Disease risk: Difference between revisions
m (→Data) |
|||
(30 intermediate revisions by 3 users not shown) | |||
Line 36: | Line 36: | ||
===Data=== | ===Data=== | ||
==== Goherr data from IHME ==== | |||
This is temporary data used because IHME database is down. Otherwise this is OK data but the age groups are wrong. | |||
{{hidden | |||
| | |||
<t2b name="Goherr IHME" index="Location,Year,Age,Sex,Cause,Measure,Value,Lower" obs="Upper" unit="DALY"> | |||
Finland|2017|70+ years|Male|Ischemic heart disease|DALYs|56315.2751679953|52039.4175530624|61341.2067999029 | |||
Finland|2017|70+ years|Male|Breast cancer|DALYs|79.5125008547994|65.7423816474743|95.9723869500564 | |||
Finland|2017|70+ years|Male|Male infertility|DALYs|0|0|0 | |||
Finland|2017|70+ years|Male|Major depressive disorder|DALYs|1428.95241428931|973.154944650354|1965.01460302962 | |||
Finland|2017|70+ years|Female|Ischemic heart disease|DALYs|44695.727780164|40951.1264856603|49402.0724715572 | |||
Finland|2017|70+ years|Female|Breast cancer|DALYs|7307.95842859461|6495.79803708212|8289.58210032476 | |||
Finland|2017|70+ years|Female|Male infertility|DALYs|0|0|0 | |||
Finland|2017|70+ years|Female|Major depressive disorder|DALYs|3170.15462206651|2212.34454065649|4271.11690891755 | |||
Sweden|2017|70+ years|Male|Ischemic heart disease|DALYs|84813.2727063192|78488.7802601174|94342.3940640882 | |||
Sweden|2017|70+ years|Male|Breast cancer|DALYs|166.425451145263|143.842420064141|190.323295569784 | |||
Sweden|2017|70+ years|Male|Male infertility|DALYs|0|0|0 | |||
Sweden|2017|70+ years|Male|Major depressive disorder|DALYs|2776.96336665194|1883.43402071075|3844.83811585326 | |||
Sweden|2017|70+ years|Female|Ischemic heart disease|DALYs|66243.3017632682|60735.3522390338|73795.2100259806 | |||
Sweden|2017|70+ years|Female|Breast cancer|DALYs|14735.1837886885|13321.1902732261|16308.9362684012 | |||
Sweden|2017|70+ years|Female|Male infertility|DALYs|0|0|0 | |||
Sweden|2017|70+ years|Female|Major depressive disorder|DALYs|6473.84464110293|4372.26104767627|8821.87748679089 | |||
Denmark|2017|70+ years|Male|Ischemic heart disease|DALYs|32582.127899933|29783.6905112799|35839.0086187017 | |||
Denmark|2017|70+ years|Male|Breast cancer|DALYs|130.596378204639|107.924780754222|155.920222130995 | |||
Denmark|2017|70+ years|Male|Male infertility|DALYs|0|0|0 | |||
Denmark|2017|70+ years|Male|Major depressive disorder|DALYs|1066.05892620269|725.577404075283|1482.81231447922 | |||
Denmark|2017|70+ years|Female|Ischemic heart disease|DALYs|24090.9132487552|21989.677152409|26565.4514079687 | |||
Denmark|2017|70+ years|Female|Breast cancer|DALYs|10242.0078233568|9119.80489372234|11427.018587514 | |||
Denmark|2017|70+ years|Female|Male infertility|DALYs|0|0|0 | |||
Denmark|2017|70+ years|Female|Major depressive disorder|DALYs|2171.19978394934|1437.372134315|2990.45116223703 | |||
Estonia|2017|70+ years|Male|Ischemic heart disease|DALYs|14468.2575037341|12278.6173595973|19065.7939752037 | |||
Estonia|2017|70+ years|Male|Breast cancer|DALYs|13.9915147948632|11.2727498977976|17.2268209225218 | |||
Estonia|2017|70+ years|Male|Male infertility|DALYs|0|0|0 | |||
Estonia|2017|70+ years|Male|Major depressive disorder|DALYs|404.820723283056|268.484534476474|552.48618357069 | |||
Estonia|2017|70+ years|Female|Ischemic heart disease|DALYs|21287.8843781331|17417.4579274491|29647.6233887735 | |||
Estonia|2017|70+ years|Female|Breast cancer|DALYs|1499.20925222737|1244.75926523047|1811.1359220894 | |||
Estonia|2017|70+ years|Female|Male infertility|DALYs|0|0|0 | |||
Estonia|2017|70+ years|Female|Major depressive disorder|DALYs|1695.08052475147|1152.34126068759|2367.50790585401 | |||
Finland|2017|50-69 years|Male|Ischemic heart disease|DALYs|42276.5956099849|38357.8144003007|47482.370958431 | |||
Finland|2017|50-69 years|Male|Breast cancer|DALYs|85.4020580685615|70.0618057377157|103.914438376935 | |||
Finland|2017|50-69 years|Male|Male infertility|DALYs|0|0|0 | |||
Finland|2017|50-69 years|Male|Major depressive disorder|DALYs|3190.66750516571|2174.54597309043|4407.09165796333 | |||
Finland|2017|50-69 years|Female|Ischemic heart disease|DALYs|9151.64268177568|8120.35615665832|10335.0574654037 | |||
Finland|2017|50-69 years|Female|Breast cancer|DALYs|10949.5708224826|9639.19910363983|12400.1943791976 | |||
Finland|2017|50-69 years|Female|Male infertility|DALYs|0|0|0 | |||
Finland|2017|50-69 years|Female|Major depressive disorder|DALYs|5952.28149167875|4014.75910813902|8082.75060035307 | |||
Sweden|2017|50-69 years|Male|Ischemic heart disease|DALYs|46381.2915355143|42895.3155913912|50149.0969921018 | |||
Sweden|2017|50-69 years|Male|Breast cancer|DALYs|138.429419109987|120.573610857783|159.716966293469 | |||
Sweden|2017|50-69 years|Male|Male infertility|DALYs|0|0|0 | |||
Sweden|2017|50-69 years|Male|Major depressive disorder|DALYs|5564.10649957795|3774.79128645748|7704.14153993077 | |||
Sweden|2017|50-69 years|Female|Ischemic heart disease|DALYs|14670.3608398164|13160.9153559661|16176.2758647884 | |||
Sweden|2017|50-69 years|Female|Breast cancer|DALYs|18248.4394354961|16517.9364702388|20302.9834072412 | |||
Sweden|2017|50-69 years|Female|Male infertility|DALYs|0|0|0 | |||
Sweden|2017|50-69 years|Female|Major depressive disorder|DALYs|11589.8948100489|7876.40918409439|16145.1421058479 | |||
Denmark|2017|50-69 years|Male|Ischemic heart disease|DALYs|22096.2514806926|20074.9812036842|24509.6274297806 | |||
Denmark|2017|50-69 years|Male|Breast cancer|DALYs|129.843042512704|107.405626102942|154.990062169289 | |||
