Disease risk: Difference between revisions

From Opasnet
Jump to navigation Jump to search
(→‎Calculations: triangular to normal distribution)
 
(9 intermediate revisions by the same user not shown)
Line 37: Line 37:
===Data===
===Data===


==== Goherr data from IHME ====
This is temporary data used because IHME database is down. Otherwise this is OK data but the age groups are wrong.
{{hidden
|
<t2b name="Goherr IHME" index="Location,Year,Age,Sex,Cause,Measure,Value,Lower" obs="Upper" unit="DALY">
Finland|2017|70+ years|Male|Ischemic heart disease|DALYs|56315.2751679953|52039.4175530624|61341.2067999029
Finland|2017|70+ years|Male|Breast cancer|DALYs|79.5125008547994|65.7423816474743|95.9723869500564
Finland|2017|70+ years|Male|Male infertility|DALYs|0|0|0
Finland|2017|70+ years|Male|Major depressive disorder|DALYs|1428.95241428931|973.154944650354|1965.01460302962
Finland|2017|70+ years|Female|Ischemic heart disease|DALYs|44695.727780164|40951.1264856603|49402.0724715572
Finland|2017|70+ years|Female|Breast cancer|DALYs|7307.95842859461|6495.79803708212|8289.58210032476
Finland|2017|70+ years|Female|Male infertility|DALYs|0|0|0
Finland|2017|70+ years|Female|Major depressive disorder|DALYs|3170.15462206651|2212.34454065649|4271.11690891755
Sweden|2017|70+ years|Male|Ischemic heart disease|DALYs|84813.2727063192|78488.7802601174|94342.3940640882
Sweden|2017|70+ years|Male|Breast cancer|DALYs|166.425451145263|143.842420064141|190.323295569784
Sweden|2017|70+ years|Male|Male infertility|DALYs|0|0|0
Sweden|2017|70+ years|Male|Major depressive disorder|DALYs|2776.96336665194|1883.43402071075|3844.83811585326
Sweden|2017|70+ years|Female|Ischemic heart disease|DALYs|66243.3017632682|60735.3522390338|73795.2100259806
Sweden|2017|70+ years|Female|Breast cancer|DALYs|14735.1837886885|13321.1902732261|16308.9362684012
Sweden|2017|70+ years|Female|Male infertility|DALYs|0|0|0
Sweden|2017|70+ years|Female|Major depressive disorder|DALYs|6473.84464110293|4372.26104767627|8821.87748679089
Denmark|2017|70+ years|Male|Ischemic heart disease|DALYs|32582.127899933|29783.6905112799|35839.0086187017
Denmark|2017|70+ years|Male|Breast cancer|DALYs|130.596378204639|107.924780754222|155.920222130995
Denmark|2017|70+ years|Male|Male infertility|DALYs|0|0|0
Denmark|2017|70+ years|Male|Major depressive disorder|DALYs|1066.05892620269|725.577404075283|1482.81231447922
Denmark|2017|70+ years|Female|Ischemic heart disease|DALYs|24090.9132487552|21989.677152409|26565.4514079687
Denmark|2017|70+ years|Female|Breast cancer|DALYs|10242.0078233568|9119.80489372234|11427.018587514
Denmark|2017|70+ years|Female|Male infertility|DALYs|0|0|0
Denmark|2017|70+ years|Female|Major depressive disorder|DALYs|2171.19978394934|1437.372134315|2990.45116223703
Estonia|2017|70+ years|Male|Ischemic heart disease|DALYs|14468.2575037341|12278.6173595973|19065.7939752037
Estonia|2017|70+ years|Male|Breast cancer|DALYs|13.9915147948632|11.2727498977976|17.2268209225218
Estonia|2017|70+ years|Male|Male infertility|DALYs|0|0|0
Estonia|2017|70+ years|Male|Major depressive disorder|DALYs|404.820723283056|268.484534476474|552.48618357069
Estonia|2017|70+ years|Female|Ischemic heart disease|DALYs|21287.8843781331|17417.4579274491|29647.6233887735
Estonia|2017|70+ years|Female|Breast cancer|DALYs|1499.20925222737|1244.75926523047|1811.1359220894
Estonia|2017|70+ years|Female|Male infertility|DALYs|0|0|0
Estonia|2017|70+ years|Female|Major depressive disorder|DALYs|1695.08052475147|1152.34126068759|2367.50790585401
Finland|2017|50-69 years|Male|Ischemic heart disease|DALYs|42276.5956099849|38357.8144003007|47482.370958431
Finland|2017|50-69 years|Male|Breast cancer|DALYs|85.4020580685615|70.0618057377157|103.914438376935
Finland|2017|50-69 years|Male|Male infertility|DALYs|0|0|0
Finland|2017|50-69 years|Male|Major depressive disorder|DALYs|3190.66750516571|2174.54597309043|4407.09165796333
Finland|2017|50-69 years|Female|Ischemic heart disease|DALYs|9151.64268177568|8120.35615665832|10335.0574654037
Finland|2017|50-69 years|Female|Breast cancer|DALYs|10949.5708224826|9639.19910363983|12400.1943791976
Finland|2017|50-69 years|Female|Male infertility|DALYs|0|0|0
Finland|2017|50-69 years|Female|Major depressive disorder|DALYs|5952.28149167875|4014.75910813902|8082.75060035307
Sweden|2017|50-69 years|Male|Ischemic heart disease|DALYs|46381.2915355143|42895.3155913912|50149.0969921018
Sweden|2017|50-69 years|Male|Breast cancer|DALYs|138.429419109987|120.573610857783|159.716966293469
Sweden|2017|50-69 years|Male|Male infertility|DALYs|0|0|0
