Global Burden of Disease Study: Difference between revisions

From Opasnet
Jump to navigation Jump to search
(preliminary code for data connections)
 
(7 intermediate revisions by the same user not shown)
Line 13: Line 13:


===Data===
===Data===
==== 2016 Study ====
:''See notes for importing the GBD2016 data to Wikidata [https://www.wikidata.org/wiki/User:Jtuom#Global_disease_burden_data_from_IHME_institute].
USE CITATION URL: http://ghdx.healthdata.org/gbd-results-tool
* {{#l:IHME-GBD-2016.zip}} Data and metadata: Global deaths and DALYs for each disease; and Country-specific total deaths and DALYs. Also all classifications used.
* [http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2016-permalink/98f71f5ae5fe40fd3eab65cd8a674d3f Permanent link] to the global data per disease fetched on 14.12.2017 for visualisations and uploading to Wikidata. [http://ghdx.healthdata.org/gbd-results-tool/result/26c7dcb7beee97d1379937d7fbdcacad] [http://s3.healthdata.org/gbd-api-2016-production/26c7dcb7beee97d1379937d7fbdcacad_files/IHME-GBD_2016_DATA-26c7dcb7-1.zip]
* [http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2016-permalink/fd4c89941379bba6945a0764a0d710d5 Permanent link] to country-specific data for total deaths and DALYs fetched on 18.12.2017 for uploading to Wikidata. [http://ghdx.healthdata.org/gbd-results-tool?params=gbd-api-2016-production/d08ee0a47391135588a7dfe34e1d5694] [http://s3.healthdata.org/gbd-api-2016-production/d08ee0a47391135588a7dfe34e1d5694_files/IHME-GBD_2016_DATA-d08ee0a4-1.zip]
* [http://ghdx.healthdata.org/sites/default/files/ihme_query_tool/IHME_GBD_2016_CODEBOOK.zip Codebook] contains explanations and hierarchies of the codes used in the study. They are uploaded to Opasnet Base with the names mentioned after the file name.
** IHME_GBD_2016_CAUSE_HIERARCHY_Y2017M10D02.XLSX → Cause hierarchy (result column: sort_order)
** IHME_GBD_2016_CODEBOOK_Y2017M10D02.CSV → Codebook (result column: lower)
** IHME_GBD_2016_LOCATION_HIERARCHY_Y2017M10D02.XLSX → Location hierarchy (result column: subnational_location)
** IHME_GBD_2016_MEASURE_METRIC_DEFINITIONS_Y2017M10D2.XLSX  → Measure metric definitions table on this page
** IHME_GBD_2016_REI_HIERARCHY_Y2017M10D02.XLSX  → Rei hierarchy (result column: sort_order)
* GBD 2015 study: Causes of death and nonfatal causes mapped to ICD codes [http://ghdx.healthdata.org/record/global-burden-disease-study-2015-gbd-2015-causes-death-and-nonfatal-causes-mapped-icd-codes]
** IHME_GBD_2015_ICD_CAUSE_MAP_CAUSES_OF_DEATH_Y2016M10D07.XLSX → ICD causes of death (result column: ICD9)
** IHME_GBD_2015_ICD_CAUSE_MAP_NONFATAL_Y2016M10D07.XLSX → ICD nonfatal causes (result column: ICD10)
* Help for ICD codes: [http://apps.who.int/classifications/icd10/browse/2010/en ICD code app], [[:en:ICD-10]].
* [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=UMBcOofGtHkbI8kw Locations and causes]
* [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=RuMfMPNRGiHUlPmB ICD codes]
* [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=k6TTMq7dCP6aPw3s Combined classification]
* 20.12.2017 Preprocessed data copied to Google sheet [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=UvRLizsgXwqr5O8r]
<rcode name="preprocess">
# This is code Op_en4685/preprocess on page [[Global Burden of Disase Study]]
library(OpasnetUtils)
bod.disease <- opasnet.csv(
  "0/08/IHME-GBD-2016.zip",
  wiki="opasnet_en",
  unzip="IHME-GBD_2016_DATA-26c7dcb7-1.csv",
  dec=".",
  sep=",",
  header=TRUE
)
bod.country <- opasnet.csv(
  "0/08/IHME-GBD-2016.zip",
  wiki="opasnet_en",
  unzip="IHME-GBD_2016_DATA-d08ee0a4-1.csv",
  dec=".",
  sep=",",
  header=TRUE
)
locations <- opasnet.csv(
  "0/08/IHME-GBD-2016.zip",
  wiki="opasnet_en",
  unzip="IHME_GBD_2016_LOCATION_HIERARCHY_Y2017M10D02.csv",
  dec=".",
  sep=",",
  header=TRUE
)
code <- opasnet.csv(
  "0/08/IHME-GBD-2016.zip",
  wiki="opasnet_en",
  unzip="IHME_GBD_2016_CODEBOOK_Y2017M10D02.CSV",
  dec=".",
  sep=",",
  header=TRUE
)
causes <- opasnet.csv(
  "0/08/IHME-GBD-2016.zip",
  wiki="opasnet_en",
  unzip="IHME_GBD_2016_CAUSE_HIERARCHY_Y2017M10D02.csv",
  dec=".",
  sep=",",
  header=TRUE
)
rei <- opasnet.csv(
  "0/08/IHME-GBD-2016.zip",
  wiki="opasnet_en",
  unzip="IHME_GBD_2016_REI_HIERARCHY_Y2017M10D02.csv",
  dec=".",
  sep=",",
  header=TRUE
)
icdnonfatal <- opasnet.csv(
  "0/08/IHME-GBD-2016.zip",
  wiki="opasnet_en",
  unzip="IHME_GBD_2015_ICD_CAUSE_MAP_NONFATAL_Y2016M10D07.csv",
  dec=".",
  sep=",",
  header=TRUE
)
icddeath <- opasnet.csv(
  "0/08/IHME-GBD-2016.zip",
  wiki="opasnet_en",
  unzip="IHME_GBD_2015_ICD_CAUSE_MAP_CAUSES_OF_DEATH_Y2016M10D07.csv",
  dec=".",
  sep=",",
  header=TRUE
)
#oprint(head(bod.disease))
#oprint(head(bod.country))
#oprint(code)
#oprint(causes)
#oprint(rei) # Something fails does not print