Denmark|2017|50-69 years|Male|Male infertility|DALYs|0|0|0 | |||
Denmark|2017|50-69 years|Male|Major depressive disorder|DALYs|2327.91236686164|1566.40514944963|3250.65401544039 | |||
Denmark|2017|50-69 years|Female|Ischemic heart disease|DALYs|6676.18685202032|5870.69427978746|7557.0354822643 | |||
Denmark|2017|50-69 years|Female|Breast cancer|DALYs|13616.0427914127|12052.8323377586|15358.4253745665 | |||
Denmark|2017|50-69 years|Female|Male infertility|DALYs|0|0|0 | |||
Denmark|2017|50-69 years|Female|Major depressive disorder|DALYs|4276.06113976365|2829.34783268566|5929.14221511685 | |||
Estonia|2017|50-69 years|Male|Ischemic heart disease|DALYs|13411.385994707|11065.1657683079|17133.7498839334 | |||
Estonia|2017|50-69 years|Male|Breast cancer|DALYs|21.0241213496356|16.7119870749367|27.3554075919703 | |||
Estonia|2017|50-69 years|Male|Male infertility|DALYs|0|0|0 | |||
Estonia|2017|50-69 years|Male|Major depressive disorder|DALYs|816.865242466261|548.38222836745|1145.38871022423 | |||
Estonia|2017|50-69 years|Female|Ischemic heart disease|DALYs|4144.34200290187|3303.84643620184|5523.53032628345 | |||
Estonia|2017|50-69 years|Female|Breast cancer|DALYs|2632.91853815089|2156.36536339054|3187.12586050396 | |||
Estonia|2017|50-69 years|Female|Male infertility|DALYs|0|0|0 | |||
Estonia|2017|50-69 years|Female|Major depressive disorder|DALYs|1887.28792016728|1243.4179405901|2663.46643599906 | |||
Finland|2017|15-49 years|Male|Ischemic heart disease|DALYs|4371.12829182068|3772.34266754555|5126.73061869348 | |||
Finland|2017|15-49 years|Male|Breast cancer|DALYs|16.2470612343585|13.4431459123292|19.6547217693856 | |||
Finland|2017|15-49 years|Male|Male infertility|DALYs|51.9975394298735|20.8958481322993|111.399655173724 | |||
Finland|2017|15-49 years|Male|Major depressive disorder|DALYs|7168.79085587972|4935.18840053274|9817.88686578686 | |||
Finland|2017|15-49 years|Female|Ischemic heart disease|DALYs|777.521660579127|654.222779373356|919.047276971295 | |||
Finland|2017|15-49 years|Female|Breast cancer|DALYs|2952.82488092842|2548.53759197005|3432.89762799478 | |||
Finland|2017|15-49 years|Female|Male infertility|DALYs|0|0|0 | |||
Finland|2017|15-49 years|Female|Major depressive disorder|DALYs|11845.1840388046|8059.512552842|16108.4069979906 | |||
Sweden|2017|15-49 years|Male|Ischemic heart disease|DALYs|6390.23902385725|5721.11008810619|7074.19961681548 | |||
Sweden|2017|15-49 years|Male|Breast cancer|DALYs|32.9566477433603|28.487636295462|38.333137930806 | |||
Sweden|2017|15-49 years|Male|Male infertility|DALYs|175.251628532079|73.2111086306143|367.325147605812 | |||
Sweden|2017|15-49 years|Male|Major depressive disorder|DALYs|12259.5665246884|8227.22079584067|16771.6562226033 | |||
Sweden|2017|15-49 years|Female|Ischemic heart disease|DALYs|1761.31810163589|1523.88800521899|2044.99756581175 | |||
Sweden|2017|15-49 years|Female|Breast cancer|DALYs|6562.93942398197|5845.48662842491|7393.76129490786 | |||
Sweden|2017|15-49 years|Female|Male infertility|DALYs|0|0|0 | |||
Sweden|2017|15-49 years|Female|Major depressive disorder|DALYs|23149.4555815204|15588.7292304234|31917.3334632912 | |||
Denmark|2017|15-49 years|Male|Ischemic heart disease|DALYs|3087.54782440886|2681.75182824144|3576.05936601009 | |||
Denmark|2017|15-49 years|Male|Breast cancer|DALYs|21.7271192198948|17.6438171995736|26.5335073839654 | |||
Denmark|2017|15-49 years|Male|Male infertility|DALYs|50.7909213036205|21.091263300572|107.50418333984 | |||
Denmark|2017|15-49 years|Male|Major depressive disorder|DALYs|4576.80448307599|3091.74660704673|6359.88141230732 | |||
Denmark|2017|15-49 years|Female|Ischemic heart disease|DALYs|708.929505164451|591.710074747954|835.40183408209 | |||
Denmark|2017|15-49 years|Female|Breast cancer|DALYs|3755.79556167266|3219.92222825708|4341.32283992948 | |||
Denmark|2017|15-49 years|Female|Male infertility|DALYs|0|0|0 | |||
Denmark|2017|15-49 years|Female|Major depressive disorder|DALYs|6783.13672181049|4666.10282936231|9336.80141971734 | |||
Estonia|2017|15-49 years|Male|Ischemic heart disease|DALYs|2025.57897224232|1573.16945245311|2574.3004955086 | |||
Estonia|2017|15-49 years|Male|Breast cancer|DALYs|6.12351207334238|4.68005012454053|8.02649693591355 | |||
Estonia|2017|15-49 years|Male|Male infertility|DALYs|35.1621911688859|14.6774923254009|72.2171832280172 | |||
Estonia|2017|15-49 years|Male|Major depressive disorder|DALYs|1202.31831942663|803.765818126241|1656.53575033105 | |||
Estonia|2017|15-49 years|Female|Ischemic heart disease|DALYs|346.673111522234|277.239180576975|432.02444008093 | |||
Estonia|2017|15-49 years|Female|Breast cancer|DALYs|864.30923397303|682.985709118727|1092.44325680511 | |||
Estonia|2017|15-49 years|Female|Male infertility|DALYs|0|0|0 | |||
Estonia|2017|15-49 years|Female|Major depressive disorder|DALYs|1627.31555869184|1099.29556724111|2271.75540111025 | |||
Finland|2017|15-49 years|Male|All causes|DALYs|207520.417986606|173800.459870437|246485.886492573 | |||
Finland|2017|15-49 years|Female|All causes|DALYs|179570.112766941|141696.388607952|223561.073482014 | |||
Sweden|2017|15-49 years|Male|All causes|DALYs|328999.874009797|269009.02778272|397534.051032743 | |||
Sweden|2017|15-49 years|Female|All causes|DALYs|337360.262638401|265987.028656637|419970.815044994 | |||
Denmark|2017|15-49 years|Male|All causes|DALYs|193274.681794909|158246.181525335|234051.24509321 | |||
Denmark|2017|15-49 years|Female|All causes|DALYs|190594.731341407|150901.921196675|237443.167655282 | |||
