10K
2
0
0
1
4
22
1
2
0
1
2
-1
0
Time
Dynamic simulation periods are specified in Time's definition. This is usually a list of numbers or labels, typically in some unit of time (days, weeks, months, etc.). Use the ÒDynamic()Ó function in your variables to perform dynamic simulation.
[0,1,2]
GASBUS MODEL
Marko Tainio, Jouni T. Tuomisto, Otto Hnninen, Pivi Aarnio, Kimmo J. Koistinen, Matti J. Jantunen and Juha Pekkanen.
Mon, Mar 26, 2001 14:02
HP_Omistaja
12. lokta 2007 23:34
48,24
1,565,86,590,501,17
Trebuchet MS, 13
0,Model Gasbus_model,2,2,0,1,C:\Temp\gasbus_model2.ana
100,17,17,7,1,9,6533,8533,1,0
Marko Tainio, Jouni T. Tuomisto, Otto Hnninen, Pivi Aarnio, Kimmo J. Koistinen, Matti J. Jantunen and Juha Pekkanen.
Health effects caused by primary particulate matter (PM2.5) emitted from buses in the Helsinki Metropolitan Area, Finland
Risk Analysis, Vol. 25, No.1, 2005. pp.151-160.
http://www.ktl.fi/risk/
Model identifier:
URN:NBN:fi-fe20051170
96,328,-1
84,24
Model
mtad
21. Marta 2005 11:58
48,24
328,32,1
48,24
1,433,75,559,510,17
Emission model
mtad
21. Marta 2005 11:58
48,24
240,104,1
48,24
1,36,82,514,473,17
Strategy
['BAU A','EURO 2 D2','EURO 3 D3','CRT filter C','Biodiesel B','Alcohol E','Propane G23','Natural gas G22','Propane G32','Natural gas G31']
344,104,1
48,12
2,102,90,476,593
1,280,290,416,303,0,MIDM
[Object Constant]
Total emissions from busses
kg/a
Table(Pollutant,Strategy)(
24.291K,15.049K,12.039K,6131,11.147K,3943,Undefined,Undefined,3549,3549,
1.373542M,1.373645M,1.070116M,1.226174M,1.560585M,662.458K,Undefined,Undefined,504.252K,504.252K,
76.355K,64.832K,51.866K,11.886K,36.018K,24.844K,Undefined,Undefined,91.558K,261.594K,
449.679K,407.443K,325.954K,41.499K,301.809K,38.536K,Undefined,Undefined,642.272K,642.272K,
112.614452M,110.991732M,113.211566M,115.027795M,114.49346M,102.371073M,Undefined,Undefined,134.124551M,115.574569M
)
344,40,1
48,29
2,294,138,728,569
1,72,82,551,296,0,MIDM
2,39,51,625,303,0,MIDM
65535,52427,65534
[Pollutant,Strategy]
[Pollutant,Strategy]
11. YTV, Helsinki Metropolitan Area Council. (1999). Vaihtoehtoisten polttoaineiden kyttmahdollisuudet joukkoliikenteess pkaupunkiseudulla [The possibilities to use alternative fuels in public transport in the Helsinki metropolitan area]. Helsinki Metropolitan Area Council Publication Series B 1999:5 (in Finnish).
Pollutant
Air pollutants, classification by YTV.
['Primary PM','NOx','HC','CO','CO2']
344,80,1
48,12
2,478,44,476,476
Relative emission factor uncertainty
-
Table(Strategy)(
1,1,1,Triangular(0.6,1,1.4),1,1,1,1,1,Triangular(0.8,1,1.2))
224,232,1
52,40
2,102,90,545,344
2,252,40,416,303,0,MIDM
2,502,206,416,303,0,MEAN
65535,31131,19661
[Self,Strategy]
[Self,Strategy]
Emission factor
g/km
0.321
224,304,1
48,24
2,241,207,731,479
65535,52427,65534
11. YTV, Helsinki Metropolitan Area Council. (1999). Vaihtoehtoisten polttoaineiden kyttmahdollisuudet joukkoliikenteess pkaupunkiseudulla [The possibilities to use alternative fuels in public transport in the Helsinki metropolitan area]. Helsinki Metropolitan Area Council Publication Series B 1999:5 (in Finnish).
