2 2 2 0 0 1 5 98 1 2 0 1 2 -1 0 Time Dynamic simulation periods are specified in Time's definition. This is usually a list of numbers or labels, typically in some unit of time (days, weeks, months, etc.). Use the ÒDynamic()Ó function in your variables to perform dynamic simulation. Sequence( 0, 23.99, 0.2 ) 2,450,279,476,409 Log Composite traffic v. 1.2 - Health and costs in the Helsinki metropolitan area This model is a decision analysis in a poorly studied area, trip aggregation, and it studies decisions of two different stakeholders, the passenger and the society. In composite traffic, a centralised system collects the information on all trips online, aggregates the trips with the same origin and destination into public vehicles with eight or four seats, and sends the travel instructions to the passengers' mobile phones. We show here that in an urban area with one million inhabitants, this system could reduce environmental and other pressures of car traffic typically by 50-70 %, would attract about half of the car passengers, and within a broad operational range needs no public subsidies. Composite traffic gives a new level of freedom in urban decision-making towards solving the problems of urban traffic. The model is built using Analytica 3.0(TM) program that utilises a graphical interface for creating probabilistic (Monte Carlo) models. A free browser can be downloaded from the Analytica web site http://www.lumina.com . The file format for the models is XML, and therefore the code can also be viewed with a regular web browser. In this material, we present the main views of the graphical model and describe several modules in more detail. The model consists of two parts: a deterministic trip aggregation model that produces the output tables used in decision analysis. The calculation of the results takes several days and therefore they are stored as static tables in the module 'Static nodes'. In the second part the aggregation results are combined with cost functions, emission factors and other uncertain and/or varying variables using probabilistic (Monte Carlo) simulation. This part of the model is readily available for detailed examination, and several input values can be changed and explored using the Analytica Browser. Note, however, that the model (depending on dimensions used) easily requires more than 1 GB of RAM memory. jtue (Jouni Tuomisto) 7. Novta 2002 13:32 jtue 10. Julta 2006 15:53 48,24 1,53,24,639,671,21 2,10,87,476,467 Arial, 13 0,Model Composite_traffic_v_,2,2,0,1,N:\Huippuyksikko\Tutkimus\R79_CompositeTraffic2\Mallit\Composite_traffic_1_2.ANA 81,1,1,0,2,1,4900,6400,7 2,40,7,450,720 Composite traffic reduces pressures typically by 50-70% 1 656,512,1 52,44 65535,65532,19661 Composite_traffic_re Personal car traffic causes problems in urban city centres Traffic congestion in urban areas is rapidly becoming the most important obstacle for town development. In addition traffic is causing major environmental, health, and economical problems. On the other hand it is vital for the functions of the modern society. Pressure 224,128,1 48,46 2,102,90,476,357 There are several reasons why many people are not willing to use public transportation. Many people driving cars are not willing to use public transportation. This may be due to poor connections, difficult timing, uncomfort of changing etc. Pressure 224,232,1 60,52 2,50,301,476,372 Traffic is a major source of fine particles, which kill 300000 people/a in Europe Pressure; Effect 368,504,1 56,55 2,102,90,476,414 Steve Pye and Paul Watkiss: CAFE CBA: Baseline analysis 2000 to 2020. AEAT/ED51014/ Baseline Issue 2. <a href= "http://www.iiasa.ac.at/docs/HOTP/Mar05/cafe-cba-baseline-results.pdf" >Click</a> CO2 emissions must be reduced to prevent climate change State; Effect 224,336,1 56,48 Private car is a very inefficient way of transporting people. Its superiority is based on flexibility, not efficiency. Therefore, systems that are both flexible and efficient must be developed. Pressure 224,472,1 76,80 Driving force Other_actions 368,176,1 48,24 Pressure Other_actions; Driving_force 368,232,1 48,24 [Constant Co2_emissions_must_b] State Pressure 368,288,1 48,24 Exposure State 368,344,1 48,24 Effect Exposure 368,400,1 48,24 [Constant Traffic_is_major_sou] The marginal cost of car is low given the passenger already owns one. An alternative must be efficient enough to compete with this Other_actions; Effect 656,232,1 68,64 65535,31131,19661 Composite traffic gives new freedom and flexibility to decision-makers in urban policy-making The maybe most important effect (and the most difficult to model) comes from the increased degree of freedom in urban policy-making. Some examples of the possible changes: The pressures towards enlarging road infrastructure are relieved, giving resources to other possible targets. Car limits in e.g. historical city centres can be implemented without disrupting peoples' possibilities to move freely in the city. Public transportation can be provided in areas where sparse population or poor urban planning hamper efficient bus service. It will become cheaper to implement technical measures to reduce emissions with a smaller, intensively used fleet. Many families can give up the second, and sometimes even the first car, when most trips can be performed without an own vehicle. Reduced pressures to buy an own car decrease problems of car-owning to city infrastructure. Elderly, disabled, and young people get more freedom to move around. Parents don't need to drive their children so much. The need for driving drunk reduces. The connection between the freedom to move and car ownership is loosened. Emission reduction techniques are more economic, as there are fewer vehicles that drive more. Even expensive solutions such as hydrogen or electricity may become profitable. The question of mileage per tank is not an issue with composite vehicles, which makes it easier to use electricity. Composite_traffic_re 504,512,1 68,48 2,379,84,520,386 65535,65532,19661 Personal transport is necessary in urban areas. The question is how to organise the transport with minimal harm Driving_force 364,84,1 68,55 Action ktluser 8. maata 2005 6:30 48,24 504,232,1 48,24 1,76,97,602,564,17 With composite traffic 1. the service and flexibility is comparable to the car 2. most pressures reduce by 50-70% but driver salary costs are high 3. ca. 50 % of passengers found it attractive 4. system can start in a small way and expand later We found out that with composite traffic 1. most trips are direct; 40% involve one change 2. most pressures reduce by 50-70% but driver salary costs are high 3. ca. 50 % of passengers found it cheaper 4. day-time traffic does not need subsidies composite_traffic_dummy 680,304,1 92,92 2,512,136,476,381 65535,65532,19661 We studied 1. how effectively trips can be combined 2. what the various costs of each option are 3. what is the variation of perceived costs among passengers 4. what incentives are needed to reach targets We studied 1. how effectively trips can be combined 2. what are the various costs of each option 3. what is the variation of perceived costs among passengers 4. what incentives are needed to reach targets composite_traffic_dummy 680,104,1 88,89 1,1,1,1,1,1,0,,1, 2,102,90,476,473 Composite traffic jtue 24. Febta 2005 15:24 48,24 504,160,1 48,24 1,185,117,637,445,17 100,1,1,1,2,9,2970,2100,15 2,53,21,627,600 45-60% composite fraction is optimal The best alternative for society is about 45-60% of current car traffic to change to composite traffic. The fraction is relative to the area of guarantee but is still rather robust. With evening trips, composite traffic is better only at high guarantee. In contrast, during night composite traffic is not competitive, and it is always more expensive than car traffic. However, the availability of composite traffic around the clock is an important factor when car-owners are considering not to buy a new car at all. This pheniomenon is not modelled here, but it is probably important. If composite traffic is subvented during nights, the overall societal costs are still well in favor of composite traffic. This is because night trips are not numerous and can easily be subsidised. Societal_cost 584,64,1 48,38 2,102,90,476,452 [Alias A45_60__composite_f2] 65535,65532,19661 Composite traffic reduces pressures typically by 50-70% We show here that in an urban area with one million inhabitants, this system could reduce environmental and other pressures of car traffic typically by 50-70 %, would attract about half of the car passengers, and within a broad operational range needs no public subsidies. Composite traffic gives a new level of freedom in urban decision-making towards solving the problems of urban traffic. Table_1_pressures 352,80,1 52,44 2,131,221,476,279 [Alias Composite_traffic_r1] 65535,65532,19661 Trip aggregation This module calculates the actual trips, modes of transportation, and delays during trips and vehicle transfers. It also calculates the kilometres traveled by each type of vehicle and number of vehicles needed. The composite traffic trips are allocated into different vehicles. The following hierarchy is used in allocation. If the criterion is fulfilled, that number of passengers is allocated, and the rest will go to the next criterion. The criteria are used for a group of trips that has the same origin, destination, and time. Time resolution is 12 min. Origin and destination are described as '129-areas' used for city authorities in Helsinki metropolitan area. The 129 areas have on average 7300 inhabitants (0, 25%, 50%, 75%, and 100% percentiles are 0, 3400, 6800, 10300, and 28300, respectively). 1) Use an 8-seat vehicle if there are enough passengers to get it full. 2) Use a 4-seat vehicle if there are enough passengers to get it full. Divide the trips into two parts so that the passengers change vehicle in the most busy point along the route. Then, 3) Use an 8-seat vehicle if there are enough passengers to get it full. 4) Use a 4-seat vehicle if there are enough passengers to get it full. 5) Use a 4-seat vehicle for all remaining trips. The criterion is checked at the actual arrival time at the transfer point, i.e. the model takes into account the different travel times between areas. The following outputs are calculated: Number of passenger trips by mode (car or composite traffic) Number of passenger trips by vehicle type. Note that in this output, the trip that includes a transfer is calculated twice. Vehicle kilometres driven Parking lots needed for the vehicles that are used Average vehicle numbers per hour for the 30 most busy links at 8.00-9.00 in the morning Number of vehicles needed Waiting time due to traffic jams and waiting for composite vehicle to arrive. The outputs of each scenario are indexed (when relevant) by period (day, evening, night); zone (Helsinki downtown, other centre, suburb), length of trip (less or more than 5 km), and vehicle type (8-seat or 4-seat vehicle with of without transfer, or car). jtue 6. helta 2003 18:55 48,24 304,232,1 48,24 1,262,42,570,484,17 2,102,90,476,451 67,1,1,0,1,1,2794,1728,0 Delay time units Travel time between two city areas. It includes the time that is spent in the composite vehicle when it drives within the origin or destination area picking up or dropping off other passengers. However, the travel times of composite vehicles and car are estimated to be so close to each other that the same value is used for both. (In any case, the resolution is 12 min anyway). ceil(Distances/Traffic_speed/time_unit) 168,56,1 48,24 2,262,247,476,324 2,414,130,694,363,0,MIDM [From,To1] Vehicle size passengers Size of vehicles that is used to allocate passengers into vehicles. For cars, the average number of passengers is 1.345 (See Car occupancy). A slightly higher number is used here, because with low volumes (1-4 passengers) the need of cars is overestimated if the actual number is used. Even if the higher number overcompensates this and causes bias, it is in favour of personal cars. Table(Vehicle)( 8,8,4,4,4,1.5,0,0,0,0,0,0,0,0,0,0,0) 280,56,1 48,24 1,1,1,1,1,1,0,,0, 2,9,108,476,406 2,88,98,416,303,0,MIDM 52425,39321,65535 [Hellman, 2004 54 /id] Trips trips/time unit The composite traffic trips are allocated into different vehicles. The following hierarchy is used in allocation. If the criterion is fulfilled, that number of passengers is allocated, and the rest will go to the next criterion. The criteria are used for a group of trips that has the same origin, destination, and time. 1) Use an 8-seat vehicle if there are enough passengers to get it full. 2) Use a 4-seat vehicle if there are enough passengers to get it full. Divide the trips into two parts so that the passenger changes vehicle in the most busy point along the route. Then, 3) Use an 8-seat vehicle if there are enough passengers to get it full. 4) Use a 4-seat vehicle if there are enough passengers to get it full. 5) Use a 4-seat vehicle for all the remaining trips. The criterion is checked at the actual arrival time at a transfer point, i.e. the model takes into account the different travel times between areas. var v:= Transfer_point; var b:= All_trips[Mode1='Composite']; var h:= 0; var y:= 8; var out:= 0; while y>=scenario_input[input_var='Min direct load'] do ( h:= mod(b,y); out:= if y=Vehicle_noch then b-h else out; b:= h; y:= y-1); var noch:= round(b*scenario_input[input_var='No-change fraction']); b:= b-noch; var changed:= b; var a:= From&','&To1; var j:= if v=a then b else 0; b:= b-j; a:= ','&To1; {laskee alkumatkan matkasuoritteen} var d:= for x[]:= a do ( var c:= (if findintext(From&x,v)>0 then b else 0); c:= sum(c,To1) ); {siirtŠŠ matkasuoritetta alkumatkan viipeen verran.} var e:= selecttext(v,6,9); e:= for x[]:= evaluate(e) do delay[To1=x]; b:= time_shift(b,e); {laskee loppumatkan matkasuoritteen} a:= From&','; b:= for x[]:= a do ( var c:= (if findintext(x&To1,v)>0 then b else 0); c:= sum(c,From) ); b:= j+d+b; b:= b+noch; y:= 8; while y>0 do ( h:= mod(b,y); out:= if y&'c'=Vehicle_noch then b-h else out; b:= h; y:= y-1); out:= if Vehicle_noch='Noch' then noch else out; out:= if Vehicle_noch='Car' then All_trips[Mode1='Car'] else out {Metron huomiointi: noch-riviŠ kŠytetŠŠn tŠssŠ metromatkojen kuvaajana h:= if vehicle_noch<>'Car' and vehicle_noch<>'No-change' then b else 0; h:= if metro_matrix=1 then sum(h,vehicle_noch) else 0; b:= if vehicle_noch='No-change' then h else b; if vehicle_noch<>'Car' and vehicle_noch<>'No-change' and metro_matrix=1 then 0 else b} 168,128,1 48,24 2,413,18,476,825 2,43,93,1121,508,0,MIDM Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:1 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:1 Yminimum:0 Ymaximum:1 Zminimum:0 Zmaximum:1 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] [Vehicle_noch,From] [Index Mista] Total vehicle need vehicles Total number of vehicles needed to run the system. It is assumed that cars can be used in a similar way as composite vehicles, i.e. that if a car is parked, anyone can take and use it. This is of course unrealistic, but the bias is in the favour of car travelling. In addition, this number is not used for the final car need calculations. var a:= cumulative_balance; var driving:= -sum(a,from); a:= a-min(a,time); a:= sum(a,from)+driving; max(a,time) 280,272,1 48,24 2,518,118,476,305 2,43,183,670,431,1,MIDM [Time,Vehicle] [Index Travel_type] Areal vehicle peak vehicles The highest number of vehicles during the observation period in each area. This excludes vehicles that are driving through the area. This is a proxy of parking lot need in the area. For practical reasons, the numbers are aggregated into zone level. It is assumed that cars can be used in a similar way as composite vehicles, i.e. that if a car is parked, anyone can take and use it. This is of course unrealistic, but the bias underestimates the parking lot need in favour of car travelling. It is also assumed that composite vehicles and cars use separate parking areas. In this way the beforementioned bias does not affect the estimate for composite traffic. var a:= cumulative_balance; var b:= a[Vehicle='Car']; a:= sum(a,Vehicle)-b; a:= array(Vehicle,[a,0,0,0,0,b]); a:= max(a,time)-min(a,time); var c:= zones[area1=from]; a:= if zone=c then a else 0; a:= sum(a,from); a 56,208,1 48,24 2,25,35,476,460 2,-30,196,686,341,0,MIDM [Zone,Vehicle] [Index Region2] 36,1,1,0,1,9,6798,4744,7 Link intensity vehicles/h The average number of vehicles per hour driving along a link for the 30 most busy links at 8.00-9.00 in the morning. Note that each street consists of two links going to opposite directions. average(link_intensity_per_name,link_intensity_per_name.link) 512,272,1 48,24 2,385,178,476,384 2,14,8,345,248,0,MIDM Basic ranking The 30 most busy links based on the scenario with cars only. index Top30:= 1..30; var b:= trips_per_link_BAU; b:= b[From=Floor(Link/10000),To1=(Link-Floor(Link/10000)*10000)]; b:= sortindex(-b,Link); var a:= 1..size(Top30); a:=slice(b,a); slice(a,Top30) 512,128,1 48,24 2,457,82,476,421 2,735,44,226,642,0,MIDM [To1,From] 1,I,4,2,0,0 Link intensity per name vehicles/h The number of vehicles per hour driving along a link for the 30 most busy links at 8.00-9.00 in the morning. The result is indexed by the names of the areas that are connected by the particular link. var d:= basic_ranking; var mist:= floor(d/10000); var mihi:= d-floor(d/10000)*10000; var a:= Vehicles_per_link; a:= a[From=mist,To1=mihi]; d:= area_name[area1=floor(d/10000)]&' - '&area_name[area1=d-floor(d/10000)*10000]; index link:= d; var c:=cumulate(1,link); slice(a,a.top30,c) 512,208,1 48,24 2,129,54,476,566 2,46,12,824,709,0,MIDM [Index Travel_type] Transfer intensity passengers/d The number of transfers (changing composite vehicle in the middle of a trip) in each area. var a:= sum(Trips[vehicle_noch=vehicle],Vehicle); a:= sum(a-sum(All_trips,Mode1),time); var fro:= sum(a,To1); var to:= sum(a,from); fro+to[to1=from] 56,56,1 48,24 2,109,186,476,425 2,781,43,296,405,0,MIDM [To1,From] Trips per hour trips/h Total number of trips travelled per hour in the whole area. var a:= Trips[vehicle_noch=vehicle]; a:= sum(sum(a,From),To1)/time_unit; a 56,128,1 48,24 2,637,66,476,410 2,25,49,676,547,0,MIDM Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:10 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:1 Yminimum:0 Ymaximum:7.25M Zminimum:1 Zmaximum:2 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] Arial, 8 [Vehicle,Time] Cumulative balance vehicles Cumulative net balance of vehicles and its development in time. This could take into account the compensative gap filling, i.e. if there is shortage of composite vehicles, empty vehicles are transported into the area. However, in the current version, it is assumed that empty vehicles are not transported. Because of this, there must be enough vehicles in each area so that it will not run out of them at any time of the day. dynamic(0,Cumulative_balance[time-1]+Vehicle_balance) 168,272,1 48,24 2,102,90,476,369 2,178,119,756,399,1,MIDM [Time,Vehicle] [Index From] Vehicle balance vehicles/time unit Number of vehicles coming to and leaving each area, i.e. the net balance of the area for each time point. var b:= ceil(Trips[vehicle_noch=vehicle]/vehicle_size); var a:= time_shift(b,delay+1); a:= sum(a,From); a:= a[To1=From]; a:= -sum(b,To1)+a; var bus:= a[Vehicle='Bus no change'] +a[Vehicle='Bus one change']; var cab:= a[Vehicle='Cab no change'] +a[Vehicle='Cab one change'] +a[Vehicle='Cab non-full']; var car:= a[Vehicle='Car']; array(Vehicle,[bus,0,cab,0,0,car]) 168,208,1 48,24 2,471,43,476,649 2,181,47,694,349,1,MIDM [Time,Vehicle] [Index From] Vehicles per link vehicles/h The number of vehicles in each link. var v:= Route_matrix; var a:= From&','&To1; index e:= Sequence(8,8.99,time_unit); var g:= ceil(Trips[vehicle_noch=vehicle]/vehicle_size); g:= sum(g[time=e],e); {laskee matkasuoritteen joka linkille erikseen} var d:= for x[]:= a do ( var c:= (if findintext(x,v)>0 then g else 0); c:= sum(sum(c,From),To1) ); d 392,208,1 48,24 2,425,58,476,528 2,96,75,797,552,0,MIDM [To1,From] Trips per link BAU trips/h Vehicles per link in a scenario with cars only. This is used to rank the links according to their vehicle intensities. var v:= Route_matrix; var a:= From&','&To1; index e:= sequence(8,8.99,time_unit); var f:= sum(adjusted_trip_rate[time=e],e); for x[]:= a do ( var c:= (if findintext(x,v)>0 then f else 0); c:= sum(sum(c,From),To1) ) 512,56,1 48,24 2,102,90,476,354 2,74,10,797,552,0,MIDM [To1,From] Vehicle km km/time unit Number of vehicle kilometres driven during each time unit. var a:= ceil(Trips[vehicle_noch=vehicle]/vehicle_size); a:= aggr_period(a); var b:= array(length,[0,1]); b:= if distances < 5 then 1-b else b; a:= b*a; sum(sum(a*Distances,From),To1) 280,128,1 48,24 2,368,50,476,445 2,529,11,591,291,0,MIDM [Period,Vehicle] [Sysvar Time] 88,1,1,0,2,9,4744,6798,7 Waiting min Calculates the waiting time for composite traffic. First, we calculate the number of vehicles running between each points at each time. This is calculated for short (< 5 km) and long trips separately. We assume that the vehicles run at relatively regular intervals, and then the expected waiting time is half of the time difference between the vehicles. Then we sum over areas and aggregate over time, and calculate the trip-number-weighted waiting time. var a:= if Vehicle='Car' then 0 else trips[vehicle_noch=vehicle]; a:= sum(ceil(a/vehicle_size),Vehicle); var e:= array(length,[0,1]); e:= if distances < 5 then 1-e else e; var b:= ceil(time_unit*60/a/2); var c:= for x:= waiting_time do ( var d:= if b=x then a*e else 0; d:= sum(sum(d,From),To1); aggr_period(d)); c:= sum(c*waiting_time,waiting_time)/sum(c,waiting_time); array(Vehicle,[c,c*2,c,c*2,c*2,0]) 400,56,1 48,24 2,530,58,474,601 2,11,131,416,303,0,MIDM Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:1 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:1 Yminimum:0 Ymaximum:1 Zminimum:0 Zmaximum:1 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] [Period,Vehicle] [Index J] Waiting time A dummy index 1..12 400,88,1 48,12 Zones The areas are classified into three categories: 1) downtown (downtown of Helsinki), 2) centre (other major centres within the Metropolitan area), and 3) suburb (all other areas). Table(Area1)( 1,1,1,1,2,2,2,2,2,2,2,2,3,3,2,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,3,3,3,3,2,2,3,3,3,3,3,3,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,3,3,3,3,3,3,3,2,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,0) 56,272,1 48,24 2,782,11,215,614,0,MIDM 52425,39321,65535 Trips.m by zone trips Total composite and car trips classified into zones and periods. This is the number of original trips, which is divided into car and composite trips. Compare Trips.v by zone. var a:= aggr_period(All_trips[Mode1='Composite']); var b:= aggr_period(All_trips[Mode1='Car']); a:= array(Vehicle,[a,0,0,0,0,b]); var c:= array(length,[0,1]); c:= if distances < 5 then 1-c else c; a:= sum(a*c,From); b:= zones[area1=to1]; a:= if zone=b then a else 0; a:= sum(a,to1); a 56,336,1 48,24 2,670,35,476,371 2,253,263,718,295,0,MIDM [Zone,Vehicle] Outputs The combined result of various variables using the basic assumptions. This output is copied to the module 'Static nodes' and subsequently used as the basis for cost calculations. var a:= array(output1,[0,0,0,0,link_intensity,total_vehicle_need,0]); a:= if length='< 5 km' then a else 0; a:= if periods=1 then a else 0; a:= a+array(output1,[0,0,vehicle_km,0,0,0,waiting]); a:= if zone=1 then a else 0; var b:= if length='< 5 km' and periods=1 then areal_vehicle_peak else 0; a:= a+array(output1,[Trips_m_by_zone,0,0,b,0,0,0]); a:= a[vehicle=vehicle_noch]; a:= if a = null then 0 else a; a+array(output1,[0,trips_v_by_zone,0,0,0,0,0]) 400,272,1 48,24 2,622,28,476,522 2,760,134,487,304,0,MIDM [Alias Bau_scenario_output1] Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:1 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:1 Yminimum:0 Ymaximum:1 Zminimum:0 Zmaximum:1 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] [Period,Vehicle_noch] [Index Length] Length The length of the trip classified as short (< 5 km) and long. ['< 5 km','>= 5 km'] 280,160,1 48,12 We should also look suboptimal aggregation (non-full vehicles) BEFORE dividing the trips into two parts. We should also look suboptimal aggregation (non-full vehicles) BEFORE dividing the trips into two parts. However, this is not easy as we do not know which trips can be aggregated into full vehicles before we have already divided the trip into two parts. I would say that this has little practical significance, as with large traffic volumes, the non-full vehicles are a minority. If, however, the need to transfer appeared to be a major hindrance of using composite traffic, this could be a method to increase direct connections. trips 88,432,1 64,63 2,102,90,476,392 Trips.v by zone trips Total composite and car trips classified into zones and periods. This is indexed by different vehicle types based on the modelled allocation. Note that this number is greater than Trips.m by zone, because here all trips with transfer are calculated as two separate trips. var a:= aggr_period(trips); var c:= array(length,[0,1]); c:= if distances < 5 then 1-c else c; a:= sum(a*c,From); c:= zones[area1=to1]; a:= if zone=c then a else 0; a:= sum(a,to1); a 248,336,1 48,24 2,102,90,476,388 2,455,302,450,295,0,MIDM [Zone,Vehicle_noch] Vehicle balance vehicles/time unit Number of vehicles coming to and leaving each area, i.e. the net balance of the area for each time point. var b:= ceil(Trips[vehicle_noch=vehicle]/vehicle_size); var a:= time_shift(b,delay+1); a:= sum(a,From); a:= a[To1=From]; a:= sum(b,To1)-a; var bus:= a[Vehicle='Bus no change'] +a[Vehicle='Bus one change']; var cab:= a[Vehicle='Cab no change'] +a[Vehicle='Cab one change'] +a[Vehicle='Cab non-full']; var car:= a[Vehicle='Car']; a:= array(Vehicle,[bus,0,cab,0,0,car]); sum(a,from) 280,208,1 48,24 2,102,90,476,384 2,280,25,694,349,1,MIDM [Time,Vehicle] Total vehicle need vehicles Total number of vehicles needed to run the system. It is assumed that cars can be used in a similar way as composite vehicles, i.e. that if a car is parked, anyone can take and use it. This is of course unrealistic, but the bias is in the favour of car travelling. In addition, this number is not used for the final car need calculations. var a:= cumulative_balance; var driving:= -sum(a,from); a:= a-min(a,time); a:= sum(a,from)+driving; max(a,time); a 376,352,1 48,24 2,43,183,623,292,1,MIDM [Time,Vehicle] {Metron huomiointi: noch-riviŠ kŠytetŠŠn tŠssŠ metromatkojen kuvaajana} var b:= trips; var h:= if vehicle_noch<>'Car' and vehicle_noch<>'No-change' then b else 0; h:= if metro_matrix=1 then sum(h,vehicle_noch) else 0; b:= if vehicle_noch='No-change' then h else b; b:= if vehicle_noch<>'Car' and vehicle_noch<>'No-change' and metro_matrix=1 then 0 else b; sum(b,time) 264,424,1 48,24 [To1,From] Metro matrix var a:= '1063,1062,1056,1053,1022,1021,1018,1005,1002,1001,1026,1067,1068,1069,1074,'; var b:= if Findintext(from&',',a)>0 and Findintext(to1&',',a)>0 then 1 else 0; b 264,488,1 48,24 Vehicle metro TŠmmšistŠ indeksiŠ kŠytetŠŠn metrosovituksen yhteydessŠ. ['Metro','Bus no change','Bus one change','Cab no change','Cab one change','Cab non-full','Car'] 368,424,1 48,24 Costs This module calculates various pressures of different traffic scenarios. The estimates are based on Outputs node (which has been calculated beforehand due to slow calculations) and the numbers are stored in Static nodes). The outputs of each scenario are indexed (when relevant) by period (day, evening, night); zone (Helsinki downtown, other centre, suburb), length of trip (less or more than 5 km), and vehicle type (8-seat or 4-seat vehicle with of without transfer, or car). Costs are separately calculated for the passenger and the society. Some costs affect these stakeholders differently, such as fine particle and carbon dioxide emissions: they are calculated as societal costs only, not as costs to a passenger. The following endpoints are considered (see Table 1): Fraction of composite trips without change (%) Vehicles needed (number) Parking places need (number) Average vehicle flow on the 30 most busy roads (vehicles/h at 8.00-9.00 AM) Fine particle (<2.5 µm of diameter) emissions (kg per day) Carbon dioxide emissions (ton per day) Driver salaries (thousand e per day) Vehicle capital and operational costs (thousand e per day) Time cost (thousand e per day) Average car trip cost to passenger (e per trip) Expected composite trip cost to passenger (e per trip) The following costs are taken into account for passenger (P) or societal (S) costs: Vehicle capital cost (P+S) Driver salary cost (P+S) Driving cost (fuel) (P+S) Parking (parking fees for individual drivers) (P) Parking land (opportunity cost of reserving land to parking purposes) (P+S) Emissions (fine particles and carbon dioxide causing health and climate change effects, respectively (S) Time for waiting composite vahicles, time spent in traffic jams (P+S) Accidents (an option only, not used in the current model) Ticket (profit for composite service provider) (P) The module has a submodule Cost elements. It contains the detailed descriptions of the unit costs and other input variables that are used to calculate the pressures of each scenario. The values used are dependent on the stakeholder. For example, the car price is the price that a random new car would cost, and it has therefore large uncertainty. On the other hand, the price of a 4-seat composite vehicle is the average price a taxi-style car would cost in Finland, and the confidence intervals are narrower because there is no individual uncertainty. This is because the price of an individual car affects the costs of individual car trips, while the cost of composite trip is dependent on the total cost of vehicles. Variation between individuals has been separately estimated for three variables: how passengers evaluate the capital costs of owning a car; how passengers are willing to pay for either the right to drive themselves or to not need to drive; and how many passengers are traveling together. jtue 6. syyta 2004 13:46 48,24 424,232,1 48,24 1,124,20,-78,617,17 Scenarios output # or #/h A set of scenarios organised along two indexes: Guar is the level of composite traffic guarantee. This means that trips within a certain area will be organised by composite travel, while areas outside this guarantee remain without the service. The point in using this index is to explore whether composite traffic can be started with low profile and expanded geographically as more people start using it. Comp_fr is the fraction of trips that were previously performed by personal car but are performed by composite traffic in the scenario. var a:= scen1_0[vehicle_noch=vehicle]; var b:= Scenarios1_0; a:= if b[input_var='Composite fraction']=comp_fr then a else 0; a:= if b[input_var='Guarantee level']=guar then a else 0; a:= if comp_fr=0 then a[guar=7] else a; a:= a[guar=choose_guar]; a:= if comp_fr=0 and output1='Waiting' then 0 else a; a:= a[comp_fr=choose_comp]; a:= if b[input_var='Flexible fraction']=choose_flexible then a else 0; a:= if b[input_var='No-change fraction']=choose_nochange then a else 0; a:= if b[input_var='Large guarantee?']