Estonia|2017|15-49 years|Male|All causes|DALYs|69026.686965026|58786.9765970678|80337.4437174382 | |||
Estonia|2017|15-49 years|Female|All causes|DALYs|45203.5533162381|35815.5251350863|55283.804477302 | |||
Finland|2017|50-69 years|Male|All causes|DALYs|319553.746559688|283600.533071296|363007.156188649 | |||
Finland|2017|50-69 years|Female|All causes|DALYs|227095.430231189|191948.034855314|266925.024609513 | |||
Sweden|2017|50-69 years|Male|All causes|DALYs|411896.345413221|358095.981854878|470932.059240055 | |||
Sweden|2017|50-69 years|Female|All causes|DALYs|358307.07644009|303651.782623776|422462.343652292 | |||
Denmark|2017|50-69 years|Male|All causes|DALYs|306525.500595414|269724.366774415|347072.617315533 | |||
Denmark|2017|50-69 years|Female|All causes|DALYs|249614.253675992|215496.006811696|288848.658620397 | |||
Estonia|2017|50-69 years|Male|All causes|DALYs|95590.2213561366|83973.1314955263|108501.32425046 | |||
Estonia|2017|50-69 years|Female|All causes|DALYs|65574.802626921|54971.5536727616|76859.8924171885 | |||
Finland|2017|70+ years|Male|All causes|DALYs|296163.511449765|271043.235542343|325942.434372211 | |||
Finland|2017|70+ years|Female|All causes|DALYs|323901.430063555|289291.161232524|360525.097921403 | |||
Sweden|2017|70+ years|Male|All causes|DALYs|521754.839865746|475866.923082829|573068.492503427 | |||
Sweden|2017|70+ years|Female|All causes|DALYs|553113.744537967|498776.385385165|612584.75317485 | |||
Denmark|2017|70+ years|Male|All causes|DALYs|301411.076878031|275069.907426085|329950.516220028 | |||
Denmark|2017|70+ years|Female|All causes|DALYs|311645.293827931|282687.607561216|344758.408912781 | |||
Estonia|2017|70+ years|Male|All causes|DALYs|61683.0064170076|55169.0392665845|68662.0565953199 | |||
Estonia|2017|70+ years|Female|All causes|DALYs|98562.5248095964|86395.6371440109|111761.042667796 | |||
Finland|2017|70+ years|Male|Ischemic heart disease|YLLs|53423.9737096138|49220.248497233|58589.2770589416 | |||
Finland|2017|70+ years|Male|Breast cancer|YLLs|69.0581851085494|57.1271065440948|83.268764723987 | |||
Finland|2017|70+ years|Male|Male infertility|YLLs|0|0|0 | |||
Finland|2017|70+ years|Male|Major depressive disorder|YLLs|0|0|0 | |||
Finland|2017|70+ years|Female|Ischemic heart disease|YLLs|42205.2336255192|38518.5123268345|46737.7280077635 | |||
Finland|2017|70+ years|Female|Breast cancer|YLLs|6179.25921126402|5477.90310062408|6946.75749694254 | |||
Finland|2017|70+ years|Female|Male infertility|YLLs|0|0|0 | |||
Finland|2017|70+ years|Female|Major depressive disorder|YLLs|0|0|0 | |||
Sweden|2017|70+ years|Male|Ischemic heart disease|YLLs|79149.1322439883|72787.710870278|88683.4828117565 | |||
Sweden|2017|70+ years|Male|Breast cancer|YLLs|144.188862195848|127.022587414152|163.526372791302 | |||
Sweden|2017|70+ years|Male|Male infertility|YLLs|0|0|0 | |||
Sweden|2017|70+ years|Male|Major depressive disorder|YLLs|0|0|0 | |||
Sweden|2017|70+ years|Female|Ischemic heart disease|YLLs|61434.6515681342|56224.6698333815|68660.9509116311 | |||
Sweden|2017|70+ years|Female|Breast cancer|YLLs|12513.7902204788|11436.1539789445|13762.7795043163 | |||
Sweden|2017|70+ years|Female|Male infertility|YLLs|0|0|0 | |||
Sweden|2017|70+ years|Female|Major depressive disorder|YLLs|0|0|0 | |||
Denmark|2017|70+ years|Male|Ischemic heart disease|YLLs|30693.0242745391|28085.5519240899|33872.6614361834 | |||
Denmark|2017|70+ years|Male|Breast cancer|YLLs|115.043244719455|94.8704639760747|138.091604214542 | |||
Denmark|2017|70+ years|Male|Male infertility|YLLs|0|0|0 | |||
Denmark|2017|70+ years|Male|Major depressive disorder|YLLs|0|0|0 | |||
Denmark|2017|70+ years|Female|Ischemic heart disease|YLLs|22732.5631468349|20644.0440003978|25117.4413037947 | |||
Denmark|2017|70+ years|Female|Breast cancer|YLLs|9139.77120985814|8151.21509685202|10241.9215210158 | |||
Denmark|2017|70+ years|Female|Male infertility|YLLs|0|0|0 | |||
Denmark|2017|70+ years|Female|Major depressive disorder|YLLs|0|0|0 | |||
Estonia|2017|70+ years|Male|Ischemic heart disease|YLLs|14017.1430501037|11814.6566885858|18614.8893083866 | |||
Estonia|2017|70+ years|Male|Breast cancer|YLLs|12.4487128642332|10.0750222691639|15.2810456269085 | |||
Estonia|2017|70+ years|Male|Male infertility|YLLs|0|0|0 | |||
Estonia|2017|70+ years|Male|Major depressive disorder|YLLs|0|0|0 | |||
Estonia|2017|70+ years|Female|Ischemic heart disease|YLLs|20413.9308627921|16571.7484433009|28679.603382899 | |||
Estonia|2017|70+ years|Female|Breast cancer|YLLs|1343.5103753416|1109.03083645215|1613.85825646017 | |||
Estonia|2017|70+ years|Female|Male infertility|YLLs|0|0|0 | |||
Estonia|2017|70+ years|Female|Major depressive disorder|YLLs|0|0|0 | |||
Finland|2017|50-69 years|Male|Ischemic heart disease|YLLs|40512.1136768105|36665.8377166374|45765.5408813692 | |||
Finland|2017|50-69 years|Male|Breast cancer|YLLs|77.6777813752824|64.0547572389397|94.165620829062 | |||
Finland|2017|50-69 years|Male|Male infertility|YLLs|0|0|0 | |||
Finland|2017|50-69 years|Male|Major depressive disorder|YLLs|0|0|0 | |||
Finland|2017|50-69 years|Female|Ischemic heart disease|YLLs|8126.45706819738|7122.14780469614|9298.5176977947 | |||
Finland|2017|50-69 years|Female|Breast cancer|YLLs|9347.41210641182|8308.39410044636|10463.5388045313 | |||
Finland|2017|50-69 years|Female|Male infertility|YLLs|0|0|0 | |||
Finland|2017|50-69 years|Female|Major depressive disorder|YLLs|0|0|0 | |||
