10K 2 0 0 1 4 22 1 2 0 1 2 -1 0 Time Dynamic simulation periods are specified in Time's definition. This is usually a list of numbers or labels, typically in some unit of time (days, weeks, months, etc.). Use the ÒDynamic()Ó function in your variables to perform dynamic simulation. [0,1,2] GASBUS MODEL Marko Tainio, Jouni T. Tuomisto, Otto HŠnninen, PŠivi Aarnio, Kimmo J. Koistinen, Matti J. Jantunen and Juha Pekkanen. Mon, Mar 26, 2001 14:02 HP_Omistaja 12. lokta 2007 23:34 48,24 1,565,86,590,501,17 Trebuchet MS, 13 0,Model Gasbus_model,2,2,0,1,C:\Temp\gasbus_model2.ana 100,17,17,7,1,9,6533,8533,1,0 Marko Tainio, Jouni T. Tuomisto, Otto HŠnninen, PŠivi Aarnio, Kimmo J. Koistinen, Matti J. Jantunen and Juha Pekkanen. Health effects caused by primary particulate matter (PM2.5) emitted from buses in the Helsinki Metropolitan Area, Finland Risk Analysis, Vol. 25, No.1, 2005. pp.151-160. http://www.ktl.fi/risk/ Model identifier: URN:NBN:fi-fe20051170 96,328,-1 84,24 Model mtad 21. Marta 2005 11:58 48,24 328,32,1 48,24 1,433,75,559,510,17 Emission model mtad 21. Marta 2005 11:58 48,24 240,104,1 48,24 1,36,82,514,473,17 Strategy ['BAU A','EURO 2 D2','EURO 3 D3','CRT filter C','Biodiesel B','Alcohol E','Propane G23','Natural gas G22','Propane G32','Natural gas G31'] 344,104,1 48,12 2,102,90,476,593 1,280,290,416,303,0,MIDM [Object Constant] Total emissions from busses kg/a Table(Pollutant,Strategy)( 24.291K,15.049K,12.039K,6131,11.147K,3943,Undefined,Undefined,3549,3549, 1.373542M,1.373645M,1.070116M,1.226174M,1.560585M,662.458K,Undefined,Undefined,504.252K,504.252K, 76.355K,64.832K,51.866K,11.886K,36.018K,24.844K,Undefined,Undefined,91.558K,261.594K, 449.679K,407.443K,325.954K,41.499K,301.809K,38.536K,Undefined,Undefined,642.272K,642.272K, 112.614452M,110.991732M,113.211566M,115.027795M,114.49346M,102.371073M,Undefined,Undefined,134.124551M,115.574569M ) 344,40,1 48,29 2,294,138,728,569 1,72,82,551,296,0,MIDM 2,39,51,625,303,0,MIDM 65535,52427,65534 [Pollutant,Strategy] [Pollutant,Strategy] 11. YTV, Helsinki Metropolitan Area Council. (1999). Vaihtoehtoisten polttoaineiden kŠyttšmahdollisuudet joukkoliikenteessŠ pŠŠkaupunkiseudulla [The possibilities to use alternative fuels in public transport in the Helsinki metropolitan area]. Helsinki Metropolitan Area Council Publication Series B 1999:5 (in Finnish). Pollutant Air pollutants, classification by YTV. ['Primary PM','NOx','HC','CO','CO2'] 344,80,1 48,12 2,478,44,476,476 Relative emission factor uncertainty - Table(Strategy)( 1,1,1,Triangular(0.6,1,1.4),1,1,1,1,1,Triangular(0.8,1,1.2)) 224,232,1 52,40 2,102,90,545,344 2,252,40,416,303,0,MIDM 2,502,206,416,303,0,MEAN 65535,31131,19661 [Self,Strategy] [Self,Strategy] Emission factor g/km 0.321 224,304,1 48,24 2,241,207,731,479 65535,52427,65534 11. YTV, Helsinki Metropolitan Area Council. (1999). Vaihtoehtoisten polttoaineiden kŠyttšmahdollisuudet joukkoliikenteessŠ pŠŠkaupunkiseudulla [The possibilities to use alternative fuels in public transport in the Helsinki metropolitan area]. Helsinki Metropolitan Area Council Publication Series B 1999:5 (in Finnish). Relative emission factor (Ref) - Using a := Total_emissions_from[Pollutant='Primary PM'] do a/a[Strategy='BAU A'] 344,160,1 48,29 2,293,94,611,443 Bus PM emission kg/a Relative_emission_fa*Relative_emission_f2*bus_km*(emission_factor/1000)*Rel_bus_activity 344,232,1 48,24 