The open science and research handbook: Difference between revisions

From Opasnet
Jump to navigation Jump to search
(Created page with ":''The text on this page is from [http://openscience.fi/documents/14273/0/Open+Science+and+Research+Handbook+v.1.0/50316d5d-440b-4496-b039-2997663afff8 The open science and re...")
 
 
(One intermediate revision by the same user not shown)
Line 13: Line 13:
Currently, the handbook comprises the following sections:
Currently, the handbook comprises the following sections:


{| {{prettyable}}
{| {{prettytable}}
|The key premises for OSR || Give to the strategy team, 2 June 2014
|The key premises for OSR || Give to the strategy team, 2 June 2014
|---
|---
Line 133: Line 133:


==Promoting OSR==
==Promoting OSR==
:a. Basic  principles  and  best  practices
:b. Promoting  openness  in  the  research  process
:# Measures  for  science  policymakers
:# Measures  for  research  financiers
:# Measures  for  research  administration
:# Measures  for  research  organisations  and  research  teams
:# Measures  for  researchers
===Basic principles and good practise in OSR===
Best  practice  in promoting OSR includes the  development  of
* common,  binding  ethical  guidelines  for  research
* good  methods  for  managing  research  data
* basic  principles  for  openness,  including  recommendations for  their  expansion.
In  2012,  the  Finnish  Advisory  Board  on  Research  Integrity  (TENK) — appointed  by  the  Ministry  of  Education  and  Culture — worked  with  the  Finnish  research  community  to  update  its  ethical  guidelines  on  good  scientific  practice  and  how  to  handle  suspected  violations (see the  [http://www.tenk.fi/fi/htk-­ohje HTK guidelines]).
'''Openness  and  well-­managed  research'''  results lead  to  [http://www.helsinki.fi/laatu_ja_arviointi/tutkimus.html high-­quality  operations  and  results]:  honesty,  diligence,  and  accuracy.  The  characteristics  of  high  quality  include usability  and  availability,  integrity  and  accuracy,  openness  and  confidentiality. 
'''High-­quality data''' is  a  central  requirement  for  good  data  management.  When  research  data  is  [http://www.vm.fi/vm/fi/04_julkaisut_ja_asiakirjat/01_julkaisut/04_hallinnon_kehittaminen/4127/4128_fi.pdf well  managed],  data  is  not  altered  without  reason,  is  not  corrupted  or  lost  during  processing,  and  can  be  relied  on  for  its accuracy  and  quality.
'''Quality  assurance  and  accuracy'''' in  research  data  management  are  absolutes  that  cannot  be  compromised without  justification.  However,  measures  to  ensure  data  quality  and  accuracy  should  always  be  scaled  to  the  data's significance  and  importance.  The  greater  the data’s importance,  the  more effort  should  go  into  ensuring  its  quality and  accuracy.
''''Availability  and  usability''' are  essential  and  closely  related  concepts.  Usability is  generally  used  when  referring  to  information  systems,  while  availability is  used  in  connection  with  data,  publications  and  methods.  Availability has  two  dimensions:  the  concrete  availability  of  data and  methods,  such  as  the  physical  location  of  files,  and  the  technical  and  other  requirements  for  making  data  available.
'''Data  confidentiality and protection''' is  a  key  aspect  of  data  management.  '''Data  security'''  covers  the  usability,  integrity  and  confidentiality  of  other  parties'  data.  Research  system  providers,  the  general  public,  decision-­makers  and  companies  must be  safe  in  the  knowledge  that  sensitive or  confidential material  surrendered  for  research  purposes does  not  end  up  in  the  possession  of  third  parties.
Figure  3  shows  the  process of  promoting  OSR as  a  whole.
[[File:process_of_osr_promotion.png|700px]]
In  practice,  OSR is  promoted  at  four  levels: 
# general  policy
# working  culture
# working  methods 
# services  and  infrastructure  The  following  shows  how  OSR is  promoted  at  each
====The basic policy for OSR in the Finnish research system====
The  Finnish  research  system operates  under  a  few  basic  policies:
# Research  results — including  publications,  data,  methods  and  the  tools  required  to publish — should  be  openly  available  in  data  networks  via  an  open  interface  in  accordance  with  ethical  principles  and  respecting  legal  operating  environments.
# Openness  within  research  infrastructures  should  always  be  pursued  when  it  is  legally  and  contractually  possible.
# The  further  use  of  research  results  should  not  be  unnecessarily  restricted (See,  for  example, [http://oikeusministerio.fi/fi/index/toimintajatavoitteet/lakiensaataminen/julkisuuslaki/uudistuksesta.html The  Act  on  the  Openness  of  Government  Activities]),  and  the  terms  and  conditions  of  their use  should  be  clearly  defined.
# The  scientific  and  research  community  should  work  with  financiers  to  define  quality  criteria  and  indicators  for OSR that  can  be  used  alongside  other  indicators  used  in  research.
===Promoting openness in the research process===
Achieving  openness  requires  an  open  approach  at  all  stages of  the  research  process,  with  different challenges at  each  stage (Figure  4)
[[File:openness_different_stages_of_research.png|700px]]
To  develop  a working  culture  that  supports  OSR,  Finland requires  best  practice  and  clear  policies  from  financiers  and  organisations  within  the  research  system.  This  means  supporting  and  considering  openness  in,  for  example,  contracts,  funding  and  credits.
The  research  process  alternates  between  planning,  action  and  evaluation.  We  need  to  adapt  our  working  methods  not  only  with  regard  to  research  structures and  processes,  but  also  values,  attitudes  and  behaviour.
