Helsinki energy production: Difference between revisions

From Opasnet
Jump to navigation Jump to search
(OpasnetUtils::combine)
 
(67 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{variable|moderator=|stub=Yes}}
<noinclude>
[[Category:Helsinki]]
[[Category:Energy]]
{{variable|moderator=Heta}}
</noinclude>


== Question ==
== Question ==
What is the amount of energy produced (including distributed production) in Helsinki? Where is it produced (-> emissions)? Which processes are used in its production?
What is the amount of energy produced (including distributed production) in Helsinki? Where is it produced (-> emissions)? Which processes are used in its production?


== Answer ==
== Answer ==


[[File:Energy production capacity in Helsinki.png|thumb|center|600px|Energy production capacity in Helsinki. The different scenarios are based on [[Helsinki energy decision 2015]].]]
This code is used to fetch the ovariables on this page for modelling.
<rcode name="answer" embed=1>
## This is code Op_en7311/answer on page [[Helsinki energy production]]
library(OpasnetUtils)
objects.latest("Op_en7311", code_name = "energyProcess") # [[Helsinki energy production]]
objects.latest("Op_en7311", code_name = "plantParameters") # [[Helsinki energy production]]
objects.latest("Op_en7311", code_name = "nondynsupply") # [[Helsinki energy production]]
objects.latest("Op_en7311", code_name = "fuelShares") # [[Helsinki energy production]]
objects.latest("Op_en7311", code_name = "emissionLocationsPerPlant") # [[Helsinki energy production]]
#oprint(head(EvalOutput(energyProcess)@output))
#oprint(head(EvalOutput(plantParameters)@output))
#oprint(head(EvalOutput(nondynsupply)@output))
#oprint(head(EvalOutput(fuelShares)@output))
#oprint(head(EvalOutput(emissionLocationsPerPlant)@output))
cat("ovariables energyProcess, plantParameters, nondynsupply, fuelShares, and emissionLocationsPerPlant successfully fetched.\n")
</rcode>


== Rationale ==
== Rationale ==


=== Energy balance ===
This page contains data about the heat plants in Helsinki. It tells, how much and what type of energy a plant produces per unit of fuel, how much the plants cost and the locations of the power plant emissions. This data is then further used in the model.


Amount produced is determined largely by the [[Energy balance in Helsinki|energy balance in Helsinki]] and [[Helsinki energy consumption]]. Energy produced and fuels used by of all Helen's power plants.<ref>[https://www.helen.fi/kotitalouksille/neuvoa-ja-tietoa/tietoa-meista/energiantuotanto/voimalaitokset/ Helen: Power plants]</ref>
Amount produced is determined largely by the [[Energy balance in Helsinki|energy balance in Helsinki]] and [[Helsinki energy consumption]]. The maximum energy produced and fuels used by of all Helen's power plants can be found here: https://www.helen.fi/kotitalouksille/neuvoa-ja-tietoa/tietoa-meista/energiantuotanto/voimalaitokset/


<t2b name="Heat, power and cooling processes" index="Plant,Burner,Fuel" locations="Electricity,Heat,Cooling,Coal,Gas,Fuel oil,Biofuel" unit="MJ /MJ" desc="Description">
=== Energy processes ===
Hanasaari|Large fluidized bed|0.31|0.60|0|-1|0|0|0|Assume 91 % efficiency. Capacity: electricity 220 MW heat 420 MW Loss 64 MW
 
Hanasaari biofuel renovation|Large fluidized bed|0.31|0.60|0|-0.6|0|0|-0.4|
<t2b name="Heat, power and cooling processes" index="Plant,Burner,Fuel" locations="Electricity,Electricity_taxed,Heat,Cooling,Coal,Gas,Fuel oil,Biofuel" unit="MJ /MJ" desc="Description">
Vuosaari A&B|Large fluidized bed|0.47|0.44|0|0|-1|0|0|Capacity: electricity 630 MW heat 580 MW loss 121 MW
Biofuel heat plants|Large fluidized bed|0|0|0.85-0.91|0|0|0|0|-1|
Vuosaari C biofuel|Large fluidized bed|0.47|0.44|0|0|0|0|-1|
CHP diesel generators|Diesel engine|0.3|0|0.3-0.5|0|0|0|-1|0|Efficiency not known well in practice
Salmisaari A&B|Large fluidized bed|0.32|0.59|0|-1|0|0|0|Capacity: electricity 160 MW heat 300 MW loss 46 MW
Data center heat|None|0|-0.27 - -0.23|1|0|0|0|0|0|Same as Neste without transport of heat
Salmisaari biofuel renovation|Large fluidized bed|0.32|0.59|0|0|0|0|-1|
Deep-drill heat|None|0|-0.4 - -0.1|1|0|0|0|0|0|Experimental technology
Biofueled heat production units|Large fluidized bed|0|0.91|0|0|0|0|-1|
Hanasaari|Large fluidized bed|0.31|0|0.60|0|-1|0|0|0|Assume 91 % efficiency. Capacity: electricity 220 MW heat 420 MW Loss 64 MW
Smaller gas heat plants around Helsinki|Large fluidized bed|0|0.91|0|0|-1|0|0|
Household air heat pumps|None|0|-0.7 - -0.2|1|0|0|0|0|0|The efficiency of heat pumps is largely dependent on outside air temperature, it's feasible for a household air heat pump to reach COP 5 at 10 °C and COP 1.5 at -25 °C.
Smaller fuel oil heat plants around Helsinki|Large fluidized bed|0|0.91|0|0|0|-1|0|
Household air conditioning|None|0|-0.7 - -0.2|0|1|0|0|0|0|
Katri Vala heat|None|-0.35|1|0|0|0|0|0|Heat from cleaned waste water and district heating network's returing water.
Household geothermal heat|None|0|-0.36 - -0.31|1|0|0|0|0|0|Motiva 2014
Katri Vala cooling|None|-0.55|0|1|0|0|0|0|District cooling produced by absorption (?) heat pumps.
Katri Vala cooling|None|0|-0.36 - -0.31|0|1|0|0|0|0|District cooling produced by absorption (?) heat pumps. Same as heat pumps for heating, Motiva 2014.
Kymijoki River's plants|None|1|0|0|0|0|0|0|Hydropower
Katri Vala heat|None|0|-0.36 - -0.31|1|0|0|0|0|0|Heat from cleaned waste water and district heating network's returning water. Motiva 2014
Powerplant museum in Vanhakaupunki|None|1|0|0|0|0|0|0|Hydropower
Kellosaari back-up plant|Large fluidized bed|0.3 - 0.5|0|0|0|0|0|-1|0|Only produces electric power
Kellosaari back-up plant|Large fluidized bed|0.35|0|0|0|0|-1|0|
Kymijoki River's plants|None|1|0|0|0|0|0|0|0|Hydropower
Suvilahti power storage|None|1|0|0|0|0|0|0|
Loviisa nuclear heat|None|0|-0.4 - -0.1|1|0|0|0|0|0|Assumes that for each MWh heat produced, 0.1-0.2 MWh electricity is lost in either production or when heat is pumped to Helsinki.
Loviisa nuclear heat|None|-0.1|1|0|0|0|0|0|
Neste oil refinery heat|None|0|-0.31 - -0.27|1|0|0|0|0|0|Motiva 2014
Neste oil refinery heat|None|-0.1|1|0|0|0|0|0|
Salmisaari A&B|Large fluidized bed|0.32|0|0.59|0|-1|0|0|0|Capacity: electricity 160 MW heat 300 MW loss 46 MW
Household heat pumps|None|-0.7 - -0.2|1|0|0|0|0|0|The efficiency of heat pumps is largely dependent on outside air temperature, it's feasible for a household heat pump to reach COP 5 at 10 °C and COP 1.5 at -25 °C.
Sea heat pump|None|0|-0.36 - -0.31|1|0|0|0|0|0|Motiva 2014
Deep-drill heat|None|-0.1|1|0|0|0|0|0|
Sea heat pump for cooling|None|0|-0.36 - -0.31|0|1|0|0|0|0|Assuming the same as for heating
Sea heat pump|None|-0.2|1|0|0|0|0|0|
Small-scale wood burning|Household|0|0|0.5 - 0.9|0|0|0|0|-1|
Small-scale wood burning|Domestic|0|0.5 - 0.9|0|0|0|0|-1|
Small gas heat plants|Large fluidized bed|0|0|0.91|0|0|-1|0|0|
Air conditioning|None|-0.7 - -0.2|0|1|0|0|0|0|Household air conditioning units range from EER 5 to EER 18, depending on age.
Small fuel oil heat plants|Large fluidized bed|0|0|0.91|0|0|0|-1|0|
CHP diesel generators|Diesel engine|0.3|0.4|0|0|0|-1|0|
Suvilahti power storage|None|1|0|0|0|0|0|0|0|
Suvilahti solar|None|1|0|0|0|0|0|0|0|
Vanhakaupunki museum|None|1|0|0|0|0|0|0|0|Hydropower
Vuosaari A|Large fluidized bed|0.455|0|0.455|0|0|-1|0|0|Capacity: electricity 160 MW heat 160 MW loss 30 MW
Vuosaari B|Large fluidized bed|0.5|0|0.41|0|0|-1|0|0|Capacity: electricity 500 MW heat 424 MW loss 90 MW
Vuosaari C biofuel|Large fluidized bed|0.47|0|0.44|0|0|0|0|-1|
Wind mills|None|1|0|0|0|0|0|0|0|
</t2b>
</t2b>


