Drinking water chlorination efficiency: Difference between revisions
(→Data) |
(→Answer) |
||
| (35 intermediate revisions by 3 users not shown) | |||
| Line 7: | Line 7: | ||
== Answer == | == Answer == | ||
{{argument|relat1=attack|id=arg2071|type=truth|content=Sapovirus missing|sign=--[[User:Päivi Meriläinen|Päivi Meriläinen]] ([[User talk:Päivi Meriläinen|talk]]) 14:14, 23 March 2020 (UTC)}} | |||
{| {{prettytable}} | {| {{prettytable}} | ||
| Line 15: | Line 17: | ||
| 8.837981871 | | 8.837981871 | ||
|---- | |---- | ||
| E.coli O157:H7 | | ''E.coli'' O157:H7 | ||
| 7.182699561 | | 7.182699561 | ||
|---- | |---- | ||
| Line 42: | Line 44: | ||
Pathogen sensitivity to chlorine: | Pathogen sensitivity to chlorine: | ||
<t2b index="Pathogen, | The rows tell which pathogen the ct-values on that row are for. | ||
E.coli O157:H7| 0.17| 0.34| 0.52| 1.06| 0 | The columns tell the ct-value required to decrease the amount of each pathogen in the drinking water to a certain level on the log-scale. Column 1 means pathogen concentration will drop to 10<sup>-1</sup> of the original, column 2 means the concentration will drop to 10<sup>-2</sup> and so on. | ||
<t2b index="Pathogen,Logdecrease" Locations="0,1,2,3,4,5,6" unit="(mg/l)*min"> | |||
campylobacter|0| 0.154| 0.294| 0.436| NA| NA| NA | |||
E.coli O157:H7|0| 0.17| 0.34| 0.52| 1.06| 2.06| NA | |||
rotavirus|0| 0.12| 0.16| 0.2| 0.3| NA| NA | |||
norovirus|0| 0.09| 0.18| 0.245| 0.314| NA| NA | |||
sapovirus|0| 0.09| 0.18| 0.245| 0.314| NA| NA | |||
cryptosporidium|0| NA| NA| NA| NA| NA| NA | |||
giardia|0| 75| 150| 216| NA| NA| NA | |||
</t2b> | </t2b> | ||
| Line 56: | Line 63: | ||
|---- | |---- | ||
| Campylobacter | | Campylobacter | ||
| <ref>Blaser, M. J., Smith, P. F., Wang, W.‐L. L. and Hoff, J. C. (1986). "Inactivation of Campylobacter jejuni by Chlorine and Monochloramine." Applied and Environmental Microbiology 51(2): 307‐311.</ref>; <ref>Lund, V. (1996). "Evaluation of E. coli as an indicator for the presence of Campylobacter jejuni and Yersinia enterocolitica in chlorinated and untreated oligotrophic lake water." Water Research 30(6): 1528‐ 1534.</ref> | | <ref name="blaser">Blaser, M. J., Smith, P. F., Wang, W.‐L. L. and Hoff, J. C. (1986). "Inactivation of Campylobacter jejuni by Chlorine and Monochloramine." Applied and Environmental Microbiology 51(2): 307‐311.</ref>; <ref>Lund, V. (1996). "Evaluation of ''E. coli'' as an indicator for the presence of Campylobacter jejuni and Yersinia enterocolitica in chlorinated and untreated oligotrophic lake water." Water Research 30(6): 1528‐ 1534.</ref> | ||
|---- | |---- | ||
| E.coli O157:H7 | | ''E.coli'' O157:H7 | ||
| <ref> | | <ref name="blaser"/>, <ref name="petterson"> S. R. Petterson & T. A. Stenström 2015. Quantification of pathogen inactivation efficacy by free chlorine disinfection of drinking water for QMRA. J Water Health (2015) 13 (3): 625-644. [https://doi.org/10.2166/wh.2015.193] | ||
</ref> | |||
|---- | |---- | ||
| Rotavirus | | Rotavirus | ||
| <ref>Rice, E. W., Hoff, J. C. and III, F. W. S. (1982). "Inactivation of Giardia cysts by chlorine." Applied and Environmental Microbiology 43(1): 250‐251</ref> | | <ref name="rice">Rice, E. W., Hoff, J. C. and III, F. W. S. (1982). "Inactivation of Giardia cysts by chlorine." Applied and Environmental Microbiology 43(1): 250‐251</ref> | ||