='Yes' then (if large='Yes' then a else 0) else (if large='No' then a else 0); a:= a[large=choose_large]; a:= sum(a,scenario1_0); a 176,32,1 48,24 2,132,53,476,620 2,18,41,837,433,0,MIDM Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:10 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:5 Xmaximum:15 Yminimum:0 Ymaximum:1M Zminimum:1 Zmaximum:6 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1, 1, 1, 1, 1, 0, 0, 0] Probindex:[5%, 25%, 50%, 75%, 95%] Arial, 5 [Output1,Vehicle] [Index Vehicle] Transport cost e/d The total cost (per day) of various cost elements calculated for each vehicle type separately. var park:= if Vehicle='Car' then sum(Car_parking_cost,zone) else 0; var land:= sum(Parking_land_cost,zone); var emiss:= sum(Emission_cost,emission); {var tim:= sum(time_cost,time_cost.i);} array(cost_structure,[Vehicle_cost,Driver_cost,Driving_cost,park,land, emiss,time_cost,acc_costs,0]) 304,216,1 48,24 2,535,61,476,624 2,14,49,754,524,0,MEAN Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:10 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:1 Yminimum:0 Ymaximum:7.25M Zminimum:1 Zmaximum:2 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1, 1, 1, 1, 1, 0, 0, 0] Probindex:[5%, 25%, 50%, 75%, 95%] Arial, 6 [Cost_structure,Vehicle] [Index Length] [0,0,0,0] Cost structure The various costs that are included in the model. The details of each cost are described in the respective node in the 'Detailed costs' module. Accidents are omitted, although there is a placeholder. ['Vehicle','Driver','Driving','Parking','Parking land','Emissions','Time','Accidents','Ticket'] 304,248,1 52,12 2,102,90,476,466 2,15,262,416,303,0,MIDM Cost per trip e/trip The costs calculated per trip. These numbers are not yet weighted by stakeholder-specific weights (Cost strength), and therefore eg. the driver costs for car trips is high (the assumption is that all car drivers get full salary). var a:= transport_cost[vehicle='Car']; a:= array(mode1,[a,sum(transport_cost,vehicle)-a]); var b:= trips_per_period; a:= if cost_structure='Vehicle' or cost_structure='Parking land' then sum(a,period)/sum(b,period) else a/b; a:= a[period=choose_period]; a:= if cost_structure='Ticket' and Mode1='Composite' then ticket-group_subvention else a; a 304,296,1 48,24 2,52,74,476,436 2,165,80,756,459,0,MEAN [Comp_fr,Cost_structure] 1,D,4,2,0,0 [Index Length] [0,0,0,0] Car capital valuation The variation of how much an individual values the capital costs of the personal car when estimating the costs of a single trip. If the person needs the car only for trips within the composite traffic area, the valuation might be 1. However, the car is often needed for other purposes also such as longer trips (value: <1), and some people like to own a car in any case (value: 0). ktluser 24. lokta 2004 12:48 ktluser 28. lokta 2004 23:31 48,24 56,304,1 48,24 1,1,1,1,1,1,0,0,0,0 1,103,163,-631,294,17 Arial, 13 Cap variab fraction Each row represents one possibility for the distribution of individual valuations in the population. Probability distributions are used to represent this variation within population. Table(Self)( Uniform(0,1),Triangular(0,0,1),Bernoulli(0.2)) [1,2,3] 56,32,1 48,24 2,376,89,476,280 2,252,12,416,303,0,MIDM 2,280,290,465,303,1,PDFP 65535,52427,65534 Based on author judgement, as there is no data available. Cap uncert The uncertainty between several valuation distributions on the population level. Probtable(Self)( (1/3),(1/3),(1/3)) 56,96,1 48,24 2,144,331,416,303,0,MIDM 2,248,258,416,303,0,SAMP 52425,39321,65535 [1,2,3] Based on author judgement, as there is no data available. Cap fraction The aggregate of the car capital variation and uncertainty. Cap_variab_2[Cap_variab=Cap_uncert] 56,160,1 48,24 2,247,96,476,420 2,83,220,416,303,1,CDFP Cap variation fractile The fractile of the sample within the population. average(sample(Cap_variab_2),cap_variab) 168,32,1 48,24 2,199,80,476,224 2,510,212,416,303,1,CDFP [Run,Cap_variab] 9.5.2005 Jouni Tuomisto Vanha syntaksi, ennen kuin keksin miten epŠvarmuus ja vaihtelu erotetaan: var a:= rank(cap_variab,run)/samplesize; a[Cap_variab=Cap_uncert] Cap variab 2 var a:= cap_variab[run=sortindex(cap_variab,run)]; var b:= uniform(0,1); a[run=sortindex(b,run)] 168,96,1 48,24 2,576,48,377,441,0,SAMP Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:10 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:100 Yminimum:0 Ymaximum:1 Zminimum:1 Zmaximum:3 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] Arial, 8 [Cap_variab,Run] Willingness to drive The price that the passenger is willing to pay to be able to drive the vehicle him/herself compared with the situation where the composite driver drives the vehicle. Note that for car passengers, the question is not about driving but being a passenger in a car or in a composite vehicle. There are also cases where the car driver is not traveling but only chauffeuring passengers that do not have driver's license. The willingness to drive is probably low in these cases, but we were very modest in these estimates. There exists no data about this variable, because it is about a comparison between the current and a hypothetical situation. Author judgement is therefore used. ktluser 24. lokta 2004 12:48 48,24 56,360,1 48,24 1,1,1,1,1,1,0,0,0,0 1,263,92,-930,333,17 Arial, 13 Drive variab fraction Willingness to drive. This is expressed as fraction of composite driver's salary. Each row represents one possibility for the distribution of individual valuations in the population. Probability distributions are used to represent this variation within population. Table(Self)( Uniform(-0.3,0),Triangular(-0.1,0,0.3),Uniform(-0.2,0.2)) [1,2,3] 64,40,1 48,24 2,102,90,476,405 2,79,219,457,274,0,MIDM 2,152,162,416,303,1,PDFP 65535,52427,65534 Based on author judgement, as there is no data available. Drive uncert The uncertainty between several valuation distributions on the population level. Probtable(Self)( (1/3),(1/3),(1/3)) 64,104,1 48,24 2,248,258,416,303,0,SAMP 52425,39321,65535 [1,2,3] Based on author judgement, as there is no data available. Drive fraction The aggregate of the willingness to drive variation and uncertainty. It is expressed as a fraction of composite driver's salary. Drive_variab_2[Drive_variab=Drive_uncert] 64,168,1 48,24 2,366,255,416,303,1,CDFP Drive variation fractile The fractile of the sample within the population. average(sample(drive_variab_2),drive_variab) 176,40,1 48,24 2,104,69,476,224 2,120,130,416,303,1,CDFP [Run,Cap_variab] Drive variab 2 var a:= drive_variab[run=sortindex(drive_variab,run)]; var b:= uniform(0,1); a[run=sortindex(b,run)] 176,104,1 48,24 2,576,48,377,441,0,SAMP Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:10 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:100 Yminimum:0 Ymaximum:1 Zminimum:1 Zmaximum:3 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] Arial, 8 [Cap_variab,Run] Trips per period trips/period Number of trips per period var a:= sum(scenarios_output[output1='Trips'],zone); a:= if Mode1='Composite' then a else 0; a:= if Vehicle='Car' then (if Mode1='Car' then a[Mode1='Composite'] else 0) else a; a:= sum(a,Vehicle); a 56,216,1 48,24 2,102,90,476,257 2,20,201,446,428,0,MIDM [Length,Comp_fr] [Index Length] Cost to stakeholder e/trip The cost per trip for a random individual passenger. These values have been weighted by the stakeholder-specific weights (Cost strength). The costs are first calculated for an average trip from total costs and total numbers of trips. The costs of individual car trips depend on the number of passengers. Therefore, the average cost is multiplied by the average number of passengers and divided by the number of passengers in the particular case we are looking at. var a:= mean(Group_size)/sample(Group_size); a:= if cost_structure <>'Time' and Mode1='Car' then a else 1; a:= a*cost_per_trip; a:= if isnan(a) then 0 else a; a:= a*cost_strength; sum(a,cost_structure) 304,360,1 48,24 2,468,14,515,590 2,133,66,833,363,0,MEAN Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:10 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:100 Yminimum:0 Ymaximum:9 Zminimum:1 Zmaximum:2 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] Arial, 2 [Stakeholder,Mode1] [Index Cost_structure] [0,0,0,0] Stakeholder There are three different stakeholders: 'Passenger' is a random sample of passengers who have chosen the personal car in the business-as-usual scenario, and may choose between car and composite traffic in other scenarios. 'Society' the community that is responsible for the well-being of citizens in the metropolitan area. It also has the ability to pay subsidies to public transportation. Societal costs include other costs than passenger costs, such as health effects of air pollution, and opportunity costs of parking space. 'Bus company', the composite traffic service provider, is a simple stakeholder and does not therefore show up in the stakeholder index. Its only interest (in the model) is to get a reasonable profit ('Ticket' cost) from each composite trip (in addition to covering direct costs). ['Passenger','Society'] 176,392,1 48,12 Cost elements This module contains the detailed descriptions of the unit costs and other input variables that are used to calculate the pressures of each scenario. The values used are dependent on the context. For example, the car price is the price that a random new car would cost, and it has therefore large uncertainty. On the other hand, the price of a 4-seat composite vehicle is the average price a taxi-style car would cost in Finland, and the confidence intervals are narrower because there is no individual uncertainty. This is because the price of an individual car affects the costs of individual car trips, while the cost of a composite trip is dependent on the total cost of vehicles to the service provider. ktluser 3. marta 2004 16:37 48,24 176,296,1 48,24 1,158,13,461,505,17 [Alias Cost_elements1] Emission factor g/km Fine particle and carbon dioxide unit emissions for average vehicles. Fine particle emissions are taken from the Lipasto model using average (mixed gasoline and diesel) values for personal car and diesel EURO3 (applied since 2000) values for composite vahicles. For CO2, typical emissions of a new car were used based on the Finnish Vehicle Administration AKE. The following vehicles are used as typical examples of the class: 8-seat vehicle: Toyota Hiace 2.5 D4D 100 4 door long DX bus 4-seat vehicle: Toyota Corolla 2.0 90 D4D Linea Terra 5 door Hatchback (diesel) Car: Toyota Corolla 1.6 VVT-i Linea Terra 5ov Hatchback (gasoline) Table(Vehicle_type,Emission)( (0.1*Triangular(0.3,1,1.7)),(232*Triangular(0.9,1,1.1)), (0.1*Triangular(0.3,1,1.7)),(153*Triangular(0.9,1,1.1)), (0.047*Triangular(0,1,2)),(168*Triangular(0.9,1,1.1)) ) 472,368,1 48,24 2,45,51,618,623 2,545,214,416,303,0,MIDM 2,56,66,416,303,0,MEAN 65535,52427,65534 [Emission,Vehicle_type] [Emission,Vehicle_type] [0,0,0,0] http://lipasto.vtt.fi/yksikkopaastot/henkiloautotkeskimaarin.htm PŠŠkaupunkiseudun julkaisusarja B1999: 5. Vaihtoehtoisten polttoaineiden kŠyttšmahdollisuudet joukkoliikentessŠ PŠŠkaupunkiseudulla. Taulukko 3, Keskusta ja esikaupunki. Autorekisterikeskus AKE: Uuden auton kulutustiedot. EKOAKE, huhtikuu 2003. Emission ['PM','CO2'] 472,400,1 48,12 Vehicle price e/vehicle Price of a new vehicle. Note that the interpretation is slightly different with different vehicles. The car price is the price that a random new car would cost, and it has therefore large uncertainty. The price of a composite vehicle is the average price of a taxi-style car in Finland, and the confidence intervals are narrower because there is no individual uncertainty. This is because the price of an individual car affects the costs of individual car trips, while the cost of a composite trip is dependent on the total cost of vehicles to the service provider. var a:= 39.52K*Triangular(0.75,1,1.25); var b:= 22.6K*Triangular(0.75,1,1.25); var c:= lognormal(19.1K,1.5); a:= array(Vehicle_type,[a,b,c]); a[vehicle_type=vehicle_types] 56,24,1 48,24 2,102,90,476,375 2,22,50,416,303,0,MIDM 2,68,58,839,549,0,MIDM 65535,52427,65534 Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:1 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:-20K Xmaximum:80K Yminimum:-1u Ymaximum:1u Zminimum:1 Zmaximum:6 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] [0,0,0,0] Vehicle lifetime a Expected operation time of a new vehicle. var a:= 7*Triangular(0.75,1,1.25); var b:= 5*Triangular(0.75,1,1.25); var c:= 9*Triangular(0.7,1,1.3); a:= array(Vehicle_type,[a,b,c]); a[vehicle_type=vehicle_types] 184,88,1 48,24 2,102,90,476,484 2,14,383,416,303,0,MIDM 65535,52427,65534 Fuel consumption l/km Fuel consumption of a vehicle. It is assumed that composite vehicles use diesel fuel and cars use gasoline. The values are based on standardised European consumption values of a new car. var a:= (8.7/100)*Triangular(0.75,1,1.25); var b:= (5.7/100)*Triangular(0.75,1,1.25); var c:= (8/100)*Triangular(0.5,1,1.5); a:= array(Vehicle_type,[a,b,c]); a[vehicle_type=vehicle_types] 56,168,1 48,24 2,454,28,476,455 2,425,410,416,303,0,MIDM 2,152,162,416,303,1,PDFP 65535,52427,65534 Fuel price e/l Diesel price for composite vehicles; gasoline price for cars. The values are based on rough follow-up of retail prices in Finland in fall 2004 - summer 2005. var a:= 0.95*triangular(0.8,1,1.2); var b:= 1.22*triangular(0.8,1,1.2); array(Vehicle,[a,a,a,a,a,b]) 56,216,1 48,24 2,102,90,476,529 2,481,182,416,246,0,MIDM 2,264,274,697,303,1,PDFP 65535,52427,65534 [0,0,0,0] St1 gas station, Kuopio keskusta, 6.9.2004. Driver salary e/h Monthly salary and social security costs (35 %), and scaled to one hour assuming 160 hours of work per month. The salary is based on that of bus drivers in municipality-owned bus companies. var a:= 2313/160*1.35; normal(a,a*0.18) 192,32,1 48,24 2,102,90,476,468 2,411,332,416,303,0,CONF 65535,52427,65534 [0,0,0,0] Statistics Finland 2005 <a href= "http://statfin.stat.fi/StatWeb/start.asp?LA=en&lp=home&DM=SLEN" >Click</a> Parking space e/d/parking space Cost of a parking space to the society due to the opportunity loss of the land, and maintenance costs. var va1:= 1.05^30; var a:= 20*3000; a:= (a-a/va1)*va1; a:= a/30/365; a/2*lognormal(1,1.3) 192,272,1 48,24 2,102,90,476,328 2,40,50,416,303,0,MIDM 65535,52427,65534 [0,0,0,0] Emission unit cost e/kg Assumptions: Primary fine particle emissions of 24290 kg/a caused 12.5 deaths in a risk assessment study in Helsinki (Tainio et al, 2005). We here use the distribution of deaths per emission derived from that study. The value of a statistical life is 0.98-2 Me (Watkiss et al., 2005). The official value for road economy calculations is 201.879 e/kg (LVM, 2003). This value is within the range derived from Tainio, but clearly lower than the mean. CO2 emission price comes from the emission trade market. According to Helsingin Sanomat (7 May, 2005), it was 18 e/ton in 5 Apr, 2005, although it had been lower during previous months. In July, it was approaching 30 e/ton according to Taloussanomat. The official value for road economy calculations is 32 e/ton (LVM, 2003), which is within the range used here. var a:= Pm_unit_lethality; array(Emission, [a*uniform(0.98M,2M), uniform(5,40)/1000]) 192,216,1 48,24 2,73,7,548,645 2,466,127,416,303,0,MIDM 2,54,148,672,472,1,PDFP 65535,52427,65534 Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:1 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:1 Yminimum:0 Ymaximum:1 Zminimum:0 Zmaximum:1 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] [0,0,0,0] Tainio, M., Tuomisto, J.T., HŠnninen, O., Aarnio, P., Koistinen, K.J., Jantunen, M.J., and Pekkanen J. Health effects caused by primary particulate matter (PM2.5) emitted from buses in the Helsinki Metropolitan Area, Finland. Risk Analysis, Vol. 25, No.1, 2005. pp. 151-160. {[Tainio, 2005 96 /id]} <a href="http://www.blackwell-synergy.com/links/doi/10.1111/j.0272-4332.2005.00574.x/abs/">Link to publisher</a> {[Watkiss, 2005]} <a href="http://europa.eu.int/comm/environment/air/cafe/activities/cba_baseline_results2000_2020.pdf">Click</a> {[LVM, 2003]} <a href="http://www.mintc.fi/www/sivut/dokumentit/julkaisu/mietinnot/2003/b292003.pdf">Click</a> Trips per car trips/d/car Number of trips per car per day, i.e. the cumulative number of passenger that use the car during the day. This value is used to calculate the need of cars. uniform(4,10) 312,88,1 48,24 65535,52427,65534 Ticket e/trip The income the service provider wants to get from composite traffic users in addition to the price of the direct costs (vehicle, fuel, driver, and parking costs). Uniform( 0.2, 0.6 ) 312,160,1 48,24 65535,52427,65534 Group size passengers Size of group traveling together for a random passenger. var a:= Car_occupancy*occupancy; a:= a/sum(a,occupancy); chancedist(a,occupancy,occupancy) 192,328,1 48,24 2,355,136,476,344 2,445,95,416,473,0,MEAN 65535,52427,65534 Occupancy An index for the number of passengers in a personal car. 1..5 56,360,1 48,12 Rush delay h, fraction Delay that is caused by increased link intensity. The node contains two values. Delay is the average time of delay due to traffic jams during daytime. Reduction is the relative reduction to 'Link intensity' (average vehicle flow on the 30 most busy roads at 8.00-9.00 AM) that is needed to reduce the delay to 0 min. Table(Self)( (Triangular(0,0,10)/60),0.3) ['Delay','Reduction'] 312,32,1 48,24 2,102,90,476,386 2,592,87,416,303,0,MIDM 2,40,50,416,303,0,SAMP 65535,52427,65534 [Rush_delay,Run] [0,0,0,0] Parking price e/trip The cost of 30 min parking in zones 1, 2, 3 in Helsinki. It is assumed that each car trip involves 30 min of parking during daytime, while during evening and night, the parking is free. Also daytime parking at home is included in these estimates, although it is difficult to valuate. In any case, it is common to pay at least 5-10 euro per month for a parking place (or more for a garage), which is 15-30 cents per day. Due to the uncertainties, the confidence intervals are large. Table(Period,Zone)( ((2.4*0.5)*Triangular(0,1,2)),((1.2*0.5)*Triangular(0,1,2)),((0.6*0.5)*Triangular(0,1,2)), 0,0,0, 0,0,0 ) 312,272,1 48,24 2,102,90,476,392 2,336,267,416,303,0,MIDM 2,232,242,416,303,1,PDFP 65535,52427,65534 [Period,Zone] Accidents cases/a The number of injuries and deaths in traffic accidents in Vantaa, Espoo, and Helsinki, respectively. It is assumed that the number of 2002 or 2003 statistics is the expectation. Poisson distribution is used to describe the uncertainty. Taulukko 1-1 Liikenneonnettomuudet Vantaalla v. 2002 YhteensŠ Hvo Ovo Loukkaantui Kuoli Auto-onnettomuus 570 100 470 155 5 MoottoripyšrŠonnettomuus 23 15 8 13 2 Mopo-onnettomuus 14 6 8 7 0 PolkupyšrŠonnettomuus 47 37 10 40 0 Jalankulkijaonnettomuus 33 29 4 31 0 YhteensŠ tieliikenne 687 187 500 246 7 Raideliikenne (jk) 8 8 - 1 7 Hvo= henkilšvahinkoon johtanut onn. Ovo= omaisuusvahinkoon johtanut onn. LIIKENNEONNETTOMUUDET VUONNA 2003 Pelti rytisi Espoon alueella viime vuonna yhteensŠ 434 kertaa. Henkilšvahinko-onnettomuuksia oli 135, niissŠ kuoli 3 ja loukkaantui 159 henkilšŠ. Edelliseen vuoteen verrattuna liikenneonnettomuuksien mŠŠrŠ kŠŠntyi hienoiseen laskuun. Vuonna 2002 tilastoitiin 538 onnettomuutta. Liikenneonnettomuustiedot on koottu poliisille ilmoitetuista onnettomuustapauksista. Onnettomuuskustannukset Liikenneonnettomuudet aiheuttivat HelsingissŠ vuonna 2003 yhteensŠ 244 miljoonan euron yhteiskunnalliset kustannukset. Henkilšvahinkoihin johtaneiden onnettomuuksien osuus oli 213 miljoonaa euroa. Laskelma perustuu liikenne- ja viestintŠministerišn hyvŠksymiin liikenneonnettomuuksien yksikkškustannuksiin vuodelta 2000. Kustannuksissa ovat mukana onnettomuuksien aiheuttamat reaalitaloudelliset menetykset ja ns. hyvinvoinnin menetys. Taloudellisia kustannuksia ovat sairaanhoitokulut, uhrin tyšn menetys, ajoneuvovahingot sekŠ muut aineelliset vahingot. Table(Self)( Poisson(((246+159)+724)),Poisson(((7+3)+16))) ['Injuries','Deaths'] 312,408,1 48,24 2,82,80,500,500 2,578,153,416,303,0,MIDM 2,136,146,416,303,0,STAT 65535,52427,65534 Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:1 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:1 Yminimum:0 Ymaximum:1 Zminimum:0 Zmaximum:1 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] [0,0,0,1] Liikenneonnettomuudet Vantaalla 2002. C21:2003. Vantaan kaupunki, Vantaa 2003. <a href="http://www.vantaa.fi/i_liitetiedosto.asp?path=1;135;137;221;1761;1827;7348;7349">Internet PDF</a> Liikenneonnettomuudet HelsingissŠ vuonna 2003. <a href="http://www.hel.fi/ksv/hela/Kaupunkisuunnittelulautakunta/Esityslistat/liitteet/041670240.pdf">Internet file</a> Espoon kaupunki, liikenneturvallisuus. <a href="http://www.espoo.fi/xsl_taso2_alasivuilla.asp?path=1;606;607;4214;7808">Internet page</a> http://www.tieh.fi/liikenneturvallisuus/lion04.pdf Accident costs e/d The societal costs of traffic accidents were 227 million euro in Helsinki in 2004. For the whole metropolitan area, this is more than 1 million euro per day. The numbers are scaled up from Helsinki to the metropolitan area based on the numbers of injured people in accidents. The uncertainty is based on the standard deviation of the variable Accidents (deaths), which is ca. 20% of the mean. The accident cost number for Helsinki is scaled up by the number of injuries in the whole Helsinki Metropolitan Area (for data and references, see Accidents). "Onnettomuuskustannukset Liikenneonnettomuudet aiheuttivat HelsingissŠ vuonna 2003 yhteensŠ 244 miljoonan euron yhteiskunnalliset kustannukset. Henkilšvahinkoihin johtaneiden onnettomuuksien osuus oli 213 miljoonaa euroa. Laskelma perustuu liikenne- ja viestintŠministerišn hyvŠksymiin liikenneonnettomuuksien yksikkškustannuksiin vuodelta 2000. Kustannuksissa ovat mukana onnettomuuksien aiheuttamat reaalitaloudelliset menetykset ja ns. hyvinvoinnin menetys. Taloudellisia kustannuksia ovat sairaanhoitokulut, uhrin tyšn menetys, ajoneuvovahingot sekŠ muut aineelliset vahingot." var a:= 227M*((246+159+724)/724)/365; normal(a,a/5) 312,328,1 48,24 2,511,78,500,544 2,26,124,416,303,1,PDFP 65535,52427,65534 [0,0,0,0] Liikenneonnettomuudet HelsingissŠ vuonna 2003. <a href="http://www.hel.fi/ksv/hela/Kaupunkisuunnittelulautakunta/Esityslistat/liitteet/041670240.pdf">Internet file</a> Liikenneonnettomuudet HelsingissŠ vuonna 2004. <a href="http://www.hel.fi/ksv/Mita_suunnitellaan/Liikenne/tilastoja/liikenneonnettomuudet2004.pdf"> Internet file </a> http://www.ytv.fi/FIN/seutu_ymparistotietoja/liikkuminen/onnettomuudet/etusivu.htm Cars should also have variation The costs of car have large individual variation. This might be an important factor in the comparison of car and composite traffic. This is not currently done but could be considered in the future versions of the model. Fuel_consumption; Vehicle_lifetime; Vehicle_price; 0 464,48,1 48,29 The costs are calculated for a passenger who has a car in the household and is trying to decide between the car and composite traffic The costs are calculated for a passenger who has a car in the household and is trying to decide between the car and composite traffic. vehicle_price 464,160,1 68,72 1,1,1,1,1,1,0,,1, 2,102,90,476,427 [Alias The_costs_are_calcu1] Time unit cost e/h The cost of time spent waiting for a composite vehicle or in traffic jam. Triangular( 0, 5.9, 11.8 ) ['Delay','Reduction','Cost'] 312,216,1 48,24 2,102,90,476,301 2,199,277,416,303,0,MIDM 65535,52427,65534 Group subvention e/trip This subvention is given to passengers that travel in groups with more than one person. The idea is that the subsidy is an amount (uncertain to the decision-maker) which is given to everyone in the group except the first one. In this way, the total group subsidy increases with the size of the group (just like the efficiency of car travelling increases with more passengers). We assume here that the groups are identical in both car and composite modes. var a:= uniform(0,2); a:= a*(sample(Group_size)-1)/sample(Group_size); if subsidise_groups_='Yes' then a else 0 192,408,1 48,24 2,144,229,512,326 2,136,146,416,303,0,MIDM 65535,52427,65534 [Run,Subsidise_groups_] Subsidise groups? Personal car becomes more efficient if there are several passengers. To attract groups to use the composite traffic, it is possible to subsidise groups so that there is a certain reduction in the ticket price. This node determines whether group subsidies are considered in the model or not. In the default model, this variable is set to No. Choice(Self,2) 56,408,1 48,24 2,102,90,476,342 [Formnode Subsidise_groups_1] ['Yes','No'] Car occupancy fraction Proportion of cars with different number of passengers. The last number is divided into occupancy '4' and '5' based on author judgement. The original data is from streets entering downtown Helsinki during a weekday (from 6.00 to 21.00) in May. driver 72.0 % driver+1 passenger 23.3 % driver+2 passengers 3.3 % driver+ at least 3 passenger 1.4 % var a:= array(occupancy,[0.72,0.233,0.033,0.01,0.004]); a 56,328,1 48,24 2,102,90,476,345 2,445,95,416,473,0,MIDM 65535,52427,65534 Car maintenance e/km Maintenance costs (service, tyres, oil etc.). This is based on Autoliitto's report 'Costs of car 2004'. Insurance and use tax are excluded, as like capital costs, there may be other reasons to own the car, and then these would be sunken costs. Original values assuming an old car with the original price 20000 e, 20000 km/a of driving (e/a): Maintenance 844 Tyres 320 total 1164/20000 = 0.0582 e/km Triangular( 0.03, 0.058, 0.086 ) 56,272,1 48,24 2,210,329,416,303,0,MEAN 65535,52427,65534 PM unit lethality deaths/kg Assumptions: Primary fine particle emissions of 24290 kg/a caused 12.5 deaths in a risk assessment study in Helsinki (Tainio et al, 2005). We use the distribution of deaths per emission derived from that study. var a:= fractiles([ -7.223e-004, 5.640e-006, 4.228e-005, 5.987e-005, 8.013e-005, 1.150e-004, 2.037e-004, 2.939e-004, 3.598e-004, 4.132e-004, 4.640e-004, 5.139e-004, 5.662e-004, 6.233e-004, 6.854e-004, 7.577e-004, 8.441e-004, 9.519e-004, 1.093e-003, 1.314e-003, 2.805e-003]); a 192,160,1 48,24 2,102,90,476,428 2,466,127,416,303,0,MIDM 2,54,148,672,472,1,PDFP 65535,52427,65534 Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:1 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:1 Yminimum:0 Ymaximum:1 Zminimum:0 Zmaximum:1 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] [0,0,0,0] Tainio, M., Tuomisto, J.T., HŠnninen, O., Aarnio, P., Koistinen, K.J., Jantunen, M.J., and Pekkanen J. Health effects caused by primary particulate matter (PM2.5) emitted from buses in the Helsinki Metropolitan Area, Finland. Risk Analysis, Vol. 25, No.1, 2005. pp. 151-160. {[Tainio, 2005 96 /id]} <a href="http://www.blackwell-synergy.com/links/doi/10.1111/j.0272-4332.2005.00574.x/abs/">Link to publisher</a> Vehicle type ['Minibus (d)','Car (d)','Car (g)'] 56,120,1 48,12 Vehicle types Table(Vehicle)( 'Minibus (d)','Minibus (d)','Car (d)','Car (d)','Car (d)','Car (g)',0,0,0,0,0,0,0,0,0,0,0) 56,88,1 48,24 2,658,480,416,303,0,MIDM 52425,39321,65535 Comp fr The fraction of trips that were previously performed by personal car but are performed by composite traffic in the scenario. [0,0.02,0.05,0.1,0.25,0.4,0.45,0.5,0.55,0.65,0.75,0.9,1] 176,64,1 48,12 2,460,148,476,416 2,236,315,416,303,0,MIDM [0,0,0,0] Guar The level of composite traffic guarantee. This means that trips within certain areas will be organised by composite travel, while areas outside this guarantee remain without the service. The point in using this index is to explore whether composite traffic can be started with low profile and expanded geographically as more people start using it. [1,2,3,4,5,6,7] 176,88,1 48,12 [0,0,0,1] Choose comp You can choose which composite fraction(s) is (are) calculated. If you choose All, you will get a more thorough result, but it will take more memory and computation time, especially if 'Choose guar' or 'Choose period' are also All. Choice(Comp_fr,0,True) 56,32,1 48,16 2,40,50,416,382,0,DEFA [Formnode Choose_comp1] 52425,39321,65535 ['item 1'] Choose guar You can choose which guarantee level(s) is (are) calculated. If you choose All, you will get a more thorough result, but it will take more memory and computation time, especially if 'Choose comp' or 'Choose period' are also All. Choice(Guar,7,True) 56,64,1 48,16 2,-2,232,476,224 [Formnode Choose_guar1] 52425,39321,65535 ['item 1'] Choose period You can choose which period(s) is (are) calculated. If you choose All, you will get a more thorough result, but it will take more memory and computation time, especially if 'Choose guar' or 'Choose comp' are also All. Choice(Period,1,True) 416,296,1 48,16 [Formnode Choose_period1] 52425,39321,65535 ['item 1'] Detailed costs Detailed costs and pressures. See each individual node for a full description. ktluser 24. marta 2004 0:00 48,24 176,216,1 48,24 1,402,104,-366,441,17 Emission kg/d Total emissions based on kilometres driven. The unit emissions are based on standard values. var a:= sum(scenarios_output,zone); a:= a[output1='Vehicle km']; a*Emission_factor/1000 64,192,1 48,16 2,218,232,476,224 2,43,56,717,317,0,MIDM [Vehicle,Period] [Index Travel_type] Driver need persons The number of full-time drivers needed in the composite traffic. This is based on the kilometres driven and an 8-hour working day. It is assumed that there is no waiting for drivers. This assumption probably causes underestimation of the true number. var a:= Scenarios_output[output1='Vehicle km']; a:= slice(a,region,1); ceil(a/traffic_speed/8) 176,304,1 48,16 2,102,90,476,286 2,19,38,868,392,1,MIDM [Comp_fr,Period] [Index Travel_type] Cars needed vehicles For composite vehicles, this comes directly from traffic optimising; for cars, it is simply the number of trips divided by the average number of trips per car per day. For cars, the amount needed is difficult to estimate, because most cars are needed also for trips beyond the area modelled here. Therefore, even if some trips are performed by composite traffic, it is possible that the number of cars needed remains the same but the number of trips per car decreases. var a:= Trips_per_period[Mode1='Car']/Trips_per_car; var b:= trips_per_period[Mode1='Composite']; b:= b/sum(b,length); b:= b*sum(sum(scenarios_output[output1='Vehicles'],zone),length); b:= if Vehicle='Car' then a else b; if periods=1 then b else 0 64,32,1 48,16 2,470,127,477,494 2,228,80,711,417,0,MIDM [Vehicle,Comp_fr] [Index Length] Car parking cost e/d It is assumed that each car trip involves parking. However, composite traffic does not pay anything in parking meters. Instead, they have to pay for the land. This cost is calculated as Parking land cost. scenarios_output[output1='Trips',Vehicle='Car']*parking_price 176,128,1 48,16 2,77,296,476,402 2,278,125,602,242,0,MIDM [Period,Zone] Emission cost e/d Fine particles are assumed to cause 10 deaths per 17 ton emission, a result from buses in Helsinki (1). CO2 costs are based on the estimated costs of CO2 in the greenhouse gas emission market. The true health and environmental costs are probably clearly higher than the price of the emission market. emission1*Emission_unit_cost 176,192,1 48,16 2,102,90,476,392 2,301,50,639,305,0,MIDM [Vehicle,Emission] [Index Travel_type] Parking land cost e/d Cost of parking land. It is assumed that for composite vehicles, there is a fixed amount of reserved parking places. The cost is equal to the societal cost of the land use. This cost is allocated to short and long trips based on the number of trips. var a:= scenarios_output; var b:= a[output1='Trips']; b:= b/sum(b,length); a:= sum(a[output1='Parking lot'],length); a*Parking_space*b 176,160,1 48,16 2,541,90,476,285 2,457,12,555,416,0,MIDM [Zone,Vehicle] [Index Length] Taxi accident rate "The accident risk of taxies (related to kilometres driven) is 40 percent lower than that of regular drivers. However, the accident density is 10.4 accidents per year per 100 cars, is double the number for private drivers." .6 344,48,1 48,24 65535,52427,65534 Ammattiliikenteen turvallisuuden kehittŠminen. LINTU-projektin osaraportti 12. Research report 566/2000. VTT 2000, Espoo. <a href="http://www.vtt.fi/rte/projects/srs/raportit/lintu_osa12_ammattiliik.pdf">Internet PDF</a> Acc costs e/d We assume that half of the accidents are attributable to personal car traffic, while the other half is attributable to other traffic modes (walking, cycling, public transportation). In addition, the accident risk is proportional to the change in traffic volume, but there is uncertainty about the slope. The expected value is that when traffic volume decreases 10%, accident risk decreases 5%; but it could vary between 0% and 10%. It is likely that these two assumptions underestimate rather than overestimate the benefit of composite traffic, but we were careful not to exaggerate the benefits. The guidelines for road projects #REF# assume that accidents are proportional to the traffic volume. var a:= sum(scenarios_output,zone); a:= a[output1='Vehicle km']; var b:= sum(sum(sum(a,vehicle),length),period); b:= (1-b/b[comp_fr=0])*triangular(0,0.5,1); b:= (1-b)*accident_costs*0.5; a:= a/sum(sum(sum(a,vehicle),length),period); b*a 464,104,1 48,24 2,523,131,476,433 2,52,9,714,303,0,MIDM [Period,Vehicle] [Index Length] [0,0,0,0] Acc num A draft node. Not used in the model. var a:= sum(scenarios_output,zone); a:= a[output1='Vehicle km']; var b:= sum(sum(sum(a,vehicle),length),period); b:= (1-b/b[comp_fr=0])*triangular(0,0.5,1); (1-b)*accidents*0.5 464,48,1 48,24 2,60,131,476,452 2,15,97,354,363,0,MIDM [Accidents,Comp_fr] [0,0,0,0] Rush BAU vehicles/h The average number of vehicles per hour driving along a link for the 30 most busy links at 8.00-9.00 in the morning. These numbers are for business-as-usual scenario where there is no composite traffic. var a:= Scen1_0[output1='Link intensity',length='< 5 km']; var c:= Scenarios1_0[input_var='Composite fraction']; var g:= Scenarios1_0[input_var='Guarantee level']; a:= if c=0 and g=7 then a else 0; sum(sum(sum(a,scenario1_0),Vehicle_noch),zone) 64,256,1 48,16 2,403,80,476,527 2,10,318,563,321,0,MIDM Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:10 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:5 Xmaximum:15 Yminimum:0 Ymaximum:1M Zminimum:1 Zmaximum:6 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1, 1, 1, 1, 1, 0, 0, 0] Probindex:[5%, 25%, 50%, 75%, 95%] Arial, 5 [Vehicle_noch,Period] Vehicle cost e/d Capital costs of the vehicle. It is assumed here that each vehicle is bought new and driven until the end of the vehicle's lifetime. In reality, of course many cars change owners during their lifetime, and this causes variation between individual car-owners about how much their way of owning a car really causes capital costs. However, this source of variation was excluded for simpilicity. This choice can be defended with an argument that those car-owners who spend most on the capital costs, i.e. buy the most expensive cars or sell them when they are still rather new, are likely to count a smaller fraction of the capital cost of the car when comparing different modes of transport. cars_needed*vehicle_price/vehicle_lifetime/365 176,32,1 48,16 [Period,Vehicle] Time cost e/d Time costs has two parts: the cost of delays due to traffic jams; and the cost of waiting for composite vehicles. The traffic jam cost includes only the direct costs of actual delays. However, a likely much bigger cost is the need to reserve extra time because of the risk of a traffic jam. If this was included, the costs for both car and composite passengers would be smaller especially with high volumes of composite traffic. index i:= ['Passengers in traffic jam','Waiting a composite vehicle']; var a:= sum(scenarios_output,zone); var b:= a[output1='Waiting']/60*a[output1='Trips']; b:= if Vehicle='Car' then 0 else b*time_unit_cost; var c:= a[output1='Link intensity',length='< 5 km']; c:= sum(c,Vehicle)/rush_bau; c:= 1-min([(1-c)/rush_delay[rush_delay='Reduction'],1]); var d:= a[output1='Trips']; d:= if periods=1 then d else 0; d:= d*rush_delay[rush_delay='Delay']*c*time_unit_cost; d:= array(i,[d,b]); sum(d,d.i) 176,256,1 48,16 2,30,65,476,526 2,165,294,634,303,0,MIDM [Comp_fr,Vehicle] [] Driver cost e/d Salary and social security costs of the composite vehicle drivers. We assume that the drivers are paid only when driving, not when waiting for passengers. Although this might slightly underestimate the costs, this is a common practice among hired taxi drivers, who don't own the vehicle. var a:= sum(scenarios_output,zone); a:= a[output1='Vehicle km']; a*driver_salary/traffic_speed 176,64,1 48,16 2,12,43,433,355,0,MIDM [Period,Vehicle] [Index Vehicle] Driving cost e/d Costs due to fuel and maintenance. var a:= sum(scenarios_output,zone); a:= a[output1='Vehicle km']; a*(fuel_price*fuel_consumption+car_maintenance) 176,96,1 48,16 [Period,Vehicle] PM lethality e/d Fine particles are assumed to cause 10 deaths per 17 ton emission, a result from buses in Helsinki (1). CO2 costs are based on the estimated costs of CO2 in the greenhouse gas emission market. The true health and environmental costs are probably clearly higher than the price of the emission market. var a:= emission1*Pm_unit_lethality; a[emission='PM'] 176,224,1 48,16 2,431,209,476,224 2,301,50,639,305,0,MIDM [Vehicle,Comp_fr] Emission cost e/d This version calculates emission costs per drive for a 10-km drive. Fine particles are assumed to cause 10 deaths per 17 ton emission, a result from buses in Helsinki (1). CO2 costs are based on the estimated costs of CO2 in the greenhouse gas emission market. The true health and environmental costs are probably clearly higher than the price of the emission market. var a:= 10*Emission_factor/1000*Emission_unit_cost; sum(a,emission) 320,176,1 48,16 2,301,50,262,305,0,MIDM [Vehicle,Emission] Vehicle cost e/drive This version calculates the capital costs per trip assuming that each car takes 15 drives per day. Capital costs of the vehicle. It is assumed here that each vehicle is bought new and driven until the end of the vehicle's lifetime. In reality, of course many cars change owners during their lifetime, and this causes variation between individual car-owners about how much their way of owning a car really causes capital costs. However, this source of variation was excluded for simpilicity. This choice can be defended with an argument that those car-owners who spend most on the capital costs, i.e. buy the most expensive cars or sell them when they are still rather new, are likely to count a smaller fraction of the capital cost of the car when comparing different modes of transport. vehicle_price/vehicle_lifetime/365/15 320,112,1 48,16 2,340,200,476,312 2,82,146,654,409,0,MIDM [Vehicle,Comp_fr] Driving cost e/drive Costs due to fuel and maintenance for a 10-km drive. 10*(fuel_price*fuel_consumption+car_maintenance) 320,144,1 48,16 [Period,Vehicle] Four-passenger drive e/trip Cost per trip of vehicle-dependent costs (=vehicle price, driving, emissions). The numbers are compared with the largest vehicle type. var a:= array(cost_structure,[Vehicle_cost1,0,Driving_cost1,0,0,Emission_cost1,0,0,0]); a:= sum(a,cost_structure)/4; a/a[vehicle='Bus no change'] 320,224,1 48,24 2,674,6,336,558,0,MEAN [Index Cost_structure] [0,0,0,0] Stakeholders: Passenger Society (Bus company) There are three different stakeholders: Passenger, society, and bus company (which does not show up in the stakeholder index). See Stakeholder for more details. cost_to_stakeholder 392,432,1 52,36 1,1,1,1,1,1,0,,1, 2,245,4,476,458 Cost strength The stakeholder-specific weights that are given to different cost types. The weight is 1 always with the following exceptions: - Car capital costs may be <1 because the owner may need the car for other purposes than the trips considered here. - Willingness to drive (Driver costs for car drivers) may be positive or negative depending on how the the driving is valuated. - 'Parking' is zero for composite traffic and society, because 'Parking land' cost is then calculated. - 'Parking land ' is zero for car passengers, because 'Parking' is then calculated. - 'Emission costs' and 'Accidents' are not calculated for passengers because they harm people in general, not any individual specifically. - 'Ticket' cost is calculated only for composite traffic passengers. It is not relevant for cars; and from the societal point of view, it is only a money transfer from the passenger to the service provider. Table(Cost_structure,Mode1,Stakeholder)( Cap,1, 1,1, 0,0, (-Drive),(-Drive), 1,1, 0,0, 1,1, 1,1, 0,0, 1,1, 0,0, 0,0, 0,0, 1,1, 0,0, 0,1, 0,1, 0,0, 1,1, 1,1, 0,0, 0,1, 0,1, 0,0, 0,0, 1,0, 0,0 ) 176,360,1 48,24 2,102,90,476,355 2,61,68,416,303,0,MIDM 2,211,203,671,281,0,CONF [Stakeholder,Cost_structure] [0,0,0,0] Costs not included: Street infrastructure City planning Recreational values Secondary health effects We were careful not to unrealistically exaggerate the benefits of the composite traffic. On the contrary, we excluded several clear but not easily quantifiable benefits: Reduced road traffic volumes save road management and infrastructure. City planning gets more freedom when the vehicle volumes decrease. This also improves the recreational values of the area. There may be an increase in walking and cycling, if the dependence on car is relieved. This may have positive secondary health effects in the population. transport_cost 480,216,1 68,52 1,1,1,1,1,1,0,,1, [Alias Costs_not_included_1] The costs are calculated for a passenger who has a car in the household and is trying to decide between the car and composite traffic 1 176,496,1 68,72 1,1,1,1,1,1,0,,1, The_costs_are_calcul Additional benefits of composite traffic: Mass transit feeder Quiet bus service replacement Efficiency by correlation Replacement of quiet bus routes with composite traffic would probably improve service and reduce costs at the same time. Composite traffic is probably an efficient feeder for high-volume transport modes such as buses and metro. We assumed that the trips are uncorrelated in time (given the total volume at each time point). However, in reality a large proportion of trips is clustered: they are directed to or from particular places such as schools, offices, ballparks, and supermarkets at specific times. With composite vehicles, it results in more efficient trip aggregation; with cars, it results in local traffic jams. transport_cost 352,80,1 80,52 2,72,347,476,224 Nochange fr [0,0.2,0.4,0.6,0.8,1] 176,112,1 48,12 ['Yes','No'] 176,136,0 48,12 1,1,1,1,1,1,0,0,0,0 Flexible fr [0,.1,.2,.4,.6,.8,1] 176,160,1 48,12 VOI and importance analysis Value of information analyses, studies on variation in the population, and other analyses on the results. jtuomist Tue, Mar 27, 2001 11:26 jtue 12. Aprta 2005 16:35 48,24 544,232,0 48,29 1,1,1,1,1,1,0,0,0,0 1,72,18,696,523,17 94,1,1,0,2,9,4744,6798,7 Fig 2 Trips trips/h Fig 1 in the main text. Trips by vehicle type as a function of time when the fraction of composite trips is 50% of the current personal car trips. In this graph, you can also view other composite fractions than 0.5 when guar is set to 7, and other other levels of guarantee when composite fraction is set to 0.5. var a:= Trips1_0; var b:= Scenarios1_0; a:= if b[input_var='Composite fraction']=comp_fr then a else 0; a:= if b[input_var='Guarantee level']=guar then a else 0; a:= if comp_fr=0 then a[guar=7] else a; a:= a[guar=choose_guar]; a:= a[comp_fr=choose_comp]; a:= if b[input_var='Flexible fraction']=choose_flexible then a else 0; a:= if b[input_var='No-change fraction']=choose_nochange then a else 0; a:= if b[input_var='Large guarantee?']='Yes' then (if large='Yes' then a else 0) else (if large='No' then a else 0); a:= a[large=choose_large]; a:= sum(a,scenario1_0); a*array(vehicle,[1,0.5,1,0.5,0.5,1]) 544,96,1 48,24 2,631,78,476,590 2,161,13,835,589,1,MIDM [Formnode Figure_3] Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:10 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:5 Xmaximum:15 Yminimum:0 Ymaximum:1M Zminimum:1 Zmaximum:6 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1, 1, 1, 1, 1, 0, 0, 0] Probindex:[5%, 25%, 50%, 75%, 95%] Arial, 5 [Time_stat,Vehicle] Endpoint Endpoints or pressures estimated. ['Fraction of composite trips without change (%)','Vehicles needed (number)','Parking places needed (number)','Average vehicle flow on the 30 most busy roads (vehicles/h at 8.00-9.00 AM)','Injuries due to accidents (cases per year)','Deaths due to accidents (cases per year)','Deaths due to fine particles (cases per year)','Fine particle (<2.5 µm of diameter) emissions (kg per day)','Carbon dioxide emissions (ton per day)','Driver salaries (thousand e per day)','Vehicle capital and operational costs (thousand e per day)','Time cost (thousand e per day)','Average car trip cost to passenger (e per trip)','Average composite trip cost to passenger (e per trip)'] 664,128,1 48,12 2,17,81,625,372 2,-3,30,512,303,0,MIDM Table 1 Pressures Table 1 in the Main text of the article. To retrieve the same table, 'Choose guar' should be set to 7, 'Choose comp' to All, and 'Choose period' to All. Footnotes: Mean (90% confidence interval when applicable). If a passenger requests a trip without a transfer, the additional price to him/her will be 3 - 6 euro/trip during daytime. This cost is due to reduced efficiency in trip aggregation. The number of vehicles and parking places is theoretical and involves the modelled trips only; a car owner may need the car for trips outside Helsinki even if he/she uses composite traffic. The true number of cars in the area was 346 400 in 2001. (1) The current ticket prices for buses, metro, and trams are 1.70 e per trip in Helsinki and 2.90 e per trip between communities in the Helsinki metropolitan area. Note that the car trip and composite trip costs include time costs. var d:= sum(sum(sum(scenarios_output,zone),period),length); d:= d[comp_fr=i]; var a:= d[output1='Trips by vehicle']; a:= (slice(a,vehicle,1)+slice(a,vehicle,3)) +sum(sum(sum(no_change_trips[comp_fr=i],period),length),zone); a:= a/d[output1='Trips',vehicle='Bus no change']*100; var b:= sum(d[output1='Vehicles'],vehicle); var c:= sum(d[output1='Parking lot'],vehicle); d:= sum(d[output1='Link intensity'],vehicle); a:= rounding(a,3); b:= rounding(b,3); c:= rounding(c,3); d:= rounding(d,3); var e:= tm(sample(acc_num[accidents='Injuries'])); var f:= tm(sample(acc_num[accidents='Deaths'])); var g:= tm(sample(pm_lethality)*365); var h:= tm(sample(emission1[emission='PM'])); var i:= tm(sample(emission1[emission='CO2'])/1000); var j:= tm((if Vehicle='Car' then 0 else sample(driver_cost))/1k); var k:= tm(sample(vehicle_cost[guar=7])/1k+sample(driving_cost)/1k); var l:= tm(sample(time_cost)/1k); var x:= tm(sample(Cost_passenger)); var m:= (x[Mode1='Car']); var n:= (x[Mode1='Composite']); array(endpoint,[a,b,c,d,e,f,g,h,i,j,k,l,m,n]) 664,96,1 48,24 2,439,7,545,621 2,357,353,682,303,0,MIDM 2,5,2,990,352,0,MIDM [Formnode Table_4] Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:1 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:1 Yminimum:0 Ymaximum:1 Zminimum:0 Zmaximum:1 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] [I,Endpoint] 1,D,4,2,0,0 85,1,1,0,2,9,4744,6798,7 YTV: Liikkumisen nykytila (The Present-day Traffic Situation) PJS B 2001:10 <a hfref="http://www.ytv.fi/liikenne/julk/nykytila.pdf">PDF file</a> Uncertain inputs A list of uncertain variables used in the model. This list is used to analyse the role of each variable by e.g. value-of-information analysis or importance analysis. The variables with 'V:' are not uncertain but describe variability within the population. Note that the last variable 'Blank' is NOT included in the model and therefore whatever significance is attached to this variable, is just a random effect. Table(Uncertain_var)( Vehicle_price[Vehicle='Car'],Vehicle_lifetime[Vehicle='Car'],Fuel_price[Vehicle='Car'],Car_maintenance,Driver_salary,Rush_delay[Rush_delay='Delay'],Time_unit_cost,Trips_per_car,Emission_factor[Vehicle='Car', Emission='PM'],Emission_unit_cost[Emission='PM'],Sum(Sum(Sum(Accident_costs,Period),Vehicle),Length),Cap_uncert,Drive_uncert,Group_subvention,Group_size,Cap_variation,Drive_variation,Uniform(0,1)) ['Pollutant levels in fish feed after lower limits (S+P)','Salmon consumption after feed limits (S+P)','Does omega-3 help CHD patients or everyone? (S)','Dose-response of health benefit (S)','Highest omega-3 dose with health benefit (S)','Current average consumption of salmon (S)','Fraction of farmed from total salmon use (S)','Omega3 content in salmon (S)','Consider pollutant or net health effect? (P)','Dieldrin concentration in farmed salmon (S)','Toxaphene concentration in farmed salmon (S)','PCB concentration in farmed salmon (S)','Farmed salmon use after recommendation (S)','Lower limits for pollutants in fish feed? (P)','Recommend restricted farmed salmon consumption? (P)'] 408,56,1 48,24 1,1,1,1,1,1,0,0,0,0 2,541,193,476,275 2,525,42,465,461,0,MIDM 2,148,242,582,361,0,MIDM 52425,39321,65535 [Self,Self] Uncertain var A list of uncertain variables used in the model. ['Car price','Car lifetime','Fuel price','Vehicle maintenance','Driver salary','Delay due to rush','Unit cost of time','Trips per car','Car fine particle emission','Fine particle unit cost','Accident costs','Car capital','Willingness to drive','Group subvention','V: Car occupancy','V: Car capital','V: Willingness to drive','Blank'] 408,88,1 48,12 1,1,1,1,1,1,0,0,0,0 2,123,124,476,469 2,351,356,688,342,0,MIDM 2,168,178,582,361,0,MIDM [Self,Self] Subvention e/d Direct costs occurring to the society if it subsidises the composite traffic ticket prices so much that the target level of composite fraction is reached, i.e. that that fraction of population thinks that composite traffic is equally or more economic for them than car traffic. var a:= Expected_total_varia[stakeholder='Passenger']; a:= Linearinterp(a.i,a, choose_comp,a.i); (a+mean(group_subvention))*trips_per_period[period=choose_period, Mode1='Composite'] 288,208,1 48,24 2,102,90,476,475 2,336,56,550,289,1,MIDM Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:10 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:1 Xmaximum:14 Yminimum:-100K Ymaximum:909.4K Zminimum:1 Zmaximum:2 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] Arial, 8 [Comp_fr,Length] [Index Length] Cost variation e/trip This node is a combination of variables that represent variation, not uncertainty. In other words, all variation between the Monte Carlo iterations are due to variation within the population. (However, there are actually two variables, namely Cap_uncert and Drive_uncert that represent uncertainty of capital cost of car and willingness to drive, respectively. It would be tricky to separate these from variation, and therefore this discrepancy is allowed.) var a:= mean(Group_size)/sample(Group_size); a:= if cost_structure <>'Time' and Mode1='Car' then a else 1; a:= a*mid(cost_per_trip); a:= if isnan(a) then 0 else a; a:= a*cost_strength_variability; a:= sum(a,cost_structure); {a:= a[stakeholder='Passenger',length='>= 5 km']; a[Mode1='Composite']-a[Mode1='Car']} 168,136,1 48,24 2,424,37,476,584 2,0,8,394,483,0,SAMP [Mode1,Run] Expected total variation e/trip Cost difference of composite and car trips shown as the expectation. The X axis shows the fractiles of the total variation within the population. See also 'Expected variations'. These lines are used in Figure 2 of the main text. See 'Figure 2'. var a:= cost_variation[Mode1='Composite']-cost_variation[Mode1='Car']; a:= variation1(a,Cost,9); var b:= a[.varia=1/9]+(a[.varia=1/9]-a[.varia=2/9])/2; var c:= a[.varia=9/9]+(a[.varia=9/9]-a[.varia=8/9])/2; index i:= [0,1/18,3/18,5/18,7/18,9/18,11/18,13/18,15/18,17/18,1]; array(i,[b,a[.varia=1/9],a[.varia=2/9],a[.varia=3/9],a[.varia=4/9],a[.varia=5/9],a[.varia=6/9],a[.varia=7/9],a[.varia=8/9],a[.varia=9/9],c]) 288,136,1 48,24 2,102,90,476,340 2,94,158,860,436,0,MIDM Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:1 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:1 Yminimum:-4 Ymaximum:4 Zminimum:0.1111 Zmaximum:1 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] [0,0,0,0] Classes The number of classes in the value-of-information analysis. This is a technical parametre only, and it should be large enough. However, the samplesize should be at least 100 times larger than this to avoid random noise. 17 528,280,1 48,12 2,102,90,476,405 52425,39321,65535 Variation fractile Total variation expressed as fractiles. See 'Cost variation'. var a:= sample(cost_variation); a:= a[Mode1='Composite']-a[Mode1='Car']; a:= rank(a,run)/samplesize; slice(a[guar=7,comp_fr=0.5, stakeholder='Passenger'], period,1) 168,88,1 48,12 2,102,90,476,335 2,142,191,670,314,1,SAMP [Run,Length] 1,D,4,2,0,0 Passenger VOI e/trip Value of information analysis for the input variables with the passenger decision between composite and car traffic. The analysis calculates the expected benefit for the passenger when the uncertainty of a variable is resolved. var a:= sample(cost__variation[stakeholder='Passenger']); a:= sum(a*sum(trip_fraction,mode1),length); Voi(a,Mode1,uncertain_inputs,uncertain_var,Classes) 408,208,1 48,24 2,68,266,476,284 2,28,44,735,480,0,MIDM Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:1 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:1 Xmaximum:20 Yminimum:-0.3 Ymaximum:0 Zminimum:1 Zmaximum:1 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] 1,F,4,3,0,0 [Index Comp_fr] Societal cost e/d Total societal costs including subsidies. var a:= cost_to_stakeholder[stakeholder='Society']; a:= a*trips_per_period[period=choose_period]; if mode1='Composite' then a+subvention else a 288,280,1 48,24 2,104,11,736,486,0,MEAN [Comp_fr,Mode1] [Index Length] [0,0,0,0] Societal VOI 0-100 e/d Value of information analysis for the input variables with the societal decision about the target level of composite fraction. Each level involves a particular amount of subsidies to composite traffic to reach the target. The analysis calculates the expected benefit for the society when the uncertainty of a variable is resolved. var a:= sum(sum(sample(Societal_cost__varia),length),mode1); a:= if comp_fr=1 then a[comp_fr=0.9] else a; Voi(a,comp_fr,uncertain_inputs,uncertain_var,classes) 408,408,1 48,24 2,506,97,476,310 2,18,41,377,506,0,MIDM Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:9 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:1 Xmaximum:3 Yminimum:-70K Ymaximum:0 Zminimum:1 Zmaximum:12 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] Arial, 6 Fig 5A Societal costs e/d Figure 3 top panel of the main text. Marginal societal costs of traffic (composite+car) as a function of the fraction that composite replaces personal car trips (composite fraction). Top: Societal costs (excluding subsidies for composite traffic) during different periods of day. To reproduce the figure in the article, set Choose comp = All Choose guar = 7 Choose period = All Subsidise groups? = No Choose large = No Choose_nochange = 0 Uncertainty options: Sample size 5000, random seed = 98, Median Latin Hypercube Warning: This will require > 1 MB of system memory var a:= sum(sum(Societal_cost,mode1)-subvention,length); a-a[comp_fr=0] 288,352,1 48,29 2,521,109,476,271 2,277,24,326,548,0,MEAN [Formnode Figure_3_top2] [Comp_fr,Period] [0,0,0,0] Fig 5B Subsidies e/d Figure 3 middle panel of the main text. Marginal societal costs of traffic (composite+car) as a function of the fraction that composite replaces personal car trips (composite fraction). Middle: Subsidies to ticket prices needed to reach the target fraction of composite traffic (i.e., to make that fraction of current car passengers to favour composite traffic). For comparison, the current subsidies to public transportation in Helsinki area are on the range of 380 000 e per day. The public transport subsidies in Helsinki, Espoo (incl Kauniainen), and Vantaa were 93.30, 25.95, and 19.49 million euro in 2003, which is approximately 380 000 euro per day for the whole area. To reproduce the figure in the article, set Choose comp = All Choose guar = 7 Choose period = All Subsidise groups? = No Choose large = No Choose_nochange = 0 Uncertainty options: Sample size 5000, random seed = 98, Median Latin Hypercube Warning: This will require > 1 MB of system memory var a:= sum(subvention,length); a 168,208,1 48,24 2,120,77,476,224 2,62,10,324,463,0,MIDM [Formnode Figure_3_middle2] Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:10 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:1 Yminimum:-100K Ymaximum:100K Zminimum:1 Zmaximum:7 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] Arial, 6 [Comp_fr,Period] [Index Period] [Rosenberg, 2005 55 /id] <a href="http://www.mintc.fi/oliver/upl471-Julkaisuja_2_2005.pdf">PDF file</a> Fig 5C Expanding e/d Figure 3 bottom panel of the main text. Marginal societal costs of traffic (composite+car) as a function of the fraction that composite replaces personal car trips (composite fraction). Bottom: Societal costs (including subsidies) during daytime with increasing areal coverage of composite traffic (starting from the most densely populated areas). Both origin and destination must be in the covered area. The legend shows the number of inhabitants living in the covered area. (To see the legend, calculate Population_guaranteed.) To reproduce the figure in the article, set Choose comp = All Choose guar = All Choose period = 6.00-20.00 Subsidise groups? = No Choose large = No Choose_nochange = 0 Uncertainty options: Sample size 5000, random seed = 98, Median Latin Hypercube Warning: This will require > 1 MB of system memory var a:= Societal_cost; a:= a-a[comp_fr=0]; sum(sum(a,length),mode1); 168,352,1 48,24 2,411,30,476,357 2,558,40,290,520,1,MEAN [Formnode Figure_3_bottom2] Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:10 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:1 Yminimum:-1.2M Ymaximum:200K Zminimum:1 Zmaximum:1 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] Arial, 2 [Comp_fr,Guar] [0,0,0,0] Fig 4 Cost variation e/trip Figure 2 in the main text. Individual variation in the cost of a composite trip compared with a personal car trip for an individual passenger. The estimates include daytime trips with 50% composite fraction scenario. The trips are divided into two groups based on length. The variation between individuals is shown on X axis, with people most in favour of composite traffic on left. The expected values across individuals are shown as lines, and the dots represent the uncertainty of the value. Note that the lines of expectations are shown in another node, 'Expected total variation'. To reproduce the figure in the article, set Choose comp = 0.5 Choose guar = 7 Choose period = 6.00-20.00 Subsidise groups? = No Choose large = No Choose_nochange = 0 Uncertainty options: Sample size 1000, random seed = 98, Median Latin Hypercube slice(Cost[guar=7,comp_fr=0.5,stakeholder='Passenger'],period,1) 168,56,1 48,24 2,102,90,476,385 2,159,34,670,538,1,SAMP [Formnode Figure_6] Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:4 Baroverlap:0 Linestyle:4 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:1 Yminimum:-4 Ymaximum:3 Zminimum:1 Zmaximum:2 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] Arial, 2 [Run,Length] Variation [0,0,0,0] Cost e/trip The cost difference of the composite and car trips for the passenger (negative values: composite traffic is more beneficial). var a:= sample(cost_to_stakeholder{[stakeholder='Passenger']}); a:= a[Mode1='Composite']-a[Mode1='Car']; a 288,56,1 48,24 2,77,76,476,325 2,8,10,285,422,0,MEAN Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:10 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:1 Yminimum:-4 Ymaximum:10 Zminimum:1 Zmaximum:7 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1, 1, 1, 1, 1, 0, 0, 0] Probindex:[5%, 25%, 50%, 75%, 95%] Arial, 5 [Length,Comp_fr] [0,0,0,0] Single passenger VOI e/trip Same as 'Passenger VOI' except that the value of information is estimated for the subgroup that travels alone. var a:= sample(cost__variation[stakeholder='Passenger']); a:= sum(a*sum(trip_fraction,mode1),length); a:= if sample(Group_size)=1 then a else 0; Voi(a,Mode1,uncertain_inputs,uncertain_var,Classes) 408,280,1 52,24 2,15,127,476,224 2,393,95,352,473,0,MIDM Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:1 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:1 Yminimum:0 Ymaximum:1 Zminimum:0 Zmaximum:1 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] 1,F,4,3,0,0 [Index Comp_fr] The highest VOI is in willingness to drive The highest VOI is in willingness to drive, when 'Car occupancy' is standardised to 1; otherwise the variation of 'Car occupancy' drives the VOI analysis. single_passenger_voi 664,240,1 48,38 65535,65532,19661 Composite traffic is more attractive to those with long (>= 5 km) trips Composite traffic is more attractive to those with long (>= 5 km trips). Fig_4_cost_variation 56,56,1 52,48 [Alias Composite_traffic_i1] 65535,65532,19661 Cost \variation cost_to_stakeholder-(Cost_variation-mean(cost_variation)) 408,136,1 48,24 2,122,153,476,567 2,257,61,680,471,1,SAMP Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:4 Baroverlap:0 Linestyle:4 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:1000 Yminimum:-3 Ymaximum:3 Zminimum:1 Zmaximum:2 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1, 1, 1, 1, 1, 0, 0, 0] Probindex:[5%, 25%, 50%, 75%, 95%] Arial, 8 [Run,Length] Variation Societal cost \variation e/d Total societal costs including subsidies. Here we exclude the variation so that the VOI is calculated based on uncertainty only. var a:= Cost_variation-mean(cost_variation); a:= cost_to_stakeholder-a; a:= a[stakeholder='Society']; a:= a*trips_per_period[period=choose_period]; if mode1='Composite' then a+subvention else a 408,344,1 48,24 2,542,125,476,224 2,154,69,736,486,1,MEAN Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:10 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:1 Xmaximum:14 Yminimum:0 Ymaximum:600K Zminimum:1 Zmaximum:1 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] Arial, 8 [Comp_fr,Undefined] [Index Length] [0,0,0,0] Other parts ktluser 10. touta 2005 21:28 48,24 664,32,1 48,24 1,0,0,1,1,1,0,,0, 1,483,26,-332,528,17 Trips by vehicle type trips/d Number of trips per day by vehicle type. Set guar to 7 to view the trips as a function of composite fraction. Set comp fr to 0.5 to view the trips as a function of guarantee level. sum(Fig_2_trips,time_stat)*time_unit 312,400,1 48,24 2,102,90,476,345 2,13,28,811,629,1,MIDM Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:10 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:1 Xmaximum:7 Yminimum:0 Ymaximum:100K Zminimum:1 Zmaximum:6 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] Arial, 5 Fig1 flexible var a:= slice(time_stat,time_stat,ceil(rank(time_stat)/2)*2-1); index tim:= sequence(0,max(time_stat),time_unit*2); sum((if tim=a then Fig_2_trips else 0),time_stat)/2 312,344,1 48,24 2,320,289,476,224 2,7,15,469,587,1,MIDM Cost.passenger e/trip Costs per trip to the passenger. var b:= cost__variation; var a:= (sum(sum(trips_per_period,length),period)); a:= trips_per_period/a; a:= sum(sum(a*b,length),period); a[stakeholder='Passenger'] 176,360,1 48,24 2,641,24,476,562 2,132,15,788,516,1,MEAN [Comp_fr,Mode1] [Index Cost_structure] [0,0,0,0] Fig 3 Cost by source e/trip The cost per trip for a random individual passenger. These values have been weighted by the stakeholder-specific weights (Cost strength). The costs are first calculated for an average trip from total costs and total numbers of trips. The costs of individual car trips depend on the number of passengers. Therefore, the average cost is multiplied by the average number of passengers and divided by the number of passengers in the particular case we are looking at. var a:= mean(Group_size)/sample(Group_size); a:= if cost_structure <>'Time' and Mode1='Car' then a else 1; a:= a*cost_per_trip[comp_fr=0.5,guar=7]; a:= if isnan(a) then 0 else a; a:= a*cost_strength; var b:= trips_per_period[comp_fr=0.5, guar=7]; b:= b/(sum(sum(b,length),period)); sum(sum(a*b,length),period); 176,480,1 52,24 2,589,137,476,456 2,61,3,833,348,1,MEAN [Formnode Cost_by_type_to_sta1] Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:9 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:10 Yminimum:0 Ymaximum:0.6 Zminimum:1 Zmaximum:2 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.95] Arial, 2 [Cost_structure,Mode1] [Index Cost_structure] [0,0,0,0] Trip fraction var a:= trips_per_period/sum(sum(trips_per_period,length),mode1); a[period=choose_period] 176,208,1 48,24 2,18,307,416,303,0,MIDM [Mode1,Length] [Index Length] No-change trips # or #/h A set of scenarios organised along two indexes: Guar is the level of composite traffic guarantee. This means that trips within a certain area will be organised by composite travel, while areas outside this guarantee remain without the service. The point in using this index is to explore whether composite traffic can be started with low profile and expanded geographically as more people start using it. Comp_fr is the fraction of trips that were previously performed by personal car but are performed by composite traffic in the scenario. var a:= scen1_0; a:= a[vehicle_noch='No-change',output1='Trips by vehicle']; var b:= Scenarios1_0; a:= if b[input_var='Flexible fraction']=flexible_fr then a else 0; a:= a[flexible_fr=choose_flexible]; a:= if b[input_var='No-change fraction']=nochange_fr then a else 0; a:= a[nochange_fr=choose_nochange]; a:= if b[input_var='Large guarantee?']