Notes:
Notes about the data in the table:
*Household heat pump comparison<ref>http://www.scanoffice.fi/fi/tuotteet/tuoteryhmat/ilmalampopumput/raportit-ja-sertifikaatit/vttn-testiraportit</ref>
*Household air '''heat pumps''' data from heat pump comparison<ref>Scanoffice.fi: VTT:n testiraportit - Ilmalämpöpumppuvertailu. http://www.scanoffice.fi/fi/tuotteet/tuoteryhmat/ilmalampopumput/raportit-ja-sertifikaatit/vttn-testiraportit</ref>
*Loss of thermal energy through distribution is around 10 %. From Norwegian Water Resources and Energy Directorate: Energy in Norway.<ref>http://www.nve.no/global/energi/analyser/energi%20i%20norge%20folder/energy%20in%20norway%202009%20edition.pdf</ref>
*Household '''geothermal heat''' data from Energy Department of the United States: Geothermal Heat Pumps<ref>Energy.gov: Geothermal heat pumps. U.S. department of energy. http://energy.gov/energysaver/geothermal-heat-pumps</ref>
*Sustainable Energy Technology at Work: Use of waste heat from refining industry, Sweden.<ref>http://www.setatwork.eu/database/products/R179.htm</ref>
*'''Small-scale wood burning''' data from Energy Department of the United States: Wood and Pellet Heating<ref>Energy.gov: Wood and pellet heating. U.S. department of energy http://energy.gov/energysaver/wood-and-pellet-heating</ref>
*Chalmers University of Technology: Towards a Sustainable Oil Refinery, Pre-study for larger co-operation projects<ref>http://publications.lib.chalmers.se/records/fulltext/69752.pdf</ref>
*'''Loss of thermal energy''' through distribution is around 10 %. From Norwegian Water Resources and Energy Directorate: Energy in Norway.<ref>Norwegian Water Resources and Energy Directorate: Energy in Norway, an brief annual presentation, 2009. http://www.nve.no/global/energi/analyser/energi%20i%20norge%20folder/energy%20in%20norway%202009%20edition.pdf</ref>
*Energy Department of the United States: Geothermal Heat Pumps<ref>http://energy.gov/energysaver/articles/geothermal-heat-pumps</ref>
*Sustainable Energy Technology at Work: Use of '''waste heat''' from refining industry, Sweden.<ref>Sustainable Energy Technology at Work -project: Use of waste heat from refining industry, Sweden. Preem AB, H Samuelsson. http://www.setatwork.eu/database/products/R179.htm</ref>
*Energy Department of the United States: Wood and Pellet Heating<ref>http://energy.gov/energysaver/articles/wood-and-pellet-heating</ref>
*Chalmers University of Technology: Towards a Sustainable '''Oil Refinery''', Pre-study for larger co-operation projects<ref>Berntsson T, Persson Elmeroth L, Algehed J, Hektor E, Franck PÅ, Åsblad A, Johnsson F, Lyngfelt A, Gevert B, Richards T: Towards a Sustainable Oil Refinery - Pre-study for larger co-operation projects. Chalmers Energy Centre (CEC) Report 2008:1. Chalmers University of Technology. http://publications.lib.chalmers.se/records/fulltext/69752.pdf</ref>
*Energy Department of the United States: Central Air Conditioning<ref>http://energy.gov/energysaver/articles/central-air-conditioning</ref>
* '''CHP''' diesel generators are regular diesel generators, but they are located in apartment houses and operated centrally. This way, it is possible to produce electricity when needed and use the excess heat, instead of district heat, to warm up the hot water of the house.
* Motiva estimates for '''heat pumps''' processes and costs ''for heating'':<ref>Ilkka Maaskola, Matti Kataikko: Ylijäämälämmön taloudellinen hyödyntäminen. Lämpöpumppu- ja ORC-sovellukset. Motiva, Helsinki, 2014. http://www.motiva.fi/files/10217/Ylijaamalammon_taloudellinen_hyodyntaminen_Lampopumppu-_ja_ORC-sovellukset.pdf</ref>
** Mechanical heat pumps usually have COP (coefficient of performance, thermal output energy per electric input energy needed) is 2.5 - 7.5.
** In district heating, mechanical heat pumps have typically COP around 3.
** Absorption heat pumps have COP typically 1.5 - 1.8. They do not use much electricity but they need either hot water or steam to operate. Therefore, they are not suitable for producing district heat from warm water with temperatures in the range of 25 - 30 °C (Neste) or 10-15 °C (sea heat).
** The report uses these values for energy prices (€/MWh): bought electricity 50, process steam 25, wood chip 20, district heating 40, own excess heat 0.
** The investment cost of a heat pump system (ominaiskustannus) in the cases described in this report were 0.47-0.73 M€/MW<sub>th</sub> for mechanical heat pumps and 0.072 - 0.102 M€/MW<sub>th</sub> for absorption heat pumps. These values do not include the pipelines needed, which may vary a lot; in these cases the pipeline costs were 0.1 - 2.5 times the cost of the heat pump.
** The energy efficiency is theoretically COP = T<sub>out</sub> / (T<sub>out</sub> - T<sub>in</sub>), and the actual COP values are typically 65 - 75 % of that. If we assume that we want 95 °C district heat out, we get
*** for sea heat pumps: COP = 368 K / (368 K - 283 K) = 4.3 ideally and in practice 2.8 - 3.2. Electricity needed per 1 MWh output: 0.31 - 0.36 MWh.
***
*** Neste process heat: COP = 368 K / (368 K - 303 K) = 5.7 ideally and in practice 3.7 - 4.2. Electricity needed per 1 MWh output: 0.23 - 0.27 MWh (plus what is needed for pumping the heat for 25 km, say + 0.04 MWh)


<rcode name="energyProcess" label="Initiate energyProcess (for developers only)" embed=1 store=1>
<rcode name="energyProcess" label="Initiate energyProcess (for developers only)" embed=1 store=1>
Line 53: Line 98:


energyProcess <- Ovariable("energyProcess", ddata = "Op_en7311", subset = "Heat, power and cooling processes")
energyProcess <- Ovariable("energyProcess", ddata = "Op_en7311", subset = "Heat, power and cooling processes")
# Add Time index so we can make Time dependant decisions
energyProcess@data <- merge(energyProcess@data, data.frame(Time = 1880:2080))


objects.store(energyProcess)
objects.store(energyProcess)
Line 58: Line 107:
</rcode>
</rcode>


These equations below aim to reflect the energy production facilities and capabilities.
=== Plant specifications ===
 
These equations below aim to reflect the energy production facilities and capabilities. The min and max values tell about the range of energy production of the plant, and the cost values tell the costs of building and running the powerplant.


Note! Maintenance cost only contains costs that do not depend on activity. Operational cost contains costs that depend on activity but NOT fuel price; those are calculated separately based on energy produced.
Note! Maintenance cost only contains costs that do not depend on activity. Operational cost contains costs that depend on activity but NOT fuel price; those are calculated separately based on energy produced.


<t2b name="Plant parameters" index="Years_active,Plant,Parameter" locations="Min,Max,Investment cost,Management cost,Operation cost" unit="MW,MW,M€,M€ /a,€ /MWh" desc="Description">
<t2b name="Plant parameters" index="Years_active,Plant,Parameter" locations="Min,Max,Investment cost,Management cost,Operation cost" unit="MW,MW,M€,M€ /a,€ /MWh" desc="Description">
1980-2040|Hanasaari|0|640|0|9.6|4|95% coal, 5% pellets. Assume cost of running and maintenance in coal plants 15€/kW (Sähköenergian kustannusrakenne)
2017-2070|Biofuel heat plants|0|100-300|360|10|4-12|biofuels (pellets, wood chips and possibly biochar)
2018-2060|Hanasaari biofuel renovation|0|640|100|10|4|60% coal, 40% biofuels
2025-2070|CHP diesel generators|0|1441|144|1|1|Assuming all of Helsinki's apartment houses were fitted with 100 kW generators.
2000-2070|Vuosaari A&B|0|1331|0|10|5|natural gas
2025-2080|Deep-drill heat|0|300|300-900|9.6|40|Investment cost from ETSAP
2018-2070|Vuosaari C biofuel|0|1331|650|10|5|80-100% biofuels, rest coal
1965-2040|Hanasaari|0|640|0|9.6|8|95% coal, 5% pellets. Assume cost of running and maintenance in coal plants 15€/kW (Sähköenergian kustannusrakenne)
1990-2050|Salmisaari A&B|0|506|0|7.6|4|95% coal, 5% pellets
2010-2060|Household air heat pumps|0|112|200-300|10|5|Assuming all of Helsinki's detached and row houses were fitted with air heat pumps
2018-2060|Salmisaari biofuel renovation|0|506|100|10|4|60% coal, 40% biofuels
2010-2060|Household air conditioning|0|67|150-200|10|5|
2017-2070|Biofueled heat production units|0|100-300|360|10|4-12|biofuels (pellets, wood chips and possibly biochar)
2016-2060|Household geothermal heat|0|335|380-450|10|5|Assuming all of Helsinki's detached and row houses were fitted with geothermal heat pumps
1980-2070|Smaller heat plants around Helsinki|0|2015|100|10|10|
2020-2035|Household solar|0|105|220-250|5|5|Assuming 700000 m2 suitable for solar panels.
2005-2065|Katri Vala heat|0|90|0|10|3|waste water
2010-2070|Katri Vala cooling|0|60|0|10|3|waste water. Max from Helen
2010-2070|Katri Vala cooling|0|60|0|10|3|waste water
2005-2065|Katri Vala heat|0|90|0|10|3|waste water. Max from Helen
1980-2070|Kymijoki River's plants|0|60|0|10|1-4|water  
1880-2070|Powerplant museum in Vanhakaupunki|0|0.2|0|10|0|water
1980-2050|Kellosaari back-up plant|0|120|0|10|20|oil  
1980-2050|Kellosaari back-up plant|0|120|0|10|20|oil  
1980-2070|Kymijoki River's plants|0|60|0|10|1-4|hydropower
2022-2080|Loviisa nuclear heat|0|1800-2600|400-4000|10|5|Investment cost includes energy tunnel (double of Neste) but NOT building cost of plant. Some estimate for typical district heat pipes on ground is 2 M€/km; this is clearly a minimum for this project.
2020-2060|Neste oil refinery heat|0|300|200-500|10|5|
1975-2050|Salmisaari A&B|0|506|0|7.6|8|95% coal, 5% pellets
2020-2070|Sea heat pump|0|225|280|10|4|
2020-2070|Sea heat pump for cooling|0|225|280|10|4|
1980-2070|Small-scale wood burning|78|78|0|1|0|Assuming 70% of Helsinki's detached and row houses have a working fireplace. Operation costs for consumer assumed to be 0.
1980-2070|Small gas heat plants|0|600|0|5|5|
1980-2070|Small fuel oil heat plants|0|1600|0|5|5|
2015-2040|Suvilahti power storage|-1.2|1.2|100|10|5|electricity storage 0.6 MWh
2013-2070|Suvilahti solar|0|0.34|0|10|5|
2013-2070|Suvilahti solar|0|0.34|0|10|5|
2015-2040|Suvilahti power storage|-1.2|1.2|100|10|5|electricity storage 0.6 MWh
1880-2070|Vanhakaupunki museum|0|0.2|0|10|0|water
2017-2060|Wind mills|0|4|100|0.07-0.15|0.07-0.15|
1991-2070|Vuosaari A|0|320|0|5|5|natural gas
2022-2080|Loviisa nuclear heat|0|1800-2600|4000-6000|10|5|*investment cost includes building cost of plant and energy tunnel
1998-2070|Vuosaari B|0|924|0|5|5|natural gas
2020-2060|Neste oil refinery heat|0|2000|100|10|5|
2018-2070|Vuosaari C biofuel|0|1331|650|10|9|80-100% biofuels, rest coal
2010-2060|Household heat pumps|0|300|100|10|5|
2017-2060|Wind mills|0|10|12|0.07-0.15|7-13|upper limit from EWEA-report: The economics of wind energy
2025-2080|Deep-drill heat|0|500|100|10|7|
2016-2070|Data center heat|0|150|70.5-109.5|5|0|Investment cost 0.47-0.73 M€/MWth based on Motiva 2014. Cooling is needed anyway, so assumes operation costs to be 0.
2020-2070|Sea heat pump|0|500|100|10|4|
1980-2070|Small-scale wood burning|0|500|100|10|5|
2015-2060|Air conditioning|0|500|100|10|5|
2025-2070|CHP diesel generators|0|500|100|10|5|
</t2b>
</t2b>