Finland's  data  infrastructure  service  offering  should  be  built  on  a  sustainable  base,  and  should  provide  services  for  the  storage,  retrieval  and  preservation  of  data,  methods  and  publications.  Infrastructure  interoperability  must  be  ensured  when  materials  or  methods  cannot  be  made  freely  available.  Services  should  by  designed  comprehensively  and  cooperatively.
Promoting  openness  requires the  cooperation  of all  parties,  each  with  their  own  measures  and  responsibilities  (Figure  5)
[[File:promoting_osr_stakeholder.png|800px]]
====Measures for science policymakers====
OSR often  require samendments  to  existing  structures.  When  drawing  up  scientific  policies  to promote  openness, policymakers need  to  consider:
* mixed  policies
* measures  for  both  providers  and  users
* methods  for  obtaining  the  required  expertise  and  making  use  of  networked  expertise
* ways  to promote an  open  approach  throughout  the  innovation  system
* both  pre-emptive  measures  and  those  dictated  by  change
* ecosystem  architecture  and  services
====Measures for research financiers====
When  making  the  decision  to  fund  research,  financiers should  require:
* swift  publication  of  research  results
* clear  contracts  on  copyrights  and  proprietary  rights  concerning  research  results
* the  open  licensing  of  results  (the OSR Initiative  ATT  recommends  a  CC4.0  BY  licence)
* data  management  planning
* an  open  use  policy  for  funded  research  infrastructures
Research  financiers  should  support:
* open  access  publishing  (financially)
* open  cooperation 
* an  operating  model  for  the  long
* term  preservation  of  research  results
* the  building  of  service  infrastructures
Research  financiers  should  state:
* what  their  recommendations  are  concerning  alternatives  for  open  access  publication
* how  openness  will be  rewarded  in  career  development
* how  the  financier  would  like  copyrights  and  proprietary  rights  to  be  managed
* what  quality  criteria  they  stipulate  for  research
* the  metrics  and  indicators  to  be  used  in  evaluations
====Measures for research organisations====
As  part  of  their  operation, research  organisations should:
* develop clear  data  policies
* develop clear  publication  policies
* develop clear  licensing  policies
* clearly  describe researchers’ rights  regarding  openness
* increase  and  maintain  expertise
* encourage the use  of  a  common  service  infrastructure,  providing  any  required  local  infrastructure  services
* collect  the  required  indicator  data
* provide quality  systems
====Measures for research teams====
When  collaborating  as  part  of  a  research  team,  individual  teams should:
* agree  on  copyrights, proprietary  rights and  licensing  of results
* recommend  and  use open-source  software,  and  open  standards  and  interfaces
* produce descriptive  metadata
* use  of  quality  systems
* ensure the  repeatability  of  research  results
* promote interoperability
====Measures for researchers====
As  part  of  their  research  process,  researchers  should:
* agree  on  copyrights, proprietary  rights and  licensing  of  results in  accordance  with  guidelines
* use  citations
* choose a  publishing  channel
* use open  evaluation  whenever  possible
* embrace  open  access  publishing  (articles,  data,  methods)
* ensure the  repeatability  of  research  results
* produce descriptive  metadata
Figure  6  summarises  the  measures different  parties  should  take when supporting OSR.
[[File:summary_measures_for_openness.png|800px]]
==Putting OSR into practise==
(''Additions from  working  groups  during  2014'')
* Open  research  publications
* Open  research  data
* Open  research  methods
* Open  research  infrastructures
* Open  research  support  services
==International trends==
(''Additions from  working  groups  during  2014'')
A  large  number  of  Finnish  and  international  research  organisations  and  financiers  have  set  targets  for  increasing  the  openness  of  research  results.  For  example,  the  European  Commission '''Recommendation  on  Access  to  and  Preservation  of  Scientific  Information'''  sets  out  policies  and  targets for openness  in  European  research.
The  openness  of  research  data  has  improved  thanks  to  a  report  published  by  the  OECD  in  2007, entitled '''Principles  and  Guidelines  for  Access  to  Research  Data  from Public  Funding''’.
The  OECD  Council's  2008  recommendation  for  Enhanced  Access  and  More  Effective  Use  of  Public  Sector  Information had  a  major  impact  on  the  PSI  Directive.  Open  science  stakeholders - such  as  financiers,  institutions  of  higher education  and  their  libraries,  datacentres,  scientific  societies  and  backers — are  looking  at  the major  challenges  and  opportunities raised  by the  reuse  of  data  items.
An  increasing  proportion  of  scientific  publications  are  appearing  in  open  access  journals.  One  such  journal, ''PLoS  One'' has  unquestionably  become  the  world's  biggest  scientific  journal.  Other  significant  scientific  periodicals,  such  as ''Nature'' and  ''Science'', are publishing  articles  on  open  science  with  increasing  frequency.  Publishers  are  developing  strategies  to distribute  research  data  in  tandem  with  publications.
The variety  of  public and private sector stakeholders taking  part  in  these  activities, and the range  of  projects involved indicates that OSR is  becoming  more  widespread  and  increasingly  important  across  the  globe.  Example projects  include  ''DataCite''; the  pre-­print  service  ''arXiV'';  ''OpenAIRE'',  which  collates  publications  on  EU  projects;  ''Zenodo'',  which  collates  data;  and  field-­specific  repositories  such  as  ''PANGAEA''  and  ''Dryad''.  Many  major  research  infrastructures  (such  as  the  ESFRI  projects)  are  also  sharing  their  results  via  open  services.
However,  sharing  of  research  data  has  not  yet  become  the  norm.  Although  the  publication  of  research  data  is  of  global  interest,  the  key  to  success fully  embracing  OSR  lies  in understanding  the  associated  challenges  facing  a  variety  of  different  stakeholders.