Sweden|2017|50-69 years|Male|Ischemic heart disease|YLLs|43032.5702869828|39767.045072238|46705.7982325306 | |||
Sweden|2017|50-69 years|Male|Breast cancer|YLLs|125.812409143351|109.343392624597|143.984300598834 | |||
Sweden|2017|50-69 years|Male|Male infertility|YLLs|0|0|0 | |||
Sweden|2017|50-69 years|Male|Major depressive disorder|YLLs|0|0|0 | |||
Sweden|2017|50-69 years|Female|Ischemic heart disease|YLLs|12385.5387610602|11200.3130809116|13689.0182917353 | |||
Sweden|2017|50-69 years|Female|Breast cancer|YLLs|15654.400233543|14329.00962527|17120.6735776803 | |||
Sweden|2017|50-69 years|Female|Male infertility|YLLs|0|0|0 | |||
Sweden|2017|50-69 years|Female|Major depressive disorder|YLLs|0|0|0 | |||
Denmark|2017|50-69 years|Male|Ischemic heart disease|YLLs|20772.6305597539|18790.0572883847|23091.9835070747 | |||
Denmark|2017|50-69 years|Male|Breast cancer|YLLs|119.338982710696|98.6534316353537|143.24048598274 | |||
Denmark|2017|50-69 years|Male|Male infertility|YLLs|0|0|0 | |||
Denmark|2017|50-69 years|Male|Major depressive disorder|YLLs|0|0|0 | |||
Denmark|2017|50-69 years|Female|Ischemic heart disease|YLLs|5964.01614527167|5209.40047068911|6783.42499837288 | |||
Denmark|2017|50-69 years|Female|Breast cancer|YLLs|11985.0899510605|10719.0965330947|13408.6201703274 | |||
Denmark|2017|50-69 years|Female|Male infertility|YLLs|0|0|0 | |||
Denmark|2017|50-69 years|Female|Major depressive disorder|YLLs|0|0|0 | |||
Estonia|2017|50-69 years|Male|Ischemic heart disease|YLLs|12950.3717535656|10588.580887835|16714.4814595266 | |||
Estonia|2017|50-69 years|Male|Breast cancer|YLLs|19.5588721568226|15.727181118878|25.4248107960115 | |||
Estonia|2017|50-69 years|Male|Male infertility|YLLs|0|0|0 | |||
Estonia|2017|50-69 years|Male|Major depressive disorder|YLLs|0|0|0 | |||
Estonia|2017|50-69 years|Female|Ischemic heart disease|YLLs|3715.02517979456|2916.61995660954|5085.25823316303 | |||
Estonia|2017|50-69 years|Female|Breast cancer|YLLs|2418.29200520782|1979.2774927077|2922.2474574791 | |||
Estonia|2017|50-69 years|Female|Male infertility|YLLs|0|0|0 | |||
Estonia|2017|50-69 years|Female|Major depressive disorder|YLLs|0|0|0 | |||
Finland|2017|15-49 years|Male|Ischemic heart disease|YLLs|4115.5089855896|3527.02363952965|4859.72115406533 | |||
Finland|2017|15-49 years|Male|Breast cancer|YLLs|14.6819162934941|12.1490176503009|17.8074005254612 | |||
Finland|2017|15-49 years|Male|Male infertility|YLLs|0|0|0 | |||
Finland|2017|15-49 years|Male|Major depressive disorder|YLLs|0|0|0 | |||
Finland|2017|15-49 years|Female|Ischemic heart disease|YLLs|611.213488043458|501.060553890847|732.335195151345 | |||
Finland|2017|15-49 years|Female|Breast cancer|YLLs|2528.31473943798|2194.55063396996|2917.17964233557 | |||
Finland|2017|15-49 years|Female|Male infertility|YLLs|0|0|0 | |||
Finland|2017|15-49 years|Female|Major depressive disorder|YLLs|0|0|0 | |||
Sweden|2017|15-49 years|Male|Ischemic heart disease|YLLs|5753.05829336073|5138.33634578402|6385.09869384805 | |||
Sweden|2017|15-49 years|Male|Breast cancer|YLLs|29.7622706631965|25.7254919907877|34.5137030631883 | |||
Sweden|2017|15-49 years|Male|Male infertility|YLLs|0|0|0 | |||
Sweden|2017|15-49 years|Male|Major depressive disorder|YLLs|0|0|0 | |||
Sweden|2017|15-49 years|Female|Ischemic heart disease|YLLs|1239.87103651792|1061.80988927242|1425.75108174146 | |||
Sweden|2017|15-49 years|Female|Breast cancer|YLLs|5648.28019444172|5089.99819028464|6252.33161360524 | |||
Sweden|2017|15-49 years|Female|Male infertility|YLLs|0|0|0 | |||
Sweden|2017|15-49 years|Female|Major depressive disorder|YLLs|0|0|0 | |||
Denmark|2017|15-49 years|Male|Ischemic heart disease|YLLs|2862.33774415073|2463.0086530783|3332.90521793081 | |||
Denmark|2017|15-49 years|Male|Breast cancer|YLLs|19.8040418888207|16.1099575771611|24.0701053239353 | |||
Denmark|2017|15-49 years|Male|Male infertility|YLLs|0|0|0 | |||
Denmark|2017|15-49 years|Male|Major depressive disorder|YLLs|0|0|0 | |||
Denmark|2017|15-49 years|Female|Ischemic heart disease|YLLs|562.751060898628|458.978011797249|676.026246281035 | |||
Denmark|2017|15-49 years|Female|Breast cancer|YLLs|3268.08467880475|2832.08365122509|3746.41135671019 | |||
Denmark|2017|15-49 years|Female|Male infertility|YLLs|0|0|0 | |||
Denmark|2017|15-49 years|Female|Major depressive disorder|YLLs|0|0|0 | |||
Estonia|2017|15-49 years|Male|Ischemic heart disease|YLLs|1886.18675806478|1443.35888151459|2439.26765967279 | |||
Estonia|2017|15-49 years|Male|Breast cancer|YLLs|5.65812062235349|4.35123057473262|7.4404398722888 | |||
Estonia|2017|15-49 years|Male|Male infertility|YLLs|0|0|0 | |||
Estonia|2017|15-49 years|Male|Major depressive disorder|YLLs|0|0|0 | |||
Estonia|2017|15-49 years|Female|Ischemic heart disease|YLLs|264.023038093566|205.317608396129|343.351812719974 | |||
Estonia|2017|15-49 years|Female|Breast cancer|YLLs|782.245232341884|616.994001896713|983.483055076456 | |||
Estonia|2017|15-49 years|Female|Male infertility|YLLs|0|0|0 | |||
Estonia|2017|15-49 years|Female|Major depressive disorder|YLLs|0|0|0 | |||
Finland|2017|70+ years|Male|All causes|YLLs|207619.282105221|195519.782651395|222094.048510959 | |||
Finland|2017|70+ years|Female|All causes|YLLs|199945.161696186|185665.685158436|215862.88028251 | |||
Sweden|2017|70+ years|Male|All causes|YLLs|356701.951516626|336900.065233428|377573.346981157 | |||
Sweden|2017|70+ years|Female|All causes|YLLs|346541.219617854|326411.482571605|367573.491859039 | |||
Denmark|2017|70+ years|Male|All causes|YLLs|215764.703451762|202712.479533361|230110.120573845 | |||