Notes:
Notes:
*Helens’s windpower <ref>https://www.helen.fi/kotitalouksille/neuvoa-ja-tietoa/vastuullisuus/hiilineutraali-tulevaisuus/lisaa-tuulivoimaa/ </ref>
*[[:op_fi:Helsinki energy decision options 2015#Neste excess heat|Neste excess heat]] in Opasnet
*Suvilahti solar <ref>https://www.helen.fi/uutiset/2015/aurinkovoiman-tuotanto-on-kaynnistynyt-helsingin-suvilahdessa/</ref>  
*Helens’s windpower <ref>Helen: Lisäämme tuulivoimalla tuotetun energian määrää. https://www.helen.fi/kotitalouksille/neuvoa-ja-tietoa/vastuullisuus/hiilineutraali-tulevaisuus/lisaa-tuulivoimaa/</ref>
*Loviisan sanomat: Loviisan ydinvoimalan tehoja aiotaan nostaa 52 megawattia. <ref> http://www.loviisansanomat.net/lue.php?id=5361</ref>
*Suvilahti solar <ref>Helen: Aurinkovoiman tuotanto on käynnistynyt Suvilahdessa. 10.3.2015 https://www.helen.fi/uutiset/2015/aurinkovoiman-tuotanto-on-kaynnistynyt-helsingin-suvilahdessa/</ref>  
*Loviisa 3 periaatepäätös <ref> Loviisa 3 periaatepäätös  https://www.tem.fi/files/26809/PAP_FPH_LO3.pdf </ref>
*Loviisan sanomat: Loviisan ydinvoimalan tehoja aiotaan nostaa 52 megawattia. <ref> Loviisan sanomat: Loviisan ydinvoimalan tehoja aiotaan nostaa 52 megawattia. 13.1.2012 http://www.loviisansanomat.net/lue.php?id=5361</ref>
*Sähköenergian kustannusrakenne <ref>Sähköenergian kustannusrakenne, vertailuna vesivoima, hiilivoima ja ydinvoima http://www.tut.fi/smg/tp/kurssit/SMG-4050/seminaarit07/sahkoenergian_kustannusrakenne.pdf</ref>
*Loviisa 3 periaatepäätös <ref>Valtioneuvoston periaatepäätös Loviisa 3 -ydinvoimalasta. 6.5.2010 https://www.tem.fi/files/26809/PAP_FPH_LO3.pdf </ref>
*EWEA <ref> The Economics of Wind Energy, A report by the European Wind Energy Association http://www.ewea.org/fileadmin/files/library/publications/reports/Economics_of_Wind_Energy.pdf </ref>
*Sähköenergian kustannusrakenne <ref>Lähdeaho Marika, Meskanen Jukka, Yrjänäinen Heli: Sähköenergian kustannusrakenne: vertailuna vesivoima, hiilivoima ja ydinvoima. Seminaarityö. Tampere university of technology. http://www.tut.fi/smg/tp/kurssit/SMG-4050/seminaarit07/sahkoenergian_kustannusrakenne.pdf</ref>
*European Wind Energy Association (EWEA): The economics of wind energy <ref>Krohn S (editor), Morthorst PE, Awerbuch S: The Economics of Wind Energy. European Wind Energy Association (EWEA). March 2009 [http://www.ewea.org/fileadmin/files/library/publications/reports/Economics_of_Wind_Energy.pdf</ref>
*Operation costs (€/MWh) of nuclear, wind, coal, and wood based biomass <ref>Vainio Tuukka: Sähkön tuotantokustannusvertailu. Aalto-yliopisto, Insinööritieteiden korkeakoulu, energiatekniikan laitos. 2011 https://aaltodoc.aalto.fi/bitstream/handle/123456789/4969/isbn9789526041353.pdf?sequence=1</ref>
*Sea heat capacity and cost estimated using case Drammen. <ref>Hawkings, Will: An affordable district heating system in Norway. Heat Pupms Today. 10.3.2014 http://www.heatpumps.media/features/an-affjordable-district-heating-system-in-norway</ref> <ref>Kenneth Hoffmann MSc, David Forbes Pearson MInstR: Ammonia Heat Pumps for District Heating in Norway – a case study. The Institute of Refrigeration (IOR). 2011 http://www.ammonia21.com/web/assets/link/Hoffman7thApril2011London%20colour.pdf</ref><ref>European Heat Pump Association: The World's Largest “Natural” District Heat Pump. 6.3.2015 http://www.ehpa.org/about/news/article/the-worlds-largest-natural-district-heat-pump/</ref>
*Cost of household solar estimated using [http://www.fortum.com/countries/fi/yksityisasiakkaat/energiansaasto/aurinkoenergiaratkaisut/aurinkopaneeli/hinta/pages/default.aspx] and [http://energyinformative.org/solar-panels-cost/]
*Deep drill heat
**Energy Technology Systems Analysis Programme (ETSAP)<ref>Lako, Paul: Geothermal heat and power. Energy technology systems analysis programme, IEA. 2010. http://www.etsap.org/E-techDS/PDF/E06-geoth_energy-GS-gct.pdf</ref>
*Small heat plants' capacities <ref>Helen Oy: Lämpölaitosten turvallisuustiedote. 17.6.2015 https://www.helen.fi/globalassets/ymparisto/turvallisuustiedote-lampolaitokset.pdf</ref>


<rcode name="plantParameters" label="Initiate plantParameters (for developers only)" embed=1 store=1>
<rcode name="plantParameters" label="Initiate plantParameters (for developers only)" embed=1 store=1>
Line 110: Line 172:
for(i in 1:nrow(a)) {
for(i in 1:nrow(a)) {
out <- rbind(out, data.frame(
out <- rbind(out, data.frame(
a[i , ],
a[i , "Plant", drop = FALSE],
Time = as.numeric(b[[i]][1]):as.numeric(b[[i]][2])
Time = as.numeric(b[[i]][1]):as.numeric(b[[i]][2]),
Matched = 1
)
)
)
)
}
}
plantParameters@data <- merge(plantParameters@data, out)
 
require(plyr)
plantParameters@data <- merge(plantParameters@data, data.frame(Time = 1880:2080))#min(out$Time):max(out$Time)))
plantParameters@data <- join(plantParameters@data, out, type = "left")
plantParameters@data$Years_active <- NULL
plantParameters@data$Years_active <- NULL
 
plantParameters@data$plantParametersResult[
is.na(plantParameters@data$Matched) &
(
plantParameters@data$Parameter == "Max" |
plantParameters@data$Parameter == "Min"
)
] <- 0
plantParameters@data$Matched <- NULL
 
objects.store(plantParameters)
objects.store(plantParameters)
cat("Ovariable plantParameters stored.\n")
cat("Ovariable plantParameters stored.\n")
Line 127: Line 202:
Wind mills|None|Electricity|5|5|10|10|10|10
Wind mills|None|Electricity|5|5|10|10|10|10
</t2b>
</t2b>
{{attack|# |How to model non-adjustable energy production exactly? Probably needs a submodel instead of a t2b table.|--[[User:Jouni|Jouni]] ([[User talk:Jouni|talk]]) 07:30, 27 June 2015 (UTC)}}
{{comment|# |Should air conditioning be in process matrix or in non-adjustable energy production?|--[[User:Jouni|Jouni]] ([[User talk:Jouni|talk]]) 07:30, 27 June 2015 (UTC)}}


<rcode name="nondynsupply" label="Initiate nondynsupply (for developers only)" embed=1 store=1>
<rcode name="nondynsupply" label="Initiate nondynsupply (for developers only)" embed=1 store=1>
Line 144: Line 215:
</rcode>
</rcode>


=== Heating ===
=== Fuel availability ===
 
'''Wood


==== Fuel use by heating type ====
The byproducts of forest industry make up the bulk of fuel wood, and its quantity is almost completely dependent of the production of the forest industry's main products. Therefore it makes sense to calculate the amount of fuel wood usable in the future using the
predictions about the volume of forest industry's production in coming years.
 
For example, the maximum potential production of woodchips is calibrated so, that it will reach 25 TWh in year 2020, and it is expected slowly increase to 33 TWh by year 2050. The production potential for firewood (for small scale heating) is expected to remain about
the same at just under 60 PJ. The import of wood fuels is estimated to be 3 TWh at most. <ref>Lehtilä A, Koljonen T, Airaksinen M, Tuominen P, Järvi T, Laurikko J, Similä L, Grandell L: Energiajärjestelmien kehityspolut kohti vähähiilistä yhteiskuntaa. Low Carbon Finland 2050 -platform. VTT. 2014. http://en.opasnet.org/en-opwiki/images/d/d1/Low_Carbon_Finland_Platform.pdf</ref>
 
=== Fuel use by heating type ===


Helsinki-specific data about connections between Heating and fuel usage. Generic data should be taken from [[Energy balance]]. Because all Helsinki-specific data is given in the energyProcess table, this only contains dummy data.
Helsinki-specific data about connections between Heating and fuel usage. Generic data should be taken from [[Energy balance]]. Because all Helsinki-specific data is given in the energyProcess table, this only contains dummy data.
Line 153: Line 232:
Dummy|None|Coal|0|
Dummy|None|Coal|0|
</t2b>
</t2b>
This R code creates an ovariable for calculating the shares of different fuels used in heating processes.


<rcode name="fuelShares" label="Initiate fuelShares (developers only)" embed=1>
<rcode name="fuelShares" label="Initiate fuelShares (developers only)" embed=1>
Line 170: Line 251:
colnames(dat@output) <- gsub("[ \\.]", "_", colnames(dat@output))
colnames(dat@output) <- gsub("[ \\.]", "_", colnames(dat@output))


out <- combine(fuelSharesgeneric, dat, name = "fuelShares")
out <- OpasnetUtils::combine(fuelSharesgeneric, dat, name = "fuelShares")
out <- out * Ovariable(output = data.frame(Time = 1900:2080, Result = 1), marginal = c(TRUE, FALSE))
out <- out * Ovariable(output = data.frame(Time = 1900:2080, Result = 1), marginal = c(TRUE, FALSE))
out <- unkeep(out, prevresults = TRUE, sources = TRUE)
out <- unkeep(out, prevresults = TRUE, sources = TRUE)
Line 183: Line 264:
</rcode>
</rcode>


==== Emission locations ====
'''Fuel data from HSY


Emission location and height by heating type.
Data downloaded from [https://www.hsy.fi/fi/asiantuntijalle/ilmastonmuutos/hillinta/seuranta/Sivut/Paastot.aspx] on 27 Nov 2018.