2,369,96,530,410 2,173,156,953,303,0,MEAN [Scenario,Strategy] [0,0,0,0] Transportation development scenarios ['PLJ current 1994','PLJ BAU 2020','PLJ public 2020','PLJ car 2020','PLJ own'] 104,64,1 52,36 2,102,90,545,365 Bus activity Table(Transportation_devel,Self)( 631K,0, 0,0, 1.007M,0, 0,0, 0,0 ) ['trips per day','bus-km/a'] 224,64,1 48,24 2,102,54,563,362 1,88,98,416,303,0,MIDM 2,51,208,485,285,0,MIDM 65535,52427,65534 [Self,Transportation_devel] [Self,Transportation_devel] 1,I,4,2,0,0 [0,0,0,0] 14. YTV, Helsinki Metropolitan Area Council. (1999). Helsinki Metropolitan Area Transport System Plan PLJ 1998. Helsinki Metropolitan Area Council Publication Series A 1999:4. Relative bus activity - using a:= bus_activity[bus_activity='trips per day'] do using b:= a[Transportation_devel='PLJ public 2020']/a[Transportation_devel='PLJ current 1994'] do array(Scenario,[1,b]) 224,128,1 48,24 2,269,119,596,371 [0,0,0,0] Scenario ['Current 1997','PLJ 2020'] 224,160,1 52,12 1,361,163 Bus km 77000000 344,304,1 48,24 2,102,90,548,518 65535,52427,65534 11. YTV, Helsinki Metropolitan Area Council. (1999). Vaihtoehtoisten polttoaineiden kŠyttšmahdollisuudet joukkoliikenteessŠ pŠŠkaupunkiseudulla [The possibilities to use alternative fuels in public transport in the Helsinki metropolitan area]. Helsinki Metropolitan Area Council Publication Series B 1999:5 (in Finnish). We selected the public-transportation-intensive scenario Rel_bus_activity 80,152,1 68,36 [Alias We_selected_the_pub1] 52427,56425,65535 Exposure model mtad 21. Marta 2005 11:58 48,24 240,192,1 48,24 1,277,125,928,468,17 Road traffic PM a µg/m^3 Var a := (Pers_out[PM_class='Secondary']*Long_range_transport); a:= (Expolis__helsinki[Pm_class='CoPM', Environment='Personal']-a); a:=a*Pm_exposure_fraction[Pm_source='Road traffic']; a 288,152,1 48,24 2,231,121,506,470 1,216,226,695,303,0,MIDM 2,114,163,697,275,0,STAT 65535,31131,19661 [Long_range_transport,Weight_factors_] [0,0,0,0] PM em road kg/a PM-emissions from road traffic in Helsinki Metropolitan area 1997. Table(Traffic_source)( 169K,250K,83K) 616,320,1 48,24 2,102,90,608,449 1,313,77,416,303,0,MIDM 1,392,172,416,303,0,MIDM 65535,52427,65534 , [0,0,0,1] 24. MŠkelŠ, K. (2002). Personal communication, Senior Research Scientist, VTT (Technical research Centre of Finland), Building and transport. Personal/ outdoor - (Expolis__helsinki[Environment='Personal']/Expolis__helsinki[Environment='Ambient']) 400,152,1 48,24 2,111,117,476,224 2,150,105,416,303,0,MIDM 65535,31131,19661 [Environment,Pm_class] [0,0,0,0] Bus traffic PM µg/m^3 Road_traffic*Bus_fraction_ ['Expolis, central','Vallius, high'] 384,320,1 48,24 2,298,181,476,443 1,150,469,905,303,0,MIDM 2,151,101,416,303,0,MIDM 65535,31131,19661 [Self,Long_range_transport] [Index Traffic_source] [0,0,0,0] Bus PM scenarios µg/m^3 using a:= Bus_pm_emission/Bus_pm_emission[Strategy='BAU A', Scenario='Current 1997'] do a*Bus_traffic 384,384,1 48,24 2,102,90,528,418 2,251,132,353,300,0,MIDM [Scenario,Strategy] [0,0,0,0] Long-range transport (Elrt) µg/m^3 triangular(1,2,2.5) ['Transport, Low','Transport, Central','Transport, High'] 288,240,1 48,29 2,102,90,578,407 1,306,109,416,303,0,MIDM 65535,52427,65534 21. ApSimon, H. M., Gonzales del Campo, M. T., & Adams H.S. (2001). Modelling long-range transport of primary particulate material over Europe. Atmospheric Environment, 35, 343-352. ULTRA - traffic