Sweden|2017|50-69 years|Male|Major depressive disorder|DALYs|5564.10649957795|3774.79128645748|7704.14153993077
Sweden|2017|50-69 years|Female|Ischemic heart disease|DALYs|14670.3608398164|13160.9153559661|16176.2758647884
Sweden|2017|50-69 years|Female|Breast cancer|DALYs|18248.4394354961|16517.9364702388|20302.9834072412
Sweden|2017|50-69 years|Female|Male infertility|DALYs|0|0|0
Sweden|2017|50-69 years|Female|Major depressive disorder|DALYs|11589.8948100489|7876.40918409439|16145.1421058479
Denmark|2017|50-69 years|Male|Ischemic heart disease|DALYs|22096.2514806926|20074.9812036842|24509.6274297806
Denmark|2017|50-69 years|Male|Breast cancer|DALYs|129.843042512704|107.405626102942|154.990062169289
Denmark|2017|50-69 years|Male|Male infertility|DALYs|0|0|0
Denmark|2017|50-69 years|Male|Major depressive disorder|DALYs|2327.91236686164|1566.40514944963|3250.65401544039
Denmark|2017|50-69 years|Female|Ischemic heart disease|DALYs|6676.18685202032|5870.69427978746|7557.0354822643
Denmark|2017|50-69 years|Female|Breast cancer|DALYs|13616.0427914127|12052.8323377586|15358.4253745665
Denmark|2017|50-69 years|Female|Male infertility|DALYs|0|0|0
Denmark|2017|50-69 years|Female|Major depressive disorder|DALYs|4276.06113976365|2829.34783268566|5929.14221511685
Estonia|2017|50-69 years|Male|Ischemic heart disease|DALYs|13411.385994707|11065.1657683079|17133.7498839334
Estonia|2017|50-69 years|Male|Breast cancer|DALYs|21.0241213496356|16.7119870749367|27.3554075919703
Estonia|2017|50-69 years|Male|Male infertility|DALYs|0|0|0
Estonia|2017|50-69 years|Male|Major depressive disorder|DALYs|816.865242466261|548.38222836745|1145.38871022423
Estonia|2017|50-69 years|Female|Ischemic heart disease|DALYs|4144.34200290187|3303.84643620184|5523.53032628345
Estonia|2017|50-69 years|Female|Breast cancer|DALYs|2632.91853815089|2156.36536339054|3187.12586050396
Estonia|2017|50-69 years|Female|Male infertility|DALYs|0|0|0
Estonia|2017|50-69 years|Female|Major depressive disorder|DALYs|1887.28792016728|1243.4179405901|2663.46643599906
Finland|2017|15-49 years|Male|Ischemic heart disease|DALYs|4371.12829182068|3772.34266754555|5126.73061869348
Finland|2017|15-49 years|Male|Breast cancer|DALYs|16.2470612343585|13.4431459123292|19.6547217693856
Finland|2017|15-49 years|Male|Male infertility|DALYs|51.9975394298735|20.8958481322993|111.399655173724
Finland|2017|15-49 years|Male|Major depressive disorder|DALYs|7168.79085587972|4935.18840053274|9817.88686578686
Finland|2017|15-49 years|Female|Ischemic heart disease|DALYs|777.521660579127|654.222779373356|919.047276971295
Finland|2017|15-49 years|Female|Breast cancer|DALYs|2952.82488092842|2548.53759197005|3432.89762799478
Finland|2017|15-49 years|Female|Male infertility|DALYs|0|0|0
Finland|2017|15-49 years|Female|Major depressive disorder|DALYs|11845.1840388046|8059.512552842|16108.4069979906
Sweden|2017|15-49 years|Male|Ischemic heart disease|DALYs|6390.23902385725|5721.11008810619|7074.19961681548
Sweden|2017|15-49 years|Male|Breast cancer|DALYs|32.9566477433603|28.487636295462|38.333137930806
Sweden|2017|15-49 years|Male|Male infertility|DALYs|175.251628532079|73.2111086306143|367.325147605812
Sweden|2017|15-49 years|Male|Major depressive disorder|DALYs|12259.5665246884|8227.22079584067|16771.6562226033
Sweden|2017|15-49 years|Female|Ischemic heart disease|DALYs|1761.31810163589|1523.88800521899|2044.99756581175
Sweden|2017|15-49 years|Female|Breast cancer|DALYs|6562.93942398197|5845.48662842491|7393.76129490786
Sweden|2017|15-49 years|Female|Male infertility|DALYs|0|0|0
Sweden|2017|15-49 years|Female|Major depressive disorder|DALYs|23149.4555815204|15588.7292304234|31917.3334632912
Denmark|2017|15-49 years|Male|Ischemic heart disease|DALYs|3087.54782440886|2681.75182824144|3576.05936601009
Denmark|2017|15-49 years|Male|Breast cancer|DALYs|21.7271192198948|17.6438171995736|26.5335073839654
Denmark|2017|15-49 years|Male|Male infertility|DALYs|50.7909213036205|21.091263300572|107.50418333984
Denmark|2017|15-49 years|Male|Major depressive disorder|DALYs|4576.80448307599|3091.74660704673|6359.88141230732
Denmark|2017|15-49 years|Female|Ischemic heart disease|DALYs|708.929505164451|591.710074747954|835.40183408209
Denmark|2017|15-49 years|Female|Breast cancer|DALYs|3755.79556167266|3219.92222825708|4341.32283992948
Denmark|2017|15-49 years|Female|Male infertility|DALYs|0|0|0
Denmark|2017|15-49 years|Female|Major depressive disorder|DALYs|6783.13672181049|4666.10282936231|9336.80141971734
Estonia|2017|15-49 years|Male|Ischemic heart disease|DALYs|2025.57897224232|1573.16945245311|2574.3004955086