Denmark|2017|70+ years|Female|All causes|YLLs|202367.605286298|188273.550984774|219085.104178745 | |||
Estonia|2017|70+ years|Male|All causes|YLLs|45841.014736776|40574.6393829272|51596.3534814006 | |||
Estonia|2017|70+ years|Female|All causes|YLLs|63684.7461266195|54966.8242812993|73061.1617915455 | |||
Finland|2017|50-69 years|Male|All causes|YLLs|193034.280262088|179777.792744554|209118.144354478 | |||
Finland|2017|50-69 years|Female|All causes|YLLs|92945.1716921069|85202.010403063|101527.525987606 | |||
Sweden|2017|50-69 years|Male|All causes|YLLs|215853.408066294|201885.016746988|230792.909829138 | |||
Sweden|2017|50-69 years|Female|All causes|YLLs|144636.944285896|134866.235535506|154705.90249215 | |||
Denmark|2017|50-69 years|Male|All causes|YLLs|181545.599097919|168583.135254896|195848.367800156 | |||
Denmark|2017|50-69 years|Female|All causes|YLLs|118359.089605629|109037.985473212|129448.674453616 | |||
Estonia|2017|50-69 years|Male|All causes|YLLs|66527.5996317978|57434.1144399354|76865.4222292359 | |||
Estonia|2017|50-69 years|Female|All causes|YLLs|30930.6890788127|26077.5595477852|36231.7346327398 | |||
Finland|2017|15-49 years|Male|All causes|YLLs|75301.7336062441|69738.2429828148|81963.3634109578 | |||
Finland|2017|15-49 years|Female|All causes|YLLs|29677.9604303097|26959.7301623466|32712.6842218087 | |||
Sweden|2017|15-49 years|Male|All causes|YLLs|99365.0775972225|92694.8406969773|106621.184032438 | |||
Sweden|2017|15-49 years|Female|All causes|YLLs|49719.0224879848|46171.2674762738|53519.6861984218 | |||
Denmark|2017|15-49 years|Male|All causes|YLLs|58552.5186282872|54081.8921152601|63524.8211183674 | |||
Denmark|2017|15-49 years|Female|All causes|YLLs|32914.4340634689|30124.3144517068|36345.2329934996 | |||
Estonia|2017|15-49 years|Male|All causes|YLLs|35438.8237026662|30292.1213397718|41464.9156919116 | |||
Estonia|2017|15-49 years|Female|All causes|YLLs|11105.9893706944|9213.5688564786|13269.7250786093 | |||
</t2b> | |||
}} | |||
==== Other data ==== | |||
* [[Burden_of_disease_in_Finland |Burden of disease as DALY in Finland]] {{attack|# |Inactivate and merge?|--[[User:Jouni|Jouni]] ([[User talk:Jouni|talk]]) 16:03, 13 April 2017 (UTC)}} | |||
Data from [[:op_fi:Seturi/tautiriski]] | Data from [[:op_fi:Seturi/tautiriski]] | ||
Line 41: | Line 294: | ||
Population column defines the relevant population subgroup '''other than''' age and sex subgroups, which are defined in their respective columns. The numbers of cases are divided by the size of the population (total population even in cases where the cases are from a subgroup only. The population size is estimated at 5375276 in 2010, and this is used as denominator in the incidence calculation. | Population column defines the relevant population subgroup '''other than''' age and sex subgroups, which are defined in their respective columns. The numbers of cases are divided by the size of the population (total population even in cases where the cases are from a subgroup only. The population size is estimated at 5375276 in 2010, and this is used as denominator in the incidence calculation. | ||
<t2b index=" | <t2b index="Response,Population,Age,Sex,Unit" obs="Incidence" desc="Actual cases,Description" unit="# /100000py, DALY"> | ||
Lung cancer|Whole population|| | Lung cancer morbidity|Whole population|||cases /100000py|42.342|2276|Year 2010 cancer register | ||
Cardiopulmonary|Whole population|| | Cardiopulmonary mortality|Whole population|||cases /100000py|443.512|23840| | ||
Total mortality|Whole population|| | Total mortality|Whole population|||cases /100000py|940.752|50568|2011 data, Tilastokeskus | ||
Bladder cancer|Whole population|| | Bladder cancer morbidity|Whole population|||cases /100000py|16.706|898|Year 2010 cancer register | ||
Myocardial infarction|Whole population|| | Myocardial infarction morbidity|Whole population|||cases /100000py|463.195|24898| | ||
Ischaemic heart disease|Whole population||| | Ischaemic heart disease mortality|Whole population|||cases /100000py|221.142|11887| | ||
CHD|Whole population|| | Coronary heart disease mortality|Whole population|||cases /100000py|221.142|11887|This is a duplicate of the previous row to match more ERFs | ||
Asthma|Whole population|| | CHD arrythmia mortality|Whole population|||cases /100000py|221.142|11887|This is a duplicate of the previous row to match more ERFs | ||
Asthma|Whole population|>21| | Asthma morbidity|Whole population|||cases /100000py|270.888|14561| | ||
Asthma|Whole population|<14| | Asthma morbidity|Whole population|>21||cases /100000py|176.103|9466| | ||
Pulmonary | Asthma morbidity|Whole population|<14||cases /100000py|81.224|4366| | ||
Otitis media|Whole population|<3| | Pulmonary infection morbidity|Whole population|<2||DALY|35|| | ||
Lower respiratory symptoms|Whole population|| | Otitis media|Whole population|<3||DALY|48|| | ||
Upper respiratory symptoms|Whole population|| | Lower respiratory symptoms morbidity|Whole population|||cases /100000py|8985.585|483000| | ||
Ischaemic heart disease/myocardial infarction|Whole population|35-64| | Upper respiratory symptoms morbidity|Whole population|||cases /100000py|17279.969|928846| | ||
CHD|Whole population|35-64| | Ischaemic heart disease/myocardial infarction morbidity|Whole population|35-64|Male|cases /100000py|86.6|4655|35-64v miesten 1. infarktin insidenssi 354/100000 1991-4. Aromaa ym Suomalaisten terveys s155 | ||