#oprint(icdnonfatal)
#oprint(icddeath)
causes2 <- causes[
  (
    causes$level == 3 | # Take the level 3 diagnoses (168 different diagnoses)
      causes$cause_id %in% c(366, 380, 521)
  ) & # Except only level 2 diagnoses for maternal disorders,
    !causes$parent_id %in% c(366, 380, 521) , # neonatal disorders, and chirrosis and other chronic liver diseases.
  ]
colnames(icdnonfatal)[colnames(icdnonfatal)=="ICD.10"] <- "ICD10"
icddeath$Measure <- "Mortality"
causes.wd <- rbind(
  merge(causes2, icddeath[-3], by.x="cause_name",by.y="Cause", all.x=TRUE),
  merge(causes2, icdnonfatal[-3], by.x="cause_name", by.y="GBD.cause.name", all.x=TRUE)
)
#oprint(causes.wd)
bod.wd <- merge(causes.wd, bod.disease, all.x=TRUE)
bod.wd <- bod.wd[bod.wd$val != 0 , ] # Remove e.g. males with maternal problems
#oprint(bod.wd)
#wp <- re#ad.csv("//cesium/jtue$/_Downloads/query(3).csv")
#causes.wd$cause_name <- tolower(causes.wd$cause_name)
#wp$diseaseLabel <- tolower(wp$diseaseLabel)
#out <- merge(causes.wd, wp, by.x="cause_name", by.y="diseaseLabel", all=TRUE)
#out <- out[order(out$cause_name),]
#View(out[!(is.na(out$cause_id)|is.na(out$ICD10)),])
# Only 10 cause_names shared by Wikipedia and IHME classification
bod <- merge(causes2, bod.disease)
bod <- bod[bod$metric_name != "Percent",]
bod$val <- signif(bod$val, 3)
levels(bod$sex_name)
# [1] "Both"  "Female" "Male" 
levels(bod$sex_name) <- c("", "Female (Q6581072)", "Male (Q6581097)")
levels(bod$location_name)
#[1] "Global"
levels(bod$location_name) <- "Earth (Q2)"
bod$class <- (bod$measure_id-1)*3 + bod$metric_id
oprint(unique(bod[c("class","measure_name","metric_name")]))
#class                          measure_name metric_name
#1    2                                Deaths    Percent
#2    1                                Deaths      Number
#4    3                                Deaths        Rate
#5    6 DALYs (Disability-Adjusted Life Years)        Rate
#8    4 DALYs (Disability-Adjusted Life Years)      Number
#9    5 DALYs (Disability-Adjusted Life Years)    Percent
bod$property <- c(
  "number of deaths (P1120)", "",
  "incidence (P2844)",
  rep("disease burden (P2854)",3)
)[bod$class]
bod$unit <- c(
  "", "", "cases per 100000 person-years (Q23893296)",
  "disability-adjusted life year (Q55627)","",
  "DALY / 100000 population (Q46123112)"
)[bod$class]
bod$of <- c("", "", "death (Q4)", "", "", "")[bod$class]
bod$ref <- "Global burden of disease study 2016 (Q45750370)"
colnames(bod)
#[1] "cause_id"      "cause_name"    "parent_id"    "level"       
#[5] "cause_outline" "sort_order"    "measure_id"    "measure_name"
#[9] "location_id"  "location_name" "sex_id"        "sex_name"   
#[13] "age_id"        "age_name"      "metric_id"    "metric_name" 
#[17] "year"          "val"          "upper"        "lower"       
#[21] "class"        "property"      "unit"          "of"         
#[25] "ref"         
bod <- bod[c(2,22,18,23,24,17,10,12,25)]
colnames(bod) <- c(
  "item",
  "property",
  "value",
  "unit",
  "of (P642)",
  "point in time (P585)",
  "location (P276)",
  "sex or gender (P21)",
  "stated in (P248)"
)
bod <- bod[order(bod[[1]],bod[[2]],bod[[4]],bod[[5]],bod[[6]],bod[[8]]),]
oprint(bod, show_all=TRUE)
</rcode>
{| {{prettytable}}
|+'''Measure metric definitions
|----
! Measure
! Number
! Percent
! Rate
! Years
|----
| Deaths
| Number of deaths in the population
| Proportion of deaths for a particular cause relative to deaths from all causes
| Deaths per 100,000 population
| n/a
|----
| Disability adjusted life years (DALYs)
| Number of DALYs in the population
| Proportion of DALYs for a particular cause relative to DALYs for all causes
| DALYs per 100,000 population
| n/a
|----
| Years of life lost (YLLs)
| Number of YLLs in the population
| Proportion of YLLs for a particular cause relative to YLDs for all causes
| YLLs per 100,000 population
| n/a
|----
| Years lived with disability (YLDs)
| Number of YLDs in the population
| Proportion of YLDs for a particular cause relative to YLDs for all causes
| YLDs per 100,000 population
| n/a
|----
| Prevalence
| Number of cases in the population
| Proportion of cases of a particular cause relative to cases from all causes
| Cases per 100,000 population
| n/a
|----
| Incidence
| Number of cases in the population
| Proportion of cases of a particular cause relative to cases from all causes
| Cases per 100,000 population
| n/a
|----
| Maternal mortality ratio (MMR)
| n/a
| n/a
| Deaths per 100,000 live births
| n/a
|----
| Life expectancy
| n/a
| n/a
| n/a
| Years lived
|----
| Healthy life expectancy (HALE)
| n/a
| n/a
| n/a
| Years lived
|----
| Summary exposure value (SEV)
| n/a
| n/a
| 0 to 100, where 0 is no risk and 100 is the highest level of risk
| n/a
|----
|}
==== 2010 Study ====