Estonia|2017|15-49 years|Male|Breast cancer|DALYs|6.12351207334238|4.68005012454053|8.02649693591355
Estonia|2017|15-49 years|Male|Male infertility|DALYs|35.1621911688859|14.6774923254009|72.2171832280172
Estonia|2017|15-49 years|Male|Major depressive disorder|DALYs|1202.31831942663|803.765818126241|1656.53575033105
Estonia|2017|15-49 years|Female|Ischemic heart disease|DALYs|346.673111522234|277.239180576975|432.02444008093
Estonia|2017|15-49 years|Female|Breast cancer|DALYs|864.30923397303|682.985709118727|1092.44325680511
Estonia|2017|15-49 years|Female|Male infertility|DALYs|0|0|0
Estonia|2017|15-49 years|Female|Major depressive disorder|DALYs|1627.31555869184|1099.29556724111|2271.75540111025
Finland|2017|15-49 years|Male|All causes|DALYs|207520.417986606|173800.459870437|246485.886492573
Finland|2017|15-49 years|Female|All causes|DALYs|179570.112766941|141696.388607952|223561.073482014
Sweden|2017|15-49 years|Male|All causes|DALYs|328999.874009797|269009.02778272|397534.051032743
Sweden|2017|15-49 years|Female|All causes|DALYs|337360.262638401|265987.028656637|419970.815044994
Denmark|2017|15-49 years|Male|All causes|DALYs|193274.681794909|158246.181525335|234051.24509321
Denmark|2017|15-49 years|Female|All causes|DALYs|190594.731341407|150901.921196675|237443.167655282
Estonia|2017|15-49 years|Male|All causes|DALYs|69026.686965026|58786.9765970678|80337.4437174382
Estonia|2017|15-49 years|Female|All causes|DALYs|45203.5533162381|35815.5251350863|55283.804477302
Finland|2017|50-69 years|Male|All causes|DALYs|319553.746559688|283600.533071296|363007.156188649
Finland|2017|50-69 years|Female|All causes|DALYs|227095.430231189|191948.034855314|266925.024609513
Sweden|2017|50-69 years|Male|All causes|DALYs|411896.345413221|358095.981854878|470932.059240055
Sweden|2017|50-69 years|Female|All causes|DALYs|358307.07644009|303651.782623776|422462.343652292
Denmark|2017|50-69 years|Male|All causes|DALYs|306525.500595414|269724.366774415|347072.617315533
Denmark|2017|50-69 years|Female|All causes|DALYs|249614.253675992|215496.006811696|288848.658620397
Estonia|2017|50-69 years|Male|All causes|DALYs|95590.2213561366|83973.1314955263|108501.32425046
Estonia|2017|50-69 years|Female|All causes|DALYs|65574.802626921|54971.5536727616|76859.8924171885
Finland|2017|70+ years|Male|All causes|DALYs|296163.511449765|271043.235542343|325942.434372211
Finland|2017|70+ years|Female|All causes|DALYs|323901.430063555|289291.161232524|360525.097921403
Sweden|2017|70+ years|Male|All causes|DALYs|521754.839865746|475866.923082829|573068.492503427
Sweden|2017|70+ years|Female|All causes|DALYs|553113.744537967|498776.385385165|612584.75317485
Denmark|2017|70+ years|Male|All causes|DALYs|301411.076878031|275069.907426085|329950.516220028
Denmark|2017|70+ years|Female|All causes|DALYs|311645.293827931|282687.607561216|344758.408912781
Estonia|2017|70+ years|Male|All causes|DALYs|61683.0064170076|55169.0392665845|68662.0565953199
Estonia|2017|70+ years|Female|All causes|DALYs|98562.5248095964|86395.6371440109|111761.042667796
Finland|2017|70+ years|Male|Ischemic heart disease|YLLs|53423.9737096138|49220.248497233|58589.2770589416
Finland|2017|70+ years|Male|Breast cancer|YLLs|69.0581851085494|57.1271065440948|83.268764723987
Finland|2017|70+ years|Male|Male infertility|YLLs|0|0|0
Finland|2017|70+ years|Male|Major depressive disorder|YLLs|0|0|0
Finland|2017|70+ years|Female|Ischemic heart disease|YLLs|42205.2336255192|38518.5123268345|46737.7280077635
Finland|2017|70+ years|Female|Breast cancer|YLLs|6179.25921126402|5477.90310062408|6946.75749694254
Finland|2017|70+ years|Female|Male infertility|YLLs|0|0|0
Finland|2017|70+ years|Female|Major depressive disorder|YLLs|0|0|0
Sweden|2017|70+ years|Male|Ischemic heart disease|YLLs|79149.1322439883|72787.710870278|88683.4828117565
Sweden|2017|70+ years|Male|Breast cancer|YLLs|144.188862195848|127.022587414152|163.526372791302
Sweden|2017|70+ years|Male|Male infertility|YLLs|0|0|0
Sweden|2017|70+ years|Male|Major depressive disorder|YLLs|0|0|0
Sweden|2017|70+ years|Female|Ischemic heart disease|YLLs|61434.6515681342|56224.6698333815|68660.9509116311
Sweden|2017|70+ years|Female|Breast cancer|YLLs|12513.7902204788|11436.1539789445|13762.7795043163
Sweden|2017|70+ years|Female|Male infertility|YLLs|0|0|0
Sweden|2017|70+ years|Female|Major depressive disorder|YLLs|0|0|0
Denmark|2017|70+ years|Male|Ischemic heart disease|YLLs|30693.0242745391|28085.5519240899|33872.6614361834
Denmark|2017|70+ years|Male|Breast cancer|YLLs|115.043244719455|94.8704639760747|138.091604214542
Denmark|2017|70+ years|Male|Male infertility|YLLs|0|0|0