|---- | |---- | ||
| Norovirus | | Norovirus | ||
| <ref>Keswick, B. H., Satterwhite, T. K., Johnson, P. C., DuPont, H. L., Secor, S. L., Bitsura, J. A., Gary, G. W. and Hoff, J. C. (1985). Inactivation of norwalk virus in drinking water by chlorine. Applied and Environmental Microbiology 50(2): 261-264.</ref> | |||
|---- | |||
| Sapovirus | |||
| <ref>Keswick, B. H., Satterwhite, T. K., Johnson, P. C., DuPont, H. L., Secor, S. L., Bitsura, J. A., Gary, G. W. and Hoff, J. C. (1985). Inactivation of norwalk virus in drinking water by chlorine. Applied and Environmental Microbiology 50(2): 261-264.</ref> | | <ref>Keswick, B. H., Satterwhite, T. K., Johnson, P. C., DuPont, H. L., Secor, S. L., Bitsura, J. A., Gary, G. W. and Hoff, J. C. (1985). Inactivation of norwalk virus in drinking water by chlorine. Applied and Environmental Microbiology 50(2): 261-264.</ref> | ||
|---- | |---- | ||
| Line 71: | Line 82: | ||
|---- | |---- | ||
| Giardia | | Giardia | ||
| <ref | | <ref name="rice"/> | ||
|---- | |---- | ||
|} | |} | ||
| Line 88: | Line 99: | ||
<rcode | <rcode | ||
name="dose" | |||
label="Initialize chlorine dose" | |||
> | > | ||
#This is code "Op_en7956/dose" on page [[Drinking water chlorination efficiency]] | #This is code "Op_en7956/dose" on page [[Drinking water chlorination efficiency]] | ||
library(OpasnetUtils) | |||
ChlorineDose = data.frame(ChlorineDoseResult = 0.5) | |||
ChlorineDose = Ovariable("ChlorineDose", data = ChlorineDose) | |||
objects.store(ChlorineDose) | |||
cat("Ovariable ChlorineDose saved.\n") | |||
oprint(ChlorineDose) | |||
</rcode> | |||
<rcode | |||
name="sensitivity" | |||
label="Initialize chlorine sensitivity" | |||
> | |||
#This is code "Op_en7956/sensitivity" on page [[Drinking water chlorination efficiency]] | |||
library(OpasnetUtils) | library(OpasnetUtils) | ||
ClSensitivity <- Ovariable("ClSensitivity", ddata = "Op_en7956", save=TRUE) | |||
objects.store(ClSensitivity) | |||
cat("Ovariable ClSensitivity saved.\n") | |||
oprint(ClSensitivity) | |||
</rcode> | |||
<rcode | |||
name="constants" | |||
label="Initialize cstr, mrt and k" | |||
> | |||
#This is code "Op_en7956/constants" on page [[Drinking water chlorination efficiency]] | |||
library(OpasnetUtils) | |||
Ncstr <- 6 # the number of continuously stirred tank reactors | |||
mrt <- 2 # mean residence time, the time water on average spends in each cstr | |||
k <- Ovariable("k", data = data.frame(kResult = 0.13)) # the rate at which chlorine concentration decreases | |||
objects.store(Ncstr, mrt, k) | |||
cat("Constants Ncstr, mrt and ovariable k saved.\n") | |||
</rcode> | </rcode> | ||
<rcode | <rcode | ||
name="CT" | |||
label="Initialize CT" | |||
> | > | ||
# This is code "Op_en7956/ | # This is code "Op_en7956/CT" on page [[Drinking water chlorination efficiency]] | ||
library(OpasnetUtils) | library(OpasnetUtils) | ||
library(reshape2) | library(reshape2) | ||
CT <- Ovariable( | |||
"CT", | |||
dependencies = data.frame( | |||
) | Name = c("ChlorineDose", "mrt", "Ncstr", "k"), | ||
Ident = c("Op_en7956/dose", "Op_en7956/constants", "Op_en7956/constants", "Op_en7956/constants")), | |||
formula = function(...){ | |||