Relative emission factor (Ref)
-
Using a := Total_emissions_from[Pollutant='Primary PM'] do
a/a[Strategy='BAU A']
344,160,1
48,29
2,293,94,611,443
Bus PM emission
kg/a
Relative_emission_fa*Relative_emission_f2*bus_km*(emission_factor/1000)*Rel_bus_activity
344,232,1
48,24
2,369,96,530,410
2,173,156,953,303,0,MEAN
[Scenario,Strategy]
[0,0,0,0]
Transportation development scenarios
['PLJ current 1994','PLJ BAU 2020','PLJ public 2020','PLJ car 2020','PLJ own']
104,64,1
52,36
2,102,90,545,365
Bus activity
Table(Transportation_devel,Self)(
631K,0,
0,0,
1.007M,0,
0,0,
0,0
)
['trips per day','bus-km/a']
224,64,1
48,24
2,102,54,563,362
1,88,98,416,303,0,MIDM
2,51,208,485,285,0,MIDM
65535,52427,65534
[Self,Transportation_devel]
[Self,Transportation_devel]
1,I,4,2,0,0
[0,0,0,0]
14. YTV, Helsinki Metropolitan Area Council. (1999). Helsinki Metropolitan Area Transport System Plan PLJ 1998. Helsinki Metropolitan Area Council Publication Series A 1999:4.
Relative bus activity
-
using a:= bus_activity[bus_activity='trips per day'] do
using b:= a[Transportation_devel='PLJ public 2020']/a[Transportation_devel='PLJ current 1994'] do
array(Scenario,[1,b])
224,128,1
48,24
2,269,119,596,371
[0,0,0,0]
Scenario
['Current 1997','PLJ 2020']
224,160,1
52,12
1,361,163
Bus km
77000000
344,304,1
48,24
2,102,90,548,518
65535,52427,65534
11. YTV, Helsinki Metropolitan Area Council. (1999). Vaihtoehtoisten polttoaineiden kyttmahdollisuudet joukkoliikenteess pkaupunkiseudulla [The possibilities to use alternative fuels in public transport in the Helsinki metropolitan area]. Helsinki Metropolitan Area Council Publication Series B 1999:5 (in Finnish).
We selected the public-transportation-intensive scenario
Rel_bus_activity
80,152,1
68,36
[Alias We_selected_the_pub1]
52427,56425,65535
Exposure model
mtad
21. Marta 2005 11:58
48,24
240,192,1
48,24
1,277,125,928,468,17
Road traffic PM a
µg/m^3
Var a := (Pers_out[PM_class='Secondary']*Long_range_transport);
a:= (Expolis__helsinki[Pm_class='CoPM', Environment='Personal']-a);
a:=a*Pm_exposure_fraction[Pm_source='Road traffic'];
a
288,152,1
48,24
2,231,121,506,470
1,216,226,695,303,0,MIDM
2,114,163,697,275,0,STAT
65535,31131,19661
[Long_range_transport,Weight_factors_]
[0,0,0,0]
PM em road
kg/a
PM-emissions from road traffic in Helsinki Metropolitan area 1997.
Table(Traffic_source)(
169K,250K,83K)
616,320,1
48,24
2,102,90,608,449
1,313,77,416,303,0,MIDM
1,392,172,416,303,0,MIDM
65535,52427,65534
,
[0,0,0,1]
24. Mkel, K. (2002). Personal communication, Senior Research Scientist, VTT (Technical research Centre of Finland), Building and transport.
Personal/ outdoor
-
(Expolis__helsinki[Environment='Personal']/Expolis__helsinki[Environment='Ambient'])
400,152,1
48,24
2,111,117,476,224
2,150,105,416,303,0,MIDM
65535,31131,19661
[Environment,Pm_class]
[0,0,0,0]
Bus traffic PM
µg/m^3
Road_traffic*Bus_fraction_
['Expolis, central','Vallius, high']
384,320,1
48,24
2,298,181,476,443
1,150,469,905,303,0,MIDM
2,151,101,416,303,0,MIDM
65535,31131,19661
[Self,Long_range_transport]
[Index Traffic_source]
[0,0,0,0]
Bus PM scenarios
µg/m^3
using a:= Bus_pm_emission/Bus_pm_emission[Strategy='BAU A', Scenario='Current 1997'] do
a*Bus_traffic
384,384,1
48,24
2,102,90,528,418
2,251,132,353,300,0,MIDM
[Scenario,Strategy]
[0,0,0,0]
Long-range transport (Elrt)
µg/m^3
triangular(1,2,2.5)
['Transport, Low','Transport, Central','Transport, High']
288,240,1
48,29
2,102,90,578,407
1,306,109,416,303,0,MIDM
65535,52427,65534
21. ApSimon, H. M., Gonzales del Campo, M. T., & Adams H.S. (2001). Modelling long-range transport of primary particulate material over Europe. Atmospheric Environment, 35, 343-352.
