Mortality in Europe: Difference between revisions
Jump to navigation
Jump to search
(Data uploaded using Opasnet Base Import) |
(updated based on Eurostat) |
||
Line 1: | Line 1: | ||
{{variable|moderator= Virpi Kollanus|stub=Yes}} | {{variable|moderator= Virpi Kollanus|stub=Yes}} | ||
== | == Question == | ||
What is the annual mortality rate in Europe per country and ICD10 category? | |||
'''Indices | '''Indices | ||
*Country | *Country (Geo) | ||
*Cause of death | *Cause of death (Icd10) | ||
*Age | *Age | ||
*Sex | *Sex | ||
*Year | |||
*Unit of measurement (Unit) RT means standardised mortality rate. | |||
== | == Answer == | ||
Example graphs from the data. [http://en.opasnet.org/en-opwiki/index.php?title=Special:RTools&id=FGBT3vMEcUavCJLu] | |||
<rcode graphics=1> | |||
library(OpasnetUtils) | |||
library(ggplot2) | |||
d <- opbase.data("Op_en4635", subset = "d", include = list(Icd10 = c("W65-W74", "X60-X84_Y870", "X85-Y09_Y871"))) | |||
d$Year <- as.factor(d$Year) | |||
d$Result <- as.numeric(as.character(d$Result)) | |||
ggplot(subset(d, Icd10 == "W65-W74"), aes(y = Result, x = Geo, colour = Year))+ geom_point() + labs(title="Drowning per 100000 py") | |||
ggplot(subset(d, Icd10 == "X60-X84_Y870"), aes(y = Result, x = Geo, colour = Year))+ geom_point() + labs(title="Self-harm per 100000 py") | |||
ggplot(subset(d, Icd10 == "X85-Y09_Y871"), aes(y = Result, x = Geo, colour = Year))+ geom_point() + labs(title="Assault per 100000 py") | |||
</rcode> | |||
== Rationale == | |||
=== Data === | === Data === | ||
[http:// | The main data comes from [http://ec.europa.eu/eurostat/data/database Eurostat] from where the file "Causes of death - standardised death rate per 100 000 inhabitants - annual Data (hlth_cd_asdr)" was downloaded on 12th Jan 2015 and stored in Opasnet base. | ||
'''Other data: | |||
[http://www.who.int/healthinfo/morttables/en/index.html WHO Mortality Database] | |||
=== Unit === | === Unit === | ||
Deaths/year | * Standardised incidence (1/100000py) | ||
* Deaths/year | |||
=== | === Calculations === | ||
This code was used to manage the data before using the OpasnetBaseImport. | |||
{{hidden| | |||
<pre> | |||
library(reshape2) | |||
library(OpasnetUtils) | |||
d <- read.table("//cesium/jtue$/_Downloads/hlth_cd_asdr.tsv", sep = "\t") | |||
d1 <- strsplit(as.character(d$V1), split = ",") | |||
d1 <- as.data.frame(t(array(unlist(d1), dim = c(length(d1[[1]]), length(d1))))) | |||
colnames(d1) <- c("Unit", "Sex", "Age", "Icd10", "Geo") | |||
colnames(d) <- c("Remove", 2010:1994) | |||
d <- cbind(d1, d) | |||
d$Remove <- NULL | |||
d <- d[2:nrow(d) , ] | |||
d <- melt(d, measure.vars = 6:ncol(d), variable.name = "Year", value.name = "Result") | |||
d$Result <- gsub("[a-z]", "", d$Result) | |||
d$Result[grepl(":", d$Result)] <- NA | |||
d$Result <- as.numeric(d$Result) | |||
d <- dropall(d) | |||
write.csv(d, file = "//cesium/jtue$/_Documents/MortInEurope.csv", row.names = FALSE) | |||
</pre> | |||
}} | |||
==See also== | ==See also== | ||
Line 34: | Line 77: | ||
==References== | ==References== | ||
<references/> | <references/> | ||
[[Category:Data]] | [[Category:Data]] |
Latest revision as of 12:12, 12 January 2015
Moderator:Virpi Kollanus (see all) |
This page is a stub. You may improve it into a full page. |
Upload data
|
Question
What is the annual mortality rate in Europe per country and ICD10 category?
Indices
- Country (Geo)
- Cause of death (Icd10)
- Age
- Sex
- Year
- Unit of measurement (Unit) RT means standardised mortality rate.
Answer
Example graphs from the data. [1]
Rationale
Data
The main data comes from Eurostat from where the file "Causes of death - standardised death rate per 100 000 inhabitants - annual Data (hlth_cd_asdr)" was downloaded on 12th Jan 2015 and stored in Opasnet base.
Other data:
Unit
- Standardised incidence (1/100000py)
- Deaths/year
Calculations
This code was used to manage the data before using the OpasnetBaseImport.
Show details |
---|
library(reshape2) library(OpasnetUtils) d <- read.table("//cesium/jtue$/_Downloads/hlth_cd_asdr.tsv", sep = "\t") d1 <- strsplit(as.character(d$V1), split = ",") d1 <- as.data.frame(t(array(unlist(d1), dim = c(length(d1[[1]]), length(d1))))) colnames(d1) <- c("Unit", "Sex", "Age", "Icd10", "Geo") colnames(d) <- c("Remove", 2010:1994) d <- cbind(d1, d) d$Remove <- NULL d <- d[2:nrow(d) , ] d <- melt(d, measure.vars = 6:ncol(d), variable.name = "Year", value.name = "Result") d$Result <- gsub("[a-z]", "", d$Result) d$Result[grepl(":", d$Result)] <- NA d$Result <- as.numeric(d$Result) d <- dropall(d) write.csv(d, file = "//cesium/jtue$/_Documents/MortInEurope.csv", row.names = FALSE) |