Denmark|2017|70+ years|Male|Major depressive disorder|YLLs|0|0|0
Denmark|2017|70+ years|Female|Ischemic heart disease|YLLs|22732.5631468349|20644.0440003978|25117.4413037947
Denmark|2017|70+ years|Female|Breast cancer|YLLs|9139.77120985814|8151.21509685202|10241.9215210158
Denmark|2017|70+ years|Female|Male infertility|YLLs|0|0|0
Denmark|2017|70+ years|Female|Major depressive disorder|YLLs|0|0|0
Estonia|2017|70+ years|Male|Ischemic heart disease|YLLs|14017.1430501037|11814.6566885858|18614.8893083866
Estonia|2017|70+ years|Male|Breast cancer|YLLs|12.4487128642332|10.0750222691639|15.2810456269085
Estonia|2017|70+ years|Male|Male infertility|YLLs|0|0|0
Estonia|2017|70+ years|Male|Major depressive disorder|YLLs|0|0|0
Estonia|2017|70+ years|Female|Ischemic heart disease|YLLs|20413.9308627921|16571.7484433009|28679.603382899
Estonia|2017|70+ years|Female|Breast cancer|YLLs|1343.5103753416|1109.03083645215|1613.85825646017
Estonia|2017|70+ years|Female|Male infertility|YLLs|0|0|0
Estonia|2017|70+ years|Female|Major depressive disorder|YLLs|0|0|0
Finland|2017|50-69 years|Male|Ischemic heart disease|YLLs|40512.1136768105|36665.8377166374|45765.5408813692
Finland|2017|50-69 years|Male|Breast cancer|YLLs|77.6777813752824|64.0547572389397|94.165620829062
Finland|2017|50-69 years|Male|Male infertility|YLLs|0|0|0
Finland|2017|50-69 years|Male|Major depressive disorder|YLLs|0|0|0
Finland|2017|50-69 years|Female|Ischemic heart disease|YLLs|8126.45706819738|7122.14780469614|9298.5176977947
Finland|2017|50-69 years|Female|Breast cancer|YLLs|9347.41210641182|8308.39410044636|10463.5388045313
Finland|2017|50-69 years|Female|Male infertility|YLLs|0|0|0
Finland|2017|50-69 years|Female|Major depressive disorder|YLLs|0|0|0
Sweden|2017|50-69 years|Male|Ischemic heart disease|YLLs|43032.5702869828|39767.045072238|46705.7982325306
Sweden|2017|50-69 years|Male|Breast cancer|YLLs|125.812409143351|109.343392624597|143.984300598834
Sweden|2017|50-69 years|Male|Male infertility|YLLs|0|0|0
Sweden|2017|50-69 years|Male|Major depressive disorder|YLLs|0|0|0
Sweden|2017|50-69 years|Female|Ischemic heart disease|YLLs|12385.5387610602|11200.3130809116|13689.0182917353
Sweden|2017|50-69 years|Female|Breast cancer|YLLs|15654.400233543|14329.00962527|17120.6735776803
Sweden|2017|50-69 years|Female|Male infertility|YLLs|0|0|0
Sweden|2017|50-69 years|Female|Major depressive disorder|YLLs|0|0|0
Denmark|2017|50-69 years|Male|Ischemic heart disease|YLLs|20772.6305597539|18790.0572883847|23091.9835070747
Denmark|2017|50-69 years|Male|Breast cancer|YLLs|119.338982710696|98.6534316353537|143.24048598274
Denmark|2017|50-69 years|Male|Male infertility|YLLs|0|0|0
Denmark|2017|50-69 years|Male|Major depressive disorder|YLLs|0|0|0
Denmark|2017|50-69 years|Female|Ischemic heart disease|YLLs|5964.01614527167|5209.40047068911|6783.42499837288
Denmark|2017|50-69 years|Female|Breast cancer|YLLs|11985.0899510605|10719.0965330947|13408.6201703274
Denmark|2017|50-69 years|Female|Male infertility|YLLs|0|0|0
Denmark|2017|50-69 years|Female|Major depressive disorder|YLLs|0|0|0
Estonia|2017|50-69 years|Male|Ischemic heart disease|YLLs|12950.3717535656|10588.580887835|16714.4814595266
Estonia|2017|50-69 years|Male|Breast cancer|YLLs|19.5588721568226|15.727181118878|25.4248107960115
Estonia|2017|50-69 years|Male|Male infertility|YLLs|0|0|0
Estonia|2017|50-69 years|Male|Major depressive disorder|YLLs|0|0|0
Estonia|2017|50-69 years|Female|Ischemic heart disease|YLLs|3715.02517979456|2916.61995660954|5085.25823316303
Estonia|2017|50-69 years|Female|Breast cancer|YLLs|2418.29200520782|1979.2774927077|2922.2474574791
Estonia|2017|50-69 years|Female|Male infertility|YLLs|0|0|0
Estonia|2017|50-69 years|Female|Major depressive disorder|YLLs|0|0|0
Finland|2017|15-49 years|Male|Ischemic heart disease|YLLs|4115.5089855896|3527.02363952965|4859.72115406533
Finland|2017|15-49 years|Male|Breast cancer|YLLs|14.6819162934941|12.1490176503009|17.8074005254612
Finland|2017|15-49 years|Male|Male infertility|YLLs|0|0|0
Finland|2017|15-49 years|Male|Major depressive disorder|YLLs|0|0|0
Finland|2017|15-49 years|Female|Ischemic heart disease|YLLs|611.213488043458|501.060553890847|732.335195151345
Finland|2017|15-49 years|Female|Breast cancer|YLLs|2528.31473943798|2194.55063396996|2917.17964233557
Finland|2017|15-49 years|Female|Male infertility|YLLs|0|0|0
Finland|2017|15-49 years|Female|Major depressive disorder|YLLs|0|0|0
Sweden|2017|15-49 years|Male|Ischemic heart disease|YLLs|5753.05829336073|5138.33634578402|6385.09869384805
Sweden|2017|15-49 years|Male|Breast cancer|YLLs|29.7622706631965|25.7254919907877|34.5137030631883