='Yes' then (if large='Yes' then a else 0) else (if large='No' then a else 0); a:= a[large=choose_large]; a:= if b[input_var='Composite fraction']=comp_fr then a else 0; a:= if b[input_var='Guarantee level']=guar then a else 0; a:= sum(a,scenario1_0); a:= if comp_fr=0 then a[guar=7] else a; a:= a[comp_fr=choose_comp]; a:= a[guar=choose_guar]; a[period=choose_period] 56,424,1 48,24 2,462,53,476,517 2,69,383,591,222,0,MIDM Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:10 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:5 Xmaximum:15 Yminimum:0 Ymaximum:1M Zminimum:1 Zmaximum:6 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1, 1, 1, 1, 1, 0, 0, 0] Probindex:[5%, 25%, 50%, 75%, 95%] Arial, 5 [Length,Zone] No-change cost e/trip Calculates the additional cost to those passengers that want a direct trip even if there is not a full vehicle available. First, the additional cost per trip of having these trips in the system is calculated. This is multiplied by the total number of trips to get the total additional cost per day. This is divided by the number of these special-service trips. Taken together, everyone must pay the price shown with No-change fraction=0, and the No-change cost is added to this price to cover the additional costs. var a:= cost_passenger-cost_passenger[nochange_fr=0]; a:= a[mode1='Composite']; a:= a*sum(trips_per_period[period=choose_period,mode1='Composite'],length); var b:= sum(sum(no_change_trips,length),zone); a/b 176,424,1 48,24 2,102,90,485,430 2,281,258,643,324,0,MEAN [Comp_fr,Period] [Index Cost_structure] Cost strength variability The same as Cost strength, except that this node only contains the variability, not uncertainty. The stakeholder-specific weights that are given to different cost types. The weight is 1 always with the following exceptions: - Car capital costs may be <1 because the owner may need the car for other purposes than the trips considered here. - Willingness to drive (Driver costs for car drivers) may be positive or negative depending on how the the driving is valuated. - 'Parking' is zero for composite traffic and society, because 'Parking land' cost is then calculated. - 'Parking land ' is zero for car passengers, because 'Parking' is then calculated. - 'Emission costs' and 'Accidents' are not calculated for passengers because they harm people in general, not any individual specifically. - 'Ticket' cost is calculated only for composite traffic passengers. It is not relevant for cars; and from the societal point of view, it is only a money transfer from the passenger to the service provider. Table(Cost_structure,Mode1,Stakeholder)( Cap_variation,Cap_variation, 1,1, 0,0, (-Drive_variation),(-Drive_variation), 1,1, 0,0, 1,1, 1,1, 0,0, 1,0, 0,0, 0,0, 0,1, 1,1, 0,0, 0,1, 0,1, 0,0, 1,1, 1,1, 0,0, 0,1, 0,1, 0,0, 0,0, 1,0, 0,0 ) 312,456,1 48,24 2,102,90,476,422 2,61,68,416,303,0,MIDM 2,564,215,350,281,0,MEAN [Mode1,Cost_structure] [Mode1,Cost_structure] Most of the VOI (esp. car occupancy) is actually in variables known to the passenger Most of the VOI (esp. car occupancy) is actually in variables known to the passenger. passenger_voi_and_voc 456,208,1 48,63 65535,65532,19661 Most of the VOI is actually VOC=value of consensus Most of the VOI is actually VOC=value of consensus. This means that VOI is calculated for an input variable that is not actually unknown, but it reflects true variability in the population. Therefore the reduction of the spread of this variable does not mean that uncertainty is decreased. It means that the variability is decreased, i.e. that the population is approaching consensus. Societal_voi_and_voc 336,128,1 48,46 65535,65532,19661 Outcome Importance Spearman r Importance analysis of the uncertain input variables. It is a Spearman rank correlation between the input variables and the outcome ('Cost'). Abs( RankCorrel( Uncertain_inputs,Cost) ) 64,120,1 48,24 1,1,1,1,1,1,0,0,0,0 2,127,41,402,453,0,MIDM [Length,Uncertain_var] Uncertainties fractile Uncertain input variables standardised as fractiles. rank(uncertain_inputs,run)/samplesize 64,72,1 48,12 2,97,189,665,420,0,SAMP [Run,Uncertain_var] Expected variations e/trip Cost difference of composite and car trips shown as the expectation. The X axis shows the fractiles of one uncertain variable. If there is a trend, this varible has a large impact on the cost difference. See also 'Cost by uncertainty'. variation1(uncertain_inputs,Cost,9) 64,240,1 48,24 2,116,222,476,224 2,12,12,607,474,1,MIDM [Comp_fr,Uncertain_var] Costs \car occupancy e/trip An alternative way of calculating costs given a certain input variable ('Car occupancy' in this case). var classes:= 100; index varia:= 1..classes; var c:= getfract(Group_size,varia/classes); average(for x[]:= c do (whatif(Costs__cap,Group_size,x)),varia) 176,304,1 48,24 2,45,0,833,212,1,SAMP Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:10 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:100 Yminimum:-4 Ymaximum:4 Zminimum:1 Zmaximum:1 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1, 1, 1, 1, 1, 0, 0, 0] Probindex:[5%, 25%, 50%, 75%, 95%] Arial, 6 Costs \cap e/trip An alternative way of calculating costs given a certain input variable ('Cap' in this case). var classes:= 100; index varia:= 1..classes; var c:= getfract(cap,varia/classes); average(for x[]:= c do (whatif(Cost,cap,x)),varia) 64,304,1 48,24 2,47,207,833,237,1,SAMP Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:10 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:100 Yminimum:-4 Ymaximum:4 Zminimum:1 Zmaximum:1 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1, 1, 1, 1, 1, 0, 0, 0] Probindex:[5%, 25%, 50%, 75%, 95%] Arial, 6 Cost by uncertainty e/trip Cost difference of composite and car trips shown as a scatter plot. The X axis shows the fractiles of one uncertain variable. If there is a trend, this varible has a large impact on the cost difference. Cost 64,40,1 48,24 2,82,65,830,529,1,SAMP Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:4 Baroverlap:0 Linestyle:4 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:1 Yminimum:-2.5 Ymaximum:2.5 Zminimum:1 Zmaximum:1 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1, 1, 1, 1, 1, 0, 0, 0] Probindex:[5%, 25%, 50%, 75%, 95%] Arial, 6 [Run,Undefined] Uncertainties S Costs \car occupancy e/trip An alternative way of calculating costs given a certain input variable ('Car occupancy' in this case). var classes:= 100; index varia:= 1..classes; var c:= getfract(Group_size,varia/classes); average(for x[]:= c do (whatif(societal_cost,Group_size,x)),varia) 64,184,1 48,24 2,45,0,833,212,1,SAMP Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:10 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:100 Yminimum:-4 Ymaximum:4 Zminimum:1 Zmaximum:1 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1, 1, 1, 1, 1, 0, 0, 0] Probindex:[5%, 25%, 50%, 75%, 95%] Arial, 6 Cost classified var x:= 9; var a:= sample(cost_variation); a:= a[stakeholder='Passenger']; a:= a[mode1='Composite']-a[mode1='Car']; index vari:= sequence(1/x,1,1/x); var in:= ceil(rank(a,run)*x/samplesize)/x; a:= if in=Vari then a else 0; 176,40,1 48,24 [Run,Comp_fr] Classified passenger VOI The iterations are classified into 9 groups based on variability, and these groups are calculated separately. This is reasonable, because there is no point in calculating a common VOI for two individuals, who are on opposite extremes of the variation according to favourness of composite traffic. However, both Passenger VOI and Single passenger VOI are doing this (except that the latter matches for the most important variating variable). var a:= array(Mode1,[sample(Cost_classified)*9,0]); a:= sum(a*sum(trip_fraction,mode1),length); Voi(a,Mode1,uncertain_inputs,uncertain_var,Classes) 336,40,1 52,24 2,389,72,366,497,0,MIDM Societal VOI and VOC e/d Value of information analysis for the input variables with the societal decision about the target level of composite fraction. Each level involves a particular amount of subsidies to composite traffic to reach the target. The analysis calculates the expected benefit for the society when the uncertainty of a variable is resolved. var a:= sum(sum(sample(Societal_cost),length),mode1); a:= if comp_fr=1 then a[comp_fr=0.9] else a; Voi(a,comp_fr,uncertain_inputs,uncertain_var,classes) 176,128,1 48,24 2,581,43,377,506,0,MIDM Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:9 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:1 Xmaximum:17 Yminimum:-225K Ymaximum:0 Zminimum:1 Zmaximum:2 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] Arial, 6 Passenger VOI and VOC e/trip Value of information analysis for the input variables with the passenger decision between composite and car traffic. The analysis calculates the expected benefit for the passenger when the uncertainty of a variable is resolved. var a:= sample(cost[stakeholder='Passenger']); a:= sum(a*sum(trip_fraction,mode1),length); a:= array(mode1,[a,0]); Voi(a,Mode1,uncertain_inputs,uncertain_var,Classes){missing ')'} 312,208,1 48,24 2,482,80,398,480,0,MIDM Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:1 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:1 Yminimum:0 Ymaximum:1 Zminimum:0 Zmaximum:1 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] 1,F,4,3,0,0 Cost \variation var a:= cost_variation[Mode1='Composite']-cost_variation[Mode1='Car']; a:= rank(a,run)/samplesize; var b:= expected_total_varia; a:= Linearinterp(b.i,b, a,b.i); cost-a 424,344,1 48,24 2,102,90,476,375 2,257,61,680,471,1,SAMP Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:4 Baroverlap:0 Linestyle:4 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:1000 Yminimum:-3 Ymaximum:3 Zminimum:1 Zmaximum:2 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1, 1, 1, 1, 1, 0, 0, 0] Probindex:[5%, 25%, 50%, 75%, 95%] Arial, 8 [Run,Length] Total societal VOI is 30000 euro/d, which implies robust conclusions For the societal question whether to subsidise composite traffic at 50 % composite fraction or not at all, the total value of resolving all uncertainty is only about 30 000 e per day, and the value for every single variable was zero. This means that the conclusion is robust and that even if the truth about a variable were found out to be the most unfavourable to the composite traffic, the optimal decision would still be the same. Societal_voi_0_or_50 648,408,1 52,44 2,102,90,475,224 [Alias Total_societal__voi1] 65535,65532,19661 Fig 6A Passenger VOI passenger_voi 528,208,1 48,29 2,17,59,799,413,0,MIDM [Formnode Fig_6a_passenger_vo1] Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:9 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:1 Xmaximum:3 Yminimum:-70K Ymaximum:0 Zminimum:1 Zmaximum:12 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] Fig 6B Societal VOI Societal_voi_0_100 288,408,1 48,24 2,563,94,416,435,0,MIDM [Formnode Fig_6b_societal_voi1] Societal VOI 0 or 50 e/d Value of information analysis for the input variables with the societal decision about the target level of composite fraction. Each level involves a particular amount of subsidies to composite traffic to reach the target. The analysis calculates the expected benefit for the society when the uncertainty of a variable is resolved. var a:= sum(sum(sample(Societal_cost__varia),length),mode1); index comp:= [0,0.5]; a:= a[comp_fr=comp]; Voi(a,comp,uncertain_inputs,uncertain_var,classes) 528,408,1 48,24 2,18,41,377,506,0,MIDM Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:9 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:1 Xmaximum:3 Yminimum:-70K Ymaximum:0 Zminimum:1 Zmaximum:12 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] Arial, 6 (a:probtype) Tm a:= if size(a)=size(sum(a,length)) then a else sum(a,length); a:= if size(a)=size(sum(a,vehicle)) then a else sum(a,vehicle); a:= if size(a)=size(sum(a,period)) then a else sum(a,period); a:= rounding(mean(a),3)&' ('& rounding(Getfract(a,0.05),3)&'-'& rounding(getfract(a,0.95),3)&')'; a:= if a='NAN (NAN-NAN)' then '' else a; a:= a; a[comp_fr=i] 664,176,1 48,12 2,7,86,476,512 a i [0,0.25,0.5,0.75,1] 664,152,1 48,12 Trip data This module calculates the trip rate for each origin-destination pair (129^2 pairs) and for each time point (12 min intervals resulting in 120 time points) based on trip data from three separate hours (morning rush, midday, afternoon rush) and time activity (based on diaries) in traffic along 24 hours. The total number of trips equals the number of car trips in Helsinki area on a working day in 2000. All scenarios have the same street strucure and number of trips with a particular origin, destination, and time. The trips are divided into car trips and composite trips differently in each scenario based on two variables. Composite fraction is the percentage of the trips that are handled by composite traffic; the remaining trips are handled by personal cars. Guaranteed area defines the area where composite traffic is provided (i.e. the area where you are guaranteed to get a composite vehicle if you want one). The default assumption is that both the origin AND the destination must be in the guaranteed area, but it is also easy to evaluate scenarios where the guarantee covers all trips in the Helsinki area as long as either the origin OR the destination is in the guaranteed area. The model calculates the expected number of trips for each origin-destination-time cell, and picks one random number from Poisson distributioin based on the expectation. After that, the model is deterministic all the way to Outputs node. jtue 26. Junta 2003 12:49 jtue 18. elota 2004 18:12 48,24 184,232,1 48,24 1,1,1,1,1,1,0,0,0,0 1,146,3,451,399,17 2,244,212,476,362 Arial, 13 All trips trips/time unit Calculates number of individuals in the composite traffic and in car traffic for each route and time. Composite traffic may be restricted by area or by the fraction of trips that switch from car traffic to composite traffic. var a:= max([100u,adjusted_trip_rate]); a:= slice(sample(Poisson(a)),run,1); var g:= Scenario_input[input_var='Guarantee level']; var comp:= Scenario_input[input_var='Composite fraction']; var b:= guaranteed_areas; var c:= From&''; b:= if findintext(c,Regions) then b else 0; b:= sum(b,Region); b:= b[guarantee=g]; b:= if Scenario_input[input_var='Large guarantee?']='Yes' then b+b[From=To1] else b*b[From=To1]; b:= if b>0 then 1 else 0; b:= b*comp; b:= slice(sample(binomial(a,b)),run,1); array(Mode1,[a-b,b,0]) 336,160,1 48,24 2,461,110,476,493 2,58,96,831,468,0,MIDM [Time,From] [Index Mista] Flow passengers/time unit Passenger flow at each point. This is a sum of people who start, continue or end their trip from or to here. var a:= From&''; var c:= sum(All_trips[Mode1='Composite'],time); for x[]:= a do ( var b:= (if findintext(x,Route_matrix)>0 then c else 0); sum(sum(b,From),To1) ) 448,160,1 48,24 2,102,90,476,316 2,142,149,654,249,0,MIDM [To1,From] Transfer point The most busy point along the trip. In a case where there is no direct composite vehicle driving from the origin to the destination, the passenger is dropped at this point, and the latter part of the trip is organised separately. index etappi:= 1..max(max((textlength(route_matrix)+1)/5,From),To1); var a:= sum(Flow,To1); var b:= '0*'&Route_matrix&'*0'; b:= for x[]:= b do slice(splittext(x,','),etappi); var c:= a[From=evaluate(b)]; var d:= if istext(c) or isnumber(c) then c else 0; c:= argmax(d,etappi); c:= if max(d,etappi)=0 or c=1 then '' else b[etappi=c]&','; From&','&c&To1 448,224,1 48,24 2,504,112,476,513 2,43,10,972,486,0,MIDM [To1,From] Guarantee A dummy index. [1,2,3,4,5,6,7] 336,256,1 48,12 2,102,90,476,533 2,104,114,416,494,0,MIDM Guaranteed areas Guarantee means that any trip within the specified region is organised by the composite traffic, if wanted. 1=guarantee, 0=no guarantee. The default assumption is that both the origin AND the destination must be in the guaranteed area, but it is also easy to evaluate scenarios where the guarantee covers all trips in the Helsinki area as long as either the origin OR the destination is in the guaranteed area. Table(Guarantee,Region)( 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0, 0,0,0,0,0,0,0,0,1,1,1,0,0,0,0, 0,0,0,0,0,0,0,0,1,1,1,1,1,1,1, 0,0,1,1,0,0,0,0,1,1,1,1,1,1,1, 0,0,1,1,0,1,0,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ) 336,224,1 48,24 2,102,90,476,434 2,354,113,582,448,0,MIDM 2,49,233,589,346,0,MIDM 52425,39321,65535 [Guarantee,Region] [Guarantee,Region] Scenario input Input variable values for base case scenario. If Large guarantee? is 'Yes', then it is assumed that the guarantee covers the whole area, if the origin OR the destination of the trip are in the guaranteed area. Otherwise, both O and D must be in the covered area. Table(Input_var)( 0.5,1,7,0,0,0,4) ['Composite fraction','Guarantee level','Lim'] 336,80,1 48,24 2,363,72,416,303,0,MIDM 52425,39321,65535 [Scenario_input,Scenario] Input var Index for variables that may affect the number of composite traffic trips. ['Composite fraction','Public fraction','Guarantee level','Large guarantee?','No-change fraction','Flexible fraction','Min direct load'] 336,112,1 48,12 2,102,90,476,249 Unadjusted trip rate trips/time unit Calculates the traffic volume for each time point of the day. First, the matrix is selected based on the Base_time Name column, and then the numbers are scaled as the proportion of the traffic activity per each hour and the peak hour for which the matrix was calculated. var c:= Trips_by_hour[Reg=From,Reg1=To1]; c:= if c=null then 0 else c; c:= cubicinterp(hour,c,time,hour) 168,96,1 48,24 2,454,141,476,358 2,151,124,782,471,0,MIDM [Time,From] [To1,From] Adjusted trip rate trips/time unit Calculates the traffic volume for each time point of the day. Adjusting is taken into account to yield results where the population in an area is not much different after the day. var g:= unadjusted_trip_rate; {index x:= copyindex(From); var b:= 0; var c:= 0; var e:= 0; var a:= sum(Unadjusted_trip_rate,time); b:= sum(a,From); b:= b[To1=From]; c:= sum(a,To1); c:= (b-c)*a/sum(a,To1); e:= if c<0 then -c else 0; c:= if c<0 then 0 else c; e:= e[From=x,To1=From]; e:= e[x=To1]; a:= c+e; var g:= if time>7 and time<19 then 1 else 0; g:= g/sum(g,time); g:= Unadjusted_trip_rate+a*g;} g:= g/sum(sum(sum(g,from),to1),time)*total_trips; var h:= if rank(time)/2 = floor(rank(time)/2) then g *scenario_input[input_var='Flexible fraction'] else 0; var i:= h[time=time+time_unit] ; i:= if i=null then 0 else i; g+i-h 168,160,1 48,24 2,320,0,476,608 2,40,50,1017,660,0,MIDM Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:1 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:1 Yminimum:0 Ymaximum:1 Zminimum:0 Zmaximum:1 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] [Time,From] [To1,From] Total trips trips Total number of trips travelled in a personal car in Helsinki Metropolitan area during a working day. The total number of trips is 2.9 million, and 44% of them are by personal cars. Trips by traffic mode on weekday in the Helsinki metropolitan area in 2000. Total trips 2.9 million 22 % Walking 7 % Cycling 16 % Bus 3 % Tram 3 % Train 4 % Metro 34 % Personal car (driver) 10 % Personal car (passenger) and taxi 2.9M*0.44 56,160,1 48,24 2,102,90,476,478 65535,52427,65534 YTV: Helsingin seudun nykytila (The Current State of Helsinki Region) PJS B 2002:1 <a hfref="http://www.ytv.fi/seutukeh/pks/pks2025/nykytila.pdf">PDF file</a> Population inhabitants Population of the Helsinki Metropolitan Area by area in 2003. Table(Area1)( 389,10.248K,8215,882,6768,4157,11.62K,761,2407,3401,13.137K,14.569K,8705,6832,4746,0,3542,2284,15.89K,7028,11.8K,6825,3344,5755,10.28K,19K,9940,7288,12.956K,12.983K,10.358K,4523,8375,12.656K,5284,8470,13.653K,6422,8695,3549,8782,4169,11.435K,10.766K,2122,5480,7962,11.615K,10.91K,7636,5795,3710,16.146K,9493,8819,8331,11.226K,4023,8631,28.283K,5951,8259,16.458K,13.495K,12,829,9,3235,9228,6191,3145,7835,8819,16.405K,14.91K,6105,8003,15.762K,14.608K,2209,2888,12.29K,7692,3475,8069,2237,5239,8905,9199,8253,15.238K,5847,5934,1845,4671,549,3999,572,3579,9299,6466,18.695K,14.052K,2140,4118,2619,112,3145,3465,215,47,1807,10.396K,4301,11.36K,4840,2895,1346,3723,8338,2620,5403,3375,9873,12.478K,3167,4698,14.244K,9899,0) 56,224,1 48,24 2,388,82,476,459 2,415,198,416,481,0,MIDM 2,510,11,258,615,0,MIDM 65535,52427,65534 [Index Area1] Seutu-CD '03. YTV (The Helsinki Metropolitan Area Council), Helsinki, 2004. Population guaranteed inhabitants Number of inhabitants in the area in which the composite traffic operates. var b:= guaranteed_areas; var c:= From&''; b:= if findintext(c,Regions) then b else 0; {b:= sum(b,Region);} b:= if b>0 then population[area1=from] else 0; sum(b,from) 168,224,1 48,24 2,480,131,476,440 2,202,71,609,369,0,MIDM [Guarantee,Region] [Index Region] Areal surface arbitrary The areal surface of each area. (A rough classification). Table(Region)( 7,4,3,2.5,5,2,3,1,1,1,1,1,1,2,3) 56,288,1 48,24 2,541,153,416,352,0,MIDM 2,526,136,416,386,0,MIDM 65535,52427,65534 Based on rough estimates with a map on scale 1:40000. Population density arbitrary Population density in each area. (A rough classification.) var c:= From&''; var b:= if findintext(c,Regions) then 1 else 0; b:= if b>0 then population[area1=from] else 0; sum(b,from)/areal_surface 168,288,1 48,24 2,481,162,476,400 2,93,219,954,423,0,MIDM [From,Region] Modelled trip rate jtue 13. Febta 2003 16:03 ktluser 25. touta 2005 12:30 48,24 168,32,1 48,24 1,1,1,1,1,1,0,0,0,0 1,46,136,509,484,17 Arial, 13 Hour Hour of day. Sequence( 0, 23 ) 400,272,1 48,12 1,1,1,1,1,1,0,,0, 1,104,114,416,303,0,MIDM (param1, param2;suurind,pienind:indextype;indtieto) Normitus A function used to divide aggragate data into its disaggregate units based on weighting factors. using a:=sum((if indtieto=Suurind then param1 else 0), pienind) do using b:= sum((if indtieto=suurind then a else 0), suurind) do param2/b 168,368,1 48,24 2,591,58,476,514 param1,param2,suurind,pienind,indtieto (param1, param2; suurind, pienind:indextype;indtieto) Si_pi A function used to divide aggragate data into its disaggregate units based on weighting factors. using a:= Normitus(param2,param2,suurind,pienind,indtieto) do using b:= (if indtieto=suurind then param1*a else 0) do using c:= sum(b, suurind) do c 168,424,1 48,24 2,36,83,476,312 param1,param2,suurind,pienind,indtieto Trips municipality 1000 tips/d One-way trips from one municipality to another. Table(Municipality,Municipality1)( 223,(365/2),(130/2),(95/2), (365/2),332,(103/2),(117/2), (130/2),(103/2),320,(49/2), (95/2),(117/2),(49/2),179 ) 56,64,1 48,24 2,422,91,476,513 1,77,139,758,383,0,MIDM 2,52,332,708,188,0,MIDM 65535,52427,65534 [Self,Municipality1] [Municipality,Municipality1] [Index Suuralue] YTV: Liikkumisen nykytila. PŠŠkaupunkiseudun julkaisusarja B 2001:10. Fig 6. <a href="http://www.ytv.fi/NR/rdonlyres/F6B8A4F8-C394-4972-A1DE-C64E2B69EE6D/0/nykytila_B2001_10.pdf>PDF file</a> Trips place 1000 trips/d One-way trips from one place to another (such as home, work etc). Table(Place,Place1)( 29,(642/2),(67/2),(283/2),(1315/2), (642/2),4,(71/2),(9/2),(184/2), (67/2),(71/2),21,(1/2),(21/2), (283/2),(9/2),(1/2),2,(50/2), (1315/2),(184/2),(21/2),(50/2),193 ) 56,176,1 48,24 2,402,104,476,603 2,44,37,504,196,0,MIDM 65535,52427,65534 [Place,Place1] [Place,Place1] [Index Kohde] YTV: Liikkumisen nykytila. PŠŠkaupunkiseudun julkaisusarja B 2001:10. Fig 7. <a href="http://www.ytv.fi/NR/rdonlyres/F6B8A4F8-C394-4972-A1DE-C64E2B69EE6D/0/nykytila_B2001_10.pdf>PDF file</a> Trips place&mode fraction The distribution of trips among transportation modes. Table(Place,Place1,Mode2)( 0.34,0.19,0.46,0.01, 0.15,0.39,0.46,0, 0.34,0.19,0.46,0.01, 0.42,0.42,0.15,0.01, 0.34,0.19,0.46,0.01, 0.15,0.39,0.46,0, 0.25,0.24,0.5,0.01, 0.25,0.24,0.5,0.01, 0.25,0.24,0.5,0.01, 0.25,0.24,0.5,0.01, 0.34,0.19,0.46,0.01, 0.25,0.24,0.5,0.01, 0.25,0.24,0.5,0.01, 0.25,0.24,0.5,0.01, 0.25,0.24,0.5,0.01, 0.42,0.42,0.15,0.01, 0.25,0.24,0.5,0.01, 0.25,0.24,0.5,0.01, 0.25,0.24,0.5,0.01, 0.25,0.24,0.5,0.01, 0.34,0.19,0.46,0.01, 0.25,0.24,0.5,0.01, 0.25,0.24,0.5,0.01, 0.25,0.24,0.5,0.01, 0.25,0.24,0.5,0.01 ) 64,288,1 48,24 2,377,111,476,441 1,494,125,416,303,0,MIDM 2,27,185,456,199,0,MIDM 65535,52427,65534 [Mode2,Place1] [Place,Place1] [Index Kohde] YTV: Liikkumisen nykytila. PŠŠkaupunkiseudun julkaisusarja B 2001:10. Fig 8. <a href="http://www.ytv.fi/NR/rdonlyres/F6B8A4F8-C394-4972-A1DE-C64E2B69EE6D/0/nykytila_B2001_10.pdf>PDF file</a> Trips munic&mode trips/d/inh Number of trips per inhabitant of each transportation mode in different municipalities. These data are not used in the model. Table(Municipality,Mode2)( 1.31,1.1,0.93,0.03, 0.89,1.01,1.34,0.03, 0.92,0.72,2.03,0.03, 0.92,0.73,1.67,0.05 ) 64,368,1 48,24 2,491,162,476,551 1,136,146,595,314,0,MIDM 2,30,208,649,187,0,MIDM 65535,52427,65534 [Mode2,Self] [Municipality,Mode2] [Index Suuralue] YTV: Liikkumisen nykytila. PŠŠkaupunkiseudun julkaisusarja B 2001:10. Fig 9. <a href="http://www.ytv.fi/NR/rdonlyres/F6B8A4F8-C394-4972-A1DE-C64E2B69EE6D/0/nykytila_B2001_10.pdf>PDF file</a> Fraction pub tr munic fraction The fraction of public transportation in municipalities. These data are not used in the model. Table(Municipality,Municipality1)( 0.64,0.59,0.5,0.57, 0.59,0.33,0.24,0.21, 0.5,0.24,0.22,0.14, 0.57,0.21,0.14,0.23 ) 64,424,1 48,24 2,102,90,476,471 1,200,210,666,291,0,MIDM 1,200,210,752,301,1,MIDM 65535,52427,65534 [Self,Municipality1] [Self,Municipality1] YTV: Liikkumisen nykytila. PŠŠkaupunkiseudun julkaisusarja B 2001:10. Fig 6. <a href="http://www.ytv.fi/NR/rdonlyres/F6B8A4F8-C394-4972-A1DE-C64E2B69EE6D/0/nykytila_B2001_10.pdf>PDF file</a> Place weight by hour A rough weighting of different trips along the day. The purpose of this node is to take into account the fact that residences and workplaces are located differently in the area, and therefore the different trips occur unevenly in time and space. var a:= table(Time_of_day)(0.1,0.3,1,0.1,0.1); var c:= table(Time_of_day)(1,0.3,0.2,0.1,0.1); a:= (if Place='Workplace' or Place='Business' then a else if Place1='Workplace' or Place1='Business' then c else 1); a:= a[Time_of_day=Time_of_day_by_hour]; a/sum(a,hour) 504,96,1 48,24 2,667,115,476,570 2,400,26,509,574,0,MIDM 52425,39321,65535 [Place1,Hour] [Index Tunti] Municipality Municipalities in the Helsinki metropolitan area. Helsinki is divided into two parts; Kauniainen is together with Espoo. ['Helsinki, downtown','Helsinki, suburbs','Espoo, Kauniainen','Vantaa'] 56,96,1 48,12 2,243,104,476,437 2,17,221,416,303,0,MIDM Municipality1 The same as Municipality; this index is used as the destination. copyindex(Municipality) 56,120,1 48,12 2,451,144,476,421 2,72,82,416,303,0,MIDM Place The place where the trip origines/ends. Workplace is a trip to/from the workplace; business is a work-related trip outside the workplace. ['Home','Workplace','Business','School','Other'] 56,208,1 48,12 2,704,209,476,464 Place1 The place where the trip ends. copyindex(Place) 56,232,1 48,12 2,120,130,416,303,0,MIDM Mode The modes of transportation. ['Kevyt liikenne','Joukkoliikenne','Henkilšauto','Muu'] 64,320,1 48,12 2,102,90,476,446 Time of day Time of day ['Morning','Day','Afternoon','Evening','Night'] 504,128,1 48,12 2,183,445,242,306 Time in traffic min/h Time spent in personal car traffic in Helsinki. Based on personal diaries of adult subjects in Expolis study in 1996-97. Table(hour)( 0.5434,0.3511,0.2547,0.2885,0.1949,0.4356,1.521,4.747,5.118,2.106,1.892,1.663,1.966,1.91,2.608,3.477,6.161,5.567,3.811,2.833,2.158,1.254,0.7295,0.5768) 400,240,1 48,24 2,161,264,476,428 2,136,28,416,569,0,MIDM 2,13,59,490,544,1,MIDM 65535,52427,65534 [Index Tunti] Anu Kousa, Expolis database 12.11.2002. Car trips trips/d Car trips per day. var a:= Trips_place*Trips_place_mode*1000; a[Mode2='Henkilšauto'] 176,176,1 48,24 2,108,133,476,462 2,13,254,489,204,0,MIDM [Place,Place1] Time of day by hour Time of day by hour Table(Hour)( 'Night','Night','Night','Night','Night','Night','Morning','Morning','Morning','Day','Day','Day','Day','Day','Day','Afternoon','Afternoon','Afternoon','Evening','Evening','Evening','Evening','Night','Night') 504,32,1 48,24 2,18,279,476,224 2,488,78,416,538,0,MIDM 2,2,17,203,701,0,MIDM 52425,39321,65535 Inhabitants # Number of inhabitants by district in Jan 1st, 2006. Table(Area1)( 389,10.359K,9265,863,6684,4085,10.615K,737,2312,3318,12.916K,14.361K,8483,6736,4381,0,3957,2276,22.81K,6951,11.499K,7173,3489,7768,10.665K,19.295K,9961,7043,12.886K,12.538K,10.192K,4775,8294,12.488K,5325,8550,13.62K,6535,8690,3562,8422,7262,9898,11.8K,2578,5506,8034,11.33K,8478,9898,5500,3777,16.377K,9663,8305,8200,6705,8559,9109,28.318K,5905,7937,17.298K,15.658K,0,848,9,3496,8991,6035,3291,7704,8602,18.143K,15.035K,6043,8159,15.73K,15.057K,3270,2946,12.26K,9069,3512,6902,2673,5133,9313,9204,8457,17.947K,6353,6462,1966,5161,520,5365,606,3577,8545,6294,18.406K,13.634K,2115,4456,2548,105,4014,8113,183,5,1830,10.399K,4266,11.217K,4533,2784,1342,3947,7752,2717,5626,3546,9813,13.455K,3638,4734,13.821K,9499,0) 400,32,1 48,24 2,102,90,476,492 2,0,0,184,753,0,MIDM 2,489,294,416,303,0,MIDM 65535,52427,65534 Helsingin kaupungin tietokeskus: Helsingin seudun aluesarjat www.aluesarjat.fi Workplaces # The number of workplaces by district Table(Area1)( 23.894K,28.844K,6227,11.46K,9798,6390,4771,3018,1284,6659,8195,8960,17.766K,4184,12.672K,4232,8797,5226,8561,11.629K,3571,17.037K,2849,3602,3469,9525,2861,2476,3305,5571,17.35K,5016,1728,4239,1053,3709,5964,1673,849,1308,1604,2162,1287,8431,2242,975,720,1853,1668,2334,538,699,1596,1333,7414,1828,1070,7452,1394,3051,893,849,1463,1481,443,1723,4068,9201,6916,2818,6321,3340,1389,2487,7270,1709,690,2794,2389,1237,3399,3463,3694,1581,7038,3254,519,832,1336,1927,2510,4198,4122,309,1681,79,2301,478,1629,3254,2826,7822,5587,2206,1529,504,3285,1814,4254,3928,9509,2633,7034,275,1063,1958,1856,2519,232,1023,346,1808,478,1358,1605,308,2012,3644,794,0) 288,32,1 48,24 2,102,90,476,548 1,248,258,713,303,0,MIDM 2,583,35,416,303,1,MIDM 65535,52427,65534 SeutuCD 02, a CD ROM database about the Helsinki area. Municipality info The municipality to which each district belongs. Table(Area1)( 'Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa',0) 184,32,1 48,24 2,102,90,476,224 2,41,173,416,303,0,MIDM 52425,39321,65535 Trips place munic trips/d Car trips per day by municipality and place. Several weighting factors are used to derive the numbers from the original data. var ap:= array(Place,[Inhabitants, Workplaces, Workplaces, Inhabitants, Inhabitants]); ap:= sum((if Municipality=Municipality_info then ap else 