ULTRA - traffic
µg/m^3
Var a:=Ultra[Ultra='Local traffic']*Ultra[Ultra='PM2.5 total'];
a:=average(a)
{2.45}
624,152,1
48,24
2,612,168,476,224
2,392,402,416,303,0,MIDM
65535,31131,19661
[0,0,0,0]
Vallius, M., Lanki, T., Tiittanen, P., Koistinen, K., Ruuskanen, J., and Pekkanen, J. (2003). Source
apportionment of urban ambient PM2.5 in two successive measurement campaigns in Helsinki, Finland. Atmospheric Environment, 37(5), 615-623.
Road traffic PM b
µg/m^3
Pers_out[Pm_class='CoPM']*Ultra___traffic
512,152,1
48,24
2,102,90,500,389
65535,31131,19661
Bus fraction (Fbus)
-
triangular(0.1,(Pm_em_road[Traffic_source='Busses']/Sum(Pm_em_road)),0.25)
['Bussisuhde, low','Bussisuhde, central','Bussisuhde, hight']
504,320,1
48,24
2,102,90,565,404
2,134,201,829,303,0,MIDM
2,136,146,416,303,0,MEAN
Traffic source
['Cars','Trucks/vans','Busses']
616,352,1
52,12
2,102,90,476,446
PM class
['CoPM','Secondary','Soil','Detergents','Sea salt']
288,88,1
48,12
2,102,90,476,458
Environment
['Ambient','Indoor','Work','Personal']
288,64,1
48,12
2,102,90,524,323
Road traffic PM
µg/m^3
using a:= bernoulli(0.7) do
using b:= a*Road_traffic_a + (1-a)*Road_traffic_b do
b
384,256,1
48,24
2,102,90,476,479
1,150,469,905,303,0,MIDM
2,151,101,416,303,0,MIDM
[Self,Long_range_transport]
[0,0,0,0]
ULTRA
µg/m^3 or fraction
Table 1. Descriptive statistics for 29 October 1996Ð28 April 1997 (total n = 83) and 2 November 1998Ð30 April 1999 (total n = 164) (median PM2.5 in µg/m^3).
Fig.3. Contributions (%) of the identifed source components to average PM2.5 concentration.
Table(Self,Ultra_years)(
8.3,10.6,
0.3,0.23,
0.51,0.5,
0.12,0.05,
0.03,0.13,
0.02,0.07,
0.02,0.02
)
['PM2.5 total','Local traffic','LRTAP','Crustal source','Oil combustion','Salt / Salt & Pb','Unidentified']
736,152,1
48,24
2,258,33,599,581
2,17,52,416,303,0,MIDM
2,604,264,416,303,0,MIDM
65535,52427,65534
[Ultra_years,Self]
[Ultra_years,Self]
[0,0,0,0]
23. Vallius, M., Lanki, T., Tiittanen, P., Koistinen, K., Ruuskanen, J., and Pekkanen, J. (2003). Source apportionment of urban ambient PM2.5 in two successive measurement campaigns in Helsinki, Finland. Atmospheric Environment, 37(5), 615-623.
ULTRA years
['1996-97','1998-99']
736,184,1
48,12
2,102,90,476,359
PM exposure fractions
-
Var a := (Weight_factors_*Primary_pm_emission);
Var b := Sum(a,Pm_source);
a/b
176,152,1
48,24
2,102,90,476,524
2,41,224,416,303,0,MIDM
65535,31131,19661
[0,0,0,0]
Primary PM emission
kg/a
Table(Pm_source)(
1.064M,50K,60K,502K,40K)
72,152,1
48,24
2,102,90,608,449
2,543,8,339,264,0,MIDM
1,232,242,416,303,0,MIDM
65535,52427,65534
,
[0,0,0,1]
Mkel, K. (2002). Personal communication, Senior Research Scientist, VTT (Technical research Centre of Finland), Building and transport.
YTV, Helsinki Metropolitan Area Council. (1998). Ilmanlaatu pkaupunkiseudulla vuonna 1997 [Air Quality in the Helsinki Metropolitan Area in 1997]. Helsinki Metropolitan Area Council Publication Series 1999:1 (in Finnish).