Sweden|2017|15-49 years|Male|Male infertility|YLLs|0|0|0
Sweden|2017|15-49 years|Male|Major depressive disorder|YLLs|0|0|0
Sweden|2017|15-49 years|Female|Ischemic heart disease|YLLs|1239.87103651792|1061.80988927242|1425.75108174146
Sweden|2017|15-49 years|Female|Breast cancer|YLLs|5648.28019444172|5089.99819028464|6252.33161360524
Sweden|2017|15-49 years|Female|Male infertility|YLLs|0|0|0
Sweden|2017|15-49 years|Female|Major depressive disorder|YLLs|0|0|0
Denmark|2017|15-49 years|Male|Ischemic heart disease|YLLs|2862.33774415073|2463.0086530783|3332.90521793081
Denmark|2017|15-49 years|Male|Breast cancer|YLLs|19.8040418888207|16.1099575771611|24.0701053239353
Denmark|2017|15-49 years|Male|Male infertility|YLLs|0|0|0
Denmark|2017|15-49 years|Male|Major depressive disorder|YLLs|0|0|0
Denmark|2017|15-49 years|Female|Ischemic heart disease|YLLs|562.751060898628|458.978011797249|676.026246281035
Denmark|2017|15-49 years|Female|Breast cancer|YLLs|3268.08467880475|2832.08365122509|3746.41135671019
Denmark|2017|15-49 years|Female|Male infertility|YLLs|0|0|0
Denmark|2017|15-49 years|Female|Major depressive disorder|YLLs|0|0|0
Estonia|2017|15-49 years|Male|Ischemic heart disease|YLLs|1886.18675806478|1443.35888151459|2439.26765967279
Estonia|2017|15-49 years|Male|Breast cancer|YLLs|5.65812062235349|4.35123057473262|7.4404398722888
Estonia|2017|15-49 years|Male|Male infertility|YLLs|0|0|0
Estonia|2017|15-49 years|Male|Major depressive disorder|YLLs|0|0|0
Estonia|2017|15-49 years|Female|Ischemic heart disease|YLLs|264.023038093566|205.317608396129|343.351812719974
Estonia|2017|15-49 years|Female|Breast cancer|YLLs|782.245232341884|616.994001896713|983.483055076456
Estonia|2017|15-49 years|Female|Male infertility|YLLs|0|0|0
Estonia|2017|15-49 years|Female|Major depressive disorder|YLLs|0|0|0
Finland|2017|70+ years|Male|All causes|YLLs|207619.282105221|195519.782651395|222094.048510959
Finland|2017|70+ years|Female|All causes|YLLs|199945.161696186|185665.685158436|215862.88028251
Sweden|2017|70+ years|Male|All causes|YLLs|356701.951516626|336900.065233428|377573.346981157
Sweden|2017|70+ years|Female|All causes|YLLs|346541.219617854|326411.482571605|367573.491859039
Denmark|2017|70+ years|Male|All causes|YLLs|215764.703451762|202712.479533361|230110.120573845
Denmark|2017|70+ years|Female|All causes|YLLs|202367.605286298|188273.550984774|219085.104178745
Estonia|2017|70+ years|Male|All causes|YLLs|45841.014736776|40574.6393829272|51596.3534814006
Estonia|2017|70+ years|Female|All causes|YLLs|63684.7461266195|54966.8242812993|73061.1617915455
Finland|2017|50-69 years|Male|All causes|YLLs|193034.280262088|179777.792744554|209118.144354478
Finland|2017|50-69 years|Female|All causes|YLLs|92945.1716921069|85202.010403063|101527.525987606
Sweden|2017|50-69 years|Male|All causes|YLLs|215853.408066294|201885.016746988|230792.909829138
Sweden|2017|50-69 years|Female|All causes|YLLs|144636.944285896|134866.235535506|154705.90249215
Denmark|2017|50-69 years|Male|All causes|YLLs|181545.599097919|168583.135254896|195848.367800156
Denmark|2017|50-69 years|Female|All causes|YLLs|118359.089605629|109037.985473212|129448.674453616
Estonia|2017|50-69 years|Male|All causes|YLLs|66527.5996317978|57434.1144399354|76865.4222292359
Estonia|2017|50-69 years|Female|All causes|YLLs|30930.6890788127|26077.5595477852|36231.7346327398
Finland|2017|15-49 years|Male|All causes|YLLs|75301.7336062441|69738.2429828148|81963.3634109578
Finland|2017|15-49 years|Female|All causes|YLLs|29677.9604303097|26959.7301623466|32712.6842218087
Sweden|2017|15-49 years|Male|All causes|YLLs|99365.0775972225|92694.8406969773|106621.184032438
Sweden|2017|15-49 years|Female|All causes|YLLs|49719.0224879848|46171.2674762738|53519.6861984218
Denmark|2017|15-49 years|Male|All causes|YLLs|58552.5186282872|54081.8921152601|63524.8211183674
Denmark|2017|15-49 years|Female|All causes|YLLs|32914.4340634689|30124.3144517068|36345.2329934996
Estonia|2017|15-49 years|Male|All causes|YLLs|35438.8237026662|30292.1213397718|41464.9156919116
Estonia|2017|15-49 years|Female|All causes|YLLs|11105.9893706944|9213.5688564786|13269.7250786093
</t2b>
}}
==== Other data ====
* [[Burden_of_disease_in_Finland |Burden of disease as DALY in Finland]] {{attack|# |Inactivate and merge?|--[[User:Jouni|Jouni]] ([[User talk:Jouni|talk]]) 16:03, 13 April 2017 (UTC)}}
* [[Burden_of_disease_in_Finland |Burden of disease as DALY in Finland]] {{attack|# |Inactivate and merge?|--[[User:Jouni|Jouni]] ([[User talk:Jouni|talk]]) 16:03, 13 April 2017 (UTC)}}