0),area1); ap:= ap/sum(ap,Municipality); var a:= ap*Car_trips; ap:= ap[Municipality=Municipality1, Place=Place1]; a:= ap*a; a:= a/sum(sum(a,Place),Place1); a:= a*Trips_municipality; a:= a/sum(sum(sum(sum(a, Municipality), Municipality1), Place), Place1); a*sum(sum(Car_trips,Place),Place1) 288,176,1 48,24 2,16,104,498,591 1,339,342,644,303,0,MIDM 2,15,44,784,245,0,MIDM [Place,Place1] [Municipality1,Municipality] [Index Suuralue] Trips by hour trips/h Trips by hour from one district to another district. var ap:= array(Place,[Inhabitants, Workplaces, Workplaces, Inhabitants, Workplaces]); ap:= ap/sum(ap,area1); var a:= si_pi(Trips_place_munic,ap,Municipality,area1,Municipality_info); a:= si_pi(a,ap[area1=reg1],Municipality1,reg1,Municipality_info[area1=reg1]); var va4:= Place_weight_by_hour*Time_in_traffic; va4:= va4/sum(va4,hour); a:= a*va4; a:= a/sum(sum(a,Place),Place1) *sum(sum(sum(a,Place),Place1),hour) *Time_in_traffic/sum(Time_in_traffic,hour); a:= sum(sum(a,Place),Place1); a[area1=reg] 400,176,1 48,24 2,38,32,562,688 2,356,-2,540,493,0,MIDM [Reg1,Reg] var a:= if Time_of_day_by_hour = Time_of_day then Trips_by_hour else 0; sum(a,hour) 360,352,1 48,24 2,129,349,489,225 2,320,422,727,586,0,MIDM [Reg1,Reg] Municipality info 2006 Defines the municipality each district belongs to. Table(Area1)( 91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,235,49,49,49,49,49,49,49,49,49,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,0) 480,352,1 48,24 2,102,90,476,224 2,473,196,416,303,0,MIDM 52425,39321,65535 HLT hpax 29. Mayta 2006 15:06 vkoe 31. Mayta 2006 9:47 48,24 64,32,1 48,24 1,1,1,1,1,1,0,0,0,0 1,243,13,463,627,17 Arial, 12 Mista [49,91,92,235] 128,216,1 48,12 2,40,50,416,303,0,MIDM Mihin copyindex(Mista) 128,240,1 48,12 2,459,182,476,224 2,207,465,416,303,0,MIDM Kulkutapa ['henkiloauto','Joukkoliikenne','Muu'] 128,288,1 48,12 HLT2004-05 Table(Cols,Rows)( 0,0,0,0,0.2,0.2,0.2,0.6,0.6,0.6,0.6,0.8,1,1,1,1,1,1,1.2,1.4,1.6,1.6,1.8,2,2,2,2,2,2,2,2.2,2.4,2.6,2.6,2.6,2.6,3,3,3,3,3,3,3,3.6,3.6,3.6,3.8,3.8,4,4,4,4,4.2,4.4,4.8,4.8,5,5,5,5.2,5.4,5.4,5.6,5.6,5.6,5.6,5.6,5.6,5.6,5.6,5.6,5.6,5.8,5.8,5.8,5.8,5.8,5.8,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6.2,6.2,6.2,6.2,6.2,6.2,6.2,6.2,6.2,6.2,6.2,6.2,6.2,6.2,6.2,6.2,6.4,6.4,6.4,6.4,6.4,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.6,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,6.8,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.2,7.4,7.4,7.4,7.4,7.4,7.4,7.4,7.4,7.4,7.4,7.4,7.4,7.4,7.4,7.4,7.4,7.4,7.4,7.4,7.4,7.4,7.4,7.4,7.4,7.4,7.4,7.4,7.4,7.4,7.4,7.4,7.4,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.6,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,7.8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.4,8.4,8.4,8.4,8.4,8.4,8.4,8.4,8.4,8.4,8.4,8.4,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.6,8.8,8.8,8.8,8.8,8.8,8.8,8.8,8.8,8.8,8.8,8.8,8.8,8.8,8.8,8.8,8.8,8.8,8.8,8.8,8.8,8.8,8.8,8.8,8.8,8.8,8.8,8.8,8.8,8.8,8.8,8.8,8.8,8.8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9.2,9.2,9.2,9.2,9.2,9.2,9.2,9.2,9.2,9.2,9.2,9.2,9.2,9.2,9.2,9.2,9.2,9.2,9.2,9.2,9.2,9.2,9.2,9.2,9.4,9.4,9.4,9.4,9.4,9.4,9.4,9.4,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.6,9.8,9.8,9.8,9.8,9.8,9.8,9.8,9.8,9.8,9.8,9.8,9.8,9.8,9.8,9.8,9.8,9.8,9.8,9.8,9.8,9.8,9.8,9.8,9.8,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10.2,10.2,10.2,10.2,10.2,10.2,10.2,10.2,10.2,10.2,10.2,10.2,10.2,10.2,10.2,10.2,10.2,10.2,10.2,10.4,10.4,10.4,10.4,10.4,10.4,10.4,10.4,10.4,10.4,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.6,10.8,10.8,10.8,10.8,10.8,10.8,10.8,10.8,10.8,10.8,10.8,10.8,10.8,10.8,10.8,10.8,10.8,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11.2,11.2,11.2,11.2,11.2,11.2,11.2,11.2,11.2,11.2,11.2,11.2,11.2,11.2,11.2,11.2,11.2,11.2,11.2,11.2,11.2,11.2,11.2,11.4,11.4,11.4,11.4,11.4,11.4,11.4,11.4,11.4,11.4,11.4,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.6,11.8,11.8,11.8,11.8,11.8,11.8,11.8,11.8,11.8,11.8,11.8,11.8,11.8,11.8,11.8,11.8,11.8,11.8,11.8,11.8,11.8,11.8,11.8,11.8,11.8,11.8,11.8,11.8,11.8,11.8,11.8,11.8,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.2,12.4,12.4,12.4,12.4,12.4,12.4,12.4,12.4,12.4,12.4,12.4,12.4,12.4,12.4,12.4,12.4,12.4,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.6,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,12.8,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.2,13.4,13.4,13.4,13.4,13.4,13.4,13.4,13.4,13.4,13.4,13.4,13.4,13.4,13.4,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.6,13.8,13.8,13.8,13.8,13.8,13.8,13.8,13.8,13.8,13.8,13.8,13.8,13.8,13.8,13.8,13.8,13.8,13.8,13.8,13.8,13.8,13.8,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.2,14.4,14.4,14.4,14.4,14.4,14.4,14.4,14.4,14.4,14.4,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.6,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,14.8,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.2,15.4,15.4,15.4,15.4,15.4,15.4,15.4,15.4,15.4,15.4,15.4,15.4,15.4,15.4,15.4,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.6,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,15.8,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.2,16.4,16.4,16.4,16.4,16.4,16.4,16.4,16.4,16.4,16.4,16.4,16.4,16.4,16.4,16.4,16.4,16.4,16.4,16.4,16.4,16.4,16.4,16.4,16.4,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.6,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,16.8,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.2,17.4,17.4,17.4,17.4,17.4,17.4,17.4,17.4,17.4,17.4,17.4,17.4,17.4,17.4,17.4,17.4,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.6,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,17.8,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.2,18.4,18.4,18.4,18.4,18.4,18.4,18.4,18.4,18.4,18.4,18.4,18.4,18.4,18.4,18.4,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.6,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,18.8,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.2,19.4,19.4,19.4,19.4,19.4,19.4,19.4,19.4,19.4,19.4,19.4,19.4,19.4,19.4,19.4,19.4,19.4,19.4,19.4,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.6,19.8,19.8,19.8,19.8,19.8,19.8,19.8,19.8,19.8,19.8,19.8,19.8,19.8,19.8,19.8,19.8,19.8,19.8,19.8,19.8,19.8,19.8,19.8,19.8,19.8,19.8,19.8,19.8,19.8,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.2,20.4,20.4,20.4,20.4,20.4,20.4,20.4,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.6,20.8,20.8,20.8,20.8,20.8,20.8,20.8,20.8,20.8,20.8,20.8,20.8,20.8,20.8,20.8,20.8,20.8,20.8,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,21.2,21.2,21.2,21.2,21.2,21.2,21.2,21.2,21.2,21.2,21.2,21.2,21.2,21.2,21.2,21.2,21.2,21.4,21.4,21.4,21.4,21.4,21.4,21.4,21.4,21.4,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.6,21.8,21.8,21.8,21.8,21.8,21.8,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22.2,22.2,22.2,22.2,22.2,22.2,22.2,22.2,22.2,22.4,22.4,22.4,22.4,22.4,22.4,22.6,22.6,22.6,22.6,22.6,22.6,22.6,22.6,22.6,22.6,22.8,22.8,22.8,22.8,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23.2,23.2,23.2,23.4,23.4,23.6,23.6,23.6,23.6,23.6,23.6,23.6,23.6,23.6,23.6,23.6,23.6,23.6,23.6,23.6,23.6,23.6,23.8,23.8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 91,91,91,91,91,49,91,49,91,91,91,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,49,91,91,91,91,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,91,91,92,92,91,91,49,92,92,91,49,49,49,91,91,91,91,91,91,92,49,91,91,92,92,92,91,91,49,49,91,91,91,91,92,92,92,92,92,92,92,92,91,91,92,49,49,91,91,91,91,91,91,91,92,92,92,235,49,91,91,92,91,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,49,91,91,91,91,91,92,92,92,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,235,49,49,49,49,91,91,91,91,49,91,91,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,235,92,91,91,91,92,49,49,49,49,91,91,91,91,92,92,92,92,92,92,92,92,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,91,49,91,92,92,92,92,92,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,49,91,91,91,91,92,92,92,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,49,49,49,49,49,49,91,91,91,91,91,92,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,235,235,49,49,49,91,91,91,91,92,49,49,49,91,91,91,91,91,91,91,92,91,91,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,49,49,49,91,91,91,92,92,92,49,91,92,92,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,235,49,91,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,92,92,92,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,235,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,49,49,49,49,91,235,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,235,49,49,91,91,91,49,49,91,91,91,91,91,91,49,49,49,91,91,91,91,91,91,91,91,92,92,92,92,49,49,91,91,91,91,91,92,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,49,91,91,91,49,49,91,91,91,91,92,92,92,49,49,49,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,235,49,91,91,92,235,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,49,49,91,92,49,49,91,91,91,91,49,49,49,91,91,91,91,91,91,91,91,92,92,91,91,91,91,91,91,91,92,91,91,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,235,49,91,49,49,91,91,91,91,91,91,91,92,49,91,91,91,91,91,91,91,92,92,92,91,49,49,91,91,91,91,91,91,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,49,91,91,49,91,91,91,91,91,91,91,49,49,49,91,91,91,91,91,91,91,91,91,92,92,92,49,49,91,91,91,92,92,49,91,91,91,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,91,92,91,49,49,49,91,91,91,91,91,91,91,91,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,49,49,91,91,91,91,91,92,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,235,91,49,49,91,91,91,49,49,91,91,91,91,91,91,91,91,91,92,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,49,49,49,49,91,91,91,91,91,91,91,92,49,91,91,91,91,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,91,91,91,92,92,49,91,91,91,91,91,91,91,91,91,92,92,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,92,92,92,92,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,92,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,91,91,91,49,91,91,91,91,91,91,91,91,91,92,92,92,92,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,49,49,49,49,49,91,91,91,91,91,92,91,91,92,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,49,49,49,49,49,91,49,49,91,91,91,91,91,91,91,91,91,92,92,49,49,91,91,91,91,91,91,92,92,235,91,49,49,49,91,91,91,91,91,91,91,91,91,92,91,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,235,49,49,91,91,91,92,49,49,49,91,91,91,91,91,91,92,92,92,92,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,91,49,49,91,91,91,91,92,92,91,91,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,235,49,49,91,91,49,49,91,91,91,91,91,91,91,92,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,49,49,49,49,91,91,91,91,91,91,91,91,91,91,92,92,91,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,235,235,235,235,235,49,49,91,91,91,91,91,91,49,49,91,91,91,91,92,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,49,91,91,91,91,91,91,91,91,92,92,92,91,92,91,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,91,92,92,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,49,49,49,49,91,91,91,91,91,91,92,235,49,49,91,91,91,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,91,49,49,91,91,91,91,91,91,92,49,49,49,91,91,91,91,91,91,91,91,91,91,91,92,91,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,49,49,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,49,49,91,91,91,92,92,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,235,92,91,91,91,91,92,92,92,49,49,49,91,91,91,91,91,91,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,49,91,91,91,91,91,91,91,92,92,92,92,49,49,91,91,92,92,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,235,235,49,91,91,91,91,91,49,49,49,49,91,91,91,91,91,91,91,92,92,92,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,49,49,91,91,91,91,91,91,91,91,92,235,49,49,91,91,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,91,91,91,91,49,49,49,49,91,91,91,91,91,91,91,92,92,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,92,92,92,91,92,235,91,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,235,235,49,49,49,49,91,91,49,49,49,49,91,91,91,91,91,91,91,91,91,91,92,92,92,92,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,49,49,49,49,91,91,91,91,91,91,91,91,91,92,91,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,235,235,235,235,49,49,91,91,92,92,49,91,91,91,91,91,92,92,92,91,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,49,49,91,91,91,91,91,49,49,91,91,92,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,235,49,91,91,91,49,49,91,91,91,91,91,91,91,91,92,92,92,92,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,49,49,91,91,91,91,91,91,91,91,91,92,92,92,91,91,91,91,91,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,235,91,91,91,92,49,49,49,91,91,91,91,91,92,92,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,49,91,91,91,91,91,91,92,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,91,91,91,49,49,49,49,91,91,91,91,91,91,91,92,92,92,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,49,49,91,91,91,91,91,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,91,49,91,91,91,49,91,91,91,91,91,91,91,91,91,92,92,49,49,91,91,91,92,91,91,91,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,235,91,91,91,91,91,91,92,49,49,49,91,91,91,91,91,91,91,92,92,91,91,91,92,92,92,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,91,91,91,49,91,91,91,91,91,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,91,91,92,92,92,49,91,91,91,49,91,91,91,91,49,49,91,91,91,91,91,91,91,91,91,91,92,91,91,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,91,49,91,49,91,49,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,235,49,92,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92, 91,91,91,49,91,49,91,49,91,91,91,49,91,91,91,91,91,91,91,49,91,91,91,91,92,91,91,91,91,91,91,49,92,92,91,91,49,49,91,91,91,91,91,49,92,91,91,91,91,91,91,92,91,91,92,91,92,92,91,92,91,91,91,49,91,91,92,91,91,91,91,92,91,91,91,91,91,91,91,92,91,91,91,91,92,91,91,91,49,92,91,91,92,92,91,91,49,91,91,91,91,91,91,92,49,91,91,49,92,91,49,91,92,49,91,49,49,49,91,91,91,91,49,49,91,91,91,91,91,91,92,91,91,91,91,91,91,91,91,91,91,91,49,92,49,91,91,91,49,92,92,92,92,91,92,92,92,92,92,91,91,92,91,91,91,91,92,92,91,49,49,49,91,91,91,91,91,91,91,91,49,91,91,91,91,92,92,92,92,91,92,92,91,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,49,49,49,91,49,92,92,91,91,49,49,91,91,91,91,91,49,91,92,92,91,91,91,91,91,91,91,91,91,91,49,91,91,92,91,91,91,91,91,91,91,92,49,91,91,91,91,92,92,49,92,91,91,91,92,49,91,91,91,91,91,91,91,91,49,91,91,235,92,92,92,49,49,235,91,91,91,91,49,91,91,91,91,91,91,91,91,49,91,91,92,92,92,92,91,91,91,92,91,92,92,92,91,91,49,91,91,91,91,91,91,92,91,91,91,91,91,91,91,91,91,91,91,92,91,91,91,91,91,92,92,92,92,91,91,49,91,92,91,49,91,91,91,49,49,49,91,91,91,91,91,92,91,91,49,49,91,49,49,92,49,49,49,49,49,49,91,91,91,91,91,92,49,91,91,91,91,91,91,91,49,91,49,91,91,91,91,91,92,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,49,91,91,91,91,91,49,91,92,92,92,92,92,92,92,91,92,92,92,92,92,92,92,92,49,91,91,91,91,91,92,92,91,49,49,49,49,49,49,91,91,91,49,91,49,91,91,91,92,49,91,91,49,91,92,92,92,92,49,49,49,49,92,235,49,91,91,91,91,91,91,91,91,92,91,91,91,91,91,91,91,91,91,91,92,92,91,91,91,92,92,92,92,91,49,49,91,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,49,49,49,92,91,91,91,91,49,91,91,92,49,49,49,49,92,91,91,91,49,49,49,49,91,49,49,49,91,91,49,49,49,91,91,49,49,49,49,91,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,49,91,91,91,49,91,91,49,91,91,91,91,91,91,91,91,91,91,91,91,91,92,91,91,91,91,91,91,49,91,91,91,91,91,92,91,91,91,91,91,91,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,91,91,91,49,49,92,92,92,92,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,91,49,91,49,91,91,91,91,91,92,91,91,49,91,49,92,92,91,91,91,91,49,91,49,49,91,91,49,91,49,91,92,91,91,91,91,91,91,91,49,91,91,91,91,49,92,91,49,49,91,91,91,92,91,91,91,91,91,91,49,49,91,49,49,49,91,49,49,92,92,49,49,49,49,49,49,49,49,49,49,91,92,91,91,91,91,91,49,91,91,91,91,91,92,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,91,91,92,92,92,92,91,92,92,92,92,92,235,49,91,49,91,49,91,49,91,91,91,92,91,91,91,91,91,91,92,92,92,49,92,49,49,91,91,91,49,91,91,91,92,91,91,91,235,49,49,49,49,49,49,91,91,91,92,91,91,91,91,91,91,91,49,49,91,49,91,235,49,49,49,49,49,49,91,91,91,49,91,235,49,49,49,91,49,49,49,49,49,91,49,91,91,91,91,91,91,91,91,91,91,92,92,92,92,91,91,91,92,91,91,91,91,91,91,91,91,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,91,91,91,92,92,92,91,91,92,92,92,92,92,92,92,92,92,92,49,49,49,91,91,91,91,49,91,91,91,91,91,91,49,49,49,91,92,91,91,91,91,91,91,49,92,92,92,49,49,91,91,91,91,91,92,91,91,92,49,49,91,91,92,91,91,91,91,91,91,91,49,91,91,91,91,91,91,91,91,92,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,49,49,91,92,92,92,92,92,92,92,91,91,91,91,49,49,91,91,91,91,92,92,92,49,49,91,91,92,91,91,91,91,91,91,91,92,92,91,92,92,92,235,49,91,91,92,49,49,49,49,49,49,49,49,49,49,91,92,92,91,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,49,91,91,49,91,91,92,92,92,92,49,91,91,91,91,91,91,91,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,91,91,92,92,92,92,92,92,92,92,92,49,92,92,92,92,92,91,92,92,92,92,92,92,92,92,92,92,49,49,91,92,49,49,91,91,91,91,49,49,91,91,91,91,91,91,91,91,91,92,92,91,91,49,91,91,91,91,92,91,91,49,49,91,49,49,49,91,91,49,49,49,49,49,49,49,91,91,91,49,91,91,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,91,91,91,92,92,92,92,92,92,92,92,49,49,91,49,49,91,91,92,91,91,91,91,92,49,91,91,91,91,91,91,91,92,92,92,91,91,49,91,91,91,91,91,91,49,49,92,49,49,49,49,49,49,91,49,49,92,49,91,49,49,91,49,49,49,49,49,49,49,91,91,91,92,91,91,91,91,91,91,91,91,91,91,91,91,91,49,92,91,91,91,91,91,91,91,91,91,91,91,91,91,49,91,92,91,91,91,91,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,49,91,91,49,91,91,91,91,91,91,91,49,91,49,91,91,91,91,91,91,91,91,91,91,92,92,49,49,91,91,91,92,92,91,91,91,91,49,49,49,49,49,91,91,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,49,91,91,91,91,92,92,91,91,91,91,91,91,49,91,91,91,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,49,91,91,92,92,92,92,92,49,92,92,91,91,91,49,91,49,49,91,91,91,91,91,91,91,91,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,49,92,49,49,91,92,91,91,91,92,49,49,49,49,49,49,49,49,91,49,49,49,91,49,91,91,49,235,92,91,91,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,92,92,91,91,91,91,91,49,91,91,91,91,49,91,91,91,91,92,92,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,49,91,91,49,91,91,91,92,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,49,92,92,92,92,92,92,92,92,92,92,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,91,92,49,49,91,91,91,49,49,91,91,91,91,91,91,91,91,91,91,49,49,49,49,49,49,91,91,91,91,92,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,91,49,91,49,91,91,91,91,91,91,91,92,49,91,91,91,91,49,49,49,49,49,49,91,49,49,49,49,91,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,49,92,92,91,91,91,91,91,92,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,91,91,91,91,92,92,49,91,49,91,91,91,91,91,91,91,92,92,49,49,91,92,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,92,92,92,92,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,92,49,49,49,49,49,49,49,49,49,49,49,49,49,235,92,92,91,49,91,49,49,49,49,49,49,49,49,49,49,49,91,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,49,91,91,91,91,91,91,91,49,49,92,91,91,91,91,49,91,91,92,91,91,91,91,91,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,91,91,91,91,49,92,92,92,92,92,92,92,92,92,92,91,92,92,92,92,92,92,92,91,91,91,49,91,91,91,91,91,91,91,91,91,92,92,92,49,49,49,91,49,91,49,92,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,49,91,49,49,49,91,91,91,91,91,49,91,91,92,49,49,92,49,49,49,49,92,49,49,49,49,49,49,91,91,91,49,91,91,91,91,91,49,91,91,91,91,91,49,91,91,91,92,92,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,49,49,49,49,49,91,49,49,91,91,91,91,92,91,91,91,91,91,92,49,49,91,91,91,91,91,91,92,92,49,91,49,49,49,49,91,91,91,91,91,91,91,91,92,91,49,91,49,92,49,49,49,49,49,91,49,49,49,92,92,91,91,49,91,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,49,92,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,235,92,91,91,91,91,91,91,91,91,91,91,91,91,49,92,235,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,49,91,91,91,91,92,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,49,49,92,92,92,92,91,91,91,92,92,92,92,92,92,92,92,92,91,92,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,91,92,91,91,92,92,92,92,92,92,92,92,92,92,92,92,235,49,49,91,91,91,92,235,49,49,91,91,91,91,91,91,92,92,92,92,49,49,49,49,91,91,49,49,49,49,49,91,91,91,91,49,91,91,92,91,91,91,92,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,91,49,49,91,91,91,235,92,92,91,91,91,49,49,91,49,49,49,91,49,49,49,49,91,91,91,91,91,92,49,49,91,91,91,91,91,91,91,92,92,92,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,91,92,91,92,92,92,92,92,92,92,92,92,91,49,49,92,91,49,49,92,91,92,91,91,91,91,92,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,49,49,49,49,91,91,91,91,91,91,91,91,91,91,92,91,91,49,49,49,91,49,91,91,49,91,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,92,92,91,91,91,91,91,91,49,91,91,91,49,91,91,91,91,91,91,49,91,91,91,91,92,92,92,92,235,92,49,91,91,91,91,91,91,91,91,91,91,91,91,92,92,91,91,91,91,91,91,91,91,91,91,91,49,91,91,91,91,91,91,91,91,91,91,49,91,91,91,91,92,92,91,91,91,91,91,91,91,91,91,91,92,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,49,92,92,91,91,91,49,91,92,92,92,92,92,92,92,92,92,92,92,92,91,91,91,92,49,91,91,92,92,92,92,92,92,92,92,92,92,92,91,92,92,92,92,92,92,92,92,92,92,92,92,91,49,235,49,49,49,91,91,91,92,91,91,49,92,91,91,91,91,92,92,91,91,49,49,49,91,91,49,91,91,91,92,92,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,49,92,92,92,92,92,92,91,92,49,91,91,91,91,91,91,92,92,91,92,91,49,49,49,49,92,235,92,92,49,49,49,49,49,91,235,49,49,49,91,49,91,91,91,49,49,91,91,91,91,91,91,91,49,91,91,91,49,91,91,91,91,91,49,91,91,235,92,91,91,91,91,91,91,91,91,91,49,91,92,91,91,91,91,91,91,91,91,91,49,91,91,91,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,91,91,91,91,91,91,92,92,92,92,92,92,92,92,91,91,91,92,92,92,92,92,92,92,92,92,92,91,92,92,49,49,49,91,91,49,91,91,91,49,91,91,91,91,91,91,49,92,91,91,91,92,49,49,49,49,49,49,91,91,91,49,91,91,49,92,91,91,91,92,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,49,49,92,91,91,91,91,91,91,91,92,49,49,49,92,91,91,49,49,49,49,49,91,49,49,49,49,91,49,49,49,91,49,49,91,49,49,49,49,91,49,49,49,49,49,49,49,92,92,92,235,92,92,92,91,91,49,49,49,91,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,49,91,91,92,91,91,49,91,91,91,91,49,91,49,91,91,49,91,91,91,91,91,91,91,91,49,91,49,91,91,91,49,91,49,91,92,92,92,92,92,91,91,91,91,91,91,92,91,49,91,91,91,91,91,91,91,49,91,91,91,91,91,91,91,91,91,49,91,91,49,91,91,91,91,92,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,49,92,92,92,92,92,92,92,91,91,49,49,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,91,91,91,92,92,92,92,91,92,92,92,92,92,92,92,92,92,91,92,92,92,92,92,92,92,92,92,92,92,49,91,49,91,49,91,91,91,91,92,49,49,49,91,91,91,91,92,92,91,91,91,91,91,92,91,49,49,49,91,91,49,49,91,91,91,92,92,91,91,91,91,91,91,91,91,91,91,91,91,91,92,91,91,91,91,91,91,91,91,49,92,91,92,92,92,92,92,91,49,91,92,91,92,91,91,91,91,91,91,91,91,91,92,92,49,49,91,91,91,92,92,49,49,49,49,49,49,49,91,91,49,49,49,49,49,91,49,49,91,49,49,49,91,91,49,49,49,49,91,91,49,91,91,91,49,91,91,91,49,91,49,91,91,49,91,91,91,49,49,91,91,91,91,49,91,91,91,92,92,92,91,91,91,91,91,91,91,91,91,91,91,91,49,91,91,91,91,91,91,91,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,49,92,92,92,92,92,92,92,92,92,92,92,92,92,235,92,49,91,91,91,92,92,92,49,49,49,91,91,49,91,91,91,91,49,49,49,49,49,49,49,49,49,91,91,91,91,92,92,91,91,49,91,91,91,91,91,91,91,91,91,91,49,92,92,92,92,49,91,91,91,91,91,49,91,92,92,92,92,49,91,92,91,92,49,49,49,49,49,49,91,49,49,49,91,91,49,49,49,91,49,49,49,91,49,49,49,92,91,91,49,91,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,49,91,92,91,49,91,49,91,91,91,91,91,49,91,91,91,49,91,91,91,91,91,91,91,49,49,91,91,49,49,91,91,91,91,92,92,91,91,91,91,91,91,91,91,91,91,91,91,91,92,91,91,91,49,91,91,91,91,91,91,91,49,91,91,91,91,92,91,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,91,91,49,91,91,49,92,92,92,92,92,92,92,92,92,91,91,91,91,91,92,91,91,92,91,92,92,92,92,92,92,92,92,92,92,92,49,49,49,91,91,91,92,91,49,49,49,49,91,49,91,91,91,91,91,91,92,92,49,49,49,49,91,49,91,49,49,91,91,91,91,92,91,91,49,91,91,91,91,49,91,91,91,91,49,92,92,91,49,49,91,91,91,91,91,92,91,91,91,235,49,91,92,91,91,49,49,49,49,49,49,49,49,49,91,91,49,49,49,49,92,235,91,49,91,49,91,49,49,49,49,91,91,91,49,91,91,91,91,91,92,235,91,91,91,91,91,91,91,91,49,91,92,92,91,92,91,91,91,92,91,91,91,49,91,91,91,91,91,91,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,91,92,91,91,49,91,49,49,91,91,91,91,91,91,91,92,92,49,49,49,49,235,49,91,91,91,92,91,91,91,91,91,91,91,91,91,49,91,92,91,92,92,92,92,49,49,49,91,49,91,92,91,91,91,49,92,91,91,91,91,91,92,92,91,92,49,91,49,49,91,91,49,49,91,49,49,49,49,49,49,49,49,49,49,49,49,91,49,91,91,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,49,91,91,91,91,91,91,92,92,91,91,91,91,91,91,91,91,49,91,91,91,49,91,91,91,91,49,91,91,91,91,91,91,91,92,91,91,91,91,91,91,91,91,91,91,49,91,91,91,91,91,91,49,91,91,91,91,91,91,91,91,49,92,91,91,91,91,91,92,91,91,92,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,91,91,91,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,49,235,49,49,49,91,91,91,49,91,91,49,91,91,91,91,91,91,92,91,91,91,92,92,92,92,49,49,49,92,49,91,49,91,91,235,91,91,91,91,91,91,92,92,91,91,91,91,91,91,92,92,92,92,92,92,49,49,49,49,49,91,92,92,91,91,91,91,91,91,91,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,49,91,91,91,91,91,91,49,91,91,91,49,91,91,91,91,92,91,91,91,91,92,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,91,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,92,49,235,235,235,49,91,91,91,91,92,49,91,91,91,91,91,92,91,92,91,49,49,49,91,49,49,91,91,91,91,91,91,49,92,92,91,91,91,91,91,91,91,91,91,91,91,91,91,91,49,49,91,91,91,91,91,49,49,91,91,92,49,49,49,91,235,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,92,49,91,49,91,91,91,91,91,91,91,91,91,49,91,91,91,49,91,91,91,91,91,91,91,91,91,91,91,92,92,91,91,91,91,91,91,91,91,92,49,92,91,91,91,91,49,91,91,91,49,49,91,49,49,91,91,91,91,91,92,91,91,92,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,91,49,49,49,91,91,92,92,92,92,92,92,92,92,92,91,92,92,92,92,92,92,49,235,91,92,91,49,49,91,91,91,92,91,91,91,91,92,92,92,92,49,49,91,91,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,49,92,91,92,49,49,91,91,91,91,91,91,91,91,91,92,92,92,91,91,92,91,91,49,49,91,49,49,49,49,49,92,49,49,49,49,49,91,49,49,49,235,49,49,49,49,49,49,91,49,91,91,91,91,91,91,91,91,49,91,91,91,91,91,91,92,92,91,91,91,91,91,91,91,91,92,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,92,91,91,92,92,92,92,92,92,91,92,92,92,92,92,91,91,91,91,92,49,49,49,49,91,91,91,91,92,92,49,49,49,49,91,91,91,91,91,92,92,91,91,91,91,91,91,91,91,92,92,92,91,49,91,91,91,91,91,91,92,49,49,91,49,49,91,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49,91,91,91,91,91,91,91,91,92,91,91,91,91,91,91,91,91,49,91,91,91,91,92,92,91,91,91,91,92,91,91,91,91,91,91,91,91,91,91,91,92,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,92,92,91,91,92,92,92,91,91,92,92,92,92,91,92,92,92,92,92,92,92,92,92,91,91,91,91,49,49,49,91,91,91,49,91,91,91,91,92,92,49,49,49,49,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,49,92,91,49,91,91,91,91,91,49,49,49,49,49,49,49,49,235,49,49,91,91,91,91,49,91,92,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,92,91,91,91,92,92,92,92,92,92,91,49,91,91,91,49,91,49,91,91,91,91,91,91,91,92,92,49,49,91,49,91,92,49,91,91,91,49,91,49,49,49,91,92,49,49,49,49,49,49,49,49,49,91,91,91,49,91,91,91,91,91,92,92,91,91,91,91,91,91,91,91,91,91,49,49,91,92,92,92,91,91,92,91,91,91,91,91,91,49,91,91,91,91,91,91,91,91,92,91,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,49,92,92,92,92,92,235,91,91,91,91,49,91,92,49,49,49,91,92,91,91,91,91,91,92,92,91,91,91,92,92,92,49,49,92,49,91,49,91,91,91,91,91,91,49,91,91,49,92,91,91,91,91,91,91,91,91,91,91,91,92,91,91,92,92,91,91,91,91,91,91,92,91,91,91,49,91,91,49,49,49,91,49,91,91,91,91,91,91,91,91,91,91,91,91,91,91,91,92,91,92,91,91,91,91,92,92,92,92,92,92,92,92,91,91,92,92,49,91,49,91,49,91,91,91,92,92,91,91,91,91,91,91,91,91,91,91,92,92,91,91,49,49,49,91,49,91,92,49,49,91,91,91,91,91,92,91,91,91,91,91,92,91,49,49,91,49,49,91,91,91,91,49,91,91,91,91,91,91,91,92,92,92,91,49,92,91,91,91,91,91,91,91,91,91,91,92,92,91,91,91,92, 