µg/m^3 Var a:=Ultra[Ultra='Local traffic']*Ultra[Ultra='PM2.5 total']; a:=average(a) {2.45} 624,152,1 48,24 2,612,168,476,224 2,392,402,416,303,0,MIDM 65535,31131,19661 [0,0,0,0] Vallius, M., Lanki, T., Tiittanen, P., Koistinen, K., Ruuskanen, J., and Pekkanen, J. (2003). Source apportionment of urban ambient PM2.5 in two successive measurement campaigns in Helsinki, Finland. Atmospheric Environment, 37(5), 615-623. Road traffic PM b µg/m^3 Pers_out[Pm_class='CoPM']*Ultra___traffic 512,152,1 48,24 2,102,90,500,389 65535,31131,19661 Bus fraction (Fbus) - triangular(0.1,(Pm_em_road[Traffic_source='Busses']/Sum(Pm_em_road)),0.25) ['Bussisuhde, low','Bussisuhde, central','Bussisuhde, hight'] 504,320,1 48,24 2,102,90,565,404 2,134,201,829,303,0,MIDM 2,136,146,416,303,0,MEAN Traffic source ['Cars','Trucks/vans','Busses'] 616,352,1 52,12 2,102,90,476,446 PM class ['CoPM','Secondary','Soil','Detergents','Sea salt'] 288,88,1 48,12 2,102,90,476,458 Environment ['Ambient','Indoor','Work','Personal'] 288,64,1 48,12 2,102,90,524,323 Road traffic PM µg/m^3 using a:= bernoulli(0.7) do using b:= a*Road_traffic_a + (1-a)*Road_traffic_b do b 384,256,1 48,24 2,102,90,476,479 1,150,469,905,303,0,MIDM 2,151,101,416,303,0,MIDM [Self,Long_range_transport] [0,0,0,0] ULTRA µg/m^3 or fraction Table 1. Descriptive statistics for 29 October 1996Ð28 April 1997 (total n = 83) and 2 November 1998Ð30 April 1999 (total n = 164) (median PM2.5 in µg/m^3). Fig.3. Contributions (%) of the identifed source components to average PM2.5 concentration. Table(Self,Ultra_years)( 8.3,10.6, 0.3,0.23, 0.51,0.5, 0.12,0.05, 0.03,0.13, 0.02,0.07, 0.02,0.02 ) ['PM2.5 total','Local traffic','LRTAP','Crustal source','Oil combustion','Salt / Salt & Pb','Unidentified'] 736,152,1 48,24 2,258,33,599,581 2,17,52,416,303,0,MIDM 2,604,264,416,303,0,MIDM 65535,52427,65534 [Ultra_years,Self] [Ultra_years,Self] [0,0,0,0] 23. Vallius, M., Lanki, T., Tiittanen, P., Koistinen, K., Ruuskanen, J., and Pekkanen, J. (2003). Source apportionment of urban ambient PM2.5 in two successive measurement campaigns in Helsinki, Finland. Atmospheric Environment, 37(5), 615-623. ULTRA years ['1996-97','1998-99'] 736,184,1 48,12 2,102,90,476,359 PM exposure fractions - Var a := (Weight_factors_*Primary_pm_emission); Var b := Sum(a,Pm_source); a/b 176,152,1 48,24 2,102,90,476,524 2,41,224,416,303,0,MIDM 65535,31131,19661 [0,0,0,0] Primary PM emission kg/a Table(Pm_source)( 1.064M,50K,60K,502K,40K) 72,152,1 48,24 2,102,90,608,449 2,543,8,339,264,0,MIDM 1,232,242,416,303,0,MIDM 65535,52427,65534 , [0,0,0,1] MŠkelŠ, K. (2002). Personal communication, Senior Research Scientist, VTT (Technical research Centre of Finland), Building and transport. YTV, Helsinki Metropolitan Area Council. (1998). Ilmanlaatu pŠŠkaupunkiseudulla vuonna 1997 [Air Quality in the Helsinki Metropolitan Area in 1997]. Helsinki Metropolitan Area Council Publication Series 1999:1 (in Finnish). Weight factors (wfi) (Table III) - Table(Pm_source)( 0.1,1,1,Triangular(1,2,3),1) 176,240,1 52,28 2,241,99,614,575 2,345,60,339,287,0,MIDM 2,265,156,416,299,0,MIDM 52425,39321,65535 [Self,Pm_source] [Self,Pm_source] [0,0,0,0] PM source ['Energy production','Other point sources','Surface sources','Road traffic','Harbor'] 72,184,1 48,12 2,567,60,437,464 2,487,140,416,321,0,MIDM EXPOLIS- Helsinki Table(Pm_class,Environment)( 3.547,2.6,2.95,3.506032, 