Line 132: Line 383:
</rcode>
</rcode>


BoDt is an ovariable to calculate total burden of disease for selected endpoints based on IHME data.
InpBoD is an ovariable to calculate total burden of disease for selected endpoints based on IHME data.


<rcode name="BoDt" label="Initiate BoDt (for developers only)" embed=1>
<rcode name="InpBoD" label="Initiate InpBoD (for developers only)" embed=1>
# This is code Op_en5917/BoDt on page [[Burden of disease]]
# This is code Op_en5917/InpBoD on page [[Burden of disease]]
library(OpasnetUtils)
library(OpasnetUtils)


dummy <- 0
#dat <- opasnet.csv(
#  "/d/d3/IHME-GBD_2017_goherr_diseases_dk_ee_fi_se.zip", wiki="opasnet_en",
#  unzip="IHME-GBD_2017_DATA-c3ad9a2c-1.csv",
#  dec=".", sep=",", header=TRUE, quote="\""
#)


BoDt <- Ovariable(
dat <- opbase.data("Op_en5917", subset="Goherr IHME")
  "BoDt",
#colnames(dat) <- c("Measure","Location","Sex","Age","Cause","Metric","Year","Value","Upper","Lower")
  dependencies = data.frame(Name="dummy"),
 
  formula = function(...) {
#dat <- dat[dat$Metric=="Number" & dat$Year=="2017" , ]
    BoDt <- opbase.data("Op_en5917", subset = "IHME_Goherr")# [[Disease risk]]
 
    BoDt <- BoDt[BoDt[[1]]=="DALY" , -1]
dat$Location <- factor(
    # Measure has a special character in name, so use position.
  dat$Location,
   
  levels=c("Denmark", "Estonia", "Finland", "Sweden"),
    BoDt$Country <- factor(
  labels=c("DK", "EE", "FI", "SE")
      BoDt$Country,
      levels=c("Denmark", "Estonia", "Finland", "Sweden"),
      labels=c("DK", "EE", "FI", "SE")
    )
   
    # levels(BoDt$Age)
    #[1] "1 to 4"   "10 to 14" "15 to 19" "20 to 24" "25 to 29" "30 to 34" "35 to 39" "40 to 44"
    #[9] "45 to 49" "5 to 9"  "50 to 54" "55 to 59" "60 to 64" "65 to 69" "70 to 74" "75 to 79"
    #[17] "80 plus"  "All Ages"
    BoDt$Ages <- BoDt$Age
    levels(BoDt$Ages) <-  c(NA,NA,rep("18-45",6),">45","18-45",rep(">45",7),NA)
    BoDt <- BoDt[!is.na(BoDt$Ages) , ]
   
    colnames(BoDt)[colnames(BoDt) == "Response"] <- "Resp"
    #levels(BoDt$Resp)
    #[1] "Hemorrhagic stroke"    "Ischemic heart disease" "Ischemic stroke"     
    #[4] "Permanent caries"     
    levels(BoDt$Resp) <- c("Stroke","Heart (CHD)","Stroke","Tooth defect")
   
    BoDt$Result <- paste0(BoDt$Result, ".1 (", BoDt$Lower, " - ", BoDt$Upper, ".2)") # Changed from triangular to normal distribution
    BoDt<- Ovariable(
      data = BoDt[!colnames(BoDt) %in% c("Upper", "Lower", "Year")]
    )
    BoDt <- EvalOutput(BoDt)
    BoDt$Source <- NULL
    BoDt@marginal <- colnames(BoDt@output) != "Result"
    BoDt <- oapply(BoDt, cols="Age", FUN=sum)
    return(BoDt)
  }
)
)