Nasal cancer|Whole population|20-64| | CHD|Whole population|35-64|Male|cases /100000py|86.6|4655|35-64v miesten 1. infarktin insidenssi 354/100000 1991-4. Aromaa ym Suomalaisten terveys s155. This is a duplicate of the previous row to match more ERFs | ||
COPD|Whole population|15-64| | Nasal cancer morbidity|Whole population|20-64||cases /100000py|0.651|35|Age boundaries are assumed without original data | ||
Asthma|Whole population|15-64| | COPD mortality|Whole population|15-64||cases /100000py|20.966|1127| | ||
Asthma|Whole population|15-64| | Asthma morbidity2|Whole population|15-64|Male|cases /100000py|58.044|3120| | ||
Cancer|Whole population|| | Asthma morbidity2|Whole population|15-64|Female|cases /100000py|78.954|4244| | ||
All skin cancers and basalioma|Whole population|| | Cancer morbidity|Whole population|||cases /100000py|202.408|10880| | ||
Skin cancer|Whole population|| | Cancer lifetime probability|Whole population|||probability|1||This is used with absolute risk functions such as CSF to get rid of the parameter relative to background | ||
Melanoma|Whole population|| | All skin cancers and basalioma morbidity|Whole population|||cases /100000py|163.285|8777| | ||
Carcinoma spinocellulare|Whole population|| | Skin cancer morbidity|Whole population|||cases /100000py|37.3|2005| | ||
Basalioma|Whole population|| | Melanoma morbidity|Whole population|||cases /100000py|16.855|906| | ||
Leukemia|Whole population|| | Carcinoma spinocellulare morbidity|Whole population|||cases /100000py|20.445|1099| | ||
Basalioma morbidity|Whole population|||cases /100000py|125.984|6772| | |||
Leukemia morbidity|Whole population|||cases /100000py|10.027|539|Year 2010, cancer register | |||
</t2b> | |||
DALY/a thousands WHO 2002 EU-27 OECD, 22 Population, millions Trachea, bronchus & lung cancers Cardio-vascular diseases Trachea, bronchus & lung cancers Cardio-vascular diseases | |||
<t2b name='DALY in Europe WHO 2002' index="Country,EU-27,OECD22,Population,Trachea bronchus & lung cancers DALY/a thousands,Cardio-vascular diseases DALY/a thousands, Trachea bronchus & lung cancers DALY/a/100 000,Cardio-vascular diseases DALY/a/100 000" obs="(sub)urban 2009-11 PM2.5 mean μg/m3" desc="Description" unit="-"> | |||
Austria | 1 | 1 | 8.4 | 27 | 189 | 321 | 2244 | 18.9 | | |||
Belgium | 1 | 1 | 11.0 | 55 | 209 | 499 | 1898 | 17.6 | | |||
Bulgaria | 1 | 0 | 7.3 | 32 | 526 | 435 | 7157 | 31.4 | | |||
Cyprus | 1 | 0 | 0.9 | 1 | 21 | 117 | 2467 | 21.3 | | |||
Czech Republic | 1 | 1 | 10.5 | 52 | 352 | 495 | 3352 | 23.0 | | |||
Denmark | 1 | 1 | 5.6 | 26 | 114 | 461 | 2021 | 14.0 | | |||
Estonia | 1 | 0 | 1.3 | 5 | 65 | 373 | 4852 | 19.5 | | |||
Finland | 1 | 1 | 5.4 | 14 | 122 | 260 | 2266 | 7.3 | | |||
France | 1 | 1 | 65.2 | 243 | 857 | 373 | 1315 | 17.9 | | |||
Germany | 1 | 1 | 81.8 | 354 | 2070 | 433 | 2530 | 16.8 | | |||
Greece | 1 | 1 | 10.8 | 49 | 341 | 453 | 3153 | 19.4 | | |||
Hungary | 1 | 1 | 10.0 | 76 | 410 | 762 | 4113 | 22.6 | | |||
Ireland | 1 | 1 | 4.5 | 12 | 77 | 265 | 1703 | 10.8 | | |||
Italy | 1 | 1 | 60.7 | 238 | 1222 | 392 | 2013 | 21.5 | | |||
Latvia | 1 | 0 | 2.1 | 10 | 130 | 486 | 6318 | 15.1 | | |||
Lithuania | 1 | 0 | 3.0 | 13 | 138 | 429 | 4555 | 12.7 | | |||
Luxembourg | 1 | 1 | 0.5 | 2 | 9 | 381 | 1715 | 15.9 | | |||
Malta | 1 | 0 | 0.4 | 1 | 8 | 240 | 1920 | 13.6 | | |||
Netherlands | 1 | 1 | 16.7 | 73 | 307 | 437 | 1839 | 17.0 | | |||
Norway | 0 | 1 | 5.0 | 15 | 87 | 303 | 1756 | | | |||
Poland | 1 | 1 | 38.5 | 215 | 1226 | 558 | 3181 | 28.2 | | |||
Portugal | 1 | 1 | 10.6 | 29 | 263 | 275 | 2491 | 8.6 | | |||
Romania | 1 | 0 | 21.4 | 92 | 1094 | 430 | 5118 | 18.1 | | |||
Slovakia | 1 | 1 | 5.4 | 19 | 175 | 352 | 3242 | 25.0 | | |||
Slovenia | 1 | 0 | 2.1 | 9 | 51 | 439 | 2485 | 21.5 | | |||
Spain | 1 | 1 | 46.2 | 155 | 670 | 336 | 1450 | 12.5 | | |||
Sweden | 1 | 1 | 9.4 | 23 | 187 | 244 | 1981 | 8.0 | | |||
Switzerland | 0 | 1 | 7.9 | 25 | 116 | 316 | 1465 | | | |||
Turkey | 0 | 1 | 74.8 | 115 | 2082 | 154 | 2785 | | | |||
United Kingdom | 1 | 1 | 62.8 | 230 | 1297 | 366 | 2065 | 13.3 | | |||
All of the above | | | 590.2 | 2210 | 14415 | 374 | 2442 | 17.7 | | |||
EU27 Total | | | 502.6 | 2055 | 12130 | 409 | 2413 | 17.7 | | |||
OECD Europe total | | | 553.1 | 2052 | 12447 | 371 | 2250 | 17.7 | | |||
</t2b> | </t2b> | ||
===Calculations=== | ===Calculations=== | ||
<rcode name="initiate" label="Initiate | <rcode name="initiate" label="Initiate disincidence (for developers only" embed=1> | ||
# This is code Op_en5917/initiate on page [[Burden of disease]] | |||
library(OpasnetUtils) | library(OpasnetUtils) | ||
Line 79: | Line 374: | ||
d$Obs <- NULL | d$Obs <- NULL | ||
colnames(d) <- gsub(" ", "_", colnames(d)) | colnames(d) <- gsub(" ", "_", colnames(d)) | ||
d$Result[d$Unit == "cases /100000py"] <- d$Result[d$Unit == "cases /100000py"] / 100000 # Units to cases/py | |||
levels(d$Unit)[levels(d$Unit) == "cases /100000py"] <- "cases /py" | |||
disincidence <- Ovariable("disincidence", data = d, save = TRUE) | disincidence <- Ovariable("disincidence", data = d, save = TRUE) | ||
cat("Ovariable disincidence saved. page_indent = Op_en5917, code_name = initiate\n") | cat("Ovariable disincidence saved. page_indent = Op_en5917, code_name = initiate\n") | ||
</rcode> | |||
InpBoD is an ovariable to calculate total burden of disease for selected endpoints based on IHME data. | |||
<rcode name="InpBoD" label="Initiate InpBoD (for developers only)" embed=1> | |||
# This is code Op_en5917/InpBoD on page [[Burden of disease]] | |||
library(OpasnetUtils) | |||
