Population of Europe by Country: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
(Added category: 'Data') |
||
Line 108: | Line 108: | ||
{{mfiles}} | {{mfiles}} | ||
[[Category:Data]] |
Latest revision as of 22:07, 22 March 2011
Moderator:Teemu R (see all) |
|
Upload data
|
Scope
What is the size of population of Europe by country, divided into subgroups by age and sex?
Indices used
- Country
- Year: 2010, 2020, 2030, 2050
- Sex
- Age
Definition
Data
Main article: Population of Europe.
- Census data [1] are available on LAU level 2 for the year 2001.
- UN data [2] are available by country for the years 1950 to 2050.
- GWP(Gridded World Population) [3] data are available from CIESIN/SEDAC.
- EUROSTAT data [4] and projections are available for all required years.
Dependencies
- Growth rate of population: it may be high, medium, or low.
Unit
#
Formula
Reducing EMEP 50 grid -indexed data to country indexed
Constructed from data in Population of Europe, by summing results for each country using the R code below. The code requires database functions described here.
locs <- op_baseGetLocs("opasnet_base", "Op_en3017") countries <- locs[grep("CountryID", locs$ind),3] i <- 1 data <- op_baseGetData("opasnet_base", "Op_en3017", include = countries[i]) data <- data[order(data[,3], data[,4], data[,7], data[,8], data[,9]),] n <- data[gsub(" ", "", data[,"Age"])=="0-4",] n <- n[gsub(" ", "", n[,"Rate"])=="h",] n <- n[gsub(" ", "", n[,"Sex"])=="Female",] n <- n[gsub(" ", "", n[,"Year"])=="2010",] n <- nrow(n) data2 <- data[1:(nrow(data)/n),c("Age","CountryID","Rate","Sex","Year","Result")] for (j in 1:(nrow(data)/n)) { data2[j,] <- data.frame(data[j*n-n+1,c("Age","CountryID","Rate","Sex","Year")], sum(data[(j*n-n+1):(j*n),"Result"])) } op_baseWrite("opasnet_base", data2, ident = "Op_en4691", name = "Population of Europe by country", unit = "#", objtype_id = 1, who = "Teemu R", acttype = 4) for (i in 2:length(countries)) { data <- op_baseGetData("opasnet_base", "Op_en3017", include = countries[i]) data <- data[order(data[,3], data[,4], data[,7], data[,8], data[,9]),] n <- data[gsub(" ", "", data[,"Age"])=="0-4",] n <- n[gsub(" ", "", n[,"Rate"])=="h",] n <- n[gsub(" ", "", n[,"Sex"])=="Female",] n <- n[gsub(" ", "", n[,"Year"])=="2010",] n <- nrow(n) data2 <- data[1:(nrow(data)/n),c("Age","CountryID","Rate","Sex","Year","Result")] for (j in 1:(nrow(data)/n)) { data2[j,] <- data.frame(data[j*n-n+1,c("Age","CountryID","Rate","Sex","Year")], sum(data[(j*n-n+1):(j*n),"Result"])) } op_baseWrite("opasnet_base", data2, ident = "Op_en4691", who = "Teemu R", acttype = 5) }
Reducing population scenarios to probabilistic interpretation of reality
- Data generated by above code used for simplicity.
- Samples randomly picked from low, medium and high population growth rates with equal probabilities.
pop <- op_baseGetData("opasnet_base", "Op_en4691", series_id = 596, include = 1367) #Only data for all ages downloaded to conserve memory poparray <- DataframeToArray(pop[,c("obs","Age","CountryID","Sex","Year","Rate","Result")]) poparray[,"EE","Male","2050","m"] <- poparray[,"EE","All","2050","m"] - poparray[,"EE","Female","2050","m"] poparray[,"EE","All","2050","h"] <- poparray[,"EE","Male","2050","h"] + poparray[,"EE","Female","2050","h"] #There are some flaws in the original data, these are patched up above n <- 5000 finalarray <- array(poparray[,,,,sample(1:3, n, replace = TRUE)], dim = c(dim(poparray)[1:(length(dim(poparray))-1)], n)) dimnames(finalarray) <- c(dimnames(poparray)[1:4], list(obs = 1:n)) final <- as.data.frame(as.table(finalarray)) nrow(final[is.na(final[,"Freq"]),])
Result
{{#opasnet_base_link:Op_en4691}}
See also
Keywords
Population, Europe, growth rate.
References
Related files
<mfanonymousfilelist></mfanonymousfilelist>