==Glossary==
''(Additions from  working  groups  and  cooperation  with  the  Ministry  of  Finance  during  2014)
'''Authority services
:An  authority  file  supports  the  identification  of  individuals  or  associations  by  differentiating  similarly  named  individuals  with  the  aid  of  dates,  professions,  etc.  However,  the  authority  file  also  collates  the individual/association's  name  variants  to  ensure  'access'  to  the  same  person/organisation's  work  regardless  of  the  form  in  which  their  name  appears.  The  authority  file  also  organises  the  database  by  linking  a  person's  various  'public  identities',  such  as  real  name  and  pen  name.  In  the  same  way,  new  and  old  names resulting from  personal  or  organisational  name  changes  are  also  linked.    National  libraries  create  name  authority  files  for  works  published  in  their  country.  Search  terms  in  accordance  with  national  regulations  are  stored  in  a  target's  authority  file  along  with  any  relevant  IDs  (ISNI,  ORCID)  and  name  variants.  The  information  is  collated  in  international  databases  (such  as  the  ISNI  and  ORCID  databases  and  the  Virtual  International Authority  File  VIAF),  which  are  freely  available  online.  The  current  public  administration  recommendation  is  to also publish  this  information  as  open  linked  data.
'''Availability
:Availability  determines  whether  information  is  available  in  accordance  with  its  purpose,  in  principle  both  technically  and  in  accordance  with  other  operational  requirements.
'''Citation
:A  citation  is  used to  refer  to  a  source.  It  can  be  placed  as  an  in-line  citation  within  the  text,  in  the  footer  as  a  footnote,  as  an  endnote  at  the  end  of  a  publication  or  section  thereof,  or  as  a  reference  in  a  bibliography,  for example.  Sources  have  typically  been  research  publications,  but  research  data  stored  in  a  repository  can  also  be  a  source.  Repositories  usually  contain  both  the  actual  item  (for  example,  a  data  file(s), code-­book or  questionnaire) as well as the metadata associated with the item. All these can be cited. When citing  research  data,  the  important  differentiating  elements  are  the  author,  the  item's  title,  the  version  number, the  repository  ID  (usually  the  item  number),  the  collection  date,  the  collector,  producer  and  distributor,  and  (if  available)  a  PID.  The  Finnish  national  standard  SFS  5989  (Lähde-­ ja  tekstiviitteitä  koskevat  ohjeet)  provides  guidelines  on  using  citations  and  references. Many institutions  of  higher  education  use  citation  software  based  on  the  aforementioned  standard.  The  Finnish  Social  Science  Data  Archive  also  provides  guidance  on  citing  research  data  (see [http://www.fsd.uta.fi/fi/aineistot/jatkokaytto/viittaaminen.html here]).
:'''EXAMPLE  1''' SOSIAALIBAROMETRI  1994 [digital  item].  FSD1129,  version  1.0  (2002-03-­11).  Helsinki:  Sosiaaliturvan  keskusliitto  [producer],  1994.  Tampere:  Yhteiskuntatieteellinen  tietoarkisto  [distributor],  2002.
:'''EXAMPLE  2''' INTERNATIONAL  SOCIAL SURVEY  PROGRAMME 2007:  Leisure  Time  and  Sports  [digital  item].  ZA4850,  version  2.0.0  (2009-­10-­29).  Cologne:  GESIS  [producer,  distributor],  2009.  doi:10.4232/1.10079.  Available  [http://dx.doi.org/10.4232/1.10079 here]
:'''EXAMPLE  3''' EKHOLM,  Peter,  Karina  JUTILA  and Pentti  KILJUNEN:  Käsitykset  ilmastonmuutoksesta  2006 [digital  item].  FSD2262,  version  1.0  (2007-05-10).  Lempäälä:  Yhdyskuntatutkimus  [data  collection],  2006. Helsinki:  Ajatuspaja  e2  [producer],  2006.  Tampere:  Yhteiskuntatieteellinen  tietoarkisto  [distributor],  2007.
:According  to  the  HTK  guidelines: ''Researchers  should  acknowledge  the  work  and  achievements  of  other  researchers  in  an  appropriate  manner,  showing  respect  for  others'  work  by  citing  other  researchers' publications  in  an  appropriate  manner  and  giving  others'  achievements  due  value  and  significance  both  in their  research  and  the  publication  of  their  results.
'''Data integrity
:Data  integrity  means  ''1.  (Data  or  a  data  system  that  is)  genuine,  authentic,  free  from  internal  conflicts, comprehensive,  up-to-date,  legal,  and  usable.  2.  A  characteristic  by  which  information  or  a  message  has  not  been  altered  without  authority,  and  any  potential  changes  can  be  traced  with  an  audit  trail.''  (Glossary  of  Government  Information  Security,  1/2000).
'''Open access publishing
:In  its  simplest  form,  open  access  publishing  (articles,  reports,  monographs)  means  uploading  a  research  publication  to  a  data  network  and  granting  rights  to  read,  copy,  print  and  link  to  entire  scientific publications.  Open  access  publishing  means free  dissemination  of  scientific  information.  A  scientific  publication  is  openly  available  when  both  the  scientific  community  and  the  general  public  have  unrestricted  access  via  the  Internet  without  charge.
:In  simple  terms,  Golden  OA  (the  Gold  Road)  meansopen  journals,  while  Green  OA  (the  Green  Road)  means  self-­archiving.  More  detailed  information  about  the  alternatives  for  open  access  publishing  is  available  from, for  example,  Ilva  &  Lilja:  Kotimaiset  tieteelliset  lehdet  ja  avoin  julkaiseminen  (Finnish  scientific  journals  and open  access  publishing).  2014.  URN:NBN:fi-­fe2014050725729.
'''Open data
:Open  data  refers  to  unprocessed  information  accumulated  by  research  organisations,  researchers,  public  administration,  companies  or  private  persons  that  is  made  freely  accessible  to  third  parties  for  use  without  charge.
'''Open interfaces