Weight factors (wfi) (Table III)
-
Table(Pm_source)(
0.1,1,1,Triangular(1,2,3),1)
176,240,1
52,28
2,241,99,614,575
2,345,60,339,287,0,MIDM
2,265,156,416,299,0,MIDM
52425,39321,65535
[Self,Pm_source]
[Self,Pm_source]
[0,0,0,0]
PM source
['Energy production','Other point sources','Surface sources','Road traffic','Harbor']
72,184,1
48,12
2,567,60,437,464
2,487,140,416,321,0,MIDM
EXPOLIS-
Helsinki
Table(Pm_class,Environment)(
3.547,2.6,2.95,3.506032,
4.668,3.31,3.38,3.35008,
1.6,2.49,2.42,2.8960864,
0,0.54,0.22,0.670016,
0.3,0.23,0.13,0.23311936
)
288,32,1
48,24
2,102,90,521,467
2,574,53,416,303,0,MIDM
2,442,98,416,300,0,MIDM
65535,52427,65534
[Environment,Pm_class]
[Environment,Pm_class]
[Index Pm_class]
22. Koistinen, K., Edwards, R. D., Mathys, P., Ruuskanen, J., Knzli, N., & Jantunen, M. (2004). Sources of fine particulate matter in personal exposures and residential indoor, residential outdoor and workplace microenvironments in the Helsinki phase of the EXPOLIS study. Scandinavian Journal of Work, Environment & Health, 30 suppl. 2, 36-46.
Emissions from buses is only small fraction of total traffic emissions
Pm_em_road
752,320,1
60,48
[Alias Emissions_from_buse1]
65535,65532,19661
The exposure was estimated by using two models
Road_traffic
520,256,1
56,36
[Alias The_exposure_was_es1]
65535,65532,19661
Dose-response model
mtad
21. Marta 2005 11:58
48,24
168,272,1
56,24
1,358,87,574,369,17
Causes
['Cardiopulmonary','Lung ca','All others','All causes']
200,200,1
48,12
2,102,90,476,425
Mortality rate
m^3/µg
Crude_mortality_rat2*plausibility
440,64,1
48,24
2,102,90,476,470
2,264,274,591,328,1,CDFP
[M_step_2001,Causes]
Index M_step_202
[0,0,0,0]
Plausibility
-
Includes mechanistic plausibility (coming from toxicological and epidemiological evidence). This plausibility is especially for traffic exhaust primary particles. Does not include aspects related to differential potencies of different particle types.
Probtable(Causes,Self)(
0.3,0.7,
0.1,0.9,
0.9,0.1,
0.2,0.8
)
440,128,1
48,24
2,102,90,476,509
2,28,305,416,303,0,MIDM
Formnode Plausibility2
52425,39321,65535
[Self,Causes]
[0,1]
[Object Constant]
Chronic mortality RR
RR per PM contrast
Original results from PM cohort studies.
Table(Causes,Ci,Study)(
1.37,1.09,
1.11,1.03,
1.68,1.16,
1.37,1.14,
0.81,1.04,
2.31,1.23,
1.01,1.01,
0.79,0.95,
1.3,1.06,
1.26,1.06,
1.08,1.02,
1.47,1.11
)
200,64,1
48,24
2,102,90,569,548
2,28,215,567,291,0,MIDM
2,88,98,659,277,0,MIDM
65535,52427,65534
[Ci,Causes]
[Causes,Study]
,
16. Dockery, D. W., Pope, C. A., III, Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., Ferris, B. G., Jr., & Speizer F. E. (1993). An association between air pollution and mortality in six U.S. cities. The New England Journal Oof Medicine, 329(24), 1753-1759.
17. Pope, C. A. III, Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung Cancer, Cardiopulmory Mortality, and Long-term Exposure to Fine Particulate Air Pollution. The Journal of the American Medical Association, 287(9), 1132-1141.
PM contrast
µg/m^3
Table(Study)(
18.6,10)
200,144,1
48,24
2,102,90,476,422
1,28,274,416,303,0,MIDM
65535,52427,65534
,
16. Dockery, D. W., Pope, C. A., III, Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., Ferris, B. G., Jr., & Speizer F. E. (1993). An association between air pollution and mortality in six U.S. cities. The New England Journal Of Medicine, 329(24), 1753-1759.
