2 0 1 1 4 2 0 -1 Time Dynamic simulation periods are specified in Time's definition. This is usually a list of numbers or labels, typically in some unit of time (days, weeks, months, etc.). Use the ÒDynamic()Ó function in your variables to perform dynamic simulation. [0,1,2] Congestion charge case study ktluser 17. touta 2007 22:41 ktluser 21. touta 2007 11:10 48,24 1,40,0,740,544,17 Arial, 12 0,Model Congestion_charge_ca,2,2,0,1,E:\Congestion_charge_case_study.ANA Current graph ktluser 21. touta 2007 9:30 48,24 464,40,1 48,24 1,40,0,933,544,17 Actions 56,96,-1 48,24 Valuation 736,96,-1 48,24 Impacts 560,96,-1 48,24 Exposure 400,96,-1 48,24 Media 288,96,-1 48,24 Sources 176,96,-1 48,24 Congestion charging 0 56,280,1 48,24 Noise levels Noise_emission; Landuse; Background_conc; Geography; Meteorology 288,152,1 48,24 Annoyance Noise_levels1; Vehicle_speed 400,192,1 48,24 Air pollution emissions Vehicle_number; Traffic_composition; Traffic_speed; Road_data; Traffic_volume 176,248,1 48,24 Cardiovascular illness Annoyance; Noise_levels1; Existing_dose_respon; Population 624,152,1 52,24 Air quality related morbidity /mortality Air_pollution_emissi; Existing_dose_respon; Population 624,248,1 48,36 Health gains related to physical activity: diabetes, obesity Physical_activity; Existing_dose_respon; Population 624,328,1 56,36 Psycho-social well-being Annoyance; Air_pollution_emissi; Amount_of_public_tra; Accidents1 624,424,1 48,24 Injury-related morbidity /mortality Amount_of_public_tra; Accidents1; Existing_dose_respon; Population 624,488,1 48,28 Resident and public transport areas Vehicle_number 232,320,1 48,38 Amount of public transport Resident_and_public_ 232,424,1 48,28 Driver behaviour Vehicle_number; Vehicle_speed 232,488,1 48,24 Accidents Resident_and_public_; Enviroment_for_pedes; Vehicle_speed 512,488,1 48,24 Enviroment for pedestrians /cyclists Driver_behaviour 400,488,1 48,28 Congestion, travel time Vehicle_speed 56,488,1 48,24 Local and global environmental impacts Congestion_charging 56,168,1 48,36 New variables merged into the graph. 480,32,-1 128,26 Context Spatial aspects (infrastructure) Social, demografic, economic processes 168,32,-1 156,28 Car type ['Private car','Goods transport vehicle'] 176,184,1 48,12 Car type: used in emission variables - private car -goods transport vehicle 304,808,-1 92,34 Polluntant ['PM2.5','NOx'] 176,208,1 48,12 Pollutant: used in emission variables - PM2.5 - NOx 504,808,-1 92,34 Group ['Residents','Workers','Commuters'] 624,664,1 48,12 Group: Used in population variables - residents - workers - commuters 104,800,-1 96,42 Population 0 624,632,1 48,24 Non-accidental morbidity /mortality Cardiovascular_illn1; Air_quality_related1; Health_gains_relate1 736,248,1 52,28 Existing dose-response relations 0 624,576,1 52,28 [Object Variable] [, , , , ] Cycling Congestion_charging 344,392,1 48,24 19661,48336,65535 Vehicle number Congestion_charging 56,360,1 48,24 Vehicle speed Vehicle_number 56,424,1 48,24 [] Traffic composition 0 176,560,1 48,24 [] Traffic speed 0 176,616,1 48,24 [] Road data 0 176,672,1 48,24 [] Traffic volume 0 176,728,1 48,24 [] Geography 0 288,672,1 48,24 Objective Pm10_conc, Objective Nox_conc, Objective Noise_levels, Objective Accident_rate Landuse 0 288,560,1 48,24 Objective Pm10_conc, Objective Nox_conc, Objective Noise_levels Meteorology 0 288,728,1 48,24 Objective Pm10_conc, Objective Nox_conc Background conc 0 288,616,1 48,24 Objective Noise_levels Travel surveys 0 400,560,1 48,24 Variable Working_population, Variable Commuters Time-Activity data 0 400,616,1 48,24 Variable Working_population, Variable Commuters, Objective Resident_population Origin - Destination matrices 0 400,672,1 48,28 Variable Working_population, Variable Commuters, Objective Resident_population Regional air monitoring 0 400,728,1 48,24 Air pollution exposure Air_pollution_concen; Travel_surveys; Time_activity_data; Origin___destination; Regional_air_monitor 400,248,1 48,24 Noise emission Vehicle_number; Traffic_composition; Traffic_speed; Road_data; Traffic_volume 176,152,1 48,24 Air pollution concentration Air_pollution_emissi; Landuse; Background_conc; Geography; Meteorology 288,248,1 48,24 Physical activity Resident_and_public_; Cycling 400,320,1 48,24 Disease ['Cardiovascular','Diabetes','Obesity','Other morbidity','Other mortality'] 736,288,1 48,12 Disease: used with non-accidental morbidity and mortality: - Cardiovascular - Diabetes - Obesity - Other morbidity - Other mortality 696,760,-1 92,68 Key variable 56,112,1 48,24 Indicator 56,176,1 48,24 Proxy 56,240,1 48,24 Variable 56,40,1 48,24 39321,65535,65535 NOTE! This notation is actually for an argument. It is often the case that an argument can be used as a proxy to defend the result of a variable. However, it is not always the same thing. 328,248,-1 208,28 Data variable 56,312,1 48,24 65535,52427,65534 This is used for variables that contain measured data. Sometimes proxies can be of this form: they are measurement of something that is a variable, but it is not THE variable that we are interested, and it is used as a proxy. However, if the data is about the actual variable, this notation is not a proxy. 344,320,-1 228,32 2,462,63,476,224 It should be noted that the current notation in Analytica pyrkilo is about the content of the variable, not about its purpose. It is therefore problematic to represent the ideas of proxy and key variable in a coherent way with the existing notation. 336,120,-1 212,32