:An  open  interface  refers  to  well-­documented,  free-­to-­use  means  of  transferring  data  between  software ([http://www.vm.fi/vm/fi/04_julkaisut_ja_asiakirjat/03_muut_asiakirjat/20101208Julkis/01_PERA_tietovarantojen_rajapinnat_20101208.pdf PERA definitions]). For  example,  a  database  will  provide  software  developers  with  an  interface  for  queries.
'''Open knowledge
:Open  knowledge  refers  to  unrestricted  access  to  digital  content  and  data  that  users  may  use,  amend  and  distribute  without  charge.  To  meet  the  criteria  for  open  knowledge,  items  must  available  in  full,  in  a  usable  and  amendable  format, via  the  Internet.  Items  must  also  be  licensed  for  unrestricted  use,  amendment  and  distribution.
'''Open licences
:Research  data  and  publications  are  usually  protected  by  copyright.  However,  agreements  can  be  signed  to  enable  open  use  of  these  materials.  Creative  Commons  licences  can  be  used  to  grant  selected  rights  and  freedoms  to  users,  readers  or  experiencers.  By  combining  different  terms  and  conditions,  you  handle  your rights  in  a  way  that  suits  both  you  and  the  situation.  You  can  try  combining  different  terms  and  conditions  with  your  choice  of  licence.  The  OSR Initiative (ATT) recommends CC0, CC 4.0 BY or, if necessary, other [http://creativecommons.fi/lisenssit/ generally  recognised  licences].
'''Openness and confidentiality of research results
:Confidentiality  is  ''1.  Maintaining  the  confidentiality  of  data,  and  protecting  the  rights  associated  with  data,  data  processing  and  communications  from  violation.  2.  The  extent  to  which  confidentiality  is  considered  important.''  (Glossary  of  Government  Information  Security,  1/2000).
'''Open research environments or infrastructures
:A  research  environment  or  infrastructure  comprises  the  tools,  equipment,  materials  and  services  that  enable research  to  be  carried  out.  Research  infrastructures  can  be  used  to  strengthen  research  communities and increase  capacity. Research  infrastructures  can  be  located  in  one  place,  be  decentralised,  or  be  virtual.  An  open  research  infrastructure  provides  access  to  a  comprehensive  package — the  research  process  via  which the  results  will  be  produced.  For  a  research  infrastructure  to  be  considered  open,  results,  publications  and  background  materials  must  be  freely  available  to  the  research  community.
'''Open science
:Open  science  means  the  promotion  of  an  open  operating  model  in  scientific  research.  The  key  objective  is  to  publish  research  results,  along  with  the  data  and  methods  used,  so  they  can  be  examined  and  used  by  any  interested  party.
:Open  science  includes  practices  such  as  promoting  open  access  publishing,  open  access  publishing  itself,  harnessing  open-­source  software  and  open  standards,  and  the  public  documentation  of  research  processes  with  'memoing'.
'''Open source
:Open  source  is  a  way  to  develop  and  share  software.  The  software's  source  code  is  freely  available  to  be  used,  copied,  altered,  and  shared.  In  the  open  source  development  world,  both  ideas  and  finished  products  are  available  for  all  to  see  and  use.  Any  single  company  does  not  manage  development — it  is  a  global  community  consisting  of  private  persons  and  companies.  Everyone  can  participate  in  development  work,  and  bugs  can  be  quickly  found  and  fixed.  This  often  leads  to  high  software  quality,  good  data  security,  and  software  interoperability.
'''Open standards
:Open standard  means  adherence  to  established,  commonly  agreed  standards,  so  developers  can  create  replica  or  compatible  software.  Open  standards are available  to  all,  so  anyone  can  find  out  about  and  adhere  to  them.
'''Peer review
:Peer  review,  or  'refereeing',  comes  from  the  custom  in  which  scientific  articles  sent  to  journals  or  other publications  are  evaluated  by  the  editorial  team  and  selected  external  experts.  Peer  reviewers  examine  the content  and  scientific  significance  of  the  submitted  article,  along  with its  linguistic  form  and  textual  structures,  ensuring that  each  article adheres to  principles  of  scientific  writing  (such  as  succinctness,  clarity  in  diagrams  and  tables,  source  citations).
'''Persistent identifiers
:Identifiers  for  publications  and  research  data  are  used  to,  for  example,  search  for,  identify  and  link  materials.  Identifiers  are  also  mandatory  for  long-­term  preservation.    Depending  on  the  type  of  publication  involved,  the  identifier  may  be  an  ISBN  (monographs)  or  a  variety  of  persistent  identifiers  (PIDs).  A  Handle  ID  is  used  in repositories,  a  DOI  in  commercial  publishers'  systems,  and  a  URN  in  national  libraries'  digital  collections.  A  PID  is  almost  exclusively  used  for  research  data  in  national  and  international  projects,  while  the  National  Research  Data  Project  (TTA)  and  OSR Initiative  (ATT)  use  a  URN.  IDs  are  also  required  for  researchers  and  other  juridical  bodies  participating in  the  research  process  (universities  and  other  institutions  of  higher  education,  research  institutes,  scientific  communities  and  their  institutions,  research  teams).  These  identifiers  are  always  separately  allocated  in  Finland.
'''Quality system
:A  quality  system consists  of  procedures  and  processes  for  assuring  the  quality  of  training,  research,  social  dialogue  and  impact,  human  resources,  services,  and  management.
'''Usability
:Usability is  defined  as  follows: According  to  the Glossary  of  Government  Information  Security  (1/2000),  usability  means  ''1)  a  characteristic  of  data,  an  information  system  or  service,  by  which  it  is  available  to  those  with  the  right  to  use  it,  and  can  be  used  at  the  desired  time  and  in  the  required  manner,  and  2)  ease  of use''.