#dat <- opasnet.csv( | |||
# "/d/d3/IHME-GBD_2017_goherr_diseases_dk_ee_fi_se.zip", wiki="opasnet_en", | |||
# unzip="IHME-GBD_2017_DATA-c3ad9a2c-1.csv", | |||
# dec=".", sep=",", header=TRUE, quote="\"" | |||
#) | |||
dat <- opbase.data("Op_en5917", subset="Goherr IHME") | |||
#colnames(dat) <- c("Measure","Location","Sex","Age","Cause","Metric","Year","Value","Upper","Lower") | |||
#dat <- dat[dat$Metric=="Number" & dat$Year=="2017" , ] | |||
dat$Location <- factor( | |||
dat$Location, | |||
levels=c("Denmark", "Estonia", "Finland", "Sweden"), | |||
labels=c("DK", "EE", "FI", "SE") | |||
) | |||
levels(dat$Measure)[levels(dat$Measure)== "DALYs (Disability-Adjusted Life Years)"] <- "DALYs" | |||
levels(dat$Measure)[levels(dat$Measure)== "YLLs (Years of Life Lost)"] <- "YLLs" | |||
dat <- dat[dat$Measure=="DALYs" | dat$Cause %in% c("All causes", "Ischemic heart disease") , ] # YLL for this | |||
dat <- dat[!(dat$Measure=="DALYs" & dat$Cause %in% c("All causes", "Ischemic heart disease")) , ] | |||
if(FALSE) { | |||
BoDbg <- Ovariable( | |||
"BoDbg", | |||
data = dat[dat$Measure %in% c("DALYs","YLLs") , c("Country","Group","Response","Measure","Result")] | |||
) | |||
BoDbg <- EvalOutput(BoDbg) | |||
BoDbg$Measure <- NULL | |||
summary(BoDbg) | |||
numbg <- Ovariable( | |||
"numbg", | |||
data = dat[dat$Measure %in% c("Deaths","Incidence") , c("Country","Group","Response","Measure","Result")] | |||
) | |||
summary(BoDbg/numbg) | |||
summary(EvalOutput(numbg)) | |||
#dat <- dat[!dat$Age %in% c("All Ages","<1 year","1 to 4","5 to 9","10 to 14") , ] | |||
levels(dat$Age)[levels(dat$Age) %in% c("15 to 19","20 to 24","25 to 29","30 to 34", | |||
"35 to 39","40 to 44")] <- "18-45" | |||
levels(dat$Age)[levels(dat$Age) %in% c("45 to 49","50 to 54","55 to 59","60 to 64", | |||
"65 to 69","70 to 74","75 to 79","80 plus")] <- ">45" | |||
} # Endif | |||
levels(dat$Age)[levels(dat$Age) %in% c("15-49 years")] <- "18-45" | |||
levels(dat$Age)[levels(dat$Age) %in% c("50-69 years","70+ years")] <- ">45" | |||
levels(dat$Cause)[levels(dat$Cause)== "All causes"] <- "All-cause mortality" | |||
#levels(dat$Cause)[levels(dat$Cause)== "Breast cancer"] | |||
levels(dat$Cause)[levels(dat$Cause)== "Caries of permanent teeth"] <- "Yes or no dental defect" | |||
#levels(dat$Cause)[levels(dat$Cause)== "Depressive disorders"] | |||
#levels(dat$Cause)[levels(dat$Cause)== "Dysthymia"] | |||
levels(dat$Cause)[levels(dat$Cause)== "Idiopathic developmental intellectual disability"] <- "Loss in child's IQ points" | |||
#levels(dat$Cause)[levels(dat$Cause)== "Intracerebral hemorrhage"] | |||
levels(dat$Cause)[levels(dat$Cause)== "Ischemic heart disease"] <- "CHD2 mortality" | |||
levels(dat$Cause)[levels(dat$Cause)== "Ischemic stroke"] <- "Stroke mortality" | |||
#levels(dat$Cause)[levels(dat$Cause)== "Liver cancer"] | |||
levels(dat$Cause)[levels(dat$Cause)== "Major depressive disorder"] <- "Depression" | |||
levels(dat$Cause)[levels(dat$Cause)== "Male infertility"] <- "Sperm concentration" | |||
levels(dat$Cause)[levels(dat$Cause)== "Neoplasms"] <- "Cancer morbidity" | |||
#levels(dat$Cause)[levels(dat$Cause)== "Stroke"] | |||
#levels(dat$Cause)[levels(dat$Cause)== "Subarachnoid hemorrhage"] | |||
colnames(dat)[colnames(dat)=="Cause"] <- "Response" | |||
colnames(dat)[colnames(dat)=="Location"] <- "Country" | |||
dat$Value <- ifelse(dat$Value=="0","0.001",as.character(dat$Value)) | |||
dat$Result <- ifelse(dat$Result=="0","0.002",as.character(dat$Result)) | |||
dat$Result <- gsub(",","",paste0(dat$Value, "1 (", dat$Lower, " - ", dat$Result, "2)")) | |||
levels(dat$Sex) <- gsub("s","",levels(dat$Sex)) | |||
dat$Group <- paste(dat$Sex, dat$Age) | |||
InpBoD<- Ovariable( | |||
"InpBoD", | |||
data = dat[c("Country","Group","Response","Result")], # "Measure" | |||
unit = "DALY /a per subpopulation" | |||
) | |||
objects.store(InpBoD) | |||
cat("Ovariable InpBoD stored.\n") | |||
InpBoD <- EvalOutput(InpBoD) | |||
oprint(summary(oapply(InpBoD, NULL,sum,"Group"))) | |||
</rcode> | </rcode> | ||
==See also== | ==See also== | ||
* OECD health data [http://stats.oecd.org/index.aspx?DataSetCode=HEALTH_STAT#] | |||
==Keywords== | ==Keywords== | ||
Line 93: | Line 490: | ||
<references/> | <references/> | ||
<!-- __OBI_TS:1495195553 --> | |||
Latest revision as of 06:24, 13 September 2019
Moderator:Nobody (see all) Click here to sign up. |
This page is a stub. You may improve it into a full page. |
Upload data
|
Question
What are incidence or prevalence rates of different diseases in Finland?
Answer
----#: . Code seems to work, but gives out the yellow errorbox. --Heta 13:02, 27 August 2013 (EEST) (type: truth; paradigms: science: comment)
Rationale
Data
Goherr data from IHME
This is temporary data used because IHME database is down. Otherwise this is OK data but the age groups are wrong.
Show details | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Other data
- Burden of disease as DALY in Finland ⇤--#: . Inactivate and merge? --Jouni (talk) 16:03, 13 April 2017 (UTC) (type: truth; paradigms: science: attack)
Data from op_fi:Seturi/tautiriski
Population column defines the relevant population subgroup other than age and sex subgroups, which are defined in their respective columns. The numbers of cases are divided by the size of the population (total population even in cases where the cases are from a subgroup only. The population size is estimated at 5375276 in 2010, and this is used as denominator in the incidence calculation.