<t2b name='Emission locations' index='Heating,Emission_site,Emission_height' obs='Dummy' unit='-'>
{{hidden|
District|010|High|
<t2b name="Fuel use in district heating" index="City,Year,Fuel" obs="Use" unit="GWh/a">
Electricity|010|High|
Helsinki|1990|Kivihiili|4284.2920860676
Geothermal|010|High|
Helsinki|1990|Maakaasu|429.59855159612
Oil|At site of consumption|Ground|
Helsinki|1990|Öljy|226.474103898141
Wood|At site of consumption|Ground|
Helsinki|1990|Bio|0
Gas|At site of consumption|Ground|
Helsinki|1990|Jäte|0
Coal|At site of consumption|Ground|
Helsinki|1990|Lämpöpumput|0
Helsinki|2000|Kivihiili|2151.07700785102
Helsinki|2000|Maakaasu|2540.78465194621
Helsinki|2000|Öljy|76.2250426137188
Helsinki|2000|Bio|0
Helsinki|2000|Jäte|0
Helsinki|2000|Lämpöpumput|0
Helsinki|2001|Kivihiili|2840.2133338536
Helsinki|2001|Maakaasu|2412.84374865548
Helsinki|2001|Öljy|171.233875218613
Helsinki|2001|Bio|0
Helsinki|2001|Jäte|0
Helsinki|2001|Lämpöpumput|0
Helsinki|2002|Kivihiili|3089.35436726348
Helsinki|2002|Maakaasu|2432.51201673552
Helsinki|2002|Öljy|171.774950785913
Helsinki|2002|Bio|0
Helsinki|2002|Jäte|0
Helsinki|2002|Lämpöpumput|0
Helsinki|2003|Kivihiili|3233.4834847831
Helsinki|2003|Maakaasu|2406.13728995658
Helsinki|2003|Öljy|267.39376111908
Helsinki|2003|Bio|0
Helsinki|2003|Jäte|0
Helsinki|2003|Lämpöpumput|0
Helsinki|2004|Kivihiili|2841.20361038672
Helsinki|2004|Maakaasu|2567.51966029743
Helsinki|2004|Öljy|129.635543383577
Helsinki|2004|Bio|0
Helsinki|2004|Jäte|0
Helsinki|2004|Lämpöpumput|0
Helsinki|2005|Kivihiili|2400.16901994423
Helsinki|2005|Maakaasu|2697.00641962552
Helsinki|2005|Öljy|116.363362543213
Helsinki|2005|Bio|0
Helsinki|2005|Jäte|0
Helsinki|2005|Lämpöpumput|0
Helsinki|2006|Kivihiili|3271.35516919083
Helsinki|2006|Maakaasu|2334.12322825047
Helsinki|2006|Öljy|319.010710585304
Helsinki|2006|Bio|0
Helsinki|2006|Jäte|0
Helsinki|2006|Lämpöpumput|9
Helsinki|2007|Kivihiili|2617.04294184188
Helsinki|2007|Maakaasu|2310.68315399561
Helsinki|2007|Öljy|199.608343308358
Helsinki|2007|Bio|0
Helsinki|2007|Jäte|0
Helsinki|2007|Lämpöpumput|49.7
Helsinki|2008|Kivihiili|1804.60829692833
Helsinki|2008|Maakaasu|2657.44758723666
Helsinki|2008|Öljy|93.3579765511768
Helsinki|2008|Bio|0.098505049542097
Helsinki|2008|Jäte|0
Helsinki|2008|Lämpöpumput|197.8437
Helsinki|2009|Kivihiili|2434.2927844032
Helsinki|2009|Maakaasu|2487.48768916753
Helsinki|2009|Öljy|208.413005440584
Helsinki|2009|Bio|0
Helsinki|2009|Jäte|0
Helsinki|2009|Lämpöpumput|183.437
Helsinki|2010|Kivihiili|2471.19101553811
Helsinki|2010|Maakaasu|2944.90925577963
Helsinki|2010|Öljy|336.604403134137
Helsinki|2010|Bio|0
Helsinki|2010|Jäte|0
Helsinki|2010|Lämpöpumput|165.2261
Helsinki|2011|Kivihiili|2222.72911564534
Helsinki|2011|Maakaasu|2477.91483236144
Helsinki|2011|Öljy|174.896974646627
Helsinki|2011|Bio|0
Helsinki|2011|Jäte|0
Helsinki|2011|Lämpöpumput|175.2666
Helsinki|2012|Kivihiili|2440.00255823157
Helsinki|2012|Maakaasu|2554.20085503681
Helsinki|2012|Öljy|230.251833016329
Helsinki|2012|Bio|1.08366136058704
Helsinki|2012|Jäte|0
Helsinki|2012|Lämpöpumput|302
Helsinki|2013|Kivihiili|2344.80590223922
Helsinki|2013|Maakaasu|2393.82615621096
Helsinki|2013|Öljy|87.9886812303494
Helsinki|2013|Bio|1.72056283004358
Helsinki|2013|Jäte|0
Helsinki|2013|Lämpöpumput|286
Helsinki|2014|Kivihiili|2247.70262132684
Helsinki|2014|Maakaasu|2543.38833779259
Helsinki|2014|Öljy|131.040055456671
Helsinki|2014|Bio|1.78172185024671
Helsinki|2014|Jäte|0
Helsinki|2014|Lämpöpumput|374
Helsinki|2015|Kivihiili|1917.35062355116
Helsinki|2015|Maakaasu|2266.60755640416
Helsinki|2015|Öljy|155.430629580819
Helsinki|2015|Bio|11.714335672107
Helsinki|2015|Jäte|0
Helsinki|2015|Lämpöpumput|422.0118
Helsinki|2016|Kivihiili|3060.80590403916
Helsinki|2016|Maakaasu|1578.22285305322
Helsinki|2016|Öljy|192.723566328643
Helsinki|2016|Bio|77.2286355742731
Helsinki|2016|Jäte|0
Helsinki|2016|Lämpöpumput|490.504
Helsinki|2017|Kivihiili|3235.06550234929
Helsinki|2017|Maakaasu|1406.78522456711
Helsinki|2017|Öljy|131.284512938456
Helsinki|2017|Bio|105.004250283039
Helsinki|2017|Jäte|0
Helsinki|2017|Lämpöpumput|765.409
Espoo|1990|Kivihiili|698.590418335677
Espoo|1990|Maakaasu|413.89959678489
Espoo|1990|Öljy|36.7395389553545
Espoo|1990|Bio|1.42666525187681
Espoo|1990|Jäte|0
Espoo|1990|Lämpöpumput|0
Espoo|2000|Kivihiili|866.631442124276
Espoo|2000|Maakaasu|526.560873748713
Espoo|2000|Öljy|18.6065880022733
Espoo|2000|Bio|0
Espoo|2000|Jäte|0
Espoo|2000|Lämpöpumput|0
Espoo|2001|Kivihiili|899.984807470558
Espoo|2001|Maakaasu|575.10836657152
Espoo|2001|Öljy|137.368856921419
Espoo|2001|Bio|0
Espoo|2001|Jäte|0
Espoo|2001|Lämpöpumput|0
Espoo|2002|Kivihiili|945.677288014032
Espoo|2002|Maakaasu|660.316962734279
Espoo|2002|Öljy|112.955657594991
Espoo|2002|Bio|0.58968982821361
Espoo|2002|Jäte|0
Espoo|2002|Lämpöpumput|0
Espoo|2003|Kivihiili|1040.22026466093
Espoo|2003|Maakaasu|627.161318274545
Espoo|2003|Öljy|168.602864365573
Espoo|2003|Bio|0
Espoo|2003|Jäte|0
Espoo|2003|Lämpöpumput|0
Espoo|2004|Kivihiili|865.565152788219
Espoo|2004|Maakaasu|706.084279937302
Espoo|2004|Öljy|197.937895441986
Espoo|2004|Bio|19.3
Espoo|2004|Jäte|0
Espoo|2004|Lämpöpumput|0
Espoo|2005|Kivihiili|844.141907315749
Espoo|2005|Maakaasu|786.117565374608
Espoo|2005|Öljy|37.4687040762568
Espoo|2005|Bio|183
Espoo|2005|Jäte|0
Espoo|2005|Lämpöpumput|0
Espoo|2006|Kivihiili|883.152490674995
Espoo|2006|Maakaasu|825.074326876373
Espoo|2006|Öljy|76.0014821891667
Espoo|2006|Bio|117.531738684914
Espoo|2006|Jäte|0
Espoo|2006|Lämpöpumput|0
Espoo|2007|Kivihiili|898.481031463253
Espoo|2007|Maakaasu|665.269587535479
Espoo|2007|Öljy|145.588888888889
Espoo|2007|Bio|173.6
Espoo|2007|Jäte|0
Espoo|2007|Lämpöpumput|0
Espoo|2008|Kivihiili|887.826043130307
Espoo|2008|Maakaasu|705.471824790763
Espoo|2008|Öljy|47.3900360437412
Espoo|2008|Bio|212.6
Espoo|2008|Jäte|0
Espoo|2008|Lämpöpumput|0
Espoo|2009|Kivihiili|639.340515930839
Espoo|2009|Maakaasu|984.250780324197
Espoo|2009|Öljy|209.539338789852
Espoo|2009|Bio|173.9
Espoo|2009|Jäte|0
Espoo|2009|Lämpöpumput|0
Espoo|2010|Kivihiili|392.073072139539
Espoo|2010|Maakaasu|1459.54859354402
Espoo|2010|Öljy|44.2393546265249
Espoo|2010|Bio|21.1
Espoo|2010|Jäte|0
Espoo|2010|Lämpöpumput|0
Espoo|2011|Kivihiili|654.351515415209
Espoo|2011|Maakaasu|1027.47452932073
Espoo|2011|Öljy|35.2574579651145
Espoo|2011|Bio|0
Espoo|2011|Jäte|0
Espoo|2011|Lämpöpumput|0
Espoo|2012|Kivihiili|1298.2030476124
Espoo|2012|Maakaasu|868.840709985144
Espoo|2012|Öljy|26.7488611111111
Espoo|2012|Bio|0
Espoo|2012|Jäte|0
Espoo|2012|Lämpöpumput|12.023
Espoo|2013|Kivihiili|1365.74664086634
Espoo|2013|Maakaasu|667.480651270796
Espoo|2013|Öljy|24.247554296456
Espoo|2013|Bio|0
Espoo|2013|Jäte|0
Espoo|2013|Lämpöpumput|14.6303333333333
Espoo|2014|Kivihiili|1402.57898152592
Espoo|2014|Maakaasu|554.568897071012
Espoo|2014|Öljy|18.0955833333333
Espoo|2014|Bio|0
Espoo|2014|Jäte|0
Espoo|2014|Lämpöpumput|14.3564444444444
Espoo|2015|Kivihiili|1302.92548054043
Espoo|2015|Maakaasu|296.277576864906
Espoo|2015|Öljy|90.2243136538889
Espoo|2015|Bio|5.73878
Espoo|2015|Jäte|0
Espoo|2015|Lämpöpumput|338.6045
Espoo|2016|Kivihiili|1212.1169579829
Espoo|2016|Maakaasu|570.430158307745
Espoo|2016|Öljy|26.1111111111111
Espoo|2016|Bio|61.6666666666667
Espoo|2016|Jäte|0
Espoo|2016|Lämpöpumput|374.321
Espoo|2017|Kivihiili|1252.04579634648
Espoo|2017|Maakaasu|367.762547566015
Espoo|2017|Öljy|12.5775
Espoo|2017|Bio|220.833333333333
Espoo|2017|Jäte|0
Espoo|2017|Lämpöpumput|393.724
Vantaa|1990|Kivihiili|611.369333153953
Vantaa|1990|Maakaasu|297.576393049763
Vantaa|1990|Öljy|16.6185881443114
Vantaa|1990|Bio|0
Vantaa|1990|Jäte|0
Vantaa|1990|Lämpöpumput|0
Vantaa|2000|Kivihiili|319.166121230077
Vantaa|2000|Maakaasu|687.752250846746
Vantaa|2000|Öljy|2.38235900277074
Vantaa|2000|Bio|0
Vantaa|2000|Jäte|0
Vantaa|2000|Lämpöpumput|0
Vantaa|2001|Kivihiili|498.257072814038
Vantaa|2001|Maakaasu|781.979684886504
Vantaa|2001|Öljy|42.1328075885394
Vantaa|2001|Bio|4.76701928927089
Vantaa|2001|Jäte|0
Vantaa|2001|Lämpöpumput|0
Vantaa|2002|Kivihiili|496.34143949874
Vantaa|2002|Maakaasu|822.587066343261
Vantaa|2002|Öljy|53.2298653734612
Vantaa|2002|Bio|4.28498103820069
Vantaa|2002|Jäte|0
Vantaa|2002|Lämpöpumput|0
Vantaa|2003|Kivihiili|535.086539209646
Vantaa|2003|Maakaasu|836.028292141292
Vantaa|2003|Öljy|84.9529574396933
Vantaa|2003|Bio|4.45006199938565
Vantaa|2003|Jäte|0
Vantaa|2003|Lämpöpumput|0
Vantaa|2004|Kivihiili|368.763814020668
Vantaa|2004|Maakaasu|918.617085007018
Vantaa|2004|Öljy|31.0107787623739
Vantaa|2004|Bio|4.35100455722177
Vantaa|2004|Jäte|0
Vantaa|2004|Lämpöpumput|0
Vantaa|2005|Kivihiili|424.349882293536
Vantaa|2005|Maakaasu|894.651556015557
Vantaa|2005|Öljy|18.2391735241933
Vantaa|2005|Bio|4.11900088945785
Vantaa|2005|Jäte|0
Vantaa|2005|Lämpöpumput|0
Vantaa|2006|Kivihiili|434.977764744444
Vantaa|2006|Maakaasu|882.3705198155
Vantaa|2006|Öljy|30.972113301163
Vantaa|2006|Bio|3.21978644996001
Vantaa|2006|Jäte|0
Vantaa|2006|Lämpöpumput|0
Vantaa|2007|Kivihiili|449.924195848409
Vantaa|2007|Maakaasu|861.02287817966
Vantaa|2007|Öljy|27.1796065387502
Vantaa|2007|Bio|2.24636705049978
Vantaa|2007|Jäte|0
Vantaa|2007|Lämpöpumput|0
