment process should also be defined and described. Descriptions should cover the methods/models used to compute or derive the variable, and the data (and associated data sources) on which these are based. ‘Variables’ in this context may take different forms and serve different roles (often simultaneously); they represent inputs to models (derived variables), interim steps in the calculation process (derived variables) and outputs for reporting (indicators).  
The second approach desribed in Figure 2 starts from the issue framing by choosing the indicators first. The main emphasis is on identifying and defining of a set of variables of specific interest, whilst the causal linkages between them are established and defined at a later stage. Naturally, already in the issue framing, the relationship between the variables are considerd, since they are in some way positioned in relation to each other. Applying this approach creates indicators that are individual components in the overall assessment. It also allows computation methods and models as well as data to be separately defined for each variable. Although maybe being a more conmfortable approach, this also leaves more possibilities for inconsistencies between the indicators and may risk the transparency and reliability of the enspoint variable/indicator specifications and estimates.


A tool for describing variables is available in the INTARESE Wiki site, though currently the descriptions that this provides are deliberately relatively simple. As such, it provides only limited descriptions of the computation procedures. (Tuomisto and Pohjola, April 2007)
This second approach could be referred to as developing indicators as individual objects. This approach is applied e.g. by WHO in their indicator development.


The second approach in Figure 2 shows the issue framework. The main emphasis is on identification and definition of a set of variables, whilst the causal linkages between them are established and defined at a later stage. Issue framing definitely considers the relationship between the variables, since they are in some way positioned towards each other in the assessment framework. Variables are individual components in the assessment framework. Since computation methods and models as well as data are separately defined for each variable, they may be inconsistent, hampering the creation of causal linkages.
*"how to estimate an indicator result value"
*variability in attributes -> incoherence
*based on the idea of one-time assessments


==Selecting indicators==
==Selecting indicators==
Line 74: Line 100:
*Pyrkilo approach: anything can be chosen as an indicator
*Pyrkilo approach: anything can be chosen as an indicator
**purpose of RA defines
**purpose of RA defines
In line with the two approaches towards full chain development, also two methods for indicator development are distinguished.
[[Image:Indicator development as a process.PNG]]
Figure 3: Indicator development as a process e.g. Pyrkilo
Decription of method:
[[Image:Indicator development as individual components.PNG]]
Figure 4: Indicator development as individual components e.g. WHO
Decription of method:


==Specifying indicators==
==Specifying indicators==
Line 93: Line 105:
We suggest a method for policy-relevant outcome indicator development, including characteristics from both approaches towards indicator development as explained in the previous section.
We suggest a method for policy-relevant outcome indicator development, including characteristics from both approaches towards indicator development as explained in the previous section.


===Suggested indicator attributes===
*fixed set of attributes
**coherence
**efficiency
 
===Suggested Intarese variable/indicator attributes===


#Name
#Name

Revision as of 11:12, 12 April 2007

This is guidance document for selecting and specifying indicators as a part of applying the Intarese method.

Second draft 12 April 2007

Mikko Pohjola, Eva Kunseler, Jouni Tuomisto KTL, Finland

Leendert van Bree MNP, The Netherlands

Introduction

Integrated risk assessment, as applied in the Intarese project, can be defined as the assessment of risks to human health from environmental stressors based on a ‘whole system’ approach. It thus endeavours to take account of all the main factors, links, effects and impacts relating to a defined issue or problem, and is deliberately more inclusive (less reductionist) than most traditional risk assessment procedures. (D. Briggs, 16.5.06))

Key characteristics of integrated assessment are:

  1. It is designed to assess complex policy-related issues and problems, in a more comprehensive and inclusive manner than that usually adopted by traditional risk assessment methods.
  2. It takes a ‘full-chain’ approach – i.e. it explicitly attempts to define and assess all the important links between source and impact, in order to allow the determinants and consequences of risk to be tracked in either direction through the system (from source to impact, or from impact back to source).
  3. It takes account of the additive, interactive and synergistic effects within this chain and uses assessment methods that allow these to be represented in a consistent and coherent way (i.e. without double-counting or exclusion of significant effects).
  4. It presents results of the assessment as a linked set of policy-relevant ‘outcome indicators’.
  5. It makes the best possible use of the available data and knowledge, whilst recognising the gaps and uncertainties that exist; it presents information on these uncertainties at all points in the chain. (D. Briggs, 16.5.06)