Large pieces of data are available at the project [http://www.healthmetricsandevaluation.org/ghdx website]. We are building functionalities to access and reuse the data. Some drafts are written on this page.
Large pieces of data are available at the project [http://www.healthmetricsandevaluation.org/ghdx website]. We are building functionalities to access and reuse the data. Some drafts are written on this page.
Line 18: Line 291:
An example of R code that fetches mortality data from IHME website and transforms it into a useful format for [[R-tools]]. Uncertainties are stored with the mean value for later use with [[OpasnetUtils/Interpret|interpret]] function.
An example of R code that fetches mortality data from IHME website and transforms it into a useful format for [[R-tools]]. Uncertainties are stored with the mean value for later use with [[OpasnetUtils/Interpret|interpret]] function.


<pre>
<rcode>
# Read data
# Read data
link <- "http://www.healthmetricsandevaluation.org/sites/default/files/record-attached-files/IHME_GBD_2010_MORTALITY_1970_2010.CSV"
link <- "http://www.healthmetricsandevaluation.org/sites/default/files/record-attached-files/IHME_GBD_2010_MORTALITY_1970_2010.CSV"
Line 38: Line 311:
head(a)
head(a)
a <- melt(a, id.vars = 1:4, variable_name = "Observation") # Change into long format.
a <- melt(a, id.vars = 1:4, variable_name = "Observation") # Change into long format.
</pre>
</rcode>


==See also==
==See also==
Line 48: Line 321:
* [http://www.healthmetricsandevaluation.org/about-ihme/team/list IHME: Team list]
* [http://www.healthmetricsandevaluation.org/about-ihme/team/list IHME: Team list]
* [http://www.healthmetricsandevaluation.org/ghdx/record/european-hospital-morbidity-database European hospital morbidity database]
* [http://www.healthmetricsandevaluation.org/ghdx/record/european-hospital-morbidity-database European hospital morbidity database]
* [[Disability weights]]


== References ==
== References ==


[http://www.globalburden.org/advantage.html Project web page]
[http://www.globalburden.org/advantage.html Project web page]

Latest revision as of 15:17, 20 December 2017

Study Overview

The new Global Burden of Diseases, Injuries, and Risk Factors Study (the GBD 2010 Study), which commenced in the spring of 2007, is the first major effort since the original GBD 1990 Study to carry out a complete systematic assessment of the data on all diseases and injuries, and produce comprehensive and comparable estimates of the burden of diseases, injuries and risk factors for two time periods, 1990 and 2005. By Spring 2011 the project will produce a final set of estimates.