Vantaa|2008|Kivihiili|464.621941728652
Vantaa|2008|Maakaasu|840.115635614039
Vantaa|2008|Öljy|21.0971898741627
Vantaa|2008|Bio|2.8403456725928
Vantaa|2008|Jäte|0
Vantaa|2008|Lämpöpumput|0
Vantaa|2009|Kivihiili|463.998340849178
Vantaa|2009|Maakaasu|881.997223729178
Vantaa|2009|Öljy|164.170288174197
Vantaa|2009|Bio|2.12206407861546
Vantaa|2009|Jäte|0
Vantaa|2009|Lämpöpumput|0
Vantaa|2010|Kivihiili|543.377040561734
Vantaa|2010|Maakaasu|1111.90114895414
Vantaa|2010|Öljy|70.784997943358
Vantaa|2010|Bio|2.48650087960368
Vantaa|2010|Jäte|0
Vantaa|2010|Lämpöpumput|0
Vantaa|2011|Kivihiili|598.098358098358
Vantaa|2011|Maakaasu|945.426736933037
Vantaa|2011|Öljy|8.04009066924067
Vantaa|2011|Bio|0
Vantaa|2011|Jäte|0
Vantaa|2011|Lämpöpumput|0
Vantaa|2012|Kivihiili|786.019092257176
Vantaa|2012|Maakaasu|879.137026444939
Vantaa|2012|Öljy|4.91666666666667
Vantaa|2012|Bio|0
Vantaa|2012|Jäte|0
Vantaa|2012|Lämpöpumput|0
Vantaa|2013|Kivihiili|789.852825554236
Vantaa|2013|Maakaasu|765.144708147536
Vantaa|2013|Öljy|8.08304782236914
Vantaa|2013|Bio|0
Vantaa|2013|Jäte|0
Vantaa|2013|Lämpöpumput|0
Vantaa|2014|Kivihiili|608.629064277808
Vantaa|2014|Maakaasu|507.268294725192
Vantaa|2014|Öljy|19.4778251957992
Vantaa|2014|Bio|0
Vantaa|2014|Jäte|421.759658031211
Vantaa|2014|Lämpöpumput|0
Vantaa|2015|Kivihiili|619.277530235519
Vantaa|2015|Maakaasu|170.521345140625
Vantaa|2015|Öljy|33.7994014610536
Vantaa|2015|Bio|0
Vantaa|2015|Jäte|650.870024656569
Vantaa|2015|Lämpöpumput|0
Vantaa|2016|Kivihiili|604.152462803332
Vantaa|2016|Maakaasu|244.409773729989
Vantaa|2016|Öljy|0.334826459613019
Vantaa|2016|Bio|0
Vantaa|2016|Jäte|609.821887400903
Vantaa|2016|Lämpöpumput|0
Vantaa|2017|Kivihiili|672.53451508437
Vantaa|2017|Maakaasu|241.930423783869
Vantaa|2017|Öljy|1.19633543548662
Vantaa|2017|Bio|0
Vantaa|2017|Jäte|791.810487418617
Vantaa|2017|Lämpöpumput|0
PKS|1990|Kivihiili|5594.25183755724
PKS|1990|Maakaasu|1141.07454143077
PKS|1990|Öljy|279.832230997807
PKS|1990|Bio|1.42666525187681
PKS|1990|Jäte|0
PKS|1990|Lämpöpumput|0
PKS|2000|Kivihiili|3336.87457120537
PKS|2000|Maakaasu|3755.09777654167
PKS|2000|Öljy|97.2139896187628
PKS|2000|Bio|0
PKS|2000|Jäte|0
PKS|2000|Lämpöpumput|0
PKS|2001|Kivihiili|4238.4552141382
PKS|2001|Maakaasu|3769.93180011351
PKS|2001|Öljy|350.735539728572
PKS|2001|Bio|4.76701928927089
PKS|2001|Jäte|0
PKS|2001|Lämpöpumput|0
PKS|2002|Kivihiili|4531.37309477626
PKS|2002|Maakaasu|3915.41604581306
PKS|2002|Öljy|337.960473754365
PKS|2002|Bio|4.8746708664143
PKS|2002|Jäte|0
PKS|2002|Lämpöpumput|0
PKS|2003|Kivihiili|4808.79028865368
PKS|2003|Maakaasu|3869.32690037241
PKS|2003|Öljy|520.949582924345
PKS|2003|Bio|4.45006199938565
PKS|2003|Jäte|0
PKS|2003|Lämpöpumput|0
PKS|2004|Kivihiili|4075.5325771956
PKS|2004|Maakaasu|4192.22102524175
PKS|2004|Öljy|358.584217587937
PKS|2004|Bio|23.6510045572218
PKS|2004|Jäte|0
PKS|2004|Lämpöpumput|0
PKS|2005|Kivihiili|3668.66080955351
PKS|2005|Maakaasu|4377.77554101569
PKS|2005|Öljy|172.071240143663
PKS|2005|Bio|187.119000889458
PKS|2005|Jäte|0
PKS|2005|Lämpöpumput|0
PKS|2006|Kivihiili|4589.48542461027
PKS|2006|Maakaasu|4041.56807494234
PKS|2006|Öljy|425.984306075634
PKS|2006|Bio|120.751525134874
PKS|2006|Jäte|0
PKS|2006|Lämpöpumput|9
PKS|2007|Kivihiili|3965.44816915355
PKS|2007|Maakaasu|3836.97561971075
PKS|2007|Öljy|372.376838735997
PKS|2007|Bio|175.8463670505
PKS|2007|Jäte|0
PKS|2007|Lämpöpumput|49.7
PKS|2008|Kivihiili|3157.05628178729
PKS|2008|Maakaasu|4203.03504764146
PKS|2008|Öljy|161.845202469081
PKS|2008|Bio|215.538850722135
PKS|2008|Jäte|0
PKS|2008|Lämpöpumput|197.8437
PKS|2009|Kivihiili|3537.63164118321
PKS|2009|Maakaasu|4353.7356932209
PKS|2009|Öljy|582.122632404633
PKS|2009|Bio|176.022064078615
PKS|2009|Jäte|0
PKS|2009|Lämpöpumput|183.437
PKS|2010|Kivihiili|3406.64112823938
PKS|2010|Maakaasu|5516.35899827779
PKS|2010|Öljy|451.62875570402
PKS|2010|Bio|23.5865008796037
PKS|2010|Jäte|0
PKS|2010|Lämpöpumput|165.2261
PKS|2011|Kivihiili|3475.17898915891
PKS|2011|Maakaasu|4450.8160986152
PKS|2011|Öljy|218.194523280982
PKS|2011|Bio|0
PKS|2011|Jäte|0
PKS|2011|Lämpöpumput|175.2666
PKS|2012|Kivihiili|4524.22469810115
PKS|2012|Maakaasu|4302.17859146689
PKS|2012|Öljy|261.917360794107
PKS|2012|Bio|1.08366136058704
PKS|2012|Jäte|0
PKS|2012|Lämpöpumput|314.023
PKS|2013|Kivihiili|4500.4053686598
PKS|2013|Maakaasu|3826.45151562929
PKS|2013|Öljy|120.319283349175
PKS|2013|Bio|1.72056283004358
PKS|2013|Jäte|0
PKS|2013|Lämpöpumput|300.630333333333
PKS|2014|Kivihiili|4258.91066713057
PKS|2014|Maakaasu|3605.22552958879
PKS|2014|Öljy|168.613463985804
PKS|2014|Bio|1.78172185024671
PKS|2014|Jäte|421.759658031211
PKS|2014|Lämpöpumput|388.356444444444
PKS|2015|Kivihiili|3839.55363432711
PKS|2015|Maakaasu|2733.40647840969
PKS|2015|Öljy|279.454344695762
PKS|2015|Bio|17.453115672107
PKS|2015|Jäte|650.870024656569
PKS|2015|Lämpöpumput|760.6163
PKS|2016|Kivihiili|4877.07532482539
PKS|2016|Maakaasu|2393.06278509095
PKS|2016|Öljy|219.169503899367
PKS|2016|Bio|138.89530224094
PKS|2016|Jäte|609.821887400903
PKS|2016|Lämpöpumput|864.825
PKS|2017|Kivihiili|5159.64581378014
PKS|2017|Maakaasu|2016.478195917
PKS|2017|Öljy|145.058348373943
PKS|2017|Bio|325.837583616372
PKS|2017|Jäte|791.810487418617
PKS|2017|Lämpöpumput|1159.133
Kauniainen|1990|Kivihiili|698.590418335677
Kauniainen|1990|Maakaasu|413.89959678489
Kauniainen|1990|Öljy|36.7395389553545
Kauniainen|1990|Bio|1.42666525187681
Kauniainen|1990|Jäte|0
Kauniainen|1990|Lämpöpumput|0
Kauniainen|2000|Kivihiili|866.631442124276
Kauniainen|2000|Maakaasu|526.560873748713
Kauniainen|2000|Öljy|18.6065880022733
Kauniainen|2000|Bio|0
Kauniainen|2000|Jäte|0
Kauniainen|2000|Lämpöpumput|0
Kauniainen|2001|Kivihiili|899.984807470558
Kauniainen|2001|Maakaasu|575.10836657152
Kauniainen|2001|Öljy|137.368856921419
Kauniainen|2001|Bio|0
Kauniainen|2001|Jäte|0
Kauniainen|2001|Lämpöpumput|0
Kauniainen|2002|Kivihiili|945.677288014032
Kauniainen|2002|Maakaasu|660.316962734279
Kauniainen|2002|Öljy|112.955657594991
Kauniainen|2002|Bio|0.58968982821361
Kauniainen|2002|Jäte|0
Kauniainen|2002|Lämpöpumput|0
Kauniainen|2003|Kivihiili|1040.22026466093
Kauniainen|2003|Maakaasu|627.161318274545
Kauniainen|2003|Öljy|168.602864365573
Kauniainen|2003|Bio|0
Kauniainen|2003|Jäte|0
Kauniainen|2003|Lämpöpumput|0
Kauniainen|2004|Kivihiili|865.565152788219
Kauniainen|2004|Maakaasu|706.084279937302
Kauniainen|2004|Öljy|197.937895441986
Kauniainen|2004|Bio|19.3
Kauniainen|2004|Jäte|0
Kauniainen|2004|Lämpöpumput|0
Kauniainen|2005|Kivihiili|844.141907315749
Kauniainen|2005|Maakaasu|786.117565374608
Kauniainen|2005|Öljy|37.4687040762568
Kauniainen|2005|Bio|183
Kauniainen|2005|Jäte|0
Kauniainen|2005|Lämpöpumput|0
Kauniainen|2006|Kivihiili|883.152490674995
Kauniainen|2006|Maakaasu|825.074326876373
Kauniainen|2006|Öljy|76.0014821891667
Kauniainen|2006|Bio|117.531738684914
Kauniainen|2006|Jäte|0
Kauniainen|2006|Lämpöpumput|0
Kauniainen|2007|Kivihiili|898.481031463253
Kauniainen|2007|Maakaasu|665.269587535479
Kauniainen|2007|Öljy|145.588888888889
Kauniainen|2007|Bio|173.6
Kauniainen|2007|Jäte|0
Kauniainen|2007|Lämpöpumput|0
Kauniainen|2008|Kivihiili|887.826043130307
Kauniainen|2008|Maakaasu|705.471824790763
Kauniainen|2008|Öljy|47.3900360437412
Kauniainen|2008|Bio|212.6
Kauniainen|2008|Jäte|0
Kauniainen|2008|Lämpöpumput|0
Kauniainen|2009|Kivihiili|639.340515930839
Kauniainen|2009|Maakaasu|984.250780324197
Kauniainen|2009|Öljy|209.539338789852
Kauniainen|2009|Bio|173.9
Kauniainen|2009|Jäte|0
Kauniainen|2009|Lämpöpumput|0
Kauniainen|2010|Kivihiili|392.073072139539
Kauniainen|2010|Maakaasu|1459.54859354402
Kauniainen|2010|Öljy|44.2393546265249
Kauniainen|2010|Bio|21.1
Kauniainen|2010|Jäte|0
Kauniainen|2010|Lämpöpumput|0
Kauniainen|2011|Kivihiili|654.351515415209
Kauniainen|2011|Maakaasu|1027.47452932073
Kauniainen|2011|Öljy|35.2574579651145
Kauniainen|2011|Bio|0
Kauniainen|2011|Jäte|0
Kauniainen|2011|Lämpöpumput|0
Kauniainen|2012|Kivihiili|1298.2030476124
Kauniainen|2012|Maakaasu|868.840709985144
Kauniainen|2012|Öljy|26.7488611111111
Kauniainen|2012|Bio|0
Kauniainen|2012|Jäte|0
Kauniainen|2012|Lämpöpumput|12.023
Kauniainen|2013|Kivihiili|1365.74664086634
Kauniainen|2013|Maakaasu|667.480651270796
Kauniainen|2013|Öljy|24.247554296456
Kauniainen|2013|Bio|0
Kauniainen|2013|Jäte|0
Kauniainen|2013|Lämpöpumput|14.6303333333333
Kauniainen|2014|Kivihiili|1402.57898152592
Kauniainen|2014|Maakaasu|554.568897071012
Kauniainen|2014|Öljy|18.0955833333333
Kauniainen|2014|Bio|0
Kauniainen|2014|Jäte|0
Kauniainen|2014|Lämpöpumput|14.3564444444444
Kauniainen|2015|Kivihiili|1302.92548054043
Kauniainen|2015|Maakaasu|296.277576864906
Kauniainen|2015|Öljy|90.2243136538889
Kauniainen|2015|Bio|5.73878
Kauniainen|2015|Jäte|0
Kauniainen|2015|Lämpöpumput|338.6045
Kauniainen|2016|Kivihiili|1212.1169579829
Kauniainen|2016|Maakaasu|570.430158307745
Kauniainen|2016|Öljy|26.1111111111111
Kauniainen|2016|Bio|61.6666666666667
Kauniainen|2016|Jäte|0
Kauniainen|2016|Lämpöpumput|374.321
Kauniainen|2017|Kivihiili|1252.04579634648
Kauniainen|2017|Maakaasu|367.762547566015
Kauniainen|2017|Öljy|12.5775
Kauniainen|2017|Bio|220.833333333333
Kauniainen|2017|Jäte|0
Kauniainen|2017|Lämpöpumput|393.724
</t2b>
</t2b>
}}