'henkiloauto','Muu','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Muu','Joukkoliikenne','Muu','Muu','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Joukkoliikenne','Joukkoliikenne','henkiloauto','Muu','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Muu','henkiloauto','Muu','Muu','Muu','Muu','henkiloauto','Joukkoliikenne','Muu','henkiloauto','Joukkoliikenne','henkiloauto','henkiloauto','Joukkoliikenne','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','henkiloauto','Joukkoliikenne','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','henkiloauto','henkiloauto','Muu','henkiloauto','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','henkiloauto','Joukkoliikenne','henkiloauto','henkiloauto','Joukkoliikenne','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','henkiloauto','Joukkoliikenne','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Muu','henkiloauto','Joukkoliikenne','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','henkiloauto','henkiloauto','Muu','henkiloauto','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Joukkoliikenne','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','henkiloauto','Joukkoliikenne','Joukkoliikenne','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Joukkoliikenne','Joukkoliikenne','Muu','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','henkiloauto','henkiloauto','Joukkoliikenne','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','henkiloauto','henkiloauto','Joukkoliikenne','henkiloauto','Joukkoliikenne','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','henkiloauto','henkiloauto','Muu','Muu','Muu','henkiloauto','Joukkoliikenne','Muu','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Joukkoliikenne','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','henkiloauto','henkiloauto','Muu','Joukkoliikenne','Muu','Muu','Joukkoliikenne','Joukkoliikenne','Muu','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','henkiloauto','Joukkoliikenne','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','Muu','Joukkoliikenne','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Joukkoliikenne','henkiloauto','Muu','Joukkoliikenne','Muu','Joukkoliikenne','Joukkoliikenne','Muu','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','Muu','Muu','Muu','Muu','Joukkoliikenne','Joukkoliikenne','Muu','Joukkoliikenne','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','Muu','Muu','henkiloauto','Muu','henkiloauto','Muu','Muu','Muu','henkiloauto','henkiloauto','Muu','henkiloauto','Muu','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','Joukkoliikenne','Muu','henkiloauto','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','Muu','Muu','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','Muu','Muu','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','Muu','Muu','henkiloauto','Muu','Joukkoliikenne','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','Muu','Muu','henkiloauto','Muu','Muu','Joukkoliikenne','henkiloauto','Muu','Joukkoliikenne','Muu','Muu','henkiloauto','Joukkoliikenne','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','Joukkoliikenne','Muu','Muu','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','Muu','Muu','henkiloauto','Joukkoliikenne','Muu','Muu','henkiloauto','Joukkoliikenne','henkiloauto','henkiloauto','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','Muu','henkiloauto','henkiloauto','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','Muu','henkiloauto','Muu','Joukkoliikenne','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Joukkoliikenne','Muu','Muu','Joukkoliikenne','henkiloauto','Joukkoliikenne','Muu','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Joukkoliikenne','henkiloauto','henkiloauto','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','Muu','Muu','henkiloauto','Muu','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','Muu','henkiloauto','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','Muu','Muu','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','Joukkoliikenne','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Joukkoliikenne','Muu','henkiloauto','henkiloauto','Muu','Muu','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','henkiloauto','henkiloauto','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','Joukkoliikenne','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','henkiloauto','henkiloauto','Muu','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','Muu','Muu','Muu','henkiloauto','henkiloauto','Joukkoliikenne','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','henkiloauto','Muu','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','Joukkoliikenne','Muu','henkiloauto','Joukkoliikenne','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Joukkoliikenne','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','henkiloauto','Joukkoliikenne','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','henkiloauto','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Joukkoliikenne','henkiloauto','henkiloauto','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','henkiloauto','Muu','Muu','Muu','henkiloauto','Joukkoliikenne','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Joukkoliikenne','Muu','henkiloauto','Muu','henkiloauto','Joukkoliikenne','Joukkoliikenne','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Joukkoliikenne','henkiloauto','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Joukkoliikenne','henkiloauto','henkiloauto','Joukkoliikenne','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Muu','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','henkiloauto','Joukkoliikenne','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','Muu','Muu','henkiloauto','Muu','henkiloauto','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','henkiloauto','Joukkoliikenne','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','henkiloauto','Joukkoliikenne','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','Joukkoliikenne','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','henkiloauto','henkiloauto','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','Muu','henkiloauto','henkiloauto','Joukkoliikenne','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Muu','henkiloauto','henkiloauto','Muu','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Joukkoliikenne','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','Muu','Muu','henkiloauto','Joukkoliikenne','henkiloauto','Joukkoliikenne','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','henkiloauto','henkiloauto','Muu','Joukkoliikenne','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','Muu','henkiloauto','henkiloauto','Muu','Muu','Muu','henkiloauto','Muu','henkiloauto','Muu','Joukkoliikenne','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','henkiloauto','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','Joukkoliikenne','Muu','Muu','Joukkoliikenne','henkiloauto','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','henkiloauto','Muu','henkiloauto','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Joukkoliikenne','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','Muu','Muu','henkiloauto','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','Muu','henkiloauto','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','Muu','henkiloauto','Muu','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','Muu','henkiloauto','henkiloauto','Muu','Muu','Joukkoliikenne','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','henkiloauto','Muu','Muu','Muu','Muu','Muu','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','henkiloauto','henkiloauto','henkiloauto','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','Joukkoliikenne','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','Joukkoliikenne','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','henkiloauto','henkiloauto','Muu','Muu','Muu','Muu','Muu','Muu','Joukkoliikenne','Joukkoliikenne','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Joukkoliikenne','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','Joukkoliikenne','Joukkoliikenne','Muu','henkiloauto','henkiloauto','Joukkoliikenne','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto','Joukkoliikenne','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Muu','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','henkiloauto','Muu','Muu','Muu','henkiloauto','Muu','Joukkoliikenne','Joukkoliikenne','henkiloauto','henkiloauto','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Joukkoliikenne','Muu','Muu','Muu','Muu','Muu','Muu','Muu','henkiloauto', 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ) 224,48,1 48,24 2,102,90,476,224 2,280,23,618,618,0,MIDM 2,410,45,443,851,0,MIDM 65535,52427,65534 [Cols,Rows] [Cols,Rows] [0,0,1,0] cols ['Klo','Mista','Mihin','Kulkutapa','Count'] 224,80,1 48,12 rows 1..5697 224,104,1 48,12 2,40,50,416,303,0,MIDM Klo [0,0.2,0.4,0.6,0.8,1,1.2,1.4,1.6,1.8,2,2.2,2.4,2.6,2.8,3,3.2,3.4,3.6,3.8,4,4.2,4.4,4.6,4.8,5,5.2,5.4,5.6,5.8,6,6.2,6.4,6.6,6.8,7,7.2,7.4,7.6,7.8,8,8.2,8.4,8.6,8.8,9,9.2,9.4,9.6,9.8,10,10.2,10.4,10.6,10.8,11,11.2,11.4,11.6,11.8,12,12.2,12.4,12.6,12.8,13,13.2,13.4,13.6,13.8,14,14.2,14.4,14.6,14.8,15,15.2,15.4,15.6,15.8,16,16.2,16.4,16.6,16.8,17,17.2,17.4,17.6,17.8,18,18.2,18.4,18.6,18.8,19,19.2,19.4,19.6,19.8,20,20.2,20.4,20.6,20.8,21,21.2,21.4,21.6,21.8,22,22.2,22.4,22.6,22.8,23,23.2,23.4,23.6,23.8] 128,264,1 48,12 2,40,50,416,303,0,MIDM mdtable(Hlt2004_05,rows,cols,[Klo,Mista,Mihin,Kulkutapa]) 128,184,1 48,24 2,30,460,512,354 2,11,193,1143,303,0,MIDM [Kulkutapa,Mista] cartype ['VW','Honda','BMW'] 496,432,1 48,24 42598,42598,42598 col ['cartype','mpg','x'] 224,432,1 48,24 42598,42598,42598 mpg [26,30,35] 488,480,1 48,24 42598,42598,42598 row 1..7 216,480,1 48,24 42598,42598,42598 t Table(Col,Row)( 'VW','VW','Honda','Honda','BMW','BMW','BMW', 26,30,26,35,30,35,35, 2185,1705,2330,2210,2955,2800,2870 ) 120,432,1 48,24 2,536,546,518,262,0,MIDM 2,14,65,373,247,0,MIDM 42598,42598,42598 temp mdtable(t,row,col,[cartype,mpg],average','n/a'){missing ')'} 360,432,1 48,24 45875,45875,45875 x [1705,2185,2210,2330,2800,2870,2955] 480,528,1 48,24 42598,42598,42598 time_of_day_by_minutes Table(Klo)( 'Night','Night','Night','Night','Night','Night','Night','Night','Night','Night','Night','Night','Night','Night','Night','Night','Night','Night','Night','Night','Night','Night','Night','Night','Night','Night','Night','Night','Night','Night','Morning','Morning','Morning','Morning','Morning','Morning','Morning','Morning','Morning','Morning','Morning','Morning','Morning','Morning','Morning','Day','Day','Day','Day','Day','Day','Day','Day','Day','Day','Day','Day','Day','Day','Day','Day','Day','Day','Day','Day','Day','Day','Day','Day','Day','Day','Day','Day','Day','Day','Afternoon','Afternoon','Afternoon','Afternoon','Afternoon','Afternoon','Afternoon','Afternoon','Afternoon','Afternoon','Afternoon','Afternoon','Afternoon','Afternoon','Afternoon','Evening','Evening','Evening','Evening','Evening','Evening','Evening','Evening','Evening','Evening','Evening','Evening','Evening','Evening','Evening','Evening','Evening','Evening','Evening','Evening','Night','Night','Night','Night','Night','Night','Night','Night','Night','Night') 336,184,1 48,24 2,321,105,476,224 2,251,114,166,669,0,MIDM 2,219,64,338,748,0,MIDM 52425,39321,65535 Va4 var a:= if Time_of_day_by_minutes = Time_of_day then Va2 else 0; a:=sum(a,klo); a:= if a=0 then 0.1 else a 336,280,1 48,24 2,102,90,476,445 2,22,182,453,385,0,MIDM [Time_of_day,Mista] var a:= sum(sum(va2,mista),mihin); a:= if hour = round(klo-0.5) then a else 0; a:= sum(a,klo); if a= 0 then 1 else a 96,104,1 48,24 2,142,53,872,562,0,MIDM Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:10 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:3 Showkey:1 Xminimum:0 Xmaximum:24 Yminimum:0 Ymaximum:120 Zminimum:1 Zmaximum:3 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1, 1, 1, 1, 1, 0, 0, 0] Probindex:[5%, 25%, 50%, 75%, 95%] Arial, 8 [Hour,Kulkutapa] Other parts Contains functions, indexes, and nodes that are used in several modules, and log nodes. jtue 2. Aprta 2004 14:19 48,24 56,144,1 48,24 1,0,0,1,1,1,0,,0, 1,79,17,368,530,17 Choose flexible Flexible passengers mean those who are willing to start their trip 12 min earlier to improve the trip aggregation. This increases the volume of the time point (and respectively decreases it in the next time point), which has a positive net effect on trip aggregation. Choice(Flexible_fr,1,True) 296,88,1 48,16 [Formnode Choose_flexible1] 52425,39321,65535 ['item 1'] Choose large The areal coverage of composite traffic can be defined in two ways. First, all requested trips within a certain area will be organised (i.e. both the origin AND the destination are inside the area). Second, all trips in the metropolitan area will be organised, if either the origin OR the destination is inside the area. The latter is denoted 'Large guarantee' in the model. That approach could be used, if an important aim is to reduce the need for an own car by offering a service that can handle most trips for those people who live in the area. The first approach is the default in the model. Choice(Large,2,True) 296,56,0 48,16 1,1,1,1,1,1,0,0,0,0 [Formnode Choose_large1] 52425,39321,65535 ['item 1'] Choose nochange You can choose which nochange fraction(s) is (are) calculated. The number means the fraction of passengers that request a trip without a transfer. If you choose All, you will get a more thorough result, but it will take more memory and computation time, especially if 'Choose guar' or 'Choose period' are also All. Choice(Nochange_fr,1,True) 296,24,1 48,16 2,46,180,476,369 [Formnode Choose_nochange1] 52425,39321,65535 [Choose_comp,['item 1']] Mode The transport mode: either personal car or composite traffic. ['Car','Composite','Public'] 176,280,1 48,12 1,0,0,1,1,1,0,,0, 2,220,199,476,224 Trip length km The lengths of the trips shown as a frequency distribution. var comp:= aggr_period(All_trips); comp:= comp[Mode1='Composite']; var car:= comp[Mode1='Car']; var a:= array(Vehicle,[comp,0,0,0,0,car]); index length:= 1..50; for x[]:= length do ( var e:= if round(distances)=x then a else 0; e:= sum(sum(e,from),to1) ) 56,88,1 48,24 2,102,90,476,407 2,55,202,932,513,1,MIDM Zone The areas are classified into three categories: 1) downtown (downtown of Helsinki), 2) centre (other major centres within the Metropolitan area), and 3) suburb (all other areas). Table(Self)( 1,2,3) ['Downtown','Centre','Suburb'] 56,16,1 48,12 2,10,257,476,405 2,414,239,416,303,0,MIDM 52425,39321,65535 Traffic speed km/h Average speed of traffic. 40 56,312,1 48,24 2,93,231,476,322 65535,52427,65534 Vehicle Index of travel type (vehicle type including the number of changes). ['8','7','6','5','4','3','2','1','Õ8cÕ','Õ7cÕ','Õ6cÕ','Õ5cÕ','Õ4cÕ','Õ3cÕ','Õ2cÕ','Õ1cÕ','ÕCarÕ'] 176,192,1 48,12 1,1,1,1,1,1,0,,0, 2,186,152,476,399 General functions Functions that are used in several modules of this model, or in several models. It is therefore practical to place them into one module. jtue 2. Aprta 2004 14:47 48,24 56,200,1 48,24 1,109,108,-83,340,21 (in,out:prob;classes) Variation Toistaiseksi Variation1 ei toimi, jos classes on indeksi. TŠmŠn voi koettaa ratkaista siten, ettŠ tehdŠŠn isompi indeksi, jossa concatataan kaikki eripituiset varia-indeksit, sortataan suuruusjŠrjestykseen, ja slicataan pienemmŠt indeksit siihen. TŠmŠn lisŠksi tŠytyy linearinterp-funktiolla luoda puuttuviin kohtiin lukuja, jossa funktio kulkee nŠtisti. Nyt tŠtŠ ei ruveta tekemŠŠn. for x[]:= classes do ( index varia:= sequence(1/x,1,1/x); var c:= rank(sample(in),run); c:= ceil(c*x/samplesize)/x; var a:= if c=Varia then sample(out) else 0; var b:= if c=Varia then 1 else 0; a:= sum(a,run)/sum(b,run); if isnan(a) then 0 else a ) 168,208,1 48,24 2,57,16,476,648 in,out,classes (out:prob;deci:indextype;input:prob;input_ind:indextype;luokkia) VOI Versio 1. index a:= ['Total VOI']; index variable:= concat(a,input_ind); for x[]:= luokkia do ( index varia:= sequence(1/x,1,1/x); var in:= ceil(rank(input,run)*x/samplesize)/x; var ncuu:= min(mean(sample(out)),deci); var d:= (if a='Total VOI' then mean(min(sample(out),deci))-ncuu else 0); var evpi:= if in=Varia then out else 0; evpi:= sum(min(mean(evpi),deci),varia)-ncuu; concat(d,evpi,a,input_ind,variable) ) 56,208,1 48,24 2,474,71,476,546 out,deci,input,input_ind,luokkia Time unit h Time unit in hours. (Should equal the acceptable waiting time.) 1/(size(time)/24) 56,96,1 48,24 1,1,1,1,1,1,0,,0, 52425,39321,65535 (Trips,Delay) Time shift time units shifts travels forward and backward in time. This is the way how travel times are taken into account. Trips = number of trips traveled at each time point. Delay = Travel time as number of time units. If delay is negative, the result is earlier in time than Trip. Time_order = a helper variable containing the rank number of each time point. var time_order:= time/time_unit+1; var a:= Time_order-Delay; var b:= (if a >max(Time_order,time) or a< min(Time_order,time) then 1 else a); slice(Trips,time,b) 168,96,1 48,24 1,1,1,1,1,1,0,,0, 2,367,75,476,512 Trips,Delay (data) Clean rows index in1:= 1..size(data); var b:= slice(data,in1); var c:= unique(b,in1); b:= slice(b,in1,c); b:= slice(b,in1); c:= subset(istext(b)); b:= slice(b,in1,c); index a:= 1..size(b); slice(b,a) 168,32,1 48,24 2,102,90,476,389 data (d;roa:indextype) index etappi:= 1..max((textlength(d)+1)/5,roa); index a:= 1..size(d)*2; var c:= for x[]:= d do slice(Splittext(x,','),Etappi); c:= (if istext(c) then c else ''); var b:= c[Etappi=1]; var x:=2; while x<= size(Etappi) do ( b:= (if c[Etappi=x] = '' then b else c[Etappi=x] & ',' & b); x:= x+1); c:= concat(d,b,roa,roa,a); c 56,32,1 48,24 d,roa (a) Aggr period var b:= if time>=6 and time<20 then a else 0; b:= sum(b,time); var c:= if time>=20 and time<24 then a else 0; c:= sum(c,time); var d:= if time>=24 or time<6 then a else 0; d:= sum(d,time); array(period,[b,c,d]) 56,152,1 48,24 2,253,78,476,311 a (in,out:prob;classes) Variation Toistaiseksi Variation1 ei toimi, jos classes on indeksi. TŠmŠn voi koettaa ratkaista siten, ettŠ tehdŠŠn isompi indeksi, jossa concatataan kaikki eripituiset varia-indeksit, sortataan suuruusjŠrjestykseen, ja slicataan pienemmŠt indeksit siihen. TŠmŠn lisŠksi tŠytyy linearinterp-funktiolla luoda puuttuviin kohtiin lukuja, jossa funktio kulkee nŠtisti. Nyt tŠtŠ ei ruveta tekemŠŠn. for x[]:= classes do ( index varia:= sequence(1/x,1,1/x); var c:= rank(sample(in),run); c:= ceil(c*x/samplesize)/x; var a:= if c=Varia then sample(out) else 0; var b:= if c=Varia then 1 else 0; a:= sum(a,run)/sum(b,run); if isnan(a) then 0 else a ) 168,152,1 48,24 in,out,classes (param1,sigdigits) rounding var a:= floor(logten(param1)); var b:= param1/10^(a+1-sigdigits); round(b)*10^(a+1-sigdigits) 272,32,1 48,24 param1,sigdigits Profiling Use this library to see which variables and functions are taking most of the computation time when running your model. This library requires Analytica Enterprise, or ADE. It will not work for other versions of Analytica. Here's how to use the library: 1. First run your model, i.e. show (and therefore compute) results for the outputs you are interested in timing. 2. Click Timing "Result" button to show an array showing how long it took to evaluate each variable (in CPU seconds), ordered to show the largest times first. If you want to time additional calculations, added to existing timings. 3. Make those calculations by showing results for those variables. 4. Click button "Recompute Timings" 5. Click Timing "Result" button again. If you want to time additional calculations, starting from zero again. 6. Change relevant inputs to cause their dependents to need to be recomputed. 7. Click "Reset Timings" to set to zero. 8. Show results for outputs of interest. 9. Click Timing "Result" again to see new timings. Lonnie Chrisman Sun, Jul 13, 2003 12:18 PM indirect Sun, Sep 14, 2003 7:20 AM 48,24 56,144,1 48,24 1,1,1,1,1,1,0,0,0,0 1,433,261,-4801,266,21 2,90,44,476,224 (m: TextType) Descendant Objects Returns a list including module m and all its descendants, i.e. objects (variables, functions, and modules) contained in m - and in any modules it contains, recursively. VAR res := [m]; VAR c := contains OF (m); IFONLY IsUndef(c) THEN res ELSE BEGIN FOR v := c Do BEGIN VAR d := Descendant_objects(Identifier OF v); res := Concat(res, d); 0 END; res END 80,176,1 52,24 2,97,125,476,394 m 1 (m: TextType) Computation Profile sec Returns an array of the computation time (in seconds) taken to evaluate each variable (or user-defined function). Results exclude time spent evaluating each variable's inputs. Times are sorted in descending order to show the variables taking the most time at the top. The result is indexed by .objects, a local index containing only those variables with a nonzero computation time. This function is useful for profiling a computationally intensive model to find where the time is being spent. The time includes all time spent in computing each variable since the model was opened, or since the last call to "Reset Timings". INDEX allobjs := Descendant_Objects(m); VAR allTimings := (FOR obj:=allobjs DO EvaluationTime OF (obj)); INDEX UnsortedNodes := Subset(allTimings > 0); VAR timings := allTimings[allobjs = UnsortedNodes]; INDEX objects := sortIndex(-timings, UnsortedNodes); timings[UnsortedNodes = objects] 200,176,1 60,24 2,88,-2,481,571 m Timing profile CPU Sec Returns an array with the evaluation Time spent in each variable and function. /* First, determine which node is the "root" node of the model */ VAR m := Identifier OF (Isin OF Self); VAR top := WHILE (NOT IsUndef(Isin OF (m))) DO m := Identifier OF (Isin OF (m)); Computation_profile(top) 328,176,1 48,24 2,723,11,247,592,0,MIDM [Formnode Whole_model_computat, Formnode Timing_profile1] 1,F,10,3,0,0 Whole Model Computational Profile 1 256,40,1 124,16 1,0,0,1,0,0,0,72,0,1 Timing_profile (m: TextType) Computation Profile all sec Returns an array of the computation time (in seconds) taken to evaluate each variable (or user-defined function). Results exclude time spent evaluating each variable's inputs. Times are sorted in descending order to show the variables taking the most time at the top. The result is indexed by .objects, a local index containing only those variables with a nonzero computation time. This function is useful for profiling a computationally intensive model to find where the time is being spent. The time includes all time spent in computing each variable since the model was opened, or since the last call to "Reset Timings". INDEX allobjs := Descendant_Objects(m); VAR allTimings := (FOR obj:=allobjs DO EvaluationTimeAll OF (obj)); INDEX UnsortedNodes := Subset(allTimings > 0); VAR timings := allTimings[allobjs = UnsortedNodes]; INDEX objects := sortIndex(-timings, UnsortedNodes); timings[UnsortedNodes = objects] 200,240,1 60,24 2,102,90,529,521 m Timing profile all CPU Sec This displays the Time spent in each variable and function /* First, determine which node is the "root" node of the model */ VAR m := Identifier OF (Isin OF Self); VAR top := WHILE (NOT IsUndef(Isin OF (m))) DO m := Identifier OF (Isin OF (m)); Computation_profile_(top) 328,240,1 48,24 2,655,142,407,516,0,MIDM 1,F,10,3,0,0 From Area number of the origin. Equals the Area 129 coding (plus 1000) by Helsinki Metropolitan Area Council. 1001..1129 176,80,1 48,12 2,55,15,476,424 2,60,148,416,303,0,MIDM [Formnode Mista2] To Area number of the destination. Equals the Area 129 coding (plus 1000) by Helsinki Metropolitan Area Council. copyindex(From) 176,104,1 48,12 Reg An index for areal data tables. Transformed to 'From' index. 1001..1129 176,24,1 48,12 2,446,194,476,288 Reg1 An index for areal data tables. Transformed to 'To' index. 1001..1129 176,48,1 48,12 Area The number of area. Equals the Area 129 coding (plus 1000) by Helsinki Metropolitan Area Council. [1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1011,1012,1013,1014,1015,1016,1017,1018,1019,1020,1021,1022,1023,1024,1025,1026,1027,1028,1029,1030,1031,1032,1033,1034,1035,1036,1037,1038,1039,1040,1041,1042,1043,1044,1045,1046,1047,1048,1049,1050,1051,1052,1053,1054,1055,1056,1057,1058,1059,1060,1061,1062,1063,1064,1065,1066,1067,1068,1069,1070,1071,1072,1073,1074,1075,1076,1077,1078,1079,1080,1081,1082,1083,1084,1085,1086,1087,1088,1089,1090,1091,1092,1093,1094,1095,1096,1097,1098,1099,1100,1101,1102,1103,1104,1105,1106,1107,1108,1109,1110,1111,1112,1113,1114,1115,1116,1117,1118,1119,1120,1121,1122,1123,1124,1125,1126,1127,1128,1129,1130] 176,136,1 48,12 2,531,226,476,224 Region The names of the larger regions used in the model. ['+LŠnsi-Espoo','+Pohjois-Espoo','+EtelŠ-Espoo','+Keski-Espoo','+LŠnsi-Vantaa','+Keski-Vantaa','+Pohjois-Vantaa','+ItŠ-Vantaa','+Kanta-Helsinki','+LŠnsi-Helsinki','+Vanha-Helsinki','+Konalanseutu','+Pakilanseutu','+Malminseutu','+ItŠ-Helsinki'] 176,160,1 48,12 2,18,51,476,365 Composite traffic dummy The placeholder for the composite traffic. This is used when an argument is linked to composite traffic in general, and there is no obvious node to which it can be linked. 0 56,256,1 48,24 Periods Morning-day, evening, and night are looked at separately. table(period)(1,2,3) 56,48,1 48,12 52425,39321,65535 Vehicle_noch Index of travel type (vehicle type including the number of changes). This index is the same as Vehicle except that there is an additional row, No-change trips. This is the number of trips that are forced not to be divided into two parts. Note that these trips are included in other rows, and therefore this index must not be summed up. ['Bus no change','Bus one change','Cab no change','Cab one change','Cab non-full','Car','No-change'] 176,240,1 48,12 1,1,1,1,1,1,0,,0, Timing profile 1 176,472,1 160,12 1,0,0,1,0,0,0,72,0,1 Timing_profile Mista 0 176,448,1 160,12 1,0,0,1,0,0,0,72,0,1 From Subsidise groups? 0 172,348,1 156,12 1,0,0,1,0,0,0,72,0,1 Subsidise_groups_ Choose large 0 172,372,1 156,12 1,0,0,1,0,0,0,72,0,1 52425,39321,65535 Choose_large Choose nochange 0 172,396,1 156,12 1,0,0,1,0,0,0,72,0,1 52425,39321,65535 Choose_nochange Choose flexible 0 172,420,1 156,12 1,0,0,1,0,0,0,72,0,1 52425,39321,65535 Choose_flexible Road data This module creates the node Route matrix, which contains the driving instructions from all areas to all other areas. Distances calculates the distances (by road) between the areas. To make the construction of Route matrix as simple as possible for a new city, the roads are defined in the following way. First, the whole metropolitan are is divided into 15 regions, and these regions are further divided into 129 areas with 7300 inhabitants on average. The 129 areas are standard areas for urban planning, but the regions were formed for this particular purpose. The criteria for forming a region were that they 1) are exclusive and mutually exhaustive 2) are as large as possible without creating very unrealistic routes between areas. Routes are defined in a way that between any two regions, there is only one specific road that is used to cross the region borders (and travel the distance between the regions if they are not neighbours). It is thus necessary to describe the routes between all areas within each region, and the routes between all regions. However, then it is possible to deduce the detailed routes between two areas that are in different regions using these hierarchical instructions. The routes are described as lists of areas that are along the road between the origin and destination. The route description needs not be in full detail if the details between two areas are defined in Roads node. A minimum number of existing roads were selected so that the routes in the model would not be very unrealistic. This work was done manually with a map. Note that the absolute numbers of 'Average vehicle flow on the 30 most busy roads' are likely biased upwards because all traffic from smaller streets is packed to the major roads in the model. jtue 8. Aprta 2004 14:15 jtue 19. elota 2004 10:43 48,24 184,168,1 48,24 1,328,40,587,437,17 2,102,90,476,282 Arial, 13 Route matrix The complete route instruction matrix including all relevant information. var a:= Prematrix; index e:= 1..max(max((textlength(a)+1)/5,From),To1); var g:= for x[]:= a do slice(splittext(x,','),e); g:= if g=null then 'tyhjŠ' else g; var y:= 1; while y<=size(e)-1 do ( var x:= 1; while x<= size(Road_mirror) do ( var h:= Road_mirror[.a=x]; var b:= g[.e=y]; var c:= g[.e=y+1]; var d:= findintext(b,h); var f:= findintext(c,h); a:= if d>0 and f>0 and f>d then Textreplace(a,b&','&c,selecttext(h,d,f+3),true) else a; x:=x+1); y:=y+1); a 288,200,1 48,24 2,478,35,476,480 2,70,80,784,372,0,MIDM [To1,From] Distances km The length of each origin-destination trip. var b:= for x[]:= route_matrix do ( var a:= if findintext(links_1,x)>0 then link_length1 else 0; sum(a,links_1) ); b + in_area_distance[area1=From] + in_area_distance[area1=To1] 400,200,1 48,24 2,32,14,476,521 2,27,18,883,552,0,MIDM [To1,From] In-area distance km The distance that is travelled within an area collecting people before the actual trip to another area starts. Distances are rough estimates measured with a string and a ruler. This approach was considered exact enough, as the road structure is the same in all scenarios considered. Note that although not quite realistic, this value is the same for both composite and car traffic. Table(Area1)( 1,1,0.6,0.6,0.6,1,1,0.1,1,1,1,1,1.5,1.5,1,1,0.6,0.6,1,1,0.6,0.6,1,1.5,1.5,2.5,1.5,1.5,1.5,2.5,1.5,1.5,1.5,1.5,2.5,1.5,1.5,1.5,1.5,1,1.5,1.5,1.5,2.5,1.5,1,2.5,1.5,1.5,2.5,1.5,1,4,1.5,1.5,2.5,1.5,1.5,1,2.5,1.5,1.5,1.5,2.5,1.5,0.6,0.6,1.5,1.5,1.5,1.5,2.5,2.5,2.5,2.5,2.5,2.5,1.5,2.5,2.5,0.6,1.5,1.5,1.5,1.5,1,1.5,2.5,2.5,2.5,4,4,4,8,2.5,4,4,4,8,2.5,1.5,2.5,2.5,2.5,4,8,4,1.5,1.5,1.5,1,2.5,1.5,1.5,1.5,1.5,1.5,2.5,2.5,1.5,1.5,2.5,1.5,4,2.5,2.5,4,4,4,0) 400,32,1 48,24 2,148,93,416,561,0,MIDM 65535,52427,65534 Data based on a map of Helsinki Metropolitan area (YTV liikenne: PŠŠkaupunkiseudun joukkoliikennekartta 11.8.2002). Area name The name of each area. Table(Area1)( 'Kluuvi','Kamppi','Punavuori','Kaartinkaupunki','Kruunuhaka','Katajanokka','Kaivopuisto','Munkkisaari','Ruoholahti','Salmisaari','Etu-Tššlš','Taka-Tššlš','Meilahti','Ruskeasuo','LŠnsi-Pasila','Pohjois-Pasila','ItŠ-Pasila','Hakaniemi','Kallio','SšrnŠinen','Alppila','Vallila','Hermanni','Arabianranta','KŠpylŠ','Lauttasaari','Munkkiniemi','Munkkivuori','EtelŠ-Haaga','Pohjois-Haaga','PitŠjŠnmŠki','Konala','Malminkartano','KannelmŠki','Hakuninmaa','Maunula','Patola','LŠnsi-Pakila','PaloheinŠ','ItŠ-Pakila','PukinmŠki','Viikki','PihlajamŠki','Malmi','Malmin lentokenttŠ','Tapanila','Tapaninvainio','SiltamŠki','Tapulikaupunki','Puistola','JakomŠki','Kulosaari','Laajasalo','Roihuvuori','Herttoniemenranta','Herttoniemi','Puotila','Puotinharju','Myllypuro','Kontula','Vartioharju','MellunmŠki','Vuosaari','Kallahti','Niinisaari','Suomenlinna','Keilaniemi','Otaniemi','Tapiola','Pohjois-Tapiola','Niittykumpu','Mankkaa','Westend','MatinkylŠ','Olari','Iivisniemi','Suvisaaristo','Espoonlahti','Nšykkiš','Saunalahti','MŠkkylŠ','Lintuvaara','EtelŠ-LeppŠvaara','Laajalahti','SepŠnkylŠ','Kuninkainen','Karakallio','Laaksolahti','Viherlaakso','Kauniainen','Tuomarila','Muurala','Bembšle','Nuuksio','Kauklahti','Espoonkartano','Vanhakartano','RšylŠ','KalajŠrvi','HŠmeenkylŠ','Varisto','MyyrmŠki','Martinlaakso','Petikko','Kivistš','Seutula','Viinikkala','YlŠstš','Pakkala','Veromies','Helsinki airport','Koivuhaka','Tikkurila','Ruskeasanta','SimonkylŠ','Jokiniemi','Kuninkaala','Hakkila','PŠivŠkumpu','Havukoski','Rekola','KoivukylŠ','Ilola','Korso','Metsola','Jokivarsi','Sotunki','Hakunila','LŠnsimŠki','Vaihtopiste') 512,32,1 48,24 2,102,90,476,452 2,510,11,258,615,0,MIDM 65535,52427,65534 Modified names from the Area 129 coding by Helsinki Metropolitan Area Council. A dummy index. [1,2,3,4,5,6,7,8,9,10,11,12,13,14] 64,64,1 48,12 A dummy index. [1,2,3,4,5,6,7,8,9,10,11,12,13,14] 64,88,1 48,12 Roads A list of frequently used roads. The purpose of this node is to simplify definitions in nodes Routes outside and routes inside. Table(Self)( '1078,1076,1074,1073,1067,1010,1002,1001','1093,1085,1084,1028','1104,1032,1029,1028,1027,1013,1011,1002','1105,1103,1102,1035,1034,1030,1014,1012,1001','1123,1112,1109,1040,1025,1022,1020,1001,1002,1010','1125,1127,1128,1045,1042,1024,1025,1016,1014,1029','1062,1061,1058,1054,1055,1052,1020,1018,1001','1095,1093,1097,1104,1103,1107,1110,1109,1117,1128,1129','1067,1068,1084,1083,1032,1034,1038,1040,1041,1043,1045,1060,1058','1080,1078,1076,1074,1073,1067,1068','1096,1095,1093,1094','1090,1085,1084,1083,1082','1088,1087,1083,1084','1042,1041,1047,1048','1042,1043,1044,1046,1049','1052,1055,1054,1058,1057,1063,1065','1059,1060,1062,1065','1026,1010,1002,1001,1005,1006','1008,1003,1004,1001','1008,1003,1004,1005,1006','1032,1029,1014,1016,1025,1024') [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21] 288,32,1 48,24 2,166,156,470,457,0,MIDM 2,104,114,802,486,0,MIDM 65535,52427,65534 Data based on a map of Helsinki Metropolitan area (YTV liikenne: PŠŠkaupunkiseudun joukkoliikennekartta 11.8.2002). Routes outside Routes are defined in a way that between any two regions, there is only one route that is used. This route is described in this node. The route description needs not be in full detail, e.g. if a route between two areas is defined in Roads node, it is enough to define the start and end areas