The GBD 2010 Study brings together a community of experts and leaders in epidemiology and other areas of public health research from around the world to measure current levels and recent trends in all major diseases, injuries, and risk factors, and to produce new and comprehensive sets of estimates and easy-to-use tools for research and teaching. It is led by a consortium including Harvard University, the Institute for Health Metrics and Evaluation at the University of Washington, Johns Hopkins University, the University of Queensland, and the World Health Organization (WHO). This ambitious effort will be conducted systematically and transparently; both its methods and results will be made available to the public.

The GBD assesses the magnitude of health problems using standard units of measurement, such as disability-adjusted life years (DALYs). This study feature allows for lives in every part of the world to be valued equally and creates a common unit of currency for making decisions about the costs and benefits of various health interventions.

Finally, the study will focus from the outset on education, training, and transparency, incorporating features like an interactive website where experts can post information and actively discuss the study process. Broadening the global community's engagement with health metrics will be a focal point of the project.

Materials and methods

Data

2016 Study

See notes for importing the GBD2016 data to Wikidata [1].

USE CITATION URL: http://ghdx.healthdata.org/gbd-results-tool

  • IHME-GBD-2016 Data and metadata: Global deaths and DALYs for each disease; and Country-specific total deaths and DALYs. Also all classifications used.
  • Permanent link to the global data per disease fetched on 14.12.2017 for visualisations and uploading to Wikidata. [2] [3]
  • Permanent link to country-specific data for total deaths and DALYs fetched on 18.12.2017 for uploading to Wikidata. [4] [5]
  • Codebook contains explanations and hierarchies of the codes used in the study. They are uploaded to Opasnet Base with the names mentioned after the file name.
    • IHME_GBD_2016_CAUSE_HIERARCHY_Y2017M10D02.XLSX → Cause hierarchy (result column: sort_order)
    • IHME_GBD_2016_CODEBOOK_Y2017M10D02.CSV → Codebook (result column: lower)
    • IHME_GBD_2016_LOCATION_HIERARCHY_Y2017M10D02.XLSX → Location hierarchy (result column: subnational_location)
    • IHME_GBD_2016_MEASURE_METRIC_DEFINITIONS_Y2017M10D2.XLSX → Measure metric definitions table on this page
    • IHME_GBD_2016_REI_HIERARCHY_Y2017M10D02.XLSX → Rei hierarchy (result column: sort_order)
  • GBD 2015 study: Causes of death and nonfatal causes mapped to ICD codes [6]
    • IHME_GBD_2015_ICD_CAUSE_MAP_CAUSES_OF_DEATH_Y2016M10D07.XLSX → ICD causes of death (result column: ICD9)
    • IHME_GBD_2015_ICD_CAUSE_MAP_NONFATAL_Y2016M10D07.XLSX → ICD nonfatal causes (result column: ICD10)
  • Help for ICD codes: ICD code app, en:ICD-10.

+ Show code

Measure metric definitions
Measure Number Percent Rate Years
Deaths Number of deaths in the population Proportion of deaths for a particular cause relative to deaths from all causes Deaths per 100,000 population n/a
Disability adjusted life years (DALYs) Number of DALYs in the population Proportion of DALYs for a particular cause relative to DALYs for all causes DALYs per 100,000 population n/a
Years of life lost (YLLs) Number of YLLs in the population Proportion of YLLs for a particular cause relative to YLDs for all causes YLLs per 100,000 population n/a
Years lived with disability (YLDs) Number of YLDs in the population Proportion of YLDs for a particular cause relative to YLDs for all causes YLDs per 100,000 population n/a
Prevalence Number of cases in the population Proportion of cases of a particular cause relative to cases from all causes Cases per 100,000 population n/a
Incidence Number of cases in the population Proportion of cases of a particular cause relative to cases from all causes Cases per 100,000 population n/a
Maternal mortality ratio (MMR) n/a n/a Deaths per 100,000 live births n/a
Life expectancy n/a n/a n/a Years lived
Healthy life expectancy (HALE) n/a n/a n/a Years lived
Summary exposure value (SEV) n/a n/a 0 to 100, where 0 is no risk and 100 is the highest level of risk n/a

2010 Study

Large pieces of data are available at the project website. We are building functionalities to access and reuse the data. Some drafts are written on this page.

An example of R code that fetches mortality data from IHME website and transforms it into a useful format for R-tools. Uncertainties are stored with the mean value for later use with interpret function.

+ Show code

See also

References

Project web page