This code creates technical ovariables emissionLocations and heatingShares that are needed to run the [[Building model]] and its ovariables buildings and heatingEnergy.
=== Emission locations ===
 
<rcode name="emissionLocations" label="Initiate emissionLocations (developers only)" embed=1>


## This code is Op_en7311/emissionLocations [[Helsinki energy production]]
'''Emission locations per plant.
 
The values of emission sites are based on [[Building stock in Helsinki#Locations of city areas|locations of city areas]].
library(OpasnetUtils)
 
emissionLocations <- Ovariable("emissionLocations", ddata = "Op_en7311", subset = "Emission locations")
colnames(emissionLocations@data) <- gsub("[ \\.]", "_", colnames(emissionLocations@data))
emissionLocations@data$emissionLocationsResult <- 1
 
heatingShares <- 1 # This is already in the Basel data.
 
objects.store(emissionLocations, heatingShares)
cat("Objects emissionsLocations, heatingShares stored.\n")
 
</rcode>
 
'''Emission locations per plant


<t2b name="Emission locations per plant" index="Plant,Emission site" obs="Emission height" unit="-" desc="Description">
<t2b name="Emission locations per plant" index="Plant,Emission site" obs="Emission height" unit="-" desc="Description">
Air conditioning|010| |
Biofuel heat plants|010|Low|
CHP diesel generators|010|Ground|
CHP diesel generators|010|Ground|
Deep-drill heat|010| |
Deep-drill heat|010| |
Hanasaari|010|High|
Hanasaari|010|High|
Hanasaari biofuel renovation|010|High|
Household air heat pumps|010| |
Household heat pumps|010| |
Household air conditioning|010| |
Household geothermal heat|010| |
Household solar|010| |
Katri Vala cooling|010| |
Katri Vala cooling|010| |
Katri Vala heat|010| |
Katri Vala heat|010| |
Line 231: Line 863:
Loviisa nuclear heat|010| |
Loviisa nuclear heat|010| |
Neste oil refinery heat|010|High|
Neste oil refinery heat|010|High|
Powerplant museum in Vanhakaupunki|010| |
Salmisaari A&B|010|High|
Salmisaari A&B|010|High|
Salmisaari biofuel renovation|010|High|
Sea heat pump|010| |
Sea heat pump|010| |
Smaller heat plants around Helsinki|010|Low|
Sea heat pump for cooling|010| |
Small-scale wood burning|010|Ground|
Small-scale wood burning|010|Ground|
Small gas heat plants|010|Low|
Small fuel oil heat plants|010|Low|
Suvilahti power storage|010| |
Suvilahti power storage|010| |
Suvilahti solar|010| |
Suvilahti solar|010| |
Unidentified|At site of consumption|Ground|
Vanhakaupunki museum|010|High|
Vuosaari A&B|010|High|
Vuosaari A|010|High|
Vuosaari B|010|High|
Vuosaari C biofuel|010|High|
Vuosaari C biofuel|010|High|
Wind mills|010| |
Wind mills|010| |
Data center heat|010| |
Unidentified|At site of consumption|Ground|
</t2b>
</t2b>
This R code creates an ovariable for emission locations per plant.


<rcode name="emissionLocationsPerPlant" label="Initiate emissionLocations per plant (for developers only)" embed=1 store=1>
<rcode name="emissionLocationsPerPlant" label="Initiate emissionLocations per plant (for developers only)" embed=1 store=1>
Line 258: Line 895:
</rcode>
</rcode>


==== Production and emission statistics ====
<noinclude>
===Data not used===
 
This data is not used in the model's calculations, but is important enough to be kept on the page.
 
Emission location and height by heating type. The values of emission sites are based on [[Building stock in Helsinki#Locations of city areas|locations of city areas]].
 
<t2b name='Emission locations' index='Heating,Emission_site,Emission_height' obs='Dummy' unit='-'>
District|010|High|
Electricity|010|High|
Geothermal|010|High|
Oil|At site of consumption|Ground|
Wood|At site of consumption|Ground|
Gas|At site of consumption|Ground|
Coal|At site of consumption|Ground|
</t2b>
 
This code creates technical ovariables emissionLocations and heatingShares that are needed to run the [[Building model]] and its ovariables buildings and heatingEnergy.
 