17. Pope, C. A. III, Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung Cancer, Cardiopulmory Mortality, and Long-term Exposure to Fine Particulate Air Pollution. The Journal of the American Medical Association, 287(9), 1132-1141.
Coefficient space
Sequence( -0.02, 0.05, 2m )
320,112,1
48,20
2,102,90,476,401
[0,0,0,0]
CI
['Central','0.025 fractile','0.975 fractile']
200,96,1
48,12
2,102,90,476,407
Study
['Harvard six cities','ACS 2002']
200,176,1
48,12
2,102,90,476,434
Crude mortality rate random
m^3/µg
using a:= ln(Chronic_mortality_rr)/Pm_contrast
do using au:= a[Ci='0.975 fractile']
do using al:= a[Ci='0.025 fractile']
do using ac:= a[Ci='Central']
do using b:= (au-al)/2/1.96
do using c:= Cumnormal(Coefficient_space,ac,b)
do using d:= Uncumulate(c,Coefficient_space)
do using e:= Probdist(d, coefficient_space )
do using f:= (if bernoulli(0.5)=1 then e[study='Harvard six cities'] else e[study='ACS 2002'])
do f
320,64,1
48,29
2,102,90,476,578
2,245,357,530,212,0,STAT
[Causes,Statistics1]
[0,0,0,0]
Plausibility was defined as the probability that the observed dose-response relationship actually represents a causal association
Plausibility
440,240,1
80,68
[Alias Plausibility_was_de1]
52427,56425,65535
Mortality assessment
mtad
21. Marta 2005 11:58
48,24
240,360,1
48,24
1,608,340,658,380,17
Cause
['Cardiopulmonary','Lung ca','All others']
184,144,-3
48,12
2,102,90,476,410
Strategies
Table(Self)(
1,3,4,10)
['Current fleet','Modern diesel','Diesel with particle trap','Natural gas bus']
296,40,1
48,24
2,102,90,476,363
2,611,131,416,303,0,MIDM
Health effects
var a:= sum(Health_effect,Cause);
a:= slice(a,Strategy,Strategies);
a[Scenario='PLJ 2020']
296,112,1
48,24
2,102,90,476,449
2,214,139,538,246,0,CONF
65535,65532,19661
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:10
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:0
Showkey:1
Xminimum:-5
Xmaximum:35
Yminimum:0
Ymaximum:1
Zminimum:1
Zmaximum:5
Xintervals:8
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1, 1, 1, 1, 1, 0, 0, 0]
Probindex:[5%, 25%, 50%, 75%, 95%]
Arial, 2
[Strategies,Probability2]
98,1,1,0,2,9,4744,6798,7
[0,0,0,0]
Mortality data
deaths/a
Table(Causes)(
3338,317,2886,6541)
56,112,1
48,24
2,240,66,476,539
2,325,209,416,303,0,MIDM
2,504,514,416,303,0,MIDM
65535,52427,65534
[0,0,0,1]
30. Statistics Finland (2004). Mortality in Helsinki Metropolitan Area 1996. Helsinki: Statistics Finland.
Health effect
deaths/a
using a:= ((Exp((Mortality_rate1*Bus_pm_scenarios))-1)*Mortality_data) do
a[Causes=Cause]
184,112,1
48,24
2,216,130,476,431
2,134,235,405,329,0,MEAN
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:1
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:0
Ymaximum:1
Zminimum:0
Zmaximum:1
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
[Scenario,Strategy]
[Index Causes, Index Cause, Objective Health_effect]
[0,0,0,0]
Table IV
Var a:= slice(Health_effect,Strategy,Strategies);
a[Scenario='PLJ 2020']
296,176,1
48,24
2,102,90,476,422
2,141,178,560,234,0,CONF
[Alias Table_iv1]
65535,65532,19661
[Strategies,Probability2]
[Index Cause]
[0,0,0,0]
Only four strategies were defined
Strategies
456,40,1
64,29
[Alias Only_four_strategie1]
52427,56425,65535
We selected the public-transportation-intensive scenario
1
424,104,1
68,36
52427,56425,65535
We_selected_the_publ
Emissions from buses is only small fraction of total traffic emissions
1
432,192,1
60,48
65535,65532,19661
Emissions_from_buses
The exposure was estimated by using two models
1
104,192,1
56,36
65535,65532,19661
The_exposure_was_est
Plausibility was defined as the probability that the observed dose-response relationship actually represents a causal association