Latest revision as of 12:00, 22 January 2015

The text on this page is from The open science and research handbook, December 2014, English version

This handbook aims to help researchers, research organisations, decision-makers, financiers, and the general public promote the adoption and use of open science and research (OSR).

OSR opens new opportunities for participating in scientific research and applying research results, increasing the global contribution and social impact of scientific activities.

Finland seeks to become a leader in OSR, applying its principles to accelerate Finnish scientific research and boost its impact.

Achieving this goal will require the extensive participation of the research community and the internalisation of new working methods, but with the aid of OSR, we aim to boost the competitiveness and quality of Finland's research system, promoting reliability and transparency in scientific research.

This handbook aims to facilitate this process, and will be edited and enhanced by key stakeholders as we progress. Handbook versions approved by the strategy team will be published on the openscience.fi website.

Currently, the handbook comprises the following sections:

The key premises for OSR Give to the strategy team, 2 June 2014
Promoting OSR Give to the strategy team, 2 June 2014
General principles
Promoting openness in the research process
Measures for science policymakers
Measures for research financiers
Measures for research administration
Measures for research organisations and research teams
Measures for researchers
Putting OSR into practice Additions from working groups and open comments during 2014; to be published in the forum on 25 November
Open research publications
Open research data
Open research methodologies
Open research infrastructures
Open research support services
International situation Additions from working groups during 2014
Glossary Additions from working groups and cooperation with the Ministry of Finance during 2014

The first version of this handbook includes Chapter 1, short versions of Chapters 2 and 4, and Chapter 5. Over the course of 2014, additions will be made by working groups from the OSR Initiative (ATT), from open comments, and from the road map.

Detailed guidelines and model processes will be inserted into Chapters 2 and 3 in particular.

Openness: The key premise of open science and research

Openness is a key principle of science and research, creating new opportunities for participation by researchers, decision-makers and the general public.

OSR is now a globally accepted way of promoting science and its social impact. In adopting OSR, we generate increased opportunity for transparency, repeatability and confirmation of research results.

For OSR to thrive, the research community needs wide-ranging access to the publications, data, methods, expertise, and support services generated by, and required for, scientific research.

Scientific knowledge is by nature open and responsible, and this openness should be reflected not only in data collection but also in research and evaluation methods. Others' desire to access and use research results indicates a study's significance and, because its results are widely used, openness also increases the impact of that research.

Science can be democratised through the use of new operating models for OSR. OSR is not just a collection of methods and recommendations — it's a way of thinking, of promoting open-mindedness and networking. Digitalisation has opened up the research process, creating new opportunities for cooperation and communication.

Openness provides potential for change. A key aspect of this is ensuring that emerging researchers working outside of established research infrastructures have equal opportunities for data access, something especially relevant in emerging countries.

Openness gives everyone the principled opportunity to research, criticise or affirm research results in accordance with their abilities. This increases trust in science, and boosts corporate activity. Intangible commodities such as data, publications, methods, and services also benefit from increased openness in science. Making materials more widely — or freely — available, can also increase the potential for innovation.

The aim of science has always been to promote high-quality research and best practice, and to prevent poor research and falsification. OSR by its nature supports this, requiring efficient, open methods for managing research data. OSR can be successfully adopted only if those responsible for research systems are motivated and trained to apply OSR principles. Every research system should routinely employ open methods for managing research data. The first practical requirement is that each actor must have clearly structured, up-­to-date descriptions of how to promote open science. With the aid of OSR, we can promote sustainability, usability, access, and trust in research.

OSR depends on openness in the research process and working culture. Models for openness can be used to create opportunities for rich dialogue, and to preserve and increase diversity.

Research data, along with its associated expertise and understanding, are distributed across a variety of research actors, networks and communities. In these circumstances, openness must be increased:

  • inwardly: to bring new ideas to the research process.
  • outwardly: to enable others to harness ideas in new ways.

The recipe to achieving OSR is simple: we make our research offerings openly available, and use this openness to increase our impact

  1. We will choose to make our research offerings — including publications, data and methods - openly available in accordance with the principles of research ethics and the judicial environment, thus benefiting from the opportunities afforded by open access, open peer reviews, and parallel archiving. We will publish research results with an open licence (recommendation CC4.0 BY) and use support services that facilitate openness.
  2. We will make full use of research offerings made openly available by others, ensuring we have the required expertise, open‐source software, and information about open standards and interfaces, as well as the solutions to implement them.

Benefits of OSR

OSR brings with it benefits including:

  • Increased efficacy: We can use existing materials and methods to update our processes, resulting in faster development thanks to shared resources.
  • Increased awareness of the scientific model: We can promote awareness of scientific methods and ways of working.
  • Improved focus and better quality research results: We can confirm and validate data more quickly, improving quality and repeatability of results through greater transparency in research practices.
  • Faster generation of new research ideas: We can more easily apply research results in real time.
  • Increased commitment to science and improved scientific literacy: The general public can more easily access scientific results and methods.
  • Increased economic and social impact: Businesses and decision-­makers can more easily access and harness research results and methods.

OSR creates opportunities for a variety of stakeholders to participate in brainstorming research topics, conducting research, evaluating results, and developing software.

The basic logic of science and research dictates that science, along with its methods and results, should be as open as possible. Using OSR, research results and new information can be confirmed and validated independently and without bias, and support structures are required for this validation.

In making data and research results open, we enable and further new businesses and innovations, such as the creation of new services and software.

Openness is also economical and effective (According to a study conducted by the European Commission, open data projects are expected to generate 140 billion per annum. The economic impact of open research data is not so straightforward. A recent study estimated that investments in availability services would generate income in a ratio of 2–10 to investments): previously collected data and information generated from it become globally, efficiently and equally accessible to all.

