Two-dimensional Monte Carlo: Difference between revisions

From Opasnet
Jump to navigation Jump to search
(→‎Rationale: mc2dparam code added)
(→‎Rationale: strength added to parameters)
 
Line 25: Line 25:
* 22.11.2017 Version where run2d==FALSE does nothing. [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=QUs11wbaRAVtNLgs]
* 22.11.2017 Version where run2d==FALSE does nothing. [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=QUs11wbaRAVtNLgs]


<rcode name="mc2d" label="Initiate function mc2d" embed=0>
<rcode name="mc2d" label="Initiate function mc2d" embed=1>
#This is code Op_en7805/mc2d on page [[Two-dimensional Monte Carlo]]
#This is code Op_en7805/mc2d on page [[Two-dimensional Monte Carlo]]
library(OpasnetUtils)
library(OpasnetUtils)
Line 35: Line 35:
### Sitten näistä arvotaan bootstrapillä uudet iteraatiot jotka aggregoidaan populaatiotasolle.
### Sitten näistä arvotaan bootstrapillä uudet iteraatiot jotka aggregoidaan populaatiotasolle.
### Tässä versiossa on aina sama RR-Iter-kombinaatio.
### Tässä versiossa on aina sama RR-Iter-kombinaatio.
### strength: Estimated number of actual observations (number of simulations does not reflect this)
## Ensin muutetaan yksilötason Iter Iter2:ksi, jolloin uusi indeksi paisuttaa ovariablen N-kertaiseksi.
## Ensin muutetaan yksilötason Iter Iter2:ksi, jolloin uusi indeksi paisuttaa ovariablen N-kertaiseksi.
### Sitten lasketaan ja lopuksi aggregoidaan populaatiotasolle.
### Sitten lasketaan ja lopuksi aggregoidaan populaatiotasolle.
Line 41: Line 42:
# Boostrap-versio:
# Boostrap-versio:


mc2d <- function(ova) {
mc2d <- function(ova, mc2dpar = NULL) {
   if(!exists("mc2dparam")) stop("Parameter list mc2dparam missing!\n")
   if(is.null(mc2dpar)) if(exists("mc2dparam")) mc2dpar <- mc2dparam else stop("Parameter list mc2dparam missing!\n")
   if(mc2dparam$run2d) {
   if(mc2dpar$run2d) {
     ova <- ova * mc2dparam$info
     ova <- ova * mc2dpar$info
     require(reshape2)
     require(reshape2)
     marg <- setdiff(c(colnames(ova@output)[ova@marginal], mc2dparam$newmarginals), "Iter")
     marg <- setdiff(c(colnames(ova@output)[ova@marginal], mc2dpar$newmarginals), "Iter")
     out <- aggregate(
     out <- aggregate(
       result(ova),
       result(ova),
       by = ova@output[colnames(ova@output) %in% marg],
       by = ova@output[colnames(ova@output) %in% marg],
       FUN = function(x) {  
       FUN = function(x) {  
        strength <- if(is.null(mc2dpar$strength)) length(x) else mc2dpar$strength
         apply(
         apply(
           array(
           array(
             as.numeric(sample(as.character(x), length(x)*mc2dparam$N2, replace=TRUE)),
             as.numeric(sample(as.character(x), strength * mc2dpar$N2, replace=TRUE)),
             #Numeric conversion is needed to prevent x from being interpreted as number of choices.
             #Numeric conversion is needed to prevent x from being interpreted as number of choices.
             dim = c(length(x),mc2dparam$N)
             dim = c(strength,mc2dpar$N)
           ),
           ),
           MARGIN=2, FUN = mc2dparam$fun
           MARGIN=2, FUN = mc2dpar$fun
         )
         )
       }
       }

Latest revision as of 13:35, 17 June 2019



Question

How to perform two-dimensional Monte Carlo in Opasnet?

Answer

Use function mc2d to perform two-dimensional Monte Carlo. The function samples the current ovariable results by bootstrapping, applies an aggregate function to the samples, and then produces a new Iter index location for each sample. The function requires a parameter list mc2dparam, which contains the following parameters (with some example values):

  • N2 = 1000, # Number of iterations in the new Iter
  • run2d = TRUE, # Should the mc2d function be used or not?
  • info = 1, # An ovariable that may add new indices to the ovariable to be converted. If none, use 1.
  • newmarginals = c("Gender", "Ages", "Country"), # Names of columns that are non-marginals but will be sampled enough to become marginals. The function will produce an ovariable that correctly has these indices as marginals. However, if the function is used within an ovariable formula (which is typically the case), the marginal status is in the end inherited from parents and they may be re-converted to non-marginals. If this happens, the marginal status has to be updated in the assessment model code on case by case basis. Any automatic solution would violate the inheritance rules.
  • method = "bootstrap", # which method to use for 2D Monte Carlo? Currently bootsrap is the only option.
  • fun = mean # Function for aggregating the first Iter dimension.

You can call the function by using code

objects.latest("Op_en7805", code_name = "mc2d")

Rationale

  • 22.11.2017 Version where run2d==FALSE does nothing. [1]

+ Show code

+ Show code

See also