4.668,3.31,3.38,3.35008, 1.6,2.49,2.42,2.8960864, 0,0.54,0.22,0.670016, 0.3,0.23,0.13,0.23311936 ) 288,32,1 48,24 2,102,90,521,467 2,574,53,416,303,0,MIDM 2,442,98,416,300,0,MIDM 65535,52427,65534 [Environment,Pm_class] [Environment,Pm_class] [Index Pm_class] 22. Koistinen, K., Edwards, R. D., Mathys, P., Ruuskanen, J., KŸnzli, N., & Jantunen, M. (2004). Sources of fine particulate matter in personal exposures and residential indoor, residential outdoor and workplace microenvironments in the Helsinki phase of the EXPOLIS study. Scandinavian Journal of Work, Environment & Health, 30 suppl. 2, 36-46. Emissions from buses is only small fraction of total traffic emissions Pm_em_road 752,320,1 60,48 [Alias Emissions_from_buse1] 65535,65532,19661 The exposure was estimated by using two models Road_traffic 520,256,1 56,36 [Alias The_exposure_was_es1] 65535,65532,19661 Dose-response model mtad 21. Marta 2005 11:58 48,24 168,272,1 56,24 1,358,87,574,369,17 Causes ['Cardiopulmonary','Lung ca','All others','All causes'] 200,200,1 48,12 2,102,90,476,425 Mortality rate m^3/µg Crude_mortality_rat2*plausibility 440,64,1 48,24 2,102,90,476,470 2,264,274,591,328,1,CDFP [M_step_2001,Causes] Index M_step_202 [0,0,0,0] Plausibility - Includes mechanistic plausibility (coming from toxicological and epidemiological evidence). This plausibility is especially for traffic exhaust primary particles. Does not include aspects related to differential potencies of different particle types. Probtable(Causes,Self)( 0.3,0.7, 0.1,0.9, 0.9,0.1, 0.2,0.8 ) 440,128,1 48,24 2,102,90,476,509 2,28,305,416,303,0,MIDM Formnode Plausibility2 52425,39321,65535 [Self,Causes] [0,1] [Object Constant] Chronic mortality RR RR per PM contrast Original results from PM cohort studies. Table(Causes,Ci,Study)( 1.37,1.09, 1.11,1.03, 1.68,1.16, 1.37,1.14, 0.81,1.04, 2.31,1.23, 1.01,1.01, 0.79,0.95, 1.3,1.06, 1.26,1.06, 1.08,1.02, 1.47,1.11 ) 200,64,1 48,24 2,102,90,569,548 2,28,215,567,291,0,MIDM 2,88,98,659,277,0,MIDM 65535,52427,65534 [Ci,Causes] [Causes,Study] , 16. Dockery, D. W., Pope, C. A., III, Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., Ferris, B. G., Jr., & Speizer F. E. (1993). An association between air pollution and mortality in six U.S. cities. The New England Journal Oof Medicine, 329(24), 1753-1759. 17. Pope, C. A. III, Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung Cancer, Cardiopulmory Mortality, and Long-term Exposure to Fine Particulate Air Pollution. The Journal of the American Medical Association, 287(9), 1132-1141. PM contrast µg/m^3 Table(Study)( 18.6,10) 200,144,1 48,24 2,102,90,476,422 1,28,274,416,303,0,MIDM 65535,52427,65534 , 16. Dockery, D. W., Pope, C. A., III, Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., Ferris, B. G., Jr., & Speizer F. E. (1993). An association between air pollution and mortality in six U.S. cities. The New England Journal Of Medicine, 329(24), 1753-1759. 