Openness also improves the quality of research: results and data enable scientific observations to be verified or challenged, so the global body of scientific knowledge can develop and correct itself faster and without redundancy.

Openness also promotes the faster transfer of information for use by all. It guarantees equal access to research data, regardless of geography.

Providing open access to research results and data in an information network increases the visibility of researchers, research results, and research institutions, and improves impact.

Different stakeholdersbenefit from OSR in different ways (Figure 1), including increased visibility (citations, mentions in social and other media), increased credits (references to publications, data and methods; awards for openness), increased funding (rewards for openness, awards for clear definitions of copyright/proprietary rights), and improved networking (new opportunities, better workload distribution, better results analyses). To harness these benefits, we must implement the measures that are covered in more detail in the Chapter Promoting OSR.

Enabling OSR

Barriers to OSR include:

  1. The narrow reward culture in current academia: there is no real incentive to promote and reward openness
  2. Lack of infrastructure to support openness: there is widespread uncertainty about how the costs of openness will be covered. For example, business models may prevent increased openness in some research institutions
  3. Fear that raw data will be misinterpreted, methods misused, or data published too early
  4. Uncertainty over the ownership of data and methods
  5. Lack of expertise in promoting openness

These barriers are not insurmountable, and change can be supported by, for example:

  1. Developing incentives to promote cultural change: we need to clearly define the rewards and requirements for openness using indicators, metrics, and career impact, for example
  2. Promoting cooperation and interoperability: we need to build platforms for enabling and rewarding cooperation
  3. Planning for the sustainable development of research services and infrastructures: we need to develop with interoperability in mind, using open-­source software, and open interfaces and standards whenever possible
  4. Identifying OSR expertise and supporting its growth
  5. Developing clear OSR policies and guidelines for every party involved

Openness is not black and white. In practice, we operate between the extremes of the open-­closed scale (Figure 2), seeking a functional combination of availability, machine readability, costs, and legality. For example, research that reuses materials subject to the Personal Data Act requires a data‐protection guarantee. In such instances, researchers are urged to be open with regard to their publications.

Promoting OSR

a. Basic principles and best practices
b. Promoting openness in the research process
  1. Measures for science policymakers
  2. Measures for research financiers
  3. Measures for research administration
  4. Measures for research organisations and research teams
  5. Measures for researchers

Basic principles and good practise in OSR

Best practice in promoting OSR includes the development of

  • common, binding ethical guidelines for research
  • good methods for managing research data
  • basic principles for openness, including recommendations for their expansion.

In 2012, the Finnish Advisory Board on Research Integrity (TENK) — appointed by the Ministry of Education and Culture — worked with the Finnish research community to update its ethical guidelines on good scientific practice and how to handle suspected violations (see the HTK guidelines).

Openness and well-­managed research results lead to high-­quality operations and results: honesty, diligence, and accuracy. The characteristics of high quality include usability and availability, integrity and accuracy, openness and confidentiality.

High-­quality data is a central requirement for good data management. When research data is well managed, data is not altered without reason, is not corrupted or lost during processing, and can be relied on for its accuracy and quality.

Quality assurance and accuracy' in research data management are absolutes that cannot be compromised without justification. However, measures to ensure data quality and accuracy should always be scaled to the data's significance and importance. The greater the data’s importance, the more effort should go into ensuring its quality and accuracy.

'Availability and usability are essential and closely related concepts. Usability is generally used when referring to information systems, while availability is used in connection with data, publications and methods. Availability has two dimensions: the concrete availability of data and methods, such as the physical location of files, and the technical and other requirements for making data available.

Data confidentiality and protection is a key aspect of data management. Data security covers the usability, integrity and confidentiality of other parties' data. Research system providers, the general public, decision-­makers and companies must be safe in the knowledge that sensitive or confidential material surrendered for research purposes does not end up in the possession of third parties.

Figure 3 shows the process of promoting OSR as a whole.

In practice, OSR is promoted at four levels:

  1. general policy
  2. working culture
  3. working methods
  4. services and infrastructure The following shows how OSR is promoted at each

The basic policy for OSR in the Finnish research system

The Finnish research system operates under a few basic policies:

  1. Research results — including publications, data, methods and the tools required to publish — should be openly available in data networks via an open interface in accordance with ethical principles and respecting legal operating environments.
  2. Openness within research infrastructures should always be pursued when it is legally and contractually possible.
  3. The further use of research results should not be unnecessarily restricted (See, for example, The Act on the Openness of Government Activities), and the terms and conditions of their use should be clearly defined.
  4. The scientific and research community should work with financiers to define quality criteria and indicators for OSR that can be used alongside other indicators used in research.

Promoting openness in the research process

Achieving openness requires an open approach at all stages of the research process, with different challenges at each stage (Figure 4)

To develop a working culture that supports OSR, Finland requires best practice and clear policies from financiers and organisations within the research system. This means supporting and considering openness in, for example, contracts, funding and credits.

The research process alternates between planning, action and evaluation. We need to adapt our working methods not only with regard to research structures and processes, but also values, attitudes and behaviour.

Finland's data infrastructure service offering should be built on a sustainable base, and should provide services for the storage, retrieval and preservation of data, methods and publications. Infrastructure interoperability must be ensured when materials or methods cannot be made freely available. Services should by designed comprehensively and cooperatively.