# Produces a distribution of total time water spends in the contactor | |||
# from an exponential probability distribution with lambda = 1/mrt | |||
# 1000 iterations | |||
Times <- data.frame(Iter= 1:openv$N, Result = 0) | |||
for(i in 1:(Ncstr)) { | |||
Times$Result <- Times$Result + rexp(n=openv$N, rate= 1/mrt) | |||
} | |||
Times <- Ovariable(name="Times", output=Times) | |||
# Integral of concentration along Times: | |||
# Int(ChlorineDose*exp(-k*Times)) = ChlorineDose*(-1/k)*exp(-k*Times) | |||
# Definite integral from 0 to Times = ChlorineDose*(-1/k)*exp(-k*Times) - ChlorineDose(-1/k) = ChlorineDose/k (1-exp(-k*Times)) | |||
CT <- ChlorineDose/k * (1-exp(-1 * k * Times)) | |||
return(CT) | |||
} | } | ||
) | ) | ||
objects.store(CT) | |||
cat("Ovariable CT saved.\n") | |||
</rcode> | |||
<rcode | |||
name="efficiency" | |||
label="Initialize chlorination efficiency" | |||
> | |||
# This is code "Op_en7956/efficiency" on page [[Drinking water chlorination efficiency]] | |||
library(OpasnetUtils) | |||
library(reshape2) | |||
ChlorineEfficiency <- Ovariable("ChlorineEfficiency", dependencies = data.frame( | |||
Name = c("CT", "ClSensitivity"), | |||
Ident = c("Op_en7956/CT", "Op_en7956/sensitivity")), | |||
formula = function(...){ | |||
ClSensitivity <- EvalOutput(ClSensitivity) | |||
# make CT into an Ovariable, if it's not already | |||
if(!"ovariable" %in% class(CT)) CT <- Ovariable(name="CT", output=data.frame(Result=CT)) | |||
CT <- EvalOutput(CT) | |||
sensname <- paste0(ClSensitivity@name,"Result") # put "ClSensitivityResult" into sensname | |||
ctname <- paste0(CT@name,"Result") # put "CTResult" into ctname | |||
ova <- merge(ClSensitivity, CT) # merge to get the variables into the same table | |||
ova$Logdecrease <- as.numeric(as.character(ova$Logdecrease)) # make sure Logdecrease-column is numeric | |||
out <- aggregate( | |||
1:nrow(ova@output), #take a set of row numbers included in ova... | |||
by = ova@output[ova@marginal & colnames(ova@output)!="Logdecrease"], #...that has a unique combination of values in the | |||
# index-columns, except Logdecrease. It takes the row numbers with different values of Logdecrease, with the | |||
# combination of other indices unique. | |||
FUN = function(x) { | |||
tmp <- ova@output[x,] # actually takes those rows whose numbers were selected above from ova | |||
ord <- order(tmp$Logdecrease) # saves the order of rows ordered based on Logdecrease, smallest first. | |||
if(sum(tmp[[sensname]], na.rm=TRUE)==0) return(0) # if all the ct:s in this set of rows are 0, return 0 | |||
out <- approx( # Otherwise use approx to interpolate the log-decrease for the ct value(s) from earlier | |||
x=tmp[[sensname]][ord], | |||
y=tmp$Logdecrease[ord], | |||
xout=tmp[[ctname]][1], | |||
rule=1:2 | |||
)$y | |||
return(out) | |||
} | |||
) | |||
colnames(out)[colnames(out)=="x"] <- "Result" | |||
return(out) | |||
} | |||
) | |||
objects.store(ChlorineEfficiency) | |||
cat("Ovariable ChlorineEfficiency saved.\n") | |||
</rcode> | </rcode> | ||
Latest revision as of 14:14, 23 March 2020
| Moderator:Päivi Meriläinen (see all) |
|
|
| Upload data
|
Question
How does chlorination affect the concentrations of pathogens in drinking water, reported in log-decrese?