17. Pope, C. A. III, Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung Cancer, Cardiopulmory Mortality, and Long-term Exposure to Fine Particulate Air Pollution. The Journal of the American Medical Association, 287(9), 1132-1141. Coefficient space Sequence( -0.02, 0.05, 2m ) 320,112,1 48,20 2,102,90,476,401 [0,0,0,0] CI ['Central','0.025 fractile','0.975 fractile'] 200,96,1 48,12 2,102,90,476,407 Study ['Harvard six cities','ACS 2002'] 200,176,1 48,12 2,102,90,476,434 Crude mortality rate random m^3/µg using a:= ln(Chronic_mortality_rr)/Pm_contrast do using au:= a[Ci='0.975 fractile'] do using al:= a[Ci='0.025 fractile'] do using ac:= a[Ci='Central'] do using b:= (au-al)/2/1.96 do using c:= Cumnormal(Coefficient_space,ac,b) do using d:= Uncumulate(c,Coefficient_space) do using e:= Probdist(d, coefficient_space ) do using f:= (if bernoulli(0.5)=1 then e[study='Harvard six cities'] else e[study='ACS 2002']) do f 320,64,1 48,29 2,102,90,476,578 2,245,357,530,212,0,STAT [Causes,Statistics1] [0,0,0,0] Plausibility was defined as the probability that the observed dose-response relationship actually represents a causal association Plausibility 440,240,1 80,68 [Alias Plausibility_was_de1] 52427,56425,65535 Mortality assessment mtad 21. Marta 2005 11:58 48,24 240,360,1 48,24 1,608,340,658,380,17 Cause ['Cardiopulmonary','Lung ca','All others'] 184,144,-3 48,12 2,102,90,476,410 Strategies Table(Self)( 1,3,4,10) ['Current fleet','Modern diesel','Diesel with particle trap','Natural gas bus'] 296,40,1 48,24 2,102,90,476,363 2,611,131,416,303,0,MIDM Health effects var a:= sum(Health_effect,Cause); a:= slice(a,Strategy,Strategies); a[Scenario='PLJ 2020'] 296,112,1 48,24 2,102,90,476,449 2,214,139,538,246,0,CONF 65535,65532,19661 Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:10 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:0 Showkey:1 Xminimum:-5 Xmaximum:35 Yminimum:0 Ymaximum:1 Zminimum:1 Zmaximum:5 Xintervals:8 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1, 1, 1, 1, 1, 0, 0, 0] Probindex:[5%, 25%, 50%, 75%, 95%] Arial, 2 [Strategies,Probability2] 98,1,1,0,2,9,4744,6798,7 [0,0,0,0] Mortality data deaths/a Table(Causes)( 3338,317,2886,6541) 56,112,1 48,24 2,240,66,476,539 2,325,209,416,303,0,MIDM 2,504,514,416,303,0,MIDM 65535,52427,65534 [0,0,0,1] 30. Statistics Finland (2004). Mortality in Helsinki Metropolitan Area 1996. Helsinki: Statistics Finland. Health effect deaths/a using a:= ((Exp((Mortality_rate1*Bus_pm_scenarios))-1)*Mortality_data) do a[Causes=Cause] 184,112,1 48,24 2,216,130,476,431 2,134,235,405,329,0,MEAN Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:1 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:1 Yminimum:0 Ymaximum:1 Zminimum:0 Zmaximum:1 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] [Scenario,Strategy] [Index Causes, Index Cause, Objective Health_effect] [0,0,0,0] Table IV Var a:= slice(Health_effect,Strategy,Strategies); a[Scenario='PLJ 2020'] 296,176,1 48,24 2,102,90,476,422 2,141,178,560,234,0,CONF [Alias Table_iv1] 65535,65532,19661 [Strategies,Probability2] [Index Cause] [0,0,0,0] Only four strategies were defined Strategies 456,40,1 64,29 [Alias Only_four_strategie1] 52427,56425,65535 We selected the public-transportation-intensive scenario 1 424,104,1 68,36 52427,56425,65535 We_selected_the_publ Emissions from buses is only small fraction of total traffic emissions 1 432,192,1 60,48 65535,65532,19661 Emissions_from_buses The exposure was estimated by using two models 1 104,192,1 56,36 65535,65532,19661 The_exposure_was_est Plausibility was defined as the probability that the observed dose-response relationship actually represents a causal association 1 424,320,1 80,68 52427,56425,65535 Plausibility_was_def Only four strategies were defined 1 104,360,1 64,29 52427,56425,65535 Only_four_strategies Importance analyses