# dummy is needed to fill an empty dependencies table.
levels(dat$Measure)[levels(dat$Measure)== "DALYs (Disability-Adjusted Life Years)"] <- "DALYs"
objects.store(BoDt, dummy)
levels(dat$Measure)[levels(dat$Measure)== "YLLs (Years of Life Lost)"] <- "YLLs"
cat("Ovariable BoDt and a dummy stored.\n")
 
dat <- dat[dat$Measure=="DALYs" | dat$Cause %in% c("All causes", "Ischemic heart disease") , ] # YLL for this
dat <- dat[!(dat$Measure=="DALYs" & dat$Cause %in% c("All causes", "Ischemic heart disease")) , ]
 
if(FALSE) {
BoDbg <- Ovariable(
  "BoDbg",
  data = dat[dat$Measure %in% c("DALYs","YLLs") , c("Country","Group","Response","Measure","Result")]
)
BoDbg <- EvalOutput(BoDbg)
BoDbg$Measure <- NULL
 
summary(BoDbg)
 
numbg <- Ovariable(
  "numbg",
  data = dat[dat$Measure %in% c("Deaths","Incidence") , c("Country","Group","Response","Measure","Result")]
)
 
summary(BoDbg/numbg)
 
summary(EvalOutput(numbg))
 
#dat <- dat[!dat$Age %in% c("All Ages","<1 year","1 to 4","5 to 9","10 to 14") , ]
 
levels(dat$Age)[levels(dat$Age) %in% c("15 to 19","20 to 24","25 to 29","30 to 34",
                                      "35 to 39","40 to 44")] <-  "18-45"
levels(dat$Age)[levels(dat$Age) %in% c("45 to 49","50 to 54","55 to 59","60 to 64",
                                      "65 to 69","70 to 74","75 to 79","80 plus")] <- ">45"
} # Endif
levels(dat$Age)[levels(dat$Age) %in% c("15-49 years")] <-  "18-45"
levels(dat$Age)[levels(dat$Age) %in% c("50-69 years","70+ years")] <- ">45"
 
levels(dat$Cause)[levels(dat$Cause)== "All causes"] <- "All-cause mortality"
#levels(dat$Cause)[levels(dat$Cause)== "Breast cancer"]
levels(dat$Cause)[levels(dat$Cause)== "Caries of permanent teeth"] <- "Yes or no dental defect"
#levels(dat$Cause)[levels(dat$Cause)== "Depressive disorders"]
#levels(dat$Cause)[levels(dat$Cause)== "Dysthymia"]
levels(dat$Cause)[levels(dat$Cause)== "Idiopathic developmental intellectual disability"] <- "Loss in child's IQ points"
#levels(dat$Cause)[levels(dat$Cause)== "Intracerebral hemorrhage"]
levels(dat$Cause)[levels(dat$Cause)== "Ischemic heart disease"] <- "CHD2 mortality"
levels(dat$Cause)[levels(dat$Cause)== "Ischemic stroke"] <- "Stroke mortality"
#levels(dat$Cause)[levels(dat$Cause)== "Liver cancer"]
levels(dat$Cause)[levels(dat$Cause)== "Major depressive disorder"] <- "Depression"
levels(dat$Cause)[levels(dat$Cause)== "Male infertility"] <- "Sperm concentration"
levels(dat$Cause)[levels(dat$Cause)== "Neoplasms"] <- "Cancer morbidity"
#levels(dat$Cause)[levels(dat$Cause)== "Stroke"]
#levels(dat$Cause)[levels(dat$Cause)== "Subarachnoid hemorrhage"]
 
colnames(dat)[colnames(dat)=="Cause"] <- "Response"
colnames(dat)[colnames(dat)=="Location"] <- "Country"
 
dat$Value <- ifelse(dat$Value=="0","0.001",as.character(dat$Value))
dat$Result <- ifelse(dat$Result=="0","0.002",as.character(dat$Result))
dat$Result <- gsub(",","",paste0(dat$Value, "1 (", dat$Lower, " - ", dat$Result, "2)"))
 
levels(dat$Sex) <- gsub("s","",levels(dat$Sex))
dat$Group <- paste(dat$Sex, dat$Age)
 
InpBoD<- Ovariable(
  "InpBoD",
  data = dat[c("Country","Group","Response","Result")], # "Measure"
  unit = "DALY /a per subpopulation"
)
 
objects.store(InpBoD)
cat("Ovariable InpBoD stored.\n")
 
InpBoD <- EvalOutput(InpBoD)
oprint(summary(oapply(InpBoD, NULL,sum,"Group")))
</rcode>
</rcode>


Line 195: Line 490:
<references/>
<references/>


==Related files==
<!-- __OBI_TS:1495195553 -->
 
{{mfiles}}<!-- __OBI_TS:1495195553 -->

Latest revision as of 06:24, 13 September 2019



Question

What are incidence or prevalence rates of different diseases in Finland?

Answer

+ Show code

----#: . Code seems to work, but gives out the yellow errorbox. --Heta 13:02, 27 August 2013 (EEST) (type: truth; paradigms: science: comment)

Rationale

Data

Goherr data from IHME

This is temporary data used because IHME database is down. Otherwise this is OK data but the age groups are wrong.



Other data

Data from op_fi:Seturi/tautiriski

Population column defines the relevant population subgroup other than age and sex subgroups, which are defined in their respective columns. The numbers of cases are divided by the size of the population (total population even in cases where the cases are from a subgroup only. The population size is estimated at 5375276 in 2010, and this is used as denominator in the incidence calculation.