<rcode name="emissionLocations" label="Initiate emissionLocations (developers only)" embed=1>
 
## This code is Op_en7311/emissionLocations [[Helsinki energy production]]
 
library(OpasnetUtils)
 
emissionLocations <- Ovariable("emissionLocations", ddata = "Op_en7311", subset = "Emission locations")
colnames(emissionLocations@data) <- gsub("[ \\.]", "_", colnames(emissionLocations@data))
emissionLocations@data$emissionLocationsResult <- 1


heatingShares <- 1 # This is already in the Basel data.
objects.store(emissionLocations, heatingShares)
cat("Objects emissionsLocations, heatingShares stored.\n")
</rcode>
{| {{prettytable}}
|+'''Energy production of smaller heating plants
! Plant !! Min (MW) !! Max (MW) !! Fuel !! Description
|---
| Hanasaari back up plant || 0 || 280 || heavy fuel oil ||
|---
| Salmisaari back up plant || 0 || 120 || heavy fuel oil ||
|---
| Vuosaari back up plant || 0 || 120 || light fuel oil ||
|---
| Lassila || 0 || 420 || heavy fuel oil and gas ||
|---
| Munkkisaari || 0 || 235 || heavy and light fuel oil ||
|---
| Myllypuro || 0 || 240 || light fuel oil ||
|---
| Patola || 0 || 240 || heavy fuel oil and gas ||
|---
| Ruskeasuo || 0 || 272 || heavy and light fuel oil ||
|---
| Alppila || 0 || 180 || light fuel oil ||
|---
| Jakomäki || 0 || 62 || heavy fuel oil ||
|}


{| {{prettytable}}
{| {{prettytable}}
Line 270: Line 965:
| District cooling || 116
| District cooling || 116
|}
|}
=== Dependencies ===
=== Calculations ===
<rcode name="initiate" label="Initiate objects (developers only)" embed=1>
library(OpasnetUtils)
emissionLocations <- Ovariable("emissionLocations", ddata = "Op_en7311/Emission_locations")
result(emissionLocations) <- 1
objects.store(
emissionLocations
)
cat("Objects
emissionLocations
stored.\n")
</rcode>


==See also==
==See also==


{{Helsinki energy decision 2015}}
{{Helsinki energy decision 2015}}
* The model for small-scale energy production in Helsinki Metropolitan area is made by [[Gabi 4.3 - life cycle assessment software]]. It is a versatile program which can be used for life cycle assessment, cost analysis, efficiency analysis, Global Reporting Initiative-reports (GRI) and companies annual reports.
* The model for small-scale energy production in Helsinki Metropolitan area is made by [[Gabi 4.3 - life cycle assessment software]]. It is a versatile program which can be used for life cycle assessment, cost analysis, efficiency analysis, Global Reporting Initiative-reports (GRI) and companies annual reports.
* [http://yle.fi/uutiset/pohjoismaiden_suurin_sahkovarasto_nousee_helsinkiin__toimintaperiaate_kuin_kannykan_akulla/8096971 Pohjoismaiden suurin sähkövarasto nousee Helsinkiin - toimintaperiaate kuin kännykän akulla] YLE 23.6.2015
* [http://yle.fi/uutiset/pohjoismaiden_suurin_sahkovarasto_nousee_helsinkiin__toimintaperiaate_kuin_kannykan_akulla/8096971 Pohjoismaiden suurin sähkövarasto nousee Helsinkiin - toimintaperiaate kuin kännykän akulla] YLE 23.6.2015
Useful sources about heat pumps:
* [https://www.helen.fi/kotitalouksille/neuvoa-ja-tietoa/tietoa-meista/energiantuotanto/voimalaitokset/katri-vala/ Katri Vala heat pumps in Helsinki]
* [http://publications.lib.chalmers.se/records/fulltext/122866.pdf Absorption heat pumps in Sweden]
* [http://www.energygroove.net/technologies/heat-pumps/ EnergyGroove: heat pumps]
* [http://www.industrialheatpumps.nl/en/how_it_works/absorption_heat_pump/ Industrial heat pumps]


==Keywords==
==Keywords==
Line 300: Line 984:


<references/>
<references/>
</noinclude>

Latest revision as of 07:41, 10 April 2019




Question

What is the amount of energy produced (including distributed production) in Helsinki? Where is it produced (-> emissions)? Which processes are used in its production?

Answer

Energy production capacity in Helsinki. The different scenarios are based on Helsinki energy decision 2015.

This code is used to fetch the ovariables on this page for modelling.

+ Show code

Rationale

This page contains data about the heat plants in Helsinki. It tells, how much and what type of energy a plant produces per unit of fuel, how much the plants cost and the locations of the power plant emissions. This data is then further used in the model.

Amount produced is determined largely by the energy balance in Helsinki and Helsinki energy consumption. The maximum energy produced and fuels used by of all Helen's power plants can be found here: https://www.helen.fi/kotitalouksille/neuvoa-ja-tietoa/tietoa-meista/energiantuotanto/voimalaitokset/

Energy processes

Heat, power and cooling processes(MJ /MJ)
ObsPlantBurnerElectricityElectricity_taxedHeatCoolingCoalGasFuel oilBiofuelDescription
1Biofuel heat plantsLarge fluidized bed000.85-0.910000-1
2CHP diesel generatorsDiesel engine0.300.3-0.5000-10Efficiency not known well in practice
3Data center heatNone0-0.27 - -0.23100000Same as Neste without transport of heat
4Deep-drill heatNone0-0.4 - -0.1100000Experimental technology
5HanasaariLarge fluidized bed0.3100.600-1000Assume 91 % efficiency. Capacity: electricity 220 MW heat 420 MW Loss 64 MW
6Household air heat pumpsNone0-0.7 - -0.2100000The efficiency of heat pumps is largely dependent on outside air temperature, it's feasible for a household air heat pump to reach COP 5 at 10 °C and COP 1.5 at -25 °C.
7Household air conditioningNone0-0.7 - -0.2010000
8Household geothermal heatNone0-0.36 - -0.31100000Motiva 2014
9Katri Vala coolingNone0-0.36 - -0.31010000District cooling produced by absorption (?) heat pumps. Same as heat pumps for heating, Motiva 2014.
10Katri Vala heatNone0-0.36 - -0.31100000Heat from cleaned waste water and district heating network's returning water. Motiva 2014
11Kellosaari back-up plantLarge fluidized bed0.3 - 0.500000-10Only produces electric power
12Kymijoki River's plantsNone10000000Hydropower
13Loviisa nuclear heatNone0-0.4 - -0.1100000Assumes that for each MWh heat produced, 0.1-0.2 MWh electricity is lost in either production or when heat is pumped to Helsinki.
14Neste oil refinery heatNone0-0.31 - -0.27100000Motiva 2014
15Salmisaari A&BLarge fluidized bed0.3200.590-1000Capacity: electricity 160 MW heat 300 MW loss 46 MW
16Sea heat pumpNone0-0.36 - -0.31100000Motiva 2014
17Sea heat pump for coolingNone0-0.36 - -0.31010000Assuming the same as for heating
18Small-scale wood burningHousehold000.5 - 0.90000-1
19Small gas heat plantsLarge fluidized bed000.9100-100
20Small fuel oil heat plantsLarge fluidized bed000.91000-10
21Suvilahti power storageNone10000000
22Suvilahti solarNone10000000
23Vanhakaupunki museumNone10000000Hydropower
24Vuosaari ALarge fluidized bed0.45500.45500-100Capacity: electricity 160 MW heat 160 MW loss 30 MW
25Vuosaari BLarge fluidized bed0.500.4100-100Capacity: electricity 500 MW heat 424 MW loss 90 MW
26Vuosaari C biofuelLarge fluidized bed0.4700.440000-1
27Wind millsNone10000000

Notes about the data in the table:

  • Household air heat pumps data from heat pump comparison[1]
  • Household geothermal heat data from Energy Department of the United States: Geothermal Heat Pumps[2]
  • Small-scale wood burning data from Energy Department of the United States: Wood and Pellet Heating[3]
  • Loss of thermal energy through distribution is around 10 %. From Norwegian Water Resources and Energy Directorate: Energy in Norway.[4]
  • Sustainable Energy Technology at Work: Use of waste heat from refining industry, Sweden.[5]
  • Chalmers University of Technology: Towards a Sustainable Oil Refinery, Pre-study for larger co-operation projects[6]
  • CHP diesel generators are regular diesel generators, but they are located in apartment houses and operated centrally. This way, it is possible to produce electricity when needed and use the excess heat, instead of district heat, to warm up the hot water of the house.
  • Motiva estimates for heat pumps processes and costs for heating:[7]
    • Mechanical heat pumps usually have COP (coefficient of performance, thermal output energy per electric input energy needed) is 2.5 - 7.5.
    • In district heating, mechanical heat pumps have typically COP around 3.
    • Absorption heat pumps have COP typically 1.5 - 1.8. They do not use much electricity but they need either hot water or steam to operate. Therefore, they are not suitable for producing district heat from warm water with temperatures in the range of 25 - 30 °C (Neste) or 10-15 °C (sea heat).
    • The report uses these values for energy prices (€/MWh): bought electricity 50, process steam 25, wood chip 20, district heating 40, own excess heat 0.
    • The investment cost of a heat pump system (ominaiskustannus) in the cases described in this report were 0.47-0.73 M€/MWth for mechanical heat pumps and 0.072 - 0.102 M€/MWth for absorption heat pumps. These values do not include the pipelines needed, which may vary a lot; in these cases the pipeline costs were 0.1 - 2.5 times the cost of the heat pump.
    • The energy efficiency is theoretically COP = Tout / (Tout - Tin), and the actual COP values are typically 65 - 75 % of that. If we assume that we want 95 °C district heat out, we get
      • for sea heat pumps: COP = 368 K / (368 K - 283 K) = 4.3 ideally and in practice 2.8 - 3.2. Electricity needed per 1 MWh output: 0.31 - 0.36 MWh.
      • Neste process heat: COP = 368 K / (368 K - 303 K) = 5.7 ideally and in practice 3.7 - 4.2. Electricity needed per 1 MWh output: 0.23 - 0.27 MWh (plus what is needed for pumping the heat for 25 km, say + 0.04 MWh)

+ Show code

Plant specifications

These equations below aim to reflect the energy production facilities and capabilities. The min and max values tell about the range of energy production of the plant, and the cost values tell the costs of building and running the powerplant.

Note! Maintenance cost only contains costs that do not depend on activity. Operational cost contains costs that depend on activity but NOT fuel price; those are calculated separately based on energy produced.

Plant parameters(MW,MW,M€,M€ /a,€ /MWh)
ObsYears_activePlantMinMaxInvestment costManagement costOperation costDescription
12017-2070Biofuel heat plants0100-300360104-12biofuels (pellets, wood chips and possibly biochar)
22025-2070CHP diesel generators0144114411Assuming all of Helsinki's apartment houses were fitted with 100 kW generators.
32025-2080Deep-drill heat0300300-9009.640Investment cost from ETSAP
41965-2040Hanasaari064009.6895% coal, 5% pellets. Assume cost of running and maintenance in coal plants 15€/kW (Sähköenergian kustannusrakenne)
52010-2060Household air heat pumps0112200-300105Assuming all of Helsinki's detached and row houses were fitted with air heat pumps
62010-2060Household air conditioning067150-200105
72016-2060Household geothermal heat0335380-450105Assuming all of Helsinki's detached and row houses were fitted with geothermal heat pumps
82020-2035Household solar0105220-25055Assuming 700000 m2 suitable for solar panels.
92010-2070Katri Vala cooling0600103waste water. Max from Helen
102005-2065Katri Vala heat0900103waste water. Max from Helen
111980-2050Kellosaari back-up plant012001020oil
121980-2070Kymijoki River's plants0600101-4hydropower
132022-2080Loviisa nuclear heat01800-2600400-4000105Investment cost includes energy tunnel (double of Neste) but NOT building cost of plant. Some estimate for typical district heat pipes on ground is 2 M€/km; this is clearly a minimum for this project.
142020-2060Neste oil refinery heat0300200-500105
151975-2050Salmisaari A&B050607.6895% coal, 5% pellets
162020-2070Sea heat pump0225280104
172020-2070Sea heat pump for cooling0225280104
181980-2070Small-scale wood burning7878010Assuming 70% of Helsinki's detached and row houses have a working fireplace. Operation costs for consumer assumed to be 0.
191980-2070Small gas heat plants0600055
201980-2070Small fuel oil heat plants01600055
212015-2040Suvilahti power storage-1.21.2100105electricity storage 0.6 MWh
222013-2070Suvilahti solar00.340105
231880-2070Vanhakaupunki museum00.20100water
241991-2070Vuosaari A0320055natural gas
251998-2070Vuosaari B0924055natural gas
262018-2070Vuosaari C biofuel0133165010980-100% biofuels, rest coal
272017-2060Wind mills010120.07-0.157-13upper limit from EWEA-report: The economics of wind energy
282016-2070Data center heat015070.5-109.550Investment cost 0.47-0.73 M€/MWth based on Motiva 2014. Cooling is needed anyway, so assumes operation costs to be 0.