Answer
⇤--arg2071: . Sapovirus missing --Päivi Meriläinen (talk) 14:14, 23 March 2020 (UTC) (type: truth; paradigms: science: attack)
| Pathogen | Log-dercease |
| Campylobacter | 8.837981871 |
| E.coli O157:H7 | 7.182699561 |
| Rotavirus | 11.97117474 |
| Norovirus | 13.55252482 |
| Cryptosporidium | 0 |
| Giardia | 0.095329311 |
Rationale
Chloriantion efficiency, or chlorine's capacity to destroy microbes, depends on many factors: the form of the chlorine, temperature, retention period, pH and concentration as well as other chemicals in the water. In some circumstances it might efficiently kill all indicator organisms, but some active viruses, protists or their cysts may remain in the water. The meter to measure the efficiency of chlorination is kloorikokema ⇤--arg5411: . Someone else has to translate this --Heta (talk) 14:31, 4 July 2019 (UTC) (type: truth; paradigms: science: attack), which is the concentration multiplied by retention period, so called CT-value. The required CT-value depends on the temperature: the lower the temperature, the higher the CT-value has to be.
Data
Pathogen sensitivity to chlorine:
The rows tell which pathogen the ct-values on that row are for.
The columns tell the ct-value required to decrease the amount of each pathogen in the drinking water to a certain level on the log-scale. Column 1 means pathogen concentration will drop to 10-1 of the original, column 2 means the concentration will drop to 10-2 and so on.
| Obs | Pathogen | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|---|
| 1 | campylobacter | 0 | 0.154 | 0.294 | 0.436 | NA | NA | NA |
| 2 | E.coli O157:H7 | 0 | 0.17 | 0.34 | 0.52 | 1.06 | 2.06 | NA |
| 3 | rotavirus | 0 | 0.12 | 0.16 | 0.2 | 0.3 | NA | NA |
| 4 | norovirus | 0 | 0.09 | 0.18 | 0.245 | 0.314 | NA | NA |
| 5 | sapovirus | 0 | 0.09 | 0.18 | 0.245 | 0.314 | NA | NA |
| 6 | cryptosporidium | 0 | NA | NA | NA | NA | NA | NA |
| 7 | giardia | 0 | 75 | 150 | 216 | NA | NA | NA |
| Pathogen | Reference |
| Campylobacter | [2]; [3] |
| E.coli O157:H7 | [2], [4] |
| Rotavirus | [5] |
| Norovirus | [6] |
| Sapovirus | [7] |
| Cryptosporidium | [8] |
| Giardia | [5] |
Causality
Unit
logarithmic decrease
Calculations
CT-value = Chlorine residue concentration (mg/l)* time (min)
See also
References
- ↑ Valve, M ja Isomäki, E. 2007. Klooraus - Tuttu ja turvallinen? Vesitalous 4/2007.
- ↑ 2.0 2.1 Blaser, M. J., Smith, P. F., Wang, W.‐L. L. and Hoff, J. C. (1986). "Inactivation of Campylobacter jejuni by Chlorine and Monochloramine." Applied and Environmental Microbiology 51(2): 307‐311.
- ↑ Lund, V. (1996). "Evaluation of E. coli as an indicator for the presence of Campylobacter jejuni and Yersinia enterocolitica in chlorinated and untreated oligotrophic lake water." Water Research 30(6): 1528‐ 1534.
- ↑ S. R. Petterson & T. A. Stenström 2015. Quantification of pathogen inactivation efficacy by free chlorine disinfection of drinking water for QMRA. J Water Health (2015) 13 (3): 625-644. [1]
- ↑ 5.0 5.1 Rice, E. W., Hoff, J. C. and III, F. W. S. (1982). "Inactivation of Giardia cysts by chlorine." Applied and Environmental Microbiology 43(1): 250‐251
- ↑ Keswick, B. H., Satterwhite, T. K., Johnson, P. C., DuPont, H. L., Secor, S. L., Bitsura, J. A., Gary, G. W. and Hoff, J. C. (1985). Inactivation of norwalk virus in drinking water by chlorine. Applied and Environmental Microbiology 50(2): 261-264.
- ↑ Keswick, B. H., Satterwhite, T. K., Johnson, P. C., DuPont, H. L., Secor, S. L., Bitsura, J. A., Gary, G. W. and Hoff, J. C. (1985). Inactivation of norwalk virus in drinking water by chlorine. Applied and Environmental Microbiology 50(2): 261-264.
- ↑ Benito Corona-Vasquez, Amy Samuelson, Jason L. Rennecker and Benito J. Mariñas (2002): Inactivation of Cryptosporidium parvum oocysts with ozone and free chlorine. Water Research 36, 4053-4063
|
|