Promoting openness requires the cooperation of all parties, each with their own measures and responsibilities (Figure 5)

Measures for science policymakers

OSR often require samendments to existing structures. When drawing up scientific policies to promote openness, policymakers need to consider:

  • mixed policies
  • measures for both providers and users
  • methods for obtaining the required expertise and making use of networked expertise
  • ways to promote an open approach throughout the innovation system
  • both pre-emptive measures and those dictated by change
  • ecosystem architecture and services

Measures for research financiers

When making the decision to fund research, financiers should require:

  • swift publication of research results
  • clear contracts on copyrights and proprietary rights concerning research results
  • the open licensing of results (the OSR Initiative ATT recommends a CC4.0 BY licence)
  • data management planning
  • an open use policy for funded research infrastructures

Research financiers should support:

  • open access publishing (financially)
  • open cooperation
  • an operating model for the long
  • term preservation of research results
  • the building of service infrastructures

Research financiers should state:

  • what their recommendations are concerning alternatives for open access publication
  • how openness will be rewarded in career development
  • how the financier would like copyrights and proprietary rights to be managed
  • what quality criteria they stipulate for research
  • the metrics and indicators to be used in evaluations

Measures for research organisations

As part of their operation, research organisations should:

  • develop clear data policies
  • develop clear publication policies
  • develop clear licensing policies
  • clearly describe researchers’ rights regarding openness
  • increase and maintain expertise
  • encourage the use of a common service infrastructure, providing any required local infrastructure services
  • collect the required indicator data
  • provide quality systems

Measures for research teams

When collaborating as part of a research team, individual teams should:

  • agree on copyrights, proprietary rights and licensing of results
  • recommend and use open-source software, and open standards and interfaces
  • produce descriptive metadata
  • use of quality systems
  • ensure the repeatability of research results
  • promote interoperability

Measures for researchers

As part of their research process, researchers should:

  • agree on copyrights, proprietary rights and licensing of results in accordance with guidelines
  • use citations
  • choose a publishing channel
  • use open evaluation whenever possible
  • embrace open access publishing (articles, data, methods)
  • ensure the repeatability of research results
  • produce descriptive metadata

Figure 6 summarises the measures different parties should take when supporting OSR.

Putting OSR into practise

(Additions from working groups during 2014)

  • Open research publications
  • Open research data
  • Open research methods
  • Open research infrastructures
  • Open research support services

International trends

(Additions from working groups during 2014)

A large number of Finnish and international research organisations and financiers have set targets for increasing the openness of research results. For example, the European Commission Recommendation on Access to and Preservation of Scientific Information sets out policies and targets for openness in European research.

The openness of research data has improved thanks to a report published by the OECD in 2007, entitled 'Principles and Guidelines for Access to Research Data from Public Funding’.

The OECD Council's 2008 recommendation for Enhanced Access and More Effective Use of Public Sector Information had a major impact on the PSI Directive. Open science stakeholders - such as financiers, institutions of higher education and their libraries, datacentres, scientific societies and backers — are looking at the major challenges and opportunities raised by the reuse of data items.

An increasing proportion of scientific publications are appearing in open access journals. One such journal, PLoS One has unquestionably become the world's biggest scientific journal. Other significant scientific periodicals, such as Nature and Science, are publishing articles on open science with increasing frequency. Publishers are developing strategies to distribute research data in tandem with publications.

The variety of public and private sector stakeholders taking part in these activities, and the range of projects involved indicates that OSR is becoming more widespread and increasingly important across the globe. Example projects include DataCite; the pre-­print service arXiV; OpenAIRE, which collates publications on EU projects; Zenodo, which collates data; and field-­specific repositories such as PANGAEA and Dryad. Many major research infrastructures (such as the ESFRI projects) are also sharing their results via open services.

However, sharing of research data has not yet become the norm. Although the publication of research data is of global interest, the key to success fully embracing OSR lies in understanding the associated challenges facing a variety of different stakeholders.

Glossary

(Additions from working groups and cooperation with the Ministry of Finance during 2014)

Authority services

An authority file supports the identification of individuals or associations by differentiating similarly named individuals with the aid of dates, professions, etc. However, the authority file also collates the individual/association's name variants to ensure 'access' to the same person/organisation's work regardless of the form in which their name appears. The authority file also organises the database by linking a person's various 'public identities', such as real name and pen name. In the same way, new and old names resulting from personal or organisational name changes are also linked. National libraries create name authority files for works published in their country. Search terms in accordance with national regulations are stored in a target's authority file along with any relevant IDs (ISNI, ORCID) and name variants. The information is collated in international databases (such as the ISNI and ORCID databases and the Virtual International Authority File VIAF), which are freely available online. The current public administration recommendation is to also publish this information as open linked data.

Availability

Availability determines whether information is available in accordance with its purpose, in principle both technically and in accordance with other operational requirements.

Citation

A citation is used to refer to a source. It can be placed as an in-line citation within the text, in the footer as a footnote, as an endnote at the end of a publication or section thereof, or as a reference in a bibliography, for example. Sources have typically been research publications, but research data stored in a repository can also be a source. Repositories usually contain both the actual item (for example, a data file(s), code-­book or questionnaire) as well as the metadata associated with the item. All these can be cited. When citing research data, the important differentiating elements are the author, the item's title, the version number, the repository ID (usually the item number), the collection date, the collector, producer and distributor, and (if available) a PID. The Finnish national standard SFS 5989 (Lähde-­ ja tekstiviitteitä koskevat ohjeet) provides guidelines on using citations and references. Many institutions of higher education use citation software based on the aforementioned standard. The Finnish Social Science Data Archive also provides guidance on citing research data (see here).
EXAMPLE 1 SOSIAALIBAROMETRI 1994 [digital item]. FSD1129, version 1.0 (2002-03-­11). Helsinki: Sosiaaliturvan keskusliitto [producer], 1994. Tampere: Yhteiskuntatieteellinen tietoarkisto [distributor], 2002.
EXAMPLE 2 INTERNATIONAL SOCIAL SURVEY PROGRAMME 2007: Leisure Time and Sports [digital item]. ZA4850, version 2.0.0 (2009-­10-­29). Cologne: GESIS [producer, distributor], 2009. doi:10.4232/1.10079. Available here
EXAMPLE 3 EKHOLM, Peter, Karina JUTILA and Pentti KILJUNEN: Käsitykset ilmastonmuutoksesta 2006 [digital item]. FSD2262, version 1.0 (2007-05-10). Lempäälä: Yhdyskuntatutkimus [data collection], 2006. Helsinki: Ajatuspaja e2 [producer], 2006. Tampere: Yhteiskuntatieteellinen tietoarkisto [distributor], 2007.
According to the HTK guidelines: Researchers should acknowledge the work and achievements of other researchers in an appropriate manner, showing respect for others' work by citing other researchers' publications in an appropriate manner and giving others' achievements due value and significance both in their research and the publication of their results.