1
424,320,1
80,68
52427,56425,65535
Plausibility_was_def
Only four strategies were defined
1
104,360,1
64,29
52427,56425,65535
Only_four_strategies
Importance analyses
mtad
22. Marta 2005 9:49
mtad
22. Marta 2005 9:48
48,24
488,32,1
48,24
1,0,1,1,1,1,0,0,0,0
1,520,81,517,417,17
Co
['Hei_index','Cause_of_death','Data']
216,184,1
48,12
1,1,1,1,1,1,0,0,0,0
2,102,90,476,353
Importance (figure 1)
subscript(Sort_of_the_data,Hei_output3,Variable3)
216,304,1
48,24
2,102,90,476,422
2,485,195,497,291,0,MIDM
[Alias Importance_2]
65535,65532,19661
Health comparison importance
rank correlation
using b:= Abs( RankCorrel( Health_effects_input, Health_comparison ) ) do
using c:= b[Strategy='BAU A', Scenario='PLJ 2020'] do
b
216,56,1
48,29
1,1,1,1,1,1,0,0,0,0
2,102,90,476,485
2,304,384,824,314,0,MIDM
[Hei_index,Strategy]
Hei output
['Plausibility of Cardiopulmonary mortality','Plausibility of Lung cancer mortality','Plausibility of All other mortality','Dose-response coefficient for cardiopulmonary mortality','Dose-response coefficient for Lung cancer mortality','Dose-response coefficient for All other mortality','Relative emission factor uncertainty','Relative weight factor for road traffic emissions','Exposure to road traffic PM2.5','Concentration of combustion-based long-range transported PM2.5','The fraction of bus exposure of total traffic exposure']
352,160,1
48,12
2,375,108,476,536
2,532,47,416,303,0,MIDM
Ro
sequence(1,size(Health_comparison_i1)/size(Strategy))
216,160,1
48,12
1,1,1,1,1,1,0,0,0,0
2,102,90,476,449
2,168,178,416,303,0,MIDM
Sort of the data
using a:=Health_comparison_i1[Strategy='CRT filter C'] do
using b:= mdarraytotable(a,Ro1,Co1) do
using c:= slice(b,Ro1,Hei_table) do
c[Co1='Data']
216,128,1
48,24
2,102,90,476,473
2,567,466,598,330,0,MIDM
Variable
Sortindex( 1-Sort_of_the_data)
216,240,1
48,24
2,102,90,476,461
2,473,153,722,427,0,MIDM
Hei index
['Plausibility','Mortality','Emission factor','Traffic iF','Road traffic PM','Long range transport','Bus relation']
88,88,1
48,12
2,102,90,476,404
Health effects input
Table(Hei_index)(
Plausibility,Crude_mortality_rat2,Relative_emission_f2,Weight_factors_[Pm_source='Road traffic'],Road_traffic,Long_range_transport,Bus_fraction_)
88,56,1
48,24
2,102,90,476,428
2,20,150,606,303,0,MIDM
2,259,89,734,426,0,MIDM
[Hei_index,Strategy]
Health comparison
using a:= health_effect[Scenario='PLJ 2020', Causes=Cause] do
using b:= sum(a,Cause) do
using c:= b-b[Strategy='Natural gas G31']
do c
352,56,1
48,24
2,102,90,476,458
2,124,74,416,303,0,MIDM
Hei table
Table(Hei_output3)(
1,2,3,5,6,7,9,13,17,21,25)
352,128,1
48,24
2,102,90,476,473
2,40,50,674,303,0,MIDM
Table IV
1
328,104,1
48,24
Table_iv
Reference:
Marko Tainio, Jouni T. Tuomisto, Otto Hnninen, Pivi Aarnio, Kimmo J. Koistinen, Matti J. Jantunen and Juha Pekkanen.
Health effects caused by primary particulate matter (PM2.5) emitted from buses in the Helsinki Metropolitan Area, Finland
Risk Analysis, Vol. 25, No.1, 2005. pp.151-160.
120,152,-1
108,144
Levels of PM and the corresponding health effects can be affected to some extent by changing bus types
Table_iv
416,360,1
76,51
65535,65532,19661
The difference in the excess mortality between natural gas buses and the present diesel engines with proper trapping system is not large
Table_iv
312,224,1
76,70
65535,65532,19661
Importance (figure 1)
1
488,104,1
48,24
65535,65532,19661
Importance_1
The dose-response relationship and the emission factors were identified as the main sources of uncertainty in the model
Importance_1
488,224,1
72,70
65535,65532,19661