The Intarese approach emphasizes on creation of causal linkages between the determinants and consequences in the integrated assessment process. For this purpose, a full chain diagram should be constructed in which variables are the leading components. This full chain development represents the source-impact chain, which is based on different frameworks developed from the pressure-state-response (PSR) concept originally proposed by the US-EPA (e.g. DPSIR, DPSEEA) and the source-receptor models widely used to represent the fate of pollutants in the environment. (D. Briggs, 16.5.06)

This is a guidance document for developing policy-relevant indicators within the Intarese approach to integrated risk assessment, taking into account both the emphasis on causality in the full-chain approach and the applicability of the indicators in relation to policy needs.

What are indicators?

Indicator selection provides the bridge between the issue framework and the assessment process. It involves specifying the outcome measures to be used as a basis for risk characterisation. Indicators should ideally represent all the main nodes and links that make up the source-impact chain, and should be internally coherent – i.e. they should have clear and definable relationships within the context of this chain. (D. Briggs, 16.5.06)

More generally indicators can be defined as variables which are of specific interest. The specific interest can be defined by identifying the use purpose and the users of the assessment, which further leads to identifying which are the variables of specific interest in each assessment. The full-chain description consists of variables. The main nodes and links that make up the source-impact chain are variables of specific interest and are referred to as indicators.

  • Purpose of indicators
    • highlighting the most significant parts of assessment
    • enhancing communication (to various audiences)
    • inter-assessment coherence???


Types of indicators

Indicators can take very different forms. Detailed categorisation of different types of indicator is fraught with difficulty, and is unlikely to be helpful. In terms of environmental health, a distinction has sometimes been made, however, between exposure-side indicators and health-side indicators. This distinction is useful in relation to INTARESE, because it discriminates between the forward looking indicators of exposure (i.e. those that presage, and need to be linked to, a potential health effect) and the backward looking indicators of outcome or effect (i.e. those that imply, and need to be attributed to, an exposure or source). (D. Briggs, 16.5.06)

Exposure-side indicators are clearly relevant for policy, since they often provide the first indications of the potential for health risk, and the first evidence of the effects of intervention (since many policies are focused on the upper links in the source-impact chain). To be meaningful in the context of health risks, however, they must relate to factors with definable (or at least strongly plausible) links to health outcome. (D. Briggs, 16.5.06)

Health-side (or outcome) indicators represent the consequences of exposures in terms of health effect (e.g. mortality, morbidity, DALYs) or its further societal impacts (e.g. economic costs, quality of life). Again, to be meaningful in the context of the full-chain approach, they need to have an explicit link back to causal environmental exposures and risk factors. (D. Briggs, 16.5.06)

In each case, the indicators may be expressed in different ways, depending on:

  • Whether they are static (state, condition) or dynamic (process, flux) indicators;
  • Whether they are expressed in quantitative (‘objective’) or qualitative (perception) measures;
  • Whether or not they relate to a formal (and internal) reference level or target (performance indicators).(D. Briggs, 16.5.06)

Indicators in the full-chain approach

Based on the developments onIntarese assessment framework and the Intarese general method, two approaches for selecting and specifying indicators applying the full-chain approach can be identified and distinguished. The distinction is made based on the point in development where causal linkages between variables are defined and how strictly the causality throughout the full-chain description is emphasized. The two views are described briefly below.


File:Causal links defined with variables.PNG

Figure 1: Causal linkages are defined in line with variable development, all variables are always causally linked throughout the full-chain


The first approach described in figure 1 starts from the issue framing by translating it into a set of variables (circles) and their causal relations (connecting arrows), representing the outline of the system to be assessed. The result of this is a (draft) causal chain description of the phenomena to be assessed, on a relatively high level of abstraction, representing the determinants across the chain as variables. At this point the variables do not necessarily need to be specified into any more detail than to have a name and to have some draft specification of its scope. Also the causal relations at this point need not be any more detailed than to just imply that a causal relation between certain variables exists.