Obs | Response | Population | Age | Sex | Unit | Incidence | Actual cases | Description |
---|---|---|---|---|---|---|---|---|
1 | Lung cancer morbidity | Whole population | cases /100000py | 42.342 | 2276 | Year 2010 cancer register | ||
2 | Cardiopulmonary mortality | Whole population | cases /100000py | 443.512 | 23840 | |||
3 | Total mortality | Whole population | cases /100000py | 940.752 | 50568 | 2011 data, Tilastokeskus | ||
4 | Bladder cancer morbidity | Whole population | cases /100000py | 16.706 | 898 | Year 2010 cancer register | ||
5 | Myocardial infarction morbidity | Whole population | cases /100000py | 463.195 | 24898 | |||
6 | Ischaemic heart disease mortality | Whole population | cases /100000py | 221.142 | 11887 | |||
7 | Coronary heart disease mortality | Whole population | cases /100000py | 221.142 | 11887 | This is a duplicate of the previous row to match more ERFs | ||
8 | CHD arrythmia mortality | Whole population | cases /100000py | 221.142 | 11887 | This is a duplicate of the previous row to match more ERFs | ||
9 | Asthma morbidity | Whole population | cases /100000py | 270.888 | 14561 | |||
10 | Asthma morbidity | Whole population | >21 | cases /100000py | 176.103 | 9466 | ||
11 | Asthma morbidity | Whole population | <14 | cases /100000py | 81.224 | 4366 | ||
12 | Pulmonary infection morbidity | Whole population | <2 | DALY | 35 | |||
13 | Otitis media | Whole population | <3 | DALY | 48 | |||
14 | Lower respiratory symptoms morbidity | Whole population | cases /100000py | 8985.585 | 483000 | |||
15 | Upper respiratory symptoms morbidity | Whole population | cases /100000py | 17279.969 | 928846 | |||
16 | Ischaemic heart disease/myocardial infarction morbidity | Whole population | 35-64 | Male | cases /100000py | 86.6 | 4655 | 35-64v miesten 1. infarktin insidenssi 354/100000 1991-4. Aromaa ym Suomalaisten terveys s155 |
17 | CHD | Whole population | 35-64 | Male | cases /100000py | 86.6 | 4655 | 35-64v miesten 1. infarktin insidenssi 354/100000 1991-4. Aromaa ym Suomalaisten terveys s155. This is a duplicate of the previous row to match more ERFs |
18 | Nasal cancer morbidity | Whole population | 20-64 | cases /100000py | 0.651 | 35 | Age boundaries are assumed without original data | |
19 | COPD mortality | Whole population | 15-64 | cases /100000py | 20.966 | 1127 | ||
20 | Asthma morbidity2 | Whole population | 15-64 | Male | cases /100000py | 58.044 | 3120 | |
21 | Asthma morbidity2 | Whole population | 15-64 | Female | cases /100000py | 78.954 | 4244 | |
22 | Cancer morbidity | Whole population | cases /100000py | 202.408 | 10880 | |||
23 | Cancer lifetime probability | Whole population | probability | 1 | This is used with absolute risk functions such as CSF to get rid of the parameter relative to background | |||
24 | All skin cancers and basalioma morbidity | Whole population | cases /100000py | 163.285 | 8777 | |||
25 | Skin cancer morbidity | Whole population | cases /100000py | 37.3 | 2005 | |||
26 | Melanoma morbidity | Whole population | cases /100000py | 16.855 | 906 | |||
27 | Carcinoma spinocellulare morbidity | Whole population | cases /100000py | 20.445 | 1099 | |||
28 | Basalioma morbidity | Whole population | cases /100000py | 125.984 | 6772 | |||
29 | Leukemia morbidity | Whole population | cases /100000py | 10.027 | 539 | Year 2010, cancer register |
DALY/a thousands WHO 2002 EU-27 OECD, 22 Population, millions Trachea, bronchus & lung cancers Cardio-vascular diseases Trachea, bronchus & lung cancers Cardio-vascular diseases
Obs | Country | EU-27 | OECD22 | Population | Trachea bronchus & lung cancers DALY/a thousands | Cardio-vascular diseases DALY/a thousands | Trachea bronchus & lung cancers DALY/a/100 000 | Cardio-vascular diseases DALY/a/100 000 | (sub)urban 2009-11 PM2.5 mean μg/m3 | Description |
---|---|---|---|---|---|---|---|---|---|---|
1 | Austria | 1 | 1 | 8.4 | 27 | 189 | 321 | 2244 | 18.9 | |
2 | Belgium | 1 | 1 | 11.0 | 55 | 209 | 499 | 1898 | 17.6 | |
3 | Bulgaria | 1 | 0 | 7.3 | 32 | 526 | 435 | 7157 | 31.4 | |
4 | Cyprus | 1 | 0 | 0.9 | 1 | 21 | 117 | 2467 | 21.3 | |
5 | Czech Republic | 1 | 1 | 10.5 | 52 | 352 | 495 | 3352 | 23.0 | |
6 | Denmark | 1 | 1 | 5.6 | 26 | 114 | 461 | 2021 | 14.0 | |
7 | Estonia | 1 | 0 | 1.3 | 5 | 65 | 373 | 4852 | 19.5 | |
8 | Finland | 1 | 1 | 5.4 | 14 | 122 | 260 | 2266 | 7.3 | |
9 | France | 1 | 1 | 65.2 | 243 | 857 | 373 | 1315 | 17.9 | |
10 | Germany | 1 | 1 | 81.8 | 354 | 2070 | 433 | 2530 | 16.8 | |
11 | Greece | 1 | 1 | 10.8 | 49 | 341 | 453 | 3153 | 19.4 | |
12 | Hungary | 1 | 1 | 10.0 | 76 | 410 | 762 | 4113 | 22.6 | |
13 | Ireland | 1 | 1 | 4.5 | 12 | 77 | 265 | 1703 | 10.8 | |
14 | Italy | 1 | 1 | 60.7 | 238 | 1222 | 392 | 2013 | 21.5 | |
15 | Latvia | 1 | 0 | 2.1 | 10 | 130 | 486 | 6318 | 15.1 | |
16 | Lithuania | 1 | 0 | 3.0 | 13 | 138 | 429 | 4555 | 12.7 | |
17 | Luxembourg | 1 | 1 | 0.5 | 2 | 9 | 381 | 1715 | 15.9 | |
18 | Malta | 1 | 0 | 0.4 | 1 | 8 | 240 | 1920 | 13.6 | |
19 | Netherlands | 1 | 1 | 16.7 | 73 | 307 | 437 | 1839 | 17.0 | |
20 | Norway | 0 | 1 | 5.0 | 15 | 87 | 303 | 1756 | ||
21 | Poland | 1 | 1 | 38.5 | 215 | 1226 | 558 | 3181 | 28.2 | |
22 | Portugal | 1 | 1 | 10.6 | 29 | 263 | 275 | 2491 | 8.6 | |
23 | Romania | 1 | 0 | 21.4 | 92 | 1094 | 430 | 5118 | 18.1 | |
24 | Slovakia | 1 | 1 | 5.4 | 19 | 175 | 352 | 3242 | 25.0 | |
25 | Slovenia | 1 | 0 | 2.1 | 9 | 51 | 439 | 2485 | 21.5 | |
26 | Spain | 1 | 1 | 46.2 | 155 | 670 | 336 | 1450 | 12.5 | |
27 | Sweden | 1 | 1 | 9.4 | 23 | 187 | 244 | 1981 | 8.0 | |
28 | Switzerland | 0 | 1 | 7.9 | 25 | 116 | 316 | 1465 | ||
29 | Turkey | 0 | 1 | 74.8 | 115 | 2082 | 154 | 2785 | ||
30 | United Kingdom | 1 | 1 | 62.8 | 230 | 1297 | 366 | 2065 | 13.3 | |
31 | All of the above | 590.2 | 2210 | 14415 | 374 | 2442 | 17.7 | |||
32 | EU27 Total | 502.6 | 2055 | 12130 | 409 | 2413 | 17.7 | |||
33 | OECD Europe total | 553.1 | 2052 | 12447 | 371 | 2250 | 17.7 |
Calculations
InpBoD is an ovariable to calculate total burden of disease for selected endpoints based on IHME data.
See also
- OECD health data [1]
Keywords
References