here. Table(In3,In4)( '+LŠnsi-Espoo,1093,1097,+Pohjois-Espoo',0,0,0,0,0,0,0,0,0,0,0,0,0, '+LŠnsi-Espoo,1093,1085,1074,+EtelŠ-Espoo','+Pohjois-Espoo,1097,1093,1085,1074,+EtelŠ-Espoo',0,0,0,0,0,0,0,0,0,0,0,0, '+LŠnsi-Espoo,1093,1085,+Keski-Espoo','+Pohjois-Espoo,1097,1093,1085,+Keski-Espoo','+EtelŠ-Espoo,1068,1084,+Keski-Espoo',0,0,0,0,0,0,0,0,0,0,0, '+LŠnsi-Espoo,1093,1104,+LŠnsi-Vantaa','+Pohjois-Espoo,1097,1104,+LŠnsi-Vantaa','+EtelŠ-Espoo,1068,1032,1104,+LŠnsi-Vantaa','+Keski-Espoo,1084,1032,1104,+LŠnsi-Vantaa',0,0,0,0,0,0,0,0,0,0, '+LŠnsi-Espoo,1093,1110,+Keski-Vantaa','+Pohjois-Espoo,1097,1104,1110,+Keski-Vantaa','+EtelŠ-Espoo,1068,1040,1109,+Keski-Vantaa','+Keski-Espoo,1084,1040,1109,+Keski-Vantaa','+LŠnsi-Vantaa,1107,1110,+Keski-Vantaa',0,0,0,0,0,0,0,0,0, '+LŠnsi-Espoo,1093,1128,1127,+Pohjois-Vantaa','+Pohjois-Espoo,1097,1128,1127,+Pohjois-Vantaa','+EtelŠ-Espoo,1068,1045,1127,+Pohjois-Vantaa','+Keski-Espoo,1084,1045,1127,+Pohjois-Vantaa','+LŠnsi-Vantaa,1107,1128,1127,+Pohjois-Vantaa','+Keski-Vantaa,1109,1128,1127,+Pohjois-Vantaa',0,0,0,0,0,0,0,0, '+LŠnsi-Espoo,1093,1128,+ItŠ-Vantaa','+Pohjois-Espoo,1097,1128,+ItŠ-Vantaa','+EtelŠ-Espoo,1068,1045,1128,+ItŠ-Vantaa','+Keski-Espoo,1084,1045,1128,+ItŠ-Vantaa','+LŠnsi-Vantaa,1107,1128,+ItŠ-Vantaa','+Keski-Vantaa,1109,1117,1128,+ItŠ-Vantaa','+Pohjois-Vantaa,1127,1128,+ItŠ-Vantaa',0,0,0,0,0,0,0, '+LŠnsi-Espoo,1093,1028,1011,+Kanta-Helsinki','+Pohjois-Espoo,1097,1104,1011,+Kanta-Helsinki','+EtelŠ-Espoo,1067,1010,+Kanta-Helsinki','+Keski-Espoo,1084,1028,1011,+Kanta-Helsinki','+LŠnsi-Vantaa,1102,1001,+Kanta-Helsinki','+Keski-Vantaa,1109,1001,+Kanta-Helsinki','+Pohjois-Vantaa,1127,1025,1001,+Kanta-Helsinki','+ItŠ-Vantaa,1128,1025,1001,+Kanta-Helsinki',0,0,0,0,0,0, '+LŠnsi-Espoo,1093,1028,+LŠnsi-Helsinki','+Pohjois-Espoo,1097,1104,1029,+LŠnsi-Helsinki','+EtelŠ-Espoo,1068,1084,1028,+LŠnsi-Helsinki','+Keski-Espoo,1084,1028,+LŠnsi-Helsinki','+LŠnsi-Vantaa,1102,1014,+LŠnsi-Helsinki','+Keski-Vantaa,1109,1025,1016,+LŠnsi-Helsinki','+Pohjois-Vantaa,1127,1016,+LŠnsi-Helsinki','+ItŠ-Vantaa,1128,1016,+LŠnsi-Helsinki','+Kanta-Helsinki,1001,1012,+LŠnsi-Helsinki',0,0,0,0,0, '+LŠnsi-Espoo,1093,1028,1029,1025,+Vanha-Helsinki','+Pohjois-Espoo,1097,1104,1029,1025,+Vanha-Helsinki','+EtelŠ-Espoo,1068,1032,1025,+Vanha-Helsinki','+Keski-Espoo,1084,1028,1029,1025,+Vanha-Helsinki','+LŠnsi-Vantaa,1102,1014,1025,+Vanha-Helsinki','+Keski-Vantaa,1109,1025,+Vanha-Helsinki','+Pohjois-Vantaa,1127,1024,+Vanha-Helsinki','+ItŠ-Vantaa,1128,1024,+Vanha-Helsinki','+Kanta-Helsinki,1001,1018,+Vanha-Helsinki','+LŠnsi-Helsinki,1016,1025,+Vanha-Helsinki',0,0,0,0, '+LŠnsi-Espoo,1093,1084,1032,+Konalanseutu','+Pohjois-Espoo,1097,1104,1032,+Konalanseutu','+EtelŠ-Espoo,1068,1032,+Konalanseutu','+Keski-Espoo,1084,1032,+Konalanseutu','+LŠnsi-Vantaa,1102,1035,+Konalanseutu','+Keski-Vantaa,1109,1040,1034,+Konalanseutu','+Pohjois-Vantaa,1127,1045,1034,+Konalanseutu','+ItŠ-Vantaa,1128,1045,1034,+Konalanseutu','+Kanta-Helsinki,1001,1030,+Konalanseutu','+LŠnsi-Helsinki,1014,1030,+Konalanseutu','+Vanha-Helsinki,1025,1014,1030,+Konalanseutu',0,0,0, '+LŠnsi-Espoo,1093,1084,1032,1038,+Pakilanseutu','+Pohjois-Espoo,1097,1104,1032,1038,+Pakilanseutu','+EtelŠ-Espoo,1068,1038,+Pakilanseutu','+Keski-Espoo,1084,1038,+Pakilanseutu','+LŠnsi-Vantaa,1102,1034,1038,+Pakilanseutu','+Keski-Vantaa,1109,1040,+Pakilanseutu','+Pohjois-Vantaa,1127,1045,1040,+Pakilanseutu','+ItŠ-Vantaa,1128,1045,1040,+Pakilanseutu','+Kanta-Helsinki,1001,1020,1040,+Pakilanseutu','+LŠnsi-Helsinki,1014,1030,1034,1038,+Pakilanseutu','+Vanha-Helsinki,1025,1040,+Pakilanseutu','+Konalanseutu,1034,1038,+Pakilanseutu',0,0, '+LŠnsi-Espoo,1093,1084,1041,+Malminseutu','+Pohjois-Espoo,1097,1104,1032,1041,+Malminseutu','+EtelŠ-Espoo,1068,1041,+Malminseutu','+Keski-Espoo,1084,1041,+Malminseutu','+LŠnsi-Vantaa,1102,1034,1041,+Malminseutu','+Keski-Vantaa,1109,1040,1041,+Malminseutu','+Pohjois-Vantaa,1127,1045,+Malminseutu','+ItŠ-Vantaa,1128,1045,+Malminseutu','+Kanta-Helsinki,1001,1020,1040,1041,+Malminseutu','+LŠnsi-Helsinki,1014,1030,1034,1041,+Malminseutu','+Vanha-Helsinki,1025,1040,1041,+Malminseutu','+Konalanseutu,1034,1041,+Malminseutu','+Pakilanseutu,1040,1041,+Malminseutu',0, '+LŠnsi-Espoo,1093,1084,1045,1060,+ItŠ-Helsinki','+Pohjois-Espoo,1097,1104,1032,1045,1060,+ItŠ-Helsinki','+EtelŠ-Espoo,1068,1045,1060,+ItŠ-Helsinki','+Keski-Espoo,1084,1045,1060,+ItŠ-Helsinki','+LŠnsi-Vantaa,1102,1034,1045,1060,+ItŠ-Helsinki','+Keski-Vantaa,1109,1040,1045,1060,+ItŠ-Helsinki','+Pohjois-Vantaa,1127,1045,1060,+ItŠ-Helsinki','+ItŠ-Vantaa,1128,1045,1060,+ItŠ-Helsinki','+Kanta-Helsinki,1001,1020,1052,+ItŠ-Helsinki','+LŠnsi-Helsinki,1014,1030,1034,1045,1060,+ItŠ-Helsinki','+Vanha-Helsinki,1020,1052,+ItŠ-Helsinki','+Konalanseutu,1034,1045,1060,+ItŠ-Helsinki','+Pakilanseutu,1040,1045,1060,+ItŠ-Helsinki','+Malminseutu,1045,1060,+ItŠ-Helsinki' ) 64,32,1 48,24 2,505,193,476,508 2,70,2,872,335,0,MIDM 2,198,39,805,439,0,MIDM 65535,52427,65534 [In3,In4] [In3,In4] Data based on a map of Helsinki Metropolitan area (YTV liikenne: PŠŠkaupunkiseudun joukkoliikennekartta 11.8.2002). Route list Changes the Routes outside into a one-dimensional list. var c:= if Routes_outside=0 then 0 else 1; c:= sum(sum(c,in3),in4); Index a:= 1..c; Index b:= ['In3','In4','Data']; var d:= Mdarraytotable(Routes_outside,a,b); d:= d[.b='Data']; d 64,136,1 48,24 2,102,90,476,297 2,214,56,537,610,0,MIDM Region explode 'Explodes' the regional route lists in a way that any driving instruction that applies to a region, applies also to all areas within the region. var b:= route_list; var x:= 1; while x<= size(Region) do ( {KŠy lŠpi jokainen alue} var c:= slice(Region,x); var d:= slice(Regions,x); var h:= b; var j:= size(b); d:= splittext(d,','); var y:= 1; while y<= size(b) do ( {KŠy lŠpi jokainen ajo-ohje} var f:= slice(h,y); f:= if Istext(f) then f else ''; (if findintext(c,f)>0 then ( f:= textreplace(f,c,d,true); {Korvaa ryhmŠaluenimet aluenimillŠ} b:= concat(b,f)) else 0); y:= y+1); x:= x+1); {TŠstŠ alkaa vanha Aluerajaytys_b} index In3:= 1..size(b); b:= slice(b, In3); b:= (if findintext('+',b)>0 then null else b); { HŠvitetŠŠn aluenimet var c:= unique(b,in3); Romauta kaikki toistuvat rivit b:= slice(b,in3,c); b:= slice(b,in3);} var c:= subset(istext(b)); {Romauta kaikki tyhjŠt rivit} b:= slice(b,in3,c); index in5:= 1..size(b); b:= slice(b,in5); {Poista reitistŠ samat toistuvat pisteet x:=1; while x<=size(mista) do ( c:= slice(mista,x)&''; b:= textreplace(b,c&','&c,c,true); x:=x+1 ); b} 64,200,1 48,24 2,102,90,476,590 2,10,11,474,620,0,MIDM Regions Describes the small areas that belong into each larger region. The region names must start with '+'. All areas must be mentioned exactly once. Regions were selected in a way that they are as large as possible without creating very unrealistic routes between areas. Table(Region)( '1091,1092,1093,1094,1095,1096','1097,1098,1099','1067,1068,1069,1070,1071,1073,1074,1075,1076,1077,1078,1079,1080','1072,1081,1082,1083,1084,1085,1086,1087,1088,1089,1090','1100,1101,1102,1103,1104,1105,1106,1107,1108','1109,1110,1111,1112,1113,1114,1115,1116,1123','1118,1119,1120,1121,1122,1124,1125,1126,1127','1117,1128,1129','1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1011,1026,1066','1012,1013,1014,1015,1016,1027,1028,1029','1017,1018,1019,1020,1021,1022,1023,1024,1025','1030,1031,1032,1033,1034,1035','1036,1037,1038,1039,1040','1041,1042,1043,1044,1045,1046,1047,1048,1049,1050,1051','1052,1053,1054,1055,1056,1057,1058,1059,1060,1061,1062,1063,1064,1065') 64,264,1 48,24 2,88,98,771,523,0,MIDM 2,20,224,651,394,0,MIDM 52425,39321,65535 Data based on a map of Helsinki Metropolitan area (YTV liikenne: PŠŠkaupunkiseudun joukkoliikennekartta 11.8.2002). Prematrix The crude route instruction matrix without the information from Routes inside and Roads nodes. var mirror2:= mirror(region_explode,region_explode.in5); var a:= mirror2; a:= evaluate(selecttext(a,1,4))*10000+evaluate(selecttext(a,textlength(a)-3)); index b:=a; index c:= [1]; index d:= 2..size(Mirror2.a); var e:= concat(c,d,c,d,b); e:= slice(Mirror2,Mirror2.a,e); e:= e[.b=From*10000+To1]; if e=null then From&','&To1 else e 176,200,1 48,24 2,102,90,476,586 2,408,52,759,604,0,MIDM [To1,From] 1,I,4,2,0,0 Road mirror 'Mirrors' the driving instructions in a way that if an instruction applies to 'from A to B', its reverse applies to 'from B to A'. index roa:= 1..size(route_list1)+size(roads); var a:= concat(roads,route_list1,roads,route_list1.a,roa); a:= mirror(a,roa); a:= clean_rows(a); var c:= for y[]:= a do ( var e:= (if findintext(y,a)>0 then 1 else 0); e:= sum(e,e.a)-1 ); a:= if c>0 then 0 else a; clean_rows(a) 288,136,1 48,24 2,102,90,476,409 2,219,-3,563,627,0,MIDM Routes inside Defines the routes between every two areas within a region. The route description needs not be in full detail, e.g. if a route between two areas is defined in Roads node, it is enough to define the start and end areas here. A minimum number of existing roads were selected so that the routes in the model would not be very unrealistic. This work was done manually with a map. Table(In3,In4,region)( '1091,1092','1097,1098','1067,1068','1072,1085,1084,1083,1081','1100,1101','1109,1110','1118,1127,1119','1117,1128','1001,1002','1012,1013','1017,1019,1018','1030,1034,1031','1036,1037','1041,1042','1052,1055,1053', 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, '1091,1092,1093','1097,1099','1067,1069','1072,1085,1084,1083,1082','1100,1101,1102','1109,1110,1111','1118,1120','1117,1128,1129','1001,1004,1003','1012,1014','1017,1019','1030,1034,1032','1036,1038','1041,1043','1052,1055,1054', '1092,1093','1098,1097,1099','1068,1069','1081,1082','1101,1102','1110,1111','1119,1127,1120','1128,1129','1002,1004,1003','1013,1014','1018,1019','1031,1032','1037,1036,1038','1042,1043','1053,1055,1054', 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, '1091,1092,1093,1094',0,'1067,1073,1070','1072,1085,1084,1083','1100,1104,1103','1109,1112','1118,1120,1121','1117,1130','1001,1004','1012,1015','1017,1020','1030,1034,1032,1033','1036,1038,1039','1041,1044','1052,1055', '1092,1093,1094',0,'1068,1070','1081,1083','1101,1103','1110,1109,1112','1119,1121','1128,1130','1002,1004','1013,1015','1018,1020','1031,1032,1033','1037,1040,1039','1042,1043,1044','1053,1055', '1093,1094',0,'1069,1070','1082,1083','1102,1103','1111,1112','1120,1121','1129,1130','1003,1004','1014,1016,1015','1019,1020','1032,1033','1038,1039','1043,1044','1054,1055', 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, '1091,1092,1095',0,'1067,1073,1071','1072,1085,1084','1100,1104','1109,1113','1118,1120,1122',0,'1001,1005','1012,1015,1016','1017,1021','1030,1034','1036,1038,1040','1041,1043,1045','1052,1055,1056', '1092,1095',0,'1068,1070,1071','1081,1083,1084','1101,1104','1110,1109,1113','1119,1121,1122',0,'1002,1001,1005','1013,1015,1016','1018,1019,1021','1031,1034','1037,1040','1042,1045','1053,1055,1056', '1093,1095',0,'1069,1071','1082,1083,1084','1102,1101,1104','1111,1110,1109,1113','1120,1122',0,'1003,1004,1005','1014,1016','1019,1021','1032,1034','1038,1040','1043,1045','1054,1056', '1094,1093,1095',0,'1070,1071','1083,1084','1103,1104','1112,1113','1121,1122',0,'1004,1005','1015,1016','1020,1021','1033,1032,1034','1039,1040','1044,1043,1045','1055,1056', 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, '1091,1092,1095,1096',0,'1067,1073','1072,1085','1100,1104,1103,1105','1109,1112,1114','1118,1120,1121,1124',0,'1001,1005,1006','1012,1013,1027','1017,1022','1030,1034,1035',0,'1041,10441046','1052,1055,1054,1058,1057', '1092,1095,1096',0,'1068,1067,1073','1081,1083,1084,1085','1101,1103,1105','1110,1109,1112,1114','1119,1121,1124',0,'1002,1001,1005,1006','1013,1027','1018,1020,1022','1031,1034,1035',0,'1042,1043,10441046','1053,1055,1054,1058,1057', '1093,1095,1096',0,'1069,1073','1082,1083,1084,1085','1102,1103,1105','1111,1110,1109,1112,1114','1120,1121,1124',0,'1003,1004,1005,1006','1014,1013,1027','1019,1022','1032,1035',0,'1043,1044,1046','1054,1058,1057', '1094,1093,1095,1096',0,'1070,1073','1083,1084,1085','1103,1105','1112,1114','1121,1124',0,'1004,1006','1015,1027','1020,1022','1033,1032,1035',0,'1044,1046','1055,1054,1058,1057', '1095,1096',0,'1071,1073','1084,1085','1104,1103,1105','1113,1114','1122,1121,1124',0,'1005,1006','1016,1015,1013,1027','1021,1022','1034,1035',0,'1045,1044,1046','1056,1054,1058,1057', 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,'1067,1073,1074','1072,1085,1086','1100,1104,1103,1106','1109,1113,1115','1118,1127,1125',0,'1001,1004,1007','1012,1013,1027,1028','1017,1022,1023','1030,1014',0,'1041,1047','1052,1055,1054,1058', 0,0,'1068,1067,1073,1074','1081,1083,1086','1101,1103,1106','1110,1109,1113,1115','1119,1126,1125',0,'1002,1004,1007','1013,1027,1028','1018,1020,1023','1031,1029,1014',0,'1042,1041,1047','1053,1055,1054,1058', 0,0,'1069,1073,1074','1082,1086','1102,1103,1106','1111,1110,1109,1113,1115','1120,1121,1125',0,'1003,1007','1014,1029,1028','1019,1022,1023','1032,1029,1014',0,'1043,1041,1047','1054,1058', 0,0,'1070,1073,1074','1083,1086','1103,1106','1112,1115','1121,1125',0,'1004,1007','1015,1013,1027,1028','1020,1023','1033,1032,1029,1014',0,'1044,1047','1055,1054,1058', 0,0,'1071,1074','1084,1086','1104,1103,1106','1113,1115','1122,1121,1125',0,'1005,1007','1016,1014,1029,1028','1021,1022,1023','1034,1030,1014',0,'1045,1044,1047','1056,1054,1058', 0,0,'1073,1074','1085,1086','1105,1106','1114,1115','1124,1125',0,'1006,1005,1007','1027,1028','1022,1023','1035,1034,1030,1014',0,'1046,1047','1057,1058', 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,'1067,1073,1074,1075','1072,1085,1086,1087','1100,1104,1103,1107','1109,1113,1116','1118,1127,1125,1126',0,'1001,1004,1003,1008','1012,1014,1029','1017,1025,1024',0,0,'1041,1047,1048','1052,1055,1054,1059', 0,0,'1068,1067,1073,1074,1075','1081,1083,1087','1101,1103,1107','1110,1109,1113,1116','1119,1126',0,'1002,1004,1003,1008','1013,1027,1028,1029','1018,1020,1023,1024',0,0,'1042,1041,1047,1048','1053,1055,1054,1059', 0,0,'1069,1073,1074,1075','1082,1087','1102,1107','1111,1110,1109,1113,1116','1120,1121,1125,1126',0,'1003,1008','1014,1029','1019,1022,1023,1024',0,0,'1043,1041,1047,1048','1054,1059', 0,0,'1070,1073,1074,1075','1083,1087','1103,1107','1112,1115,1116','1121,1125,1126',0,'1004,1008','1015,1016,1014,1029','1020,1023,1024',0,0,'1044,1047,1048','1055,1054,1059', 0,0,'1071,1074,1075','1084,1086,1087','1104,1103,1107','1113,1116','1122,1121,1125,1126',0,'1005,1008','1016,1014,1029','1021,1022,1023,1024',0,0,'1045,1044,1047,1048','1056,1059', 0,0,'1073,1074,1075','1085,1086,1087','1105,1103,1107','1114,1115,1116','1124,1125,1126',0,'1006,1008','1027,1028,1029','1022,1023,1024',0,0,'1046,1048','1057,1060,1059', 0,0,'1074,1075','1086,1087','1106,1103,1107','1115,1116','1125,1126',0,'1007,1003,1008','1028,1029','1023,1024',0,0,'1047,1048','1058,1059', 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,'1067,1073,1074,1076','1072,1085,1090,1089,1088','1100,1104,1103,1108','1109,1112,1123','1118,1127',0,'1001,1002,1009',0,'1017,1025',0,0,'1041,1044,1046,1049','1052,1055,1054,1058,1060', 0,0,'1068,1067,1073,1074,1076','1081,1083,1087,1088','1101,1103,1108','1110,1109,1112,1123','1119,1127',0,'1002,1009',0,'1018,1020,1022,1025',0,0,'1042,1043,1044,1046,1049','1053,1055,1054,1058,1060', 0,0,'1069,1073,1074,1076','1082,1087,1088','1102,1108','1111,1110,1109,1112,1123','1120,1127',0,'1003,1009',0,'1019,1022,1025',0,0,'1043,1044,1046,1049','1054,1058,1060', 0,0,'1070,1073,1074,1076','1083,1087,1088','1103,1108','1112,1123','1121,1120,1127',0,'1004,1009',0,'1020,1022,1025',0,0,'1044,1046,1049','1055,1054,1058,1060', 0,0,'1071,1074,1076','1084,1083,1087,1088','1104,1103,1108','1113,1112,1123','1122,1120,1127',0,'1005,1004,1009',0,'1021,1025',0,0,'1045,1044,1046,1049','1056,1059,1060', 0,0,'1073,1074,1076','1085,1090,1089,1088','1105,1103,1108','1114,1123','1124,1125,1127',0,'1006,1005,1004,1009',0,'1022,1025',0,0,'1046,1049','1057,1060', 0,0,'1074,1076','1086,1087,1088','1106,1103,1108','1115,1114,1123','1125,1127',0,'1007,1003,1009',0,'1023,1022,1025',0,0,'1047,1046,1049','1058,1060', 0,0,'1075,1076','1087,1088','1107,1108','1116,1115,1114,1123','1126,1127',0,'1008,1003,1009',0,'1024,1025',0,0,'1048,1049','1059,1060', 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,'1067,1073,1074,1076,1077','1072,1085,1090,1089',0,0,0,0,'1001,1002,1010',0,0,0,0,'1041,1043,1050','1052,1055,1054,1058,1061', 0,0,'1068,1067,1073,1074,1076,1077','1081,1083,1087,1089',0,0,0,0,'1002,1010',0,0,0,0,'1042,1043,1050','1053,1055,1054,1058,1061', 0,0,'1069,1073,1074,1076,1077','1082,1087,1089',0,0,0,0,'1003,1010',0,0,0,0,'1043,1050','1054,1058,1061', 0,0,'1070,1073,1074,1076,1077','1083,1087,1089',0,0,0,0,'1004,1010',0,0,0,0,'1044,1046,1050','1055,1054,1058,1061', 0,0,'1071,1074,1076,1077','1084,1083,1087,1089',0,0,0,0,'1005,1001,1002,1010',0,0,0,0,'1045,1050','1056,1054,1058,1061', 0,0,'1073,1074,1076,1077','1085,1090,1089',0,0,0,0,'1006,1005,1001,1002,1010',0,0,0,0,'1046,1050','1057,1061', 0,0,'1074,1076,1077','1086,1087,1089',0,0,0,0,'1007,1003,1010',0,0,0,0,'1047,1046,1050','1058,1061', 0,0,'1075,1076,1077','1087,1089',0,0,0,0,'1008,1003,1010',0,0,0,0,'1048,1046,1050','1059,1060,1061', 0,0,'1076,1077','1088,1089',0,0,0,0,'1009,1010',0,0,0,0,'1049,1050','1060,1061', 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,'1067,1073,1074,1076,1078','1072,1085,1090',0,0,0,0,'1001,1002,1011',0,0,0,0,'1041,1043,1045,1051','1052,1055,1054,1058,1061,1062', 0,0,'1068,1067,1073,1074,1076,1078','1081,1083,1084,1085,1090',0,0,0,0,'1002,1011',0,0,0,0,'1042,1045,1051','1053,1055,1054,1058,1061,1062', 0,0,'1069,1073,1074,1076,1078','1082,1083,1084,1085,1090',0,0,0,0,'1003,1002,1011',0,0,0,0,'1043,1045,1051','1054,1058,1061,1062', 0,0,'1070,1073,1074,1076,1078','1083,1084,1085,1090',0,0,0,0,'1004,1002,1011',0,0,0,0,'1044,1043,1045,1051','1055,1054,1058,1061,1062', 0,0,'1071,1074,1076,1078','1084,1085,1090',0,0,0,0,'1005,1001,1002,1011',0,0,0,0,'1045,1051','1056,1054,1058,1061,1062', 0,0,'1073,1074,1076,1078','1085,1090',0,0,0,0,'1006,1005,1001,1002,1011',0,0,0,0,'1046,1050,1051','1057,1061,1062', 0,0,'1074,1076,1078','1086,1090',0,0,0,0,'1007,1003,1002,1011',0,0,0,0,'1047,1046,1050,1051','1058,1061,1062', 0,0,'1075,1076,1078','1087,1089,1090',0,0,0,0,'1008,1003,1002,1011',0,0,0,0,'1048,1046,1050,1051','1059,1060,1062', 0,0,'1076,1078','1088,1089,1090',0,0,0,0,'1009,1002,1011',0,0,0,0,'1049,1050,1051','1060,1062', 0,0,'1077,1078','1089,1090',0,0,0,0,'1010,1002,1011',0,0,0,0,'1050,1051','1061,1062', 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,'1067,1073,1074,1076,1079',0,0,0,0,0,'1001,1002,1010,1026',0,0,0,0,0,'1052,1055,1054,1058,1057,1063', 0,0,'1068,1067,1073,1074,1076,1079',0,0,0,0,0,'1002,1010,1026',0,0,0,0,0,'1053,1055,1054,1058,1057,1063', 0,0,'1069,1073,1074,1076,1079',0,0,0,0,0,'1003,1010,1026',0,0,0,0,0,'1054,1058,1057,1063', 0,0,'1070,1073,1074,1076,1079',0,0,0,0,0,'1004,1010,1026',0,0,0,0,0,'1055,1054,1058,1057,1063', 0,0,'1071,1074,1076,1079',0,0,0,0,0,'1005,1001,1002,1010,1026',0,0,0,0,0,'1056,1054,1058,1057,1063', 0,0,'1073,1074,1076,1079',0,0,0,0,0,'1006,1005,1001,1002,1010,1026',0,0,0,0,0,'1057,1063', 0,0,'1074,1076,1079',0,0,0,0,0,'1007,1003,1010,1026',0,0,0,0,0,'1058,1057,1063', 0,0,'1075,1076,1079',0,0,0,0,0,'1008,1003,1010,1026',0,0,0,0,0,'1059,1060,1057,1063', 0,0,'1076,1079',0,0,0,0,0,'1009,1010,1026',0,0,0,0,0,'1060,1057,1063', 0,0,'1077,1076,1079',0,0,0,0,0,'1010,1026',0,0,0,0,0,'1061,1057,1063', 0,0,'1078,1079',0,0,0,0,0,'1011,1002,1010,1026',0,0,0,0,0,'1062,1063', 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,'1067,1073,1074,1076,1078,1080',0,0,0,0,0,'1001,1005,1066',0,0,0,0,0,'1052,1055,1054,1058,1057,1063,1064', 0,0,'1068,1067,1073,1074,1076,1078,1080',0,0,0,0,0,'1002,1001,1005,1066',0,0,0,0,0,'1053,1055,1054,1058,1057,1063,1064', 0,0,'1069,1073,1074,1076,1078,1080',0,0,0,0,0,'1003,1004,1005,1066',0,0,0,0,0,'1054,1058,1057,1063,1064', 0,0,'1070,1073,1074,1076,1078,1080',0,0,0,0,0,'1004,1005,1066',0,0,0,0,0,'1055,1054,1058,1057,1063,1064', 0,0,'1071,1074,1076,1078,1080',0,0,0,0,0,'1005,1066',0,0,0,0,0,'1056,1054,1058,1057,1063,1064', 0,0,'1073,1074,1076,1078,1080',0,0,0,0,0,'1006,1005,1066',0,0,0,0,0,'1057,1063,1064', 0,0,'1074,1076,1078,1080',0,0,0,0,0,'1007,1005,1066',0,0,0,0,0,'1058,1057,1063,1064', 0,0,'1075,1076,1078,1080',0,0,0,0,0,'1008,1003,1004,1005,1066',0,0,0,0,0,'1059,1060,1057,1063,1064', 0,0,'1076,1078,1080',0,0,0,0,0,'1009,1002,1001,1005,1066',0,0,0,0,0,'1060,1057,1063,1064', 0,0,'1077,1078,1080',0,0,0,0,0,'1010,1002,1001,1005,1066',0,0,0,0,0,'1061,1057,1063,1064', 0,0,'1078,1080',0,0,0,0,0,'1011,1002,1001,1005,1066',0,0,0,0,0,'1062,1063,1064', 0,0,'1079,1080',0,0,0,0,0,'1026,1010,1002,1001,1005,1066',0,0,0,0,0,'1063,1064', 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,'1052,1055,1054,1058,1057,1063,1065', 0,0,0,0,0,0,0,0,0,0,0,0,0,0,'1053,1055,1054,1058,1057,1063,1065', 0,0,0,0,0,0,0,0,0,0,0,0,0,0,'1054,1058,1057,1063,1065', 0,0,0,0,0,0,0,0,0,0,0,0,0,0,'1055,1054,1058,1057,1063,1065', 0,0,0,0,0,0,0,0,0,0,0,0,0,0,'1056,1054,1058,1057,1063,1065', 0,0,0,0,0,0,0,0,0,0,0,0,0,0,'1057,1063,1065', 0,0,0,0,0,0,0,0,0,0,0,0,0,0,'1058,1057,1063,1065', 0,0,0,0,0,0,0,0,0,0,0,0,0,0,'1059,1060,1062,1065', 0,0,0,0,0,0,0,0,0,0,0,0,0,0,'1060,1062,1065', 0,0,0,0,0,0,0,0,0,0,0,0,0,0,'1061,1062,1065', 0,0,0,0,0,0,0,0,0,0,0,0,0,0,'1062,1065', 0,0,0,0,0,0,0,0,0,0,0,0,0,0,'1063,1065', 0,0,0,0,0,0,0,0,0,0,0,0,0,0,'1064,1065', 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ) 176,32,1 48,24 2,109,4,872,346,0,MIDM 2,184,194,805,439,0,MIDM 65535,52427,65534 [In3,In4] [Region,In3] Data based on a map of Helsinki Metropolitan area (YTV liikenne: PŠŠkaupunkiseudun joukkoliikennekartta 11.8.2002). Route list Changes the Routes inside into a one-dimensional list. var c:= if Routes_inside=0 then 0 else 1; c:= sum(sum(sum(c,in3),in4),region); Index f:= 1..c; Index b:= ['Region','In3','In4','Data']; var d:= Mdarraytotable(Routes_inside,f,b); d:= d[.b='Data']; d:= if textlength(d)=9 then 0 else d; clean_rows(d) 176,136,1 48,24 2,283,96,476,346 2,49,13,370,610,0,MIDM Link length km The distance between two areas. Distances are rough estimates measured with a string and a ruler. This approach was considered exact enough, as the road structure is the same in all scenarios considered. Table(Links_1)( 0,0.8,1,0.6,1.7,1.1,1.2,1.5,1.7,1.2,0.8,0.8,0.8,2.1,2.9,2.2,1.1,0.8,3,2.4,1.1,1.3,3.3,1.7,9999,9999,3,5.4,2.8,3,3.6,3,2,2.6,1,9999,1.6,9999,1.2,1.4,1,9999,9999,1,9999,2.3,2.2,1.1,1.6,1.8,9999,1.1,1.4,1.2,1,1.1,1.7,0.8,0.9,9999,2.4,1.6,2.3,0.4,1.8,2.4,1.9,2.5,9999,9999,4,0.8,9999,1.3,9999,3.7,9999,2.8,1.8,1.9,2.5,2.4,2.1,2.8,3.4,5.6,1.4,1.7,9999,1.8,1.8,0.8,2.6,2.7,1.2,2.2,2.8,5.3,1.9,1.3,1.4,2.3,2,2,1.4,1.2,4.6,3.2,1.7,1.8,4,2.9,9999,9999,9999,9999,9999,9999,9999,2.2,9999,9999,9999,9999,9999,5,2.4,3.6,1.4,2.4,1.6,3,3.2,2,1.5,1.5,2.1,1.2,1.1,2.6,9999,1.7,9999,9999,2.6,1,2.2,1.3,2.6,2.7,2.6,1.9,1.1,2.5,4,2,3,9999,3,1.3,2.7,3.2,2.6,1.7,1.1,2,0.9,2.8,1.6,2.4,1.5,2.8,1.7,2.7,1.3,1.5,3,2.8,2.7,5,2.2,3.8,4.2,3.4,5.2,4.7,1.1,5.5,1,0.9,1.2,9999,3,2.9,1.1,2.8,2.3,3.3,3,3,2.1,6.8,1.5,4.1,3.2,2,1.7,2,1.4,3.2,4.8,3.6,5.8,6.8,2.3,5.2,8.7,4.2,1.6,3.4,9999,3,5.4,4.1,3.6,5.9,5.4,3.6,2,6.8,1.6,3,6.2,2.1,4.2,1.4,2.3,4,3.6,2.8,9999,3.4,2,3.8,9999,1.8,3.4,1.8,2,9999,3.2,9999,1.5,1.2,9999,9999,9999,2.5,4.1,3,3,9999,2.9,2.3,2.2,1.8,2,1.6,2.4,3.5,2,0.9,4.7,3.6,2.8) 400,112,1 48,24 2,743,190,227,419,0,MIDM 2,288,18,177,576,0,MIDM 65535,52427,65534 1,D,4,2,0,0 Data based on a map of Helsinki Metropolitan area (YTV liikenne: PŠŠkaupunkiseudun joukkoliikennekartta 11.8.2002). Index showing the direct links that exist in reality, i.e. excluding those routes from one area to another where you have to go through a third area. ['1001,1001','1001,1002','1001,1004','1001,1005','1001,1012','1001,1018','1002,1003','1002,1004','1002,1009','1002,1010','1002,1011','1003,1004','1003,1007','1003,1008','1003,1009','1003,1010','1004,1005','1004,1007','1004,1009','1004,1010','1005,1006','1005,1007','1005,1066','1009,1010','1009,1085','1009,1089','1010,1026','1010,1067','1011,1013','1012,1013','1012,1014','1012,1015','1013,1014','1013,1015','1013,1027','1013,1030','1014,1016','1014,1017','1014,1029','1014,1030','1015,1016','1015,1017','1015,1030','1016,1025','1016,1030','1017,1019','1017,1020','1017,1021','1017,1022','1017,1025','1017,1027','1018,1019','1018,1020','1019,1020','1019,1021','1019,1022','1020,1021','1020,1022','1020,1023','1020,1028','1020,1052','1021,1022','1021,1025','1022,1023','1022,1025','1023,1024','1024,1025','1024,1042','1025,1028','1025,1032','1025,1040','1027,1028','1027,1030','1028,1029','1028,1030','1028,1084','1029,1030','1029,1032','1030,1034','1031,1032','1031,1034','1032,1033','1032,1034','1032,1035','1032,1083','1032,1104','1034,1035','1034,1038','1034,1109','1035,1102','1036,1037','1036,1038','1037,1040','1038,1039','1038,1040','1039,1040','1040,1041','1040,1109','1041,1042','1041,1043','1041,1044','1041,1047','1042,1043','1042,1045','1043,1044','1043,1045','1043,1050','1044,1045','1044,1046','1044,1047','1045,1050','1045,1051','1045,1052','1045,1053','1045,1054','1045,1055','1045,1056','1045,1057','1045,1059','1045,1060','1045,1061','1045,1062','1045,1063','1045,1064','1045,1065','1045,1128','1046,1047','1046,1048','1046,1049','1046,1050','1047,1048','1048,1049','1049,1050','1050,1051','1052,1055','1053,1055','1054,1055','1054,1056','1054,1058','1054,1059','1054,1061','1055,1056','1055,1058','1055,1061','1056,1059','1057,1058','1057,1060','1057,1061','1057,1063','1058,1059','1058,1060','1058,1061','1059,1060','1060,1061','1060,1062','1061,1062','1062,1063','1062,1064','1062,1065','1063,1064','1063,1065','1064,1065','1067,1068','1067,1069','1067,1073','1068,1069','1068,1070','1068,1084','1069,1070','1069,1071','1069,1073','1070,1071','1070,1073','1071,1073','1071,1074','1072,1085','1073,1074','1074,1075','1074,1076','1074,1085','1075,1076','1076,1077','1076,1078','1076,1079','1077,1078','1078,1079','1078,1080','1079,1080','1081,1082','1081,1083','1082,1083','1082,1084','1082,1086','1082,1087','1083,1084','1083,1086','1083,1087','1084,1085','1084,1086','1085,1086','1085,1090','1085,1093','1086,1087','1086,1090','1087,1088','1087,1089','1088,1089','1089,1090','1091,1092','1092,1093','1092,1095','1093,1094','1093,1095','1093,1097','1095,1096','1097,1098','1097,1099','1097,1104','1100,1101','1100,1104','1100,1111','1101,1102','1101,1103','1101,1104','1102,1103','1102,1107','1102,1108','1103,1104','1103,1105','1103,1106','1103,1107','1103,1108','1105,1106','1107,1108','1107,1110','1109,1110','1109,1112','1109,1113','1109,1117','1110,1111','1111,1117','1112,1113','1112,1114','1112,1115','1112,1117','1112,1123','1113,1114','1113,1115','1113,1116','1113,1117','1114,1115','1114,1117','1114,1123','1115,1116','1115,1117','1116,1117','1117,1123','1117,1128','1118,1120','1118,1127','1119,1121','1119,1125','1119,1126','1119,1127','1120,1121','1120,1122','1120,1127','1121,1122','1121,1124','1121,1125','1124,1125','1125,1126','1125,1127','1127,1128','1128,1129'] 400,144,1 48,12 1,D,4,2,0,0 For creating Links_1 This module is only for creating the index Links_1, and now when the index has been created, these nodes are no longer needed. ktluser 3. marta 2004 16:37 48,24 400,264,1 48,24 1,552,37,418,332,17 Link var x:= 1; var a:= slice(From,x)*10000+From; while x<size(From) do ( x:= x+1; var b:= slice(From,x)*10000+From; a:= concat(a,b) ) 64,64,1 48,12 2,146,145,416,303,0,MIDM 1,I,4,2,0,0 Links var d:= if istext(bus_routes) then bus_routes else ''; var a:=From&','&To1; var c:= for x[]:= a do ( var b:= if findintext(x,d)>0 then 1 else 0; sum(sum(b,From),To1) ); c:= c[From=floor(link/10000),To1=(link-floor(link/10000)*10000)]; c:= if c>0 then link else 0; c 64,32,1 48,24 2,9,185,476,283 2,44,74,598,624,0,MIDM [To1,From] 1,I,4,2,0,0 var c:= if floor(link/10000)>=(link-floor(link/10000)*10000) then 0 else links1; c:= unique(c,link); index b:= 1..size(c); c:= slice(c,b); floor(c/10000)&','&c-floor(c/10000)*10000 176,32,1 48,24 2,622,435,593,440,0,MIDM Link_teko2 var a:= max(distances,To1); link_teko; a 288,32,1 48,24 2,216,156,476,436 2,104,114,302,484,0,MIDM Bus route ends This is a list of bus route endstops. Table(Self,R_t)( '1005,1025','day2/h', '1003,1025','day2/h', '1006,1027','day2/h', '1002,1024','day2/h', '1010,1022','day2/h', '1007,1029','day2/h', '1009,1010','day2/h', '1009,1001','day2/h', '1002,1026','day2/h', '1010,1025','day2/h', '1001,1036','day2/h', '1001,1039','day2/h', '1001,1040','day2/h', '1026,1037','day2/h', '1026,1039','day2/h', '1001,1044','day2/h', '1044,1049','day2/h', '1055,1056','day2/h', '1055,1053','day2/h', '1063,1064','day2/h', '1058,1059','day2/h', '1058,1060','day2/h', '1058,1062','day2/h', '1058,1064','day2/h', '1002,1068','day2/h', '1002,1073','day2/h', '1002,1074','day2/h', '1002,1075','day2/h', '1002,1079','day2/h', '1002,1077','day2/h', '1002,1078','day2/h', '1001,1097','day2/h', '1001,1099','day2/h', '1001,1102','day2/h', '1001,1103','day2/h', '1058,1083','day2/h', '1001,1111','day2/h', '1001,1124','day2/h', '1001,1127','day2/h', '1002,1106','day2/h', '1069,1075','day2/h', '1069,1078','day2/h', '1069,1079','day2/h', '1082,1085','day2/h', '1083,1088','day2/h', '1126,1124','day2/h', '1055,1052','day1/h', '1064,1065','day1/h', '1001,1090','day1/h', '1001,1092','day1/h', '1001,1106','day1/h', '1001,1123','day1/h', '1001,1125','day1/h', '1001,1120','day1/h', '1119,1124','day1/h', '1002,1099','day1/h', '1002,1126','day1/h', '1069,1075','day1/h', '1083,1073','day1/h', '1091,1099','day1/h', '1128,1127','day1/h', '1102,1106','day1/h', '1002,1035','rush2/h', '1058,1031','rush2/h', '1058,1013','rush2/h', '1001,1047','rush2/h', '1042,1070','rush2/h', '1026,1067','rush2/h', '1111,1092','rush1/h', '1091,1094','rush1/h', '1092,1094','rush1/h', '1103,1105','rush1/h' ) ['item 1','item 2','item 3','item 4','item 5','item 6','item 7','item 8','item 9','item 10','item 11','item 12','item 13','item 14','item 15','item 16','item 17','item 18','item 19','item 20','item 21','item 22','item 23','item 24','item 25','item 26','item 27','item 28','item 29','item 30','item 31','item 32','item 33','item 34','item 35','item 36','item 37','item 38','item 39','item 40','item 41','item 42','item 43','item 44','item 45','item 46','item 47','item 48','item 49','item 50','item 51','item 52','item 53','item 54','item 55','item 56','item 57','item 58','item 59','item 60','item 61','item 62','item 63','item 64','item 65','item 66','item 67','item 68','item 69','item 70','item 71','item 72'] 176,264,1 48,24 2,102,90,476,224 2,8,33,416,787,0,MIDM 65535,52427,65534 [R_t,Bus_route_ends] Bus matrix standard This node takes all bus routes, checks the route between the two ends, and creates a route matrix of all from-to pairs that are connected with a bus route. An interesting detail is that mirror function in the first row is for some reason needed although it should not be. This is maybe due to a non-coherent route matrix: route 1007,1003,1002 exists although route 1003,1004,1002 exists as well. var a:= mirror(Bus_route_ends[r_t='Route'],Bus_route_ends); var b:= 0; var x:=1; while x<=size(a) do ( var c:= slice(a,a.a,x); b:= if from=evaluate(Selecttext(c,1,4)) and to1=evaluate(selecttext(c,6,9)) then 1 else b; x:= x+1); b:= if b=1 then route_matrix else ''; var e:= for z[]:= from do ( for y[]:= to1 do ( var d:= if Findintext(z&'',b)>0 and Findintext(y&'',b)>0 then 1 else 0; sum(sum(d)) )); if e>0 then route_matrix 288,264,1 48,24 2,754,122,476,537 2,349,98,642,529,0,MIDM [To1,From] Bus routes special This is a list of whole bus routes, i.e. full chains of areas that are covered by the route. This includes also other forms of public transportation, such as trains and