mtad 22. Marta 2005 9:49 mtad 22. Marta 2005 9:48 48,24 488,32,1 48,24 1,0,1,1,1,1,0,0,0,0 1,520,81,517,417,17 Co ['Hei_index','Cause_of_death','Data'] 216,184,1 48,12 1,1,1,1,1,1,0,0,0,0 2,102,90,476,353 Importance (figure 1) subscript(Sort_of_the_data,Hei_output3,Variable3) 216,304,1 48,24 2,102,90,476,422 2,485,195,497,291,0,MIDM [Alias Importance_2] 65535,65532,19661 Health comparison importance rank correlation using b:= Abs( RankCorrel( Health_effects_input, Health_comparison ) ) do using c:= b[Strategy='BAU A', Scenario='PLJ 2020'] do b 216,56,1 48,29 1,1,1,1,1,1,0,0,0,0 2,102,90,476,485 2,304,384,824,314,0,MIDM [Hei_index,Strategy] Hei output ['Plausibility of Cardiopulmonary mortality','Plausibility of Lung cancer mortality','Plausibility of All other mortality','Dose-response coefficient for cardiopulmonary mortality','Dose-response coefficient for Lung cancer mortality','Dose-response coefficient for All other mortality','Relative emission factor uncertainty','Relative weight factor for road traffic emissions','Exposure to road traffic PM2.5','Concentration of combustion-based long-range transported PM2.5','The fraction of bus exposure of total traffic exposure'] 352,160,1 48,12 2,375,108,476,536 2,532,47,416,303,0,MIDM Ro sequence(1,size(Health_comparison_i1)/size(Strategy)) 216,160,1 48,12 1,1,1,1,1,1,0,0,0,0 2,102,90,476,449 2,168,178,416,303,0,MIDM Sort of the data using a:=Health_comparison_i1[Strategy='CRT filter C'] do using b:= mdarraytotable(a,Ro1,Co1) do using c:= slice(b,Ro1,Hei_table) do c[Co1='Data'] 216,128,1 48,24 2,102,90,476,473 2,567,466,598,330,0,MIDM Variable Sortindex( 1-Sort_of_the_data) 216,240,1 48,24 2,102,90,476,461 2,473,153,722,427,0,MIDM Hei index ['Plausibility','Mortality','Emission factor','Traffic iF','Road traffic PM','Long range transport','Bus relation'] 88,88,1 48,12 2,102,90,476,404 Health effects input Table(Hei_index)( Plausibility,Crude_mortality_rat2,Relative_emission_f2,Weight_factors_[Pm_source='Road traffic'],Road_traffic,Long_range_transport,Bus_fraction_) 88,56,1 48,24 2,102,90,476,428 2,20,150,606,303,0,MIDM 2,259,89,734,426,0,MIDM [Hei_index,Strategy] Health comparison using a:= health_effect[Scenario='PLJ 2020', Causes=Cause] do using b:= sum(a,Cause) do using c:= b-b[Strategy='Natural gas G31'] do c 352,56,1 48,24 2,102,90,476,458 2,124,74,416,303,0,MIDM Hei table Table(Hei_output3)( 1,2,3,5,6,7,9,13,17,21,25) 352,128,1 48,24 2,102,90,476,473 2,40,50,674,303,0,MIDM Table IV 1 328,104,1 48,24 Table_iv Reference: Marko Tainio, Jouni T. Tuomisto, Otto HŠnninen, PŠivi Aarnio, Kimmo J. Koistinen, Matti J. Jantunen and Juha Pekkanen. Health effects caused by primary particulate matter (PM2.5) emitted from buses in the Helsinki Metropolitan Area, Finland Risk Analysis, Vol. 25, No.1, 2005. pp.151-160. 120,152,-1 108,144 Levels of PM and the corresponding health effects can be affected to some extent by changing bus types Table_iv 416,360,1 76,51 65535,65532,19661 The difference in the excess mortality between natural gas buses and the present diesel engines with proper trapping system is not large Table_iv 312,224,1 76,70 65535,65532,19661 Importance (figure 1) 1 488,104,1 48,24 65535,65532,19661 Importance_1 The dose-response relationship and the emission factors were identified as the main sources of uncertainty in the model Importance_1 488,224,1 72,70 65535,65532,19661