Data integrity

Data integrity means 1. (Data or a data system that is) genuine, authentic, free from internal conflicts, comprehensive, up-to-date, legal, and usable. 2. A characteristic by which information or a message has not been altered without authority, and any potential changes can be traced with an audit trail. (Glossary of Government Information Security, 1/2000).

Open access publishing

In its simplest form, open access publishing (articles, reports, monographs) means uploading a research publication to a data network and granting rights to read, copy, print and link to entire scientific publications. Open access publishing means free dissemination of scientific information. A scientific publication is openly available when both the scientific community and the general public have unrestricted access via the Internet without charge.
In simple terms, Golden OA (the Gold Road) meansopen journals, while Green OA (the Green Road) means self-­archiving. More detailed information about the alternatives for open access publishing is available from, for example, Ilva & Lilja: Kotimaiset tieteelliset lehdet ja avoin julkaiseminen (Finnish scientific journals and open access publishing). 2014. URN:NBN:fi-­fe2014050725729.

Open data

Open data refers to unprocessed information accumulated by research organisations, researchers, public administration, companies or private persons that is made freely accessible to third parties for use without charge.

Open interfaces

An open interface refers to well-­documented, free-­to-­use means of transferring data between software (PERA definitions). For example, a database will provide software developers with an interface for queries.

Open knowledge

Open knowledge refers to unrestricted access to digital content and data that users may use, amend and distribute without charge. To meet the criteria for open knowledge, items must available in full, in a usable and amendable format, via the Internet. Items must also be licensed for unrestricted use, amendment and distribution.

Open licences

Research data and publications are usually protected by copyright. However, agreements can be signed to enable open use of these materials. Creative Commons licences can be used to grant selected rights and freedoms to users, readers or experiencers. By combining different terms and conditions, you handle your rights in a way that suits both you and the situation. You can try combining different terms and conditions with your choice of licence. The OSR Initiative (ATT) recommends CC0, CC 4.0 BY or, if necessary, other generally recognised licences.

Openness and confidentiality of research results

Confidentiality is 1. Maintaining the confidentiality of data, and protecting the rights associated with data, data processing and communications from violation. 2. The extent to which confidentiality is considered important. (Glossary of Government Information Security, 1/2000).

Open research environments or infrastructures

A research environment or infrastructure comprises the tools, equipment, materials and services that enable research to be carried out. Research infrastructures can be used to strengthen research communities and increase capacity. Research infrastructures can be located in one place, be decentralised, or be virtual. An open research infrastructure provides access to a comprehensive package — the research process via which the results will be produced. For a research infrastructure to be considered open, results, publications and background materials must be freely available to the research community.

Open science

Open science means the promotion of an open operating model in scientific research. The key objective is to publish research results, along with the data and methods used, so they can be examined and used by any interested party.
Open science includes practices such as promoting open access publishing, open access publishing itself, harnessing open-­source software and open standards, and the public documentation of research processes with 'memoing'.

Open source

Open source is a way to develop and share software. The software's source code is freely available to be used, copied, altered, and shared. In the open source development world, both ideas and finished products are available for all to see and use. Any single company does not manage development — it is a global community consisting of private persons and companies. Everyone can participate in development work, and bugs can be quickly found and fixed. This often leads to high software quality, good data security, and software interoperability.

Open standards

Open standard means adherence to established, commonly agreed standards, so developers can create replica or compatible software. Open standards are available to all, so anyone can find out about and adhere to them.

Peer review

Peer review, or 'refereeing', comes from the custom in which scientific articles sent to journals or other publications are evaluated by the editorial team and selected external experts. Peer reviewers examine the content and scientific significance of the submitted article, along with its linguistic form and textual structures, ensuring that each article adheres to principles of scientific writing (such as succinctness, clarity in diagrams and tables, source citations).

Persistent identifiers

Identifiers for publications and research data are used to, for example, search for, identify and link materials. Identifiers are also mandatory for long-­term preservation. Depending on the type of publication involved, the identifier may be an ISBN (monographs) or a variety of persistent identifiers (PIDs). A Handle ID is used in repositories, a DOI in commercial publishers' systems, and a URN in national libraries' digital collections. A PID is almost exclusively used for research data in national and international projects, while the National Research Data Project (TTA) and OSR Initiative (ATT) use a URN. IDs are also required for researchers and other juridical bodies participating in the research process (universities and other institutions of higher education, research institutes, scientific communities and their institutions, research teams). These identifiers are always separately allocated in Finland.

Quality system

A quality system consists of procedures and processes for assuring the quality of training, research, social dialogue and impact, human resources, services, and management.

Usability

Usability is defined as follows: According to the Glossary of Government Information Security (1/2000), usability means 1) a characteristic of data, an information system or service, by which it is available to those with the right to use it, and can be used at the desired time and in the required manner, and 2) ease of use.