Notes:

  • Neste excess heat in Opasnet
  • Helens’s windpower [8]
  • Suvilahti solar [9]
  • Loviisan sanomat: Loviisan ydinvoimalan tehoja aiotaan nostaa 52 megawattia. [10]
  • Loviisa 3 periaatepäätös [11]
  • Sähköenergian kustannusrakenne [12]
  • European Wind Energy Association (EWEA): The economics of wind energy [13]
  • Operation costs (€/MWh) of nuclear, wind, coal, and wood based biomass [14]
  • Sea heat capacity and cost estimated using case Drammen. [15] [16][17]
  • Cost of household solar estimated using [1] and [2]
  • Deep drill heat
    • Energy Technology Systems Analysis Programme (ETSAP)[18]
  • Small heat plants' capacities [19]

+ Show code


Non-adjustable energy production(MW)
ObsPlantBurnerFuel201520252035204520552065
1Suvilahti solarNoneElectricity5510101010
2Wind millsNoneElectricity5510101010

+ Show code

Fuel availability

Wood

The byproducts of forest industry make up the bulk of fuel wood, and its quantity is almost completely dependent of the production of the forest industry's main products. Therefore it makes sense to calculate the amount of fuel wood usable in the future using the predictions about the volume of forest industry's production in coming years.

For example, the maximum potential production of woodchips is calibrated so, that it will reach 25 TWh in year 2020, and it is expected slowly increase to 33 TWh by year 2050. The production potential for firewood (for small scale heating) is expected to remain about the same at just under 60 PJ. The import of wood fuels is estimated to be 3 TWh at most. [20]

Fuel use by heating type

Helsinki-specific data about connections between Heating and fuel usage. Generic data should be taken from Energy balance. Because all Helsinki-specific data is given in the energyProcess table, this only contains dummy data.

Fuel use by heating type(-)
ObsHeatingBurnerFuelFractionDescription
1DummyNoneCoal0

This R code creates an ovariable for calculating the shares of different fuels used in heating processes.

+ Show code

Fuel data from HSY

Data downloaded from [3] on 27 Nov 2018.



Emission locations

Emission locations per plant. The values of emission sites are based on locations of city areas.

Emission locations per plant(-)
ObsPlantEmission siteEmission heightDescription
1Biofuel heat plants010Low
2CHP diesel generators010Ground
3Deep-drill heat010
4Hanasaari010High
5Household air heat pumps010
6Household air conditioning010
7Household geothermal heat010
8Household solar010
9Katri Vala cooling010
10Katri Vala heat010
11Kellosaari back-up plant010High
12Kymijoki River's plants010
13Loviisa nuclear heat010
14Neste oil refinery heat010High
15Salmisaari A&B010High
16Sea heat pump010
17Sea heat pump for cooling010
18Small-scale wood burning010Ground
19Small gas heat plants010Low
20Small fuel oil heat plants010Low
21Suvilahti power storage010
22Suvilahti solar010
23Vanhakaupunki museum010High
24Vuosaari A010High
25Vuosaari B010High
26Vuosaari C biofuel010High
27Wind mills010
28Data center heat010
29UnidentifiedAt site of consumptionGround

This R code creates an ovariable for emission locations per plant.

+ Show code


Data not used

This data is not used in the model's calculations, but is important enough to be kept on the page.

Emission location and height by heating type. The values of emission sites are based on locations of city areas.

Emission locations(-)
ObsHeatingEmission_siteEmission_heightDummy
1District010High
2Electricity010High
3Geothermal010High
4OilAt site of consumptionGround
5WoodAt site of consumptionGround
6GasAt site of consumptionGround
7CoalAt site of consumptionGround

This code creates technical ovariables emissionLocations and heatingShares that are needed to run the Building model and its ovariables buildings and heatingEnergy.

+ Show code

Energy production of smaller heating plants
Plant Min (MW) Max (MW) Fuel Description
Hanasaari back up plant 0 280 heavy fuel oil
Salmisaari back up plant 0 120 heavy fuel oil
Vuosaari back up plant 0 120 light fuel oil
Lassila 0 420 heavy fuel oil and gas
Munkkisaari 0 235 heavy and light fuel oil
Myllypuro 0 240 light fuel oil
Patola 0 240 heavy fuel oil and gas
Ruskeasuo 0 272 heavy and light fuel oil
Alppila 0 180 light fuel oil
Jakomäki 0 62 heavy fuel oil
Helsingin Energia energy sold in 2013 (GWh)[21]
Electricity 7145
District heat and steam 6807
District cooling 116

See also

Helsinki energy decision 2015
In English
Assessment Main page | Helsinki energy decision options 2015
Helsinki data Building stock in Helsinki | Helsinki energy production | Helsinki energy consumption | Energy use of buildings | Emission factors for burning processes | Prices of fuels in heat production | External cost
Models Building model | Energy balance | Health impact assessment | Economic impacts
Related assessments Climate change policies in Helsinki | Climate change policies and health in Kuopio | Climate change policies in Basel
In Finnish
Yhteenveto Helsingin energiapäätös 2015 | Helsingin energiapäätöksen vaihtoehdot 2015 | Helsingin energiapäätökseen liittyviä arvoja | Helsingin energiapäätös 2015.pptx

Useful sources about heat pumps:

Keywords

References

  1. Scanoffice.fi: VTT:n testiraportit - Ilmalämpöpumppuvertailu. http://www.scanoffice.fi/fi/tuotteet/tuoteryhmat/ilmalampopumput/raportit-ja-sertifikaatit/vttn-testiraportit
  2. Energy.gov: Geothermal heat pumps. U.S. department of energy. http://energy.gov/energysaver/geothermal-heat-pumps
  3. Energy.gov: Wood and pellet heating. U.S. department of energy http://energy.gov/energysaver/wood-and-pellet-heating
  4. Norwegian Water Resources and Energy Directorate: Energy in Norway, an brief annual presentation, 2009. http://www.nve.no/global/energi/analyser/energi%20i%20norge%20folder/energy%20in%20norway%202009%20edition.pdf
  5. Sustainable Energy Technology at Work -project: Use of waste heat from refining industry, Sweden. Preem AB, H Samuelsson. http://www.setatwork.eu/database/products/R179.htm
  6. Berntsson T, Persson Elmeroth L, Algehed J, Hektor E, Franck PÅ, Åsblad A, Johnsson F, Lyngfelt A, Gevert B, Richards T: Towards a Sustainable Oil Refinery - Pre-study for larger co-operation projects. Chalmers Energy Centre (CEC) Report 2008:1. Chalmers University of Technology. http://publications.lib.chalmers.se/records/fulltext/69752.pdf
  7. Ilkka Maaskola, Matti Kataikko: Ylijäämälämmön taloudellinen hyödyntäminen. Lämpöpumppu- ja ORC-sovellukset. Motiva, Helsinki, 2014. http://www.motiva.fi/files/10217/Ylijaamalammon_taloudellinen_hyodyntaminen_Lampopumppu-_ja_ORC-sovellukset.pdf
  8. Helen: Lisäämme tuulivoimalla tuotetun energian määrää. https://www.helen.fi/kotitalouksille/neuvoa-ja-tietoa/vastuullisuus/hiilineutraali-tulevaisuus/lisaa-tuulivoimaa/
  9. Helen: Aurinkovoiman tuotanto on käynnistynyt Suvilahdessa. 10.3.2015 https://www.helen.fi/uutiset/2015/aurinkovoiman-tuotanto-on-kaynnistynyt-helsingin-suvilahdessa/
  10. Loviisan sanomat: Loviisan ydinvoimalan tehoja aiotaan nostaa 52 megawattia. 13.1.2012 http://www.loviisansanomat.net/lue.php?id=5361
  11. Valtioneuvoston periaatepäätös Loviisa 3 -ydinvoimalasta. 6.5.2010 https://www.tem.fi/files/26809/PAP_FPH_LO3.pdf
  12. Lähdeaho Marika, Meskanen Jukka, Yrjänäinen Heli: Sähköenergian kustannusrakenne: vertailuna vesivoima, hiilivoima ja ydinvoima. Seminaarityö. Tampere university of technology. http://www.tut.fi/smg/tp/kurssit/SMG-4050/seminaarit07/sahkoenergian_kustannusrakenne.pdf
  13. Krohn S (editor), Morthorst PE, Awerbuch S: The Economics of Wind Energy. European Wind Energy Association (EWEA). March 2009 [http://www.ewea.org/fileadmin/files/library/publications/reports/Economics_of_Wind_Energy.pdf
  14. Vainio Tuukka: Sähkön tuotantokustannusvertailu. Aalto-yliopisto, Insinööritieteiden korkeakoulu, energiatekniikan laitos. 2011 https://aaltodoc.aalto.fi/bitstream/handle/123456789/4969/isbn9789526041353.pdf?sequence=1
  15. Hawkings, Will: An affordable district heating system in Norway. Heat Pupms Today. 10.3.2014 http://www.heatpumps.media/features/an-affjordable-district-heating-system-in-norway
  16. Kenneth Hoffmann MSc, David Forbes Pearson MInstR: Ammonia Heat Pumps for District Heating in Norway – a case study. The Institute of Refrigeration (IOR). 2011 http://www.ammonia21.com/web/assets/link/Hoffman7thApril2011London%20colour.pdf
  17. European Heat Pump Association: The World's Largest “Natural” District Heat Pump. 6.3.2015 http://www.ehpa.org/about/news/article/the-worlds-largest-natural-district-heat-pump/
  18. Lako, Paul: Geothermal heat and power. Energy technology systems analysis programme, IEA. 2010. http://www.etsap.org/E-techDS/PDF/E06-geoth_energy-GS-gct.pdf
  19. Helen Oy: Lämpölaitosten turvallisuustiedote. 17.6.2015 https://www.helen.fi/globalassets/ymparisto/turvallisuustiedote-lampolaitokset.pdf
  20. Lehtilä A, Koljonen T, Airaksinen M, Tuominen P, Järvi T, Laurikko J, Similä L, Grandell L: Energiajärjestelmien kehityspolut kohti vähähiilistä yhteiskuntaa. Low Carbon Finland 2050 -platform. VTT. 2014. http://en.opasnet.org/en-opwiki/images/d/d1/Low_Carbon_Finland_Platform.pdf
  21. Helsingin ympäristötilasto