Disease risk(# /100000py, DALY)
ObsResponsePopulationAgeSexUnitIncidenceActual casesDescription
1Lung cancer morbidityWhole populationcases /100000py42.3422276Year 2010 cancer register
2Cardiopulmonary mortalityWhole populationcases /100000py443.51223840
3Total mortalityWhole populationcases /100000py940.752505682011 data, Tilastokeskus
4Bladder cancer morbidityWhole populationcases /100000py16.706898Year 2010 cancer register
5Myocardial infarction morbidityWhole populationcases /100000py463.19524898
6Ischaemic heart disease mortalityWhole populationcases /100000py221.14211887
7Coronary heart disease mortalityWhole populationcases /100000py221.14211887This is a duplicate of the previous row to match more ERFs
8CHD arrythmia mortalityWhole populationcases /100000py221.14211887This is a duplicate of the previous row to match more ERFs
9Asthma morbidityWhole populationcases /100000py270.88814561
10Asthma morbidityWhole population>21cases /100000py176.1039466
11Asthma morbidityWhole population<14cases /100000py81.2244366
12Pulmonary infection morbidityWhole population<2DALY35
13Otitis mediaWhole population<3DALY48
14Lower respiratory symptoms morbidityWhole populationcases /100000py8985.585483000
15Upper respiratory symptoms morbidityWhole populationcases /100000py17279.969928846
16Ischaemic heart disease/myocardial infarction morbidityWhole population35-64Malecases /100000py86.6465535-64v miesten 1. infarktin insidenssi 354/100000 1991-4. Aromaa ym Suomalaisten terveys s155
17CHDWhole population35-64Malecases /100000py86.6465535-64v miesten 1. infarktin insidenssi 354/100000 1991-4. Aromaa ym Suomalaisten terveys s155. This is a duplicate of the previous row to match more ERFs
18Nasal cancer morbidityWhole population20-64cases /100000py0.65135Age boundaries are assumed without original data
19COPD mortalityWhole population15-64cases /100000py20.9661127
20Asthma morbidity2Whole population15-64Malecases /100000py58.0443120
21Asthma morbidity2Whole population15-64Femalecases /100000py78.9544244
22Cancer morbidityWhole populationcases /100000py202.40810880
23Cancer lifetime probabilityWhole populationprobability1This is used with absolute risk functions such as CSF to get rid of the parameter relative to background
24All skin cancers and basalioma morbidityWhole populationcases /100000py163.2858777
25Skin cancer morbidityWhole populationcases /100000py37.32005
26Melanoma morbidityWhole populationcases /100000py16.855906
27Carcinoma spinocellulare morbidityWhole populationcases /100000py20.4451099
28Basalioma morbidityWhole populationcases /100000py125.9846772
29Leukemia morbidityWhole populationcases /100000py10.027539Year 2010, cancer register

DALY/a thousands WHO 2002 EU-27 OECD, 22 Population, millions Trachea, bronchus & lung cancers Cardio-vascular diseases Trachea, bronchus & lung cancers Cardio-vascular diseases


DALY in Europe WHO 2002(-)
ObsCountryEU-27OECD22PopulationTrachea bronchus & lung cancers DALY/a thousandsCardio-vascular diseases DALY/a thousands Trachea bronchus & lung cancers DALY/a/100 000Cardio-vascular diseases DALY/a/100 000(sub)urban 2009-11 PM2.5 mean μg/m3Description
1Austria 1 1 8.4 27 189 321 2244 18.9
2Belgium 1 1 11.0 55 209 499 1898 17.6
3Bulgaria 1 0 7.3 32 526 435 7157 31.4
4Cyprus 1 0 0.9 1 21 117 2467 21.3
5Czech Republic 1 1 10.5 52 352 495 3352 23.0
6Denmark 1 1 5.6 26 114 461 2021 14.0
7Estonia 1 0 1.3 5 65 373 4852 19.5
8Finland 1 1 5.4 14 122 260 2266 7.3
9France 1 1 65.2 243 857 373 1315 17.9
10Germany 1 1 81.8 354 2070 433 2530 16.8
11Greece 1 1 10.8 49 341 453 3153 19.4
12Hungary 1 1 10.0 76 410 762 4113 22.6
13Ireland 1 1 4.5 12 77 265 1703 10.8
14Italy 1 1 60.7 238 1222 392 2013 21.5
15Latvia 1 0 2.1 10 130 486 6318 15.1
16Lithuania 1 0 3.0 13 138 429 4555 12.7
17Luxembourg 1 1 0.5 2 9 381 1715 15.9
18Malta 1 0 0.4 1 8 240 1920 13.6
19Netherlands 1 1 16.7 73 307 437 1839 17.0
20Norway 0 1 5.0 15 87 303 1756
21Poland 1 1 38.5 215 1226 558 3181 28.2
22Portugal 1 1 10.6 29 263 275 2491 8.6
23Romania 1 0 21.4 92 1094 430 5118 18.1
24Slovakia 1 1 5.4 19 175 352 3242 25.0
25Slovenia 1 0 2.1 9 51 439 2485 21.5
26Spain 1 1 46.2 155 670 336 1450 12.5
27Sweden 1 1 9.4 23 187 244 1981 8.0
28Switzerland 0 1 7.9 25 116 316 1465
29Turkey 0 1 74.8 115 2082 154 2785
30United Kingdom 1 1 62.8 230 1297 366 2065 13.3
31All of the above 590.2 2210 14415 374 2442 17.7
32EU27 Total 502.6 2055 12130 409 2413 17.7
33OECD Europe total 553.1 2052 12447 371 2250 17.7

Calculations

+ Show code

InpBoD is an ovariable to calculate total burden of disease for selected endpoints based on IHME data.

+ Show code

See also

  • OECD health data [1]

Keywords

References