The causal chain description can naturally be further improved as seen necessary by combining (too detailed level) variables into more general variables, dividing (too general level) variables into more detailed ones, adding needed variables to the chain, removing variables that turn out irrelevant, changing the causal links etc.

When the causal chain has been described, the indicators, the variables of specific interest, can be chosen among the set of variables. (If necessary, new indicator variables can be added to the description. This may be the case for example if a desired indicator is e.g. a ratio of two variable's result values, but this indicator is not relevant in estimating the endpoint variables downstream in the causal chain.)

Then the variables used in the assessment process should also be defined and described. This also helps in ensuring that all the terms used in the assessment are consistent and explicit. Descriptions should cover the scope of each variable, methods/models used to compute or derive the variable, and the data (and associated data sources) on which these are based. Variables in this context may take different forms and serve different roles (often simultaneously). They may represent inputs to models (derived variables), interim steps in the calculation process (derived variables) and outputs for reporting (indicators).

The first approach described above could be referred to as developing indicators as a continuous, iterative process.

  • change of the whole description in time
    • estimate (data, measurement, calculation) <-> causality
    • based on the ideas of:
      • infinitely improving description of variable (+ of causal chain)
      • formal re-usability of previous work


File:Causal links defined after variables.PNG

Figure 2: Variables are defined as individual objects and subsequently linked


The second approach desribed in Figure 2 starts from the issue framing by choosing the indicators first. The main emphasis is on identifying and defining of a set of variables of specific interest, whilst the causal linkages between them are established and defined at a later stage. Naturally, already in the issue framing, the relationship between the variables are considerd, since they are in some way positioned in relation to each other. Applying this approach creates indicators that are individual components in the overall assessment. It also allows computation methods and models as well as data to be separately defined for each variable. Although maybe being a more conmfortable approach, this also leaves more possibilities for inconsistencies between the indicators and may risk the transparency and reliability of the enspoint variable/indicator specifications and estimates.

This second approach could be referred to as developing indicators as individual objects. This approach is applied e.g. by WHO in their indicator development.

  • "how to estimate an indicator result value"
  • variability in attributes -> incoherence
  • based on the idea of one-time assessments

Selecting indicators

  • Erik's appraisal framework / appraisal panels
  • Leendert's EHP B. set of indicators
  • Pyrkilo approach: anything can be chosen as an indicator
    • purpose of RA defines

Specifying indicators

We suggest a method for policy-relevant outcome indicator development, including characteristics from both approaches towards indicator development as explained in the previous section.

  • fixed set of attributes
    • coherence
    • efficiency

Suggested Intarese variable/indicator attributes

  1. Name
  2. Scope
  3. Description
    • Scale
    • Averaging period
    • References
  4. Unit
  5. Definition
    • Causality
    • Data
    • Formula
      • Variations and alternatives
  6. Result
  7. Discussion

Appendix: comparison of different approaches to specifying variables

Table. A comparison of attributes used in Intarese (suggestions), ENHIS indicators, pyrkilo method, and David's earlier version.

Suggested Intarese attributes WHO indicator attributes Pyrkilo variable attributes David's variable attributes
Name Name Name Name
Scope Issue Scope Detailed definition
Description Definition and description Description (part of) -
Description (part of) Interpretation Description (part of) -
Description / Scale Scale Scope or Description Geographical scale
Description / Averaging period - Scope or description Averaging period
Description / Variations and alternatives - Description Variations and alternatives
Description (part of) Linkage to other indicators Description (part of) - R↻
Unit Units Unit Units of measurement
Definition / Causality Not relevant Definition / Causality Links to other variables
Definition / Data R↻ Data sources or Related data Definition / Data Data sources, availability and quality
Definition / Formula Computation Definition / Formula Computation algorithm/model
Result (a very first draft of it) R↻ Not a specific attribute Result (a very first draft of it) Worked example
Discussion - - -
Done by using categories - Done by using categories Type
Done by links to glossary - Done by links to glossary Terms and concepts
Done by argumentation on the Discussion area Specification of data needed Done by argumentation on the Discussion page Data needs
The postition in a causal diagram justifies the existense Justification The postition in a causal diagram justifies the existense -
Not relevant Policy context Not relevant Not relevant
Not relevant Reporting obligations Not relevant Not relevant