trams. Table(Self,R_t)( '1001,1017,1015,1016,1029,1031,1081,1083,1086,1090,1091,1092,1095','day2/h', '1001,1015,1017,1016,1029,1030,1034,1032,1102,1103','day2/h', '1001,1017,1037,1041,1044,1046,1049,1117,1113,1116,1115,1120,1122,1121,1124','day2/h', '1010,1002,1001,1018,1019,1020,1052,1055,1056,1058,1057,1063,1064','day2/h', '1010,1002,1001,1018,1019,1020,1052,1055,1056,1058,1059,1060,1062','day2/h', '1003,1002,1001,1005,1018,1019,1021,1012,1011,1002,1001,1005,1004,1007','day2/h', '1001,1011,1012,1015,1017,1023,1020,1018,1005','day2/h', '1003,1002,1011,1012,1013,1027,1028,1031','day2/h', '1008,1003,1002,1011,1012,1013','day2/h', '1008,1003,1004,1001,1005,1018,1020,1052,1055','day2/h', '1007,1003,1004,1002,1001,1005,1018,1019,1021,1017','day2/h', '1005,1001,1002,1010,1011,1012,1013,1027,1028','day2/h', '1004,1003,1002,1010,1026','day2/h', '1020,1021,1017,1015,1016,1036','day2/h', '1001,1005,1018,1019,1021,1017,1015,1014','day2/h', '1004,1001,1002,1011,1012,1013','day2/h', '1002,1011,1012,1013,1014,1029,1031,1032,1033','day2/h', '1001,1011,1012,1013,1014,1029,1030','day2/h', '1002,1011,1012,1013,1014,1029,1030,1034','day2/h', '1004,1001,1002,1011,1012,1013,1014,1029,1030,1034,1035','day2/h', '1001,1011,1012,1013,1014,1029,1030,1034,1035','day2/h', '1020,1023,1019,1021,1017,1015,1029,1031','day2/h', '1018,1019,1021,1022,1017,1025,1036,1037,1030,1031,1032','day2/h', '1024,1025,1037,1036,1030,1029,1028,1027','day2/h', '1058,1054,1056,1059,1042,1024,1025,1016,1015,1014,1029,1028','day2/h', '1058,1054,1056,1055,1052,1020,1023,1021,1017,1015,1012,1013,1027,1028','day2/h', '1055,1052,1020,1023,1021,1017,1015','day2/h', '1026,1010,1002,1001,1005,1018,1019,1020,1023,1017,1025,1037,1036,1038,1039','day2/h', '1001,1005,1018,1020,1023,1024,1042','day2/h', '1002,1011,1012,1019,1021,1023,1024,1042,1043,1044,1047,1048','day2/h', '1001,1005,1018,1019,1020,1023,1017,1025,1036,1037,1038,1039,1040,1048','day2/h', '1001,1005,1018,1019,1020,1023,1024,1042,1043,1041','day2/h', '1001,1005,1018,1019,1020,1023,1017,1025,1036,1037,1041,1047,1048,1046','day2/h', '1018,1019,1020,1023,1024,1042,1043,1044,1047,1048,1046,1049','day2/h', '1018,1019,1020,1023,1024,1042,1043,1045,1044,1047,1046,1049,1050','day2/h', '1001,1005,1018,1019,1020,1023,1024,1042,1043,1045,1050,1049','day2/h', '1048,1049,1050','day2/h', '1001,1005,1018,1019,1020,1023,1024,1042,1051','day2/h', '1048,1047,1044,1045,1050,1051','day2/h', '1063,1062,1060,1045,1044','day2/h', '1055,1056,1042,1043,1041,1044','day2/h', '1056,1054,1055','day2/h', '1058,1057,1061','day2/h', '1055,1054,1057,1058','day2/h', '1058,1060,1062','day2/h', '1058,1061,1060','day2/h', '1002,1010,1067,1068,1070','day2/h', '1002,1010,1067,1073,1069,1071,1072','day1/h', '1002,1010,1067,1069,1070,1084,1083','day2/h', '1002,1010,1067,1069,1071,1070,1072,1085,1090,1089,1093','day2/h', '1002,1010,1026,1067,1069,1070,1072,1085,1086,1083','day2/h', '1002,1010,1067,1073,1074,1076,1079,1091','day2/h', '1001,1011,1012,1013,1027,1068,1069,1070','day2/h', '1001,1011,1012,1013,1027,1068,1069,1071,1075,1079','day2/h', '1002,1011,1012,1013,1027,1083','day2/h', '1001,1011,1012,1013,1014,1029,1031,1081,1083,1082,1100','day2/h', '1001,1011,1012,1013,1014,1029,1031,1081,1083,1087,1089,1088Õ','day2/h', '1001,1011,1012,1013,1014,1029,1031,1081,1083,1087,1089,1093,1092,1091','day2/h', '1001,1011,1012,1013,1014,1029,1030,1031,1032,1100','day2/h', '1042,1024,1025,1017,1015,1012,1013,1027,1067,1068,1070','day2/h', '1103,1102,1101,1100,1082,1083,1084,1068,1069,1073','day2/h', '1044,1041,1037,1036,1038,1035,1030,1034,1032,1082,1083','day2/h', '1058,1060,1059,1045,1043,1044,1047,1109,1110,1111','day2/h', '1058,1059,1042,1043,1037,1036,1030,1029,1031,1081,1083,1084,1068,1067,1069,1073','day2/h', '1068,1069,1073,1074,1075','day2/h', '1068,1069,1070,1072,1085,1090,1089,1088','day2/h', '1069,1070,1072,1085,1090,1091,1092,1095','day2/h', '1069,1071,1075,1079,1091,1092','day2/h', '1100,1082,1083','day2/h', '1083,1087,1089,1093','day2/h', '1083,1087,1089,1093,1092,1091','day2/h', '1075,1074,1079,1091,1092,1093','day2/h', '1074,1075,1072,1085,1090,1089,1087,1083','day2/h', '1076,1077,1078,1079,1091,1092,1093','day2/h', '1093,1089,1090,1085,1072,1075,1079,1076,1078','day2/h', '1083,1087,1089,1090,1091','day2/h', '1102,1103,1107,1110,1109,1112,1049,1113,1115,1122','day2/h', '1113,1112,1109,1108,1103,1102,1100,1101','day2/h', '1062,1129,1051,1128,1127,1117,1049,1112,1109,1110,1107,1103,1102','day2/h', '1062,1129,1051,1128,1127,1117,1118,1116,1113,1112,1110,1109,1111','day2/h', '1113,1115,1114,1123','day2/h', '1113,1115,1116,1120,1121,1125','day2/h', '1113,1115,1122,1124','day2/h', '1063,1064,1065','day1/h', '1002,1010,1067,1073,1074,1076,1078,1080,1095,1096','day1/h', '1001,1011,1012,1013,1014,1029,1031,1032,1082,1101,1104','day1/h', '1103,1102,1101,1100,1088,1089,1093,1092','day1/h', '1001,1018,1019,1020,1023,1017,1025,1036,1037,1038,1040,1039,1109,1112,1113,1115,1122','day1/h', '1001,1018,1019,1020,1023,1017,1025,1036,1037,1038,1040,1109,1112,1114,1115,1122,1120','day1/h', '1001,1018,1019,1020,1023,1017,1025,1036,1037,1038,1040,1109,1108,1107,1105','day1/h', '1001,1018,1019,1020,1023,1024,1042,1117,1118,1116,1120,1119','day1/h', '1111,1110,1109,1038,1034,1032,1083,1085,1092','day1/h', '1083,1082,1087,1089,1088,1093,1097,1099','day1/h', '1083,1087,1089,1093,1094','day1/h', '1083,1082,1087,1089,1088,1093,1097,1099','day1/h', '1092,1093,1097,1098','day1/h', '1104,1101,1103,1102','day1/h', '1088,1100,1101,1102,1103,1105,1106','day1/h', '1113,1112,1110,1107,1106','day1/h', '1113,1112,1110,1111,1107,1103,1104,1101,1100,1102','day1/h', '1100,1101,1102,1103,1108,1109,1110,1111','day1/h', '1127,1128,1117,1113,1112,1110,1109','day1/h', '1127,1128,1117,1118,1116,1113','day1/h', '1113,1115,1122,1121,1119,1126,1125,1124','day1/h', '1062,1129,1128,1127,11118,1119,1120,1121.1122,1124,1125','day1/h', '1002,1011,1012,1013,1014,1029,1016,1030,1036,1034,1035','rush2/h', '1058,1054,1056,1055,1052,1020,1023,1021,1017,1015,1012,1013,1027,1028','rush2/h', '1001,1005,1018,1019,1020,1023,1024,1042,1043,1041,1047','rush2/h', '1001,1011,1012,1013,1027,1084,1085,1086','rush2/h', '1018,1019,1012,1013,1027,1067,1073,1074','rush2/h', '1017,1015,1012,1013,1027,1067,1073,1074,1076,1077,1078','rush2/h', '1020,1023,1017,1015,1012,1013,1027,1068,1069,1071,1075','rush2/h', '1020,1023,1017,1015,1014,1029,1031,1081,1083,1087,1089,1088,1093','rush2/h', '1018,1019,1020,1023,1017,1025,1037,1036,1038,1034,1035,1102,1103','rush2/h', '1027,1028,1031,1032,1102,1103','rush2/h', '1068,1069,1073,1074,1076,1077','rush2/h', '1083,1082,1087,1086,1085,1075,1074,1076,1078','rush2/h', '1068,1069,1073,1074,1076,1078','rush2/h', '1074,1075,1085,1086,1082,1083','rush2/h', '1100,1082,1083,1084,1068,1069','rush2/h', '1111,1110,1109,1040,1038,1034,1030,1031,1081,1083,1084,1068,1070,1069,1073','rush1/h', '1113,1116,1118,1127,1117','rush1/h' ) ['item 1','item 2','item 3','item 4','item 5','item 6','item 7','item 8','item 9','item 10','item 11','item 12','item 13','item 14','item 15','item 16','item 17','item 18','item 19','item 20','item 21','item 22','item 23','item 24','item 25','item 26','item 27','item 28','item 29','item 30','item 31','item 32','item 33','item 34','item 35','item 36','item 37','item 38','item 39','item 40','item 41','item 42','item 43','item 44','item 45','item 46','item 47','item 48','item 49','item 50','item 51','item 52','item 53','item 54','item 55','item 56','item 57','item 58','item 59','item 60','item 61','item 62','item 63','item 64','item 65','item 66','item 67','item 68','item 69','item 70','item 71','item 72','item 73','item 74','item 75','item 76','item 77','item 78','item 79','item 80','item 81','item 82','item 83','item 84','item 85','item 86','item 87','item 88','item 89','item 90','item 91','item 92','item 93','item 94','item 95','item 96','item 97','item 98','item 99','item 100','item 101','item 102','item 103','item 104','item 105','item 106','item 107','item 108','item 109','item 110','item 111','item 112','item 113','item 114','item 115','item 116','item 117','item 118','item 119','item 120','item 121','item 122'] 176,328,1 48,24 2,0,0,1024,667 2,0,0,1024,667,0,MIDM 2,518,300,586,514,0,MIDM 65535,52427,65534 [R_t,Bus_routes_special] [R_t,Bus_routes_special] Bus routes This node creates special bus routes that do not go along the standard route matrix. If there is both a standard and a special route between two areas, the special route will be used. var a:= mirror(Bus_routes_special[r_t='Route'],Bus_routes_special); var b:= ''; var x:=1; while x<=size(a) do ( var c:= slice(a,a.a,x); var d:= findintext(from&'',c); var e:= findintext(to1&'',c); b:= if d>0 and e>0 and e>d then Selecttext(c,d,e+3) else b; x:= x+1); if b<>'' then b else Bus_matrix_standard 288,328,1 48,24 2,301,301,476,575 2,289,59,792,534,0,MIDM [To1,From] R t ['Route','Time'] 176,360,1 48,12 Static nodes 'Static nodes' contains previously computed simulations in a static form. The traffic optimising is rather time-consuming work (1 hour per scenario), and it cannot be done in real time. Therefore, all health effect and cost estimates are calculated from previously computed numbers that are stored in this module. ktluser 30. lokta 2004 9:45 48,24 56,32,1 48,24 1,0,0,1,1,1,0,,0, 1,243,48,438,471,17 Scenarios A table of different scenarios to be studied. Each row contains the values for the input variables used for the scenario. Table(Input_var,Scenario)( 0,0.02,0.05,0.1,0.25,0.4,0.45,0.5,0.55,0.65,0.75,0.9,1,0.02,0.05,0.1,0.25,0.4,0.45,0.5,0.55,0.65,0.75,0.9,1,0.02,0.05,0.1,0.25,0.4,0.45,0.5,0.55,0.65,0.75,0.9,1,0.02,0.05,0.1,0.25,0.4,0.45,0.5,0.55,0.65,0.75,0.9,1,0.02,0.05,0.1,0.25,0.4,0.45,0.5,0.55,0.65,0.75,0.9,1,0.02,0.05,0.1,0.25,0.4,0.45,0.5,0.55,0.65,0.75,0.9,1,0.02,0.05,0.1,0.25,0.4,0.45,0.5,0.55,0.65,0.75,0.9,1, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 7,7,7,7,7,7,7,7,7,7,7,7,7,6,6,6,6,6,6,6,6,6,6,6,6,5,5,5,5,5,5,5,5,5,5,5,5,4,4,4,4,4,4,4,4,4,4,4,4,3,3,3,3,3,3,3,3,3,3,3,3,2,2,2,2,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ) ['Composite fraction','Guarantee level','Lim'] 288,48,1 48,24 2,344,113,476,224 2,234,36,698,560,0,MIDM 2,45,69,655,554,0,MIDM 52425,39321,65535 [Input_var,Scenario] [Input_var,Scenario] Scenario Index for a list of scenarios to be modelled. [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85] 288,80,1 48,12 2,102,90,476,547 Iterator The combined result of various variables using the assumptions listed in Scenarios node. Each scenario is run one by one, and the results are stored in this node. var x:= 1; var a:= 0; var c:= 0; while x<= size(scenario) do ( a:= scenarios[scenario=x]; a:= whatif(Outputs1,Scenario_input,a); c:= if scenario=x then a else c; x:= x+1); c 176,48,1 48,12 2,463,75,476,367 2,24,7,629,389,0,MIDM [Scenario,Period] [Index Travel_type] Output The output variables from the traffic optimising module: Number of passenger trips Vehicle kilometres driven Parking lots needed for the vehicles that are used Average vehicle numbers per hour for the 30 most busy links at 8.00-9.00 in the morning Number of vehicles needed Waiting time due to traffic jams and waiting for composite vehicle to arrive. ['Trips','Trips by vehicle','Vehicle km','Parking lot','Link intensity','Vehicles','Waiting'] 64,80,1 48,12 2,43,143,209,266,0,MIDM [0,0,1,0] sequence(0,23.99,0.2) 288,320,1 48,12 Period Morning-day, evening, and night are looked at separately. [' 6.00-20.00','20.00-24.00',' 0.00- 6.00'] 64,104,1 48,12 2,102,90,476,402 BAU scenario output 1 64,48,1 48,24 Outputs1 Trip iterator trips/h The combined result of Trips per hour using the assumptions listed in Scenarios node. Each scenario is run one by one, and the results are stored in this node. var x:= 1; var a:= 0; var c:= 0; while x<= size(scenario) do ( a:= scenarios[scenario=x]; a:= whatif(Trips_per_hour,Scenario_input,a); c:= if scenario=x then a else c; x:= x+1); c 176,24,1 48,12 2,386,142,476,476 2,479,39,629,389,1,MIDM [Time,Vehicle] Scen1.0 Table(Output1,Vehicle_noch,Zone,Length,Scenario1_0,Period)( 0,0,0, 1029,85,50, 2521,226,130, 5196,454,235, 12.68K,1196,652, 20.3K,1870,998, 23.11K,2061,1119, 0,0,0, 303,18,18, 702,68,25, 1416,107,68, 3482,333,182, 5683,506,277, 6345,506,336, 0,0,0, 1421,140,80, 3646,316,199, 7365,636,374, 18.12K,1552,914, 29.24K,2516,1442, 32.67K,2855,1579, 0,0,0, 2460,230,101, 6273,556,284, 12.35K,1048,565, 31.12K,2610,1493, 49.91K,4377,2433, 55.62K,5049,2738, 0,0,0, 3013,259,147, 7464,621,375, 15K,1294,785, 37.24K,3195,1803, 60.15K,5356,2865, 66.95K,5832,3267, 0,0,0, 14.32K,1256,693, 35.65K,3167,1712, 71.67K,6343,3498, 177.1K,15.6K,8712, 285.1K,25.01K,13.9K, 320.6K,27.99K,15.52K, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 52.13K,4594,2495, 50.99K,4382,2479, 48.99K,4319,2448, 46.35K,4028,2307, 38.87K,3347,1957, 31.45K,2714,1561, 28.84K,2455,1399, 13.95K,1247,703, 13.68K,1194,652, 13.33K,1177,696, 12.73K,1103,635, 10.42K,987,493, 8378,721,412, 7821,688,372, 72.53K,6427,3587, 71.55K,6161,3591, 68.99K,6109,3392, 66.33K,5696,3153, 54.48K,4781,2609, 43.74K,3887,2154, 40.09K,3514,1952, 124.2K,10.92K,6033, 121.7K,10.61K,5990, 117.8K,10.46K,5630, 111.5K,9836,5407, 92.49K,8201,4630, 74.14K,6481,3573, 68.4K,5916,3352, 149.5K,13.08K,7274, 146K,12.9K,7216, 142K,12.53K,6902, 134.1K,11.54K,6626, 111.7K,9963,5402, 88.96K,7773,4342, 81.62K,7273,3960, 710.5K,62.43K,34.54K, 697.4K,61.32K,34.08K, 674.3K,59.44K,32.8K, 639.2K,55.81K,31.33K, 532.8K,46.78K,26.04K, 426.9K,37.31K,20.71K, 391.7K,34.3K,18.94K, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 320,0,0, 1456,0,0, 2272,8,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 88,0,0, 296,0,0, 408,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 128,0,0, 816,0,0, 1152,8,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 320,0,0, 1880,0,0, 2568,8,0, 0,0,0, 0,0,0, 8,0,0, 40,0,0, 776,8,0, 2920,40,0, 3864,64,8, 0,0,0, 0,0,0, 0,0,0, 8,0,0, 1328,0,0, 6552,8,0, 9680,16,0, 0,0,0, 360,8,0, 2368,32,0, 8392,312,8, 27.67K,1768,304, 44.84K,3416,880, 49.03K,3896,1056, 0,0,0, 0,0,0, 16,0,0, 64,0,0, 864,8,0, 1744,80,0, 2256,56,0, 0,0,0, 40,0,0, 680,0,0, 3104,72,0, 13.17K,648,24, 23.28K,1544,112, 25.66K,1896,240, 0,0,0, 24,0,0, 888,8,0, 4384,72,0, 17.77K,896,32, 28.79K,2008,248, 31.84K,2624,456, 0,0,0, 336,0,0, 3968,72,16, 18.14K,440,8, 73.91K,3400,344, 129.6K,8280,1160, 145.5K,9728,1848, 0,0,0, 352,0,0, 4992,32,0, 24.73K,608,8, 114.1K,5032,472, 212.6K,12.13K,1608, 243.3K,14.47K,2072, 0,0,0, 0,0,0, 28,0,0, 260,0,0, 1892,44,8, 4420,164,8, 5124,164,16, 0,0,0, 0,0,0, 4,0,0, 36,4,0, 412,20,0, 868,40,0, 1140,36,4, 0,0,0, 0,0,0, 4,0,0, 168,0,0, 1728,8,0, 4860,92,12, 6172,128,4, 0,0,0, 0,0,0, 16,0,0, 280,0,0, 3316,56,0, 8116,204,40, 10.13K,312,28, 0,0,0, 4,0,0, 60,0,0, 444,12,0, 3968,56,0, 9996,236,20, 12.2K,276,32, 0,0,0, 4,0,0, 140,0,0, 1208,8,0, 12.98K,204,8, 35.44K,632,60, 44.24K,988,104, 0,0,0, 724,12,0, 2676,180,20, 5052,420,120, 8288,1092,604, 9404,1696,1036, 9728,1756,1108, 0,0,0, 12,0,0, 100,0,0, 328,0,0, 944,52,16, 1424,116,40, 1532,140,40, 0,0,0, 244,4,0, 1412,76,0, 3128,244,12, 6248,716,272, 7728,1080,632, 8304,1216,608, 0,0,0, 492,0,0, 2172,84,16, 4204,296,44, 6140,880,356, 6948,1352,780, 6812,1376,904, 0,0,0, 1708,36,0, 7572,352,52, 15.79K,1160,192, 28.19K,3520,1360, 34.85K,5584,2748, 36.3K,6092,3292, 0,0,0, 2376,32,8, 12.17K,464,48, 29.4K,1764,172, 61.84K,6372,1860, 79.31K,10.48K,4264, 83.46K,11.78K,5048, 0,0,0, 3093,319,233, 5246,753,467, 6767,1126,862, 8826,1859,1674, 9674,2103,2124, 10.01K,2243,2219, 0,0,0, 293,27,20, 603,77,38, 1117,130,84, 1760,249,184, 2097,354,256, 2223,369,295, 0,0,0, 2140,220,115, 4107,516,300, 6049,841,571, 8764,1499,1178, 10.07K,1955,1581, 10.37K,1993,1685, 0,0,0, 2352,261,109, 4048,579,336, 5260,924,656, 6465,1411,1294, 7279,1549,1636, 7419,1641,1765, 0,0,0, 10.06K,1101,581, 18.4K,2280,1394, 25.38K,3982,2671, 33.38K,6473,5510, 36.68K,7629,7400, 37.36K,7941,7706, 0,0,0, 19.39K,2009,1013, 37.77K,4637,2500, 54.57K,7870,5087, 76.27K,13.73K,10.68K, 85.79K,17.37K,14.98K, 87.58K,17.85K,16.02K, 52.13K,4594,2495, 50.99K,4382,2479, 48.99K,4319,2448, 46.35K,4028,2307, 38.87K,3347,1957, 31.45K,2714,1561, 28.84K,2455,1399, 13.95K,1247,703, 13.68K,1194,652, 13.33K,1177,696, 12.73K,1103,635, 10.42K,987,493, 8378,721,412, 7821,688,372, 72.53K,6427,3587, 71.55K,6161,3591, 68.99K,6109,3392, 66.33K,5696,3153, 54.48K,4781,2609, 43.74K,3887,2154, 40.09K,3514,1952, 124.2K,10.92K,6033, 121.7K,10.61K,5990, 117.8K,10.46K,5630, 111.5K,9836,5407, 92.49K,8201,4630, 74.14K,6481,3573, 68.4K,5916,3352, 149.5K,13.08K,7274, 146K,12.9K,7216, 142K,12.53K,6902, 134.1K,11.54K,6626, 111.7K,9963,5402, 88.96K,7773,4342, 81.62K,7273,3960, 710.5K,62.43K,34.54K, 697.4K,61.32K,34.08K, 674.3K,59.44K,32.8K, 639.2K,55.81K,31.33K, 532.8K,46.78K,26.04K, 426.9K,37.31K,20.71K, 391.7K,34.3K,18.94K, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 3,0,0, 15,0,0, 470.4,3,0, 2048,15,0, 2872,30.5,3, 0,0,0, 0,0,0, 0,0,0, 15.9,0,0, 2012,0,0, 10.39K,5,0, 15.28K,22.7,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 243.6,2.8,0, 2473,35.6,6.5, 10.72K,296.9,6.5, 42.49K,2092,233, 73.91K,4853,744.1, 82.41K,5717,1108, 0,0,0, 302.6,0,0, 5698,34.2,0, 30.25K,639.2,5.5, 142.5K,6119,468.3, 265.9K,15.08K,1770, 304.7K,18.24K,2419, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 3,0,0, 70.9,0,0, 696.8,10,0, 6159,83.5,4.9, 15.96K,390.8,32.3, 19.61K,453.5,40.1, 0,0,0, 6.6,0,0, 411.4,0,0, 3813,27.1,0, 42.12K,688.1,20.1, 116.2K,2227,222.8, 146.1K,3415,320.5, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 1956,38.3,0, 8795,457.2,53.2, 18.39K,1355,219.3, 33.41K,4079,1621, 41.27K,6466,3285, 42.93K,7006,3773, 0,0,0, 5921,55,10.6, 30.91K,1145,128.5, 75.16K,4372,443, 158K,16.34K,4702, 204K,26.5K,10.79K, 215.7K,29.84K,12.65K, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 34.05K,4237,2582, 55.61K,8200,5607, 71.32K,12.47K,9777, 89.38K,18.89K,17.92K, 96.06K,21.53K,22.34K, 97.53K,22.17K,23.22K, 0,0,0, 151.2K,18.11K,9553, 262.8K,37.48K,22.87K, 354K,58.41K,43.44K, 465.4K,91.8K,80.3K, 513.9K,110.1K,106.1K, 523.5K,113.3K,112.4K, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 739.8K,73.14K,43.48K, 726.4K,71.59K,43.08K, 705.8K,69.81K,41.43K, 674K,65.09K,39.27K, 570.8K,56.38K,32.68K, 467.6K,45.32K,26.44K, 433K,42.05K,24.16K, 8.483M,819.5K,475.6K, 8.343M,804.7K,469.3K, 8.084M,786.3K,450.4K, 7.709M,739.7K,432.3K, 6.525M,623.8K,361.7K, 5.329M,501.8K,286.7K, 4.93M,462.4K,263.8K, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 234,0,0, 288,0,0, 502,0,0, 758,0,0, 1072,0,0, 1132,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 438,0,0, 728,0,0, 897,0,0, 1283,0,0, 1736,0,0, 2176,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 2817,0,0, 3757,0,0, 5171,0,0, 7626,0,0, 10.1K,0,0, 10.78K,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 7164,0,0, 7125,0,0, 6798,0,0, 6238,0,0, 5196,0,0, 4345,0,0, 4013,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 14.49K,0,0, 14K,0,0, 14.2K,0,0, 13.06K,0,0, 11.1K,0,0, 8616,0,0, 8881,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 70.26K,0,0, 70.3K,0,0, 67.97K,0,0, 65.47K,0,0, 55.96K,0,0, 47.17K,0,0, 42.82K,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 2,0,0, 6.9,0,0, 10.93,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0.4667,0,0, 6.467,0,0, 30.43,0,0, 115.6,0,0, 200.7,0,0, 225.5,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0.3333,0,0, 2.933,0,0, 27.03,0,0, 80.3,0,0, 101.7,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 4.567,0,0, 23.97,0,0, 50.57,0,0, 79.4,0,0, 95.47,0,0, 101.9,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 74.77,0,0, 120,0,0, 146.2,0,0, 175.4,0,0, 186.1,0,0, 186.2,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 5149,0,0, 5009,0,0, 4840,0,0, 4606,0,0, 3946,0,0, 3209,0,0, 2977,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 40,0,0, 287,0,0, 939,0,0, 2823,0,0, 4504,0,0, 4950,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 2219,0,0, 3181,0,0, 3944,0,0, 4785,0,0, 5992,0,0, 6266,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 67.99K,0,0, 67.59K,0,0, 66.1K,0,0, 62.57K,0,0, 53.1K,0,0, 43.92K,0,0, 41K,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 'NAN','NAN','NAN', 5.822,5.974,6, 5.361,5.821,5.981, 4.766,5.601,5.936, 3.84,4.988,5.683, 3.381,4.495,5.422, 3.295,4.382,5.356, 'NAN','NAN','NAN', 5.885,6,6, 5.547,5.926,5.988, 5.064,5.742,5.98, 4.221,5.234,5.815, 3.816,4.811,5.629, 3.738,4.717,5.56, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 'NAN','NAN','NAN', 11.64,11.95,12, 10.72,11.64,11.96, 9.531,11.2,11.87, 7.679,9.977,11.37, 6.761,8.99,10.84, 6.59,8.764,10.71, 'NAN','NAN','NAN', 11.77,12,12, 11.09,11.85,11.98, 10.13,11.48,11.96, 8.441,10.47,11.63, 7.633,9.621,11.26, 7.476,9.435,11.12, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 'NAN','NAN','NAN', 5.822,5.974,6, 5.361,5.821,5.981, 4.766,5.601,5.936, 3.84,4.988,5.683, 3.381,4.495,5.422, 3.295,4.382,5.356, 'NAN','NAN','NAN', 5.885,6,6, 5.547,5.926,5.988, 5.064,5.742,5.98, 4.221,5.234,5.815, 3.816,4.811,5.629, 3.738,4.717,5.56, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 'NAN','NAN','NAN', 11.64,11.95,12, 10.72,11.64,11.96, 9.531,11.2,11.87, 7.679,9.977,11.37, 6.761,8.99,10.84, 6.59,8.764,10.71, 'NAN','NAN','NAN', 11.77,12,12, 11.09,11.85,11.98, 10.13,11.48,11.96, 8.441,10.47,11.63, 7.633,9.621,11.26, 7.476,9.435,11.12, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 'NAN','NAN','NAN', 11.64,11.95,12, 10.72,11.64,11.96, 9.531,11.2,11.87, 7.679,9.977,11.37, 6.761,8.99,10.84, 6.59,8.764,10.71, 'NAN','NAN','NAN', 11.77,12,12, 11.09,11.85,11.98, 10.13,11.48,11.96, 8.441,10.47,11.63, 7.633,9.621,11.26, 7.476,9.435,11.12, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0 ) 288,232,1 48,24 2,248,258,664,303,0,MIDM 2,11,81,772,303,0,MIDM [Output1,Period] [Scenario1_0,Output1] Scenario1.0 Index for a list of scenarios to be modelled. [1,2,3,4,5,6,7] 288,192,1 48,12 Scenarios1.0 A table of different scenarios to be studied. Each row contains the values for the input variables used for the scenario. Table(Input_var,Scenario1_0)( 0,0.02,0.05,0.1,0.25,0.4,0.45, 0,0,0,0,0,0,0, 7,7,7,7,7,7,7, 0,0,0,0,0,0,0, 0,0,0,0,0,0,0, 0,0,0,0,0,0,0, 0,0,0,0,0,0,0 ) ['Composite fraction','Guarantee level','Lim'] 288,160,1 48,24 2,107,145,476,224 2,394,67,698,560,0,MIDM 2,45,69,598,554,0,MIDM 52425,39321,65535 [Input_var,Scenario1_0] [Input_var,Scenario] Trips1.0 Table(Time_stat,Scenario1_0,Vehicle)( 0,0,0,0,0,13.16K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,565,12.69K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,20,1335,12.21K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,220,2435,12.14K,0,0,0,0,0,0,0,0,0,0,0, 0,360,0,1360,4975,10.25K,0,0,0,0,0,0,0,0,0,0,0, 0,1320,100,2740,5885,8115,0,0,0,0,0,0,0,0,0,0,0, 0,1720,40,3160,6125,7280,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,12.04K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,510,12.1K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,40,1205,11.74K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,280,2220,10.84K,0,0,0,0,0,0,0,0,0,0,0, 0,320,0,1180,4785,9000,0,0,0,0,0,0,0,0,0,0,0, 0,1480,40,2480,5950,7180,0,0,0,0,0,0,0,0,0,0,0, 0,2080,60,2820,6125,6905,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,11.13K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,20,515,10.85K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,40,1020,10.66K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,120,2135,10.09K,0,0,0,0,0,0,0,0,0,0,0, 0,400,0,1120,4200,8150,0,0,0,0,0,0,0,0,0,0,0, 0,840,60,2560,5895,6900,0,0,0,0,0,0,0,0,0,0,0, 0,1800,20,3020,5995,6145,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,10.17K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,460,10.02K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,945,9530,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,120,2135,9360,0,0,0,0,0,0,0,0,0,0,0, 0,200,0,1100,4020,7530,0,0,0,0,0,0,0,0,0,0,0, 0,760,0,2000,5605,6445,0,0,0,0,0,0,0,0,0,0,0, 0,1680,0,2580,5885,5275,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,9545,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,445,9415,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,840,8985,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,120,1840,8360,0,0,0,0,0,0,0,0,0,0,0, 0,40,0,960,3590,7085,0,0,0,0,0,0,0,0,0,0,0, 0,560,0,2060,5050,5870,0,0,0,0,0,0,0,0,0,0,0, 0,960,0,2240,5670,5140,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,8590,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,325,8560,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,865,8280,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,40,1670,8040,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,900,3450,6490,0,0,0,0,0,0,0,0,0,0,0, 0,560,0,1500,4935,4835,0,0,0,0,0,0,0,0,0,0,0, 0,840,0,1860,5175,4555,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,7385,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,305,7610,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,725,7430,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,40,1535,6905,0,0,0,0,0,0,0,0,0,0,0, 0,80,0,460,3450,5665,0,0,0,0,0,0,0,0,0,0,0, 0,440,40,1460,4540,4805,0,0,0,0,0,0,0,0,0,0,0, 0,560,0,1500,4900,4295,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,6950,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,325,7080,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,625,6785,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,20,1440,6635,0,0,0,0,0,0,0,0,0,0,0, 0,120,0,460,3125,5495,0,0,0,0,0,0,0,0,0,0,0, 0,320,0,1140,4485,4095,0,0,0,0,0,0,0,0,0,0,0, 0,320,20,1420,4570,3665,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,6700,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,275,6390,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,605,6195,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1340,5875,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,380,2985,4950,0,0,0,0,0,0,0,0,0,0,0, 0,360,0,940,4095,4080,0,0,0,0,0,0,0,0,0,0,0, 0,480,0,1360,4325,3420,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,6050,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,200,6435,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,640,6105,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,20,1250,5705,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,400,2850,4995,0,0,0,0,0,0,0,0,0,0,0, 0,120,0,820,4000,3815,0,0,0,0,0,0,0,0,0,0,0, 0,240,0,1340,4075,3800,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,6155,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,250,5795,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,20,560,5930,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1295,5415,0,0,0,0,0,0,0,0,0,0,0, 0,40,0,260,2735,4680,0,0,0,0,0,0,0,0,0,0,0, 0,360,0,820,3840,3710,0,0,0,0,0,0,0,0,0,0,0, 0,200,20,1040,4500,3445,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,6165,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,275,6490,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,710,5860,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,20,1280,5730,0,0,0,0,0,0,0,0,0,0,0, 0,40,0,380,2610,4720,0,0,0,0,0,0,0,0,0,0,0, 0,200,0,1100,3890,3940,0,0,0,0,0,0,0,0,0,0,0, 0,120,0,1000,4260,3620,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,6665,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,220,6385,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,20,655,6540,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,20,1225,5945,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,380,2755,5040,0,0,0,0,0,0,0,0,0,0,0, 0,120,0,1020,3925,4100,0,0,0,0,0,0,0,0,0,0,0, 0,360,0,1220,4255,3595,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,7150,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,270,6925,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,20,710,6610,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1375,6140,0,0,0,0,0,0,0,0,0,0,0, 0,80,0,480,2565,5155,0,0,0,0,0,0,0,0,0,0,0, 0,240,0,1060,4095,4100,0,0,0,0,0,0,0,0,0,0,0, 0,400,20,1180,4430,3865,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,7085,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,245,6870,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,610,6395,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,60,1305,6165,0,0,0,0,0,0,0,0,0,0,0, 0,40,0,420,3050,5435,0,0,0,0,0,0,0,0,0,0,0, 0,240,0,1200,3975,4235,0,0,0,0,0,0,0,0,0,0,0, 0,360,20,1180,4505,3965,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,7055,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,395,7130,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,40,680,6670,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,40,1280,6570,0,0,0,0,0,0,0,0,0,0,0, 0,80,0,240,3135,5190,0,0,0,0,0,0,0,0,0,0,0, 0,160,0,1060,4300,4320,0,0,0,0,0,0,0,0,0,0,0, 0,400,0,1480,4165,3790,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,6385,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,320,6785,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,655,6045,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,40,1205,6115,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,640,2990,4905,0,0,0,0,0,0,0,0,0,0,0, 0,200,0,1260,4100,4025,0,0,0,0,0,0,0,0,0,0,0, 0,400,20,1160,4455,3675,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,6120,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,205,5885,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,695,5455,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1230,5390,0,0,0,0,0,0,0,0,0,0,0, 0,40,0,340,2805,4325,0,0,0,0,0,0,0,0,0,0,0, 0,200,0,1200,3930,3555,0,0,0,0,0,0,0,0,0,0,0, 0,240,0,1060,4090,3385,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,5330,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,205,5505,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,545,4870,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,60,1070,4805,0,0,0,0,0,0,0,0,0,0,0, 0,80,0,380,2355,3890,0,0,0,0,0,0,0,0,0,0,0, 0,160,0,740,3615,3000,0,0,0,0,0,0,0,0,0,0,0, 0,200,0,1000,3915,2935,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,4810,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,185,4910,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,435,4425,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,20,910,4455,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,300,2235,3805,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,480,3460,2985,0,0,0,0,0,0,0,0,0,0,0, 0,80,0,760,3475,2535,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,4620,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,225,4840,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,465,4420,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,20,900,4240,0,0,0,0,0,0,0,0,0,0,0, 0,40,0,160,2285,3795,0,0,0,0,0,0,0,0,0,0,0, 0,80,0,520,3170,2960,0,0,0,0,0,0,0,0,0,0,0, 0,40,0,560,3745,2340,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,5045,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,205,5520,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,490,4755,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,20,935,4775,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,200,2400,3905,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,460,3350,3135,0,0,0,0,0,0,0,0,0,0,0, 0,80,0,640,3645,2675,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,6085,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,260,5620,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,20,585,5755,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,20,1150,5350,0,0,0,0,0,0,0,0,0,0,0, 0,40,0,280,2495,4745,0,0,0,0,0,0,0,0,0,0,0, 0,120,0,720,3330,3750,0,0,0,0,0,0,0,0,0,0,0, 0,200,0,900,3815,3230,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,7175,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,285,7390,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,675,6995,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,40,1280,6825,0,0,0,0,0,0,0,0,0,0,0, 0,40,0,400,2875,5720,0,0,0,0,0,0,0,0,0,0,0, 0,160,20,760,3875,4145,0,0,0,0,0,0,0,0,0,0,0, 0,400,0,1140,4295,4285,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,9060,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,250,9015,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,810,8900,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,100,1565,8125,0,0,0,0,0,0,0,0,0,0,0, 0,120,0,500,3290,6670,0,0,0,0,0,0,0,0,0,0,0, 0,400,0,1060,4640,5495,0,0,0,0,0,0,0,0,0,0,0, 0,360,0,1500,4920,4765,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,10.61K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,325,10.63K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,20,880,10.05K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,80,1775,9655,0,0,0,0,0,0,0,0,0,0,0, 0,200,0,740,3590,7640,0,0,0,0,0,0,0,0,0,0,0, 0,560,0,1780,5110,6090,0,0,0,0,0,0,0,0,0,0,0, 0,960,40,1840,5305,5950,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,12.81K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,455,12.64K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,40,1120,12.37K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,120,2270,11K,0,0,0,0,0,0,0,0,0,0,0, 0,240,0,920,4150,9370,0,0,0,0,0,0,0,0,0,0,0, 0,1080,40,2300,5600,7550,0,0,0,0,0,0,0,0,0,0,0, 0,1280,20,2760,6060,6450,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,15.81K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,495,14.86K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,60,1350,14.62K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,140,2680,13.8K,0,0,0,0,0,0,0,0,0,0,0, 0,520,0,1520,4740,11.52K,0,0,0,0,0,0,0,0,0,0,0, 0,1680,60,3100,6215,9030,0,0,0,0,0,0,0,0,0,0,0, 0,1880,80,3760,6610,8625,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,20.26K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,575,19.13K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,200,1675,19.06K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,400,3130,17.95K,0,0,0,0,0,0,0,0,0,0,0, 0,960,20,2360,5645,15.06K,0,0,0,0,0,0,0,0,0,0,0, 0,2640,60,3880,7160,11.61K,0,0,0,0,0,0,0,0,0,0,0, 0,3480,160,4480,7135,11.39K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,27.08K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,20,785,26.58K,0,0,0,0,0,0,0,0,0,0,0, 0,80,0,140,2065,25.72K,0,0,0,0,0,0,0,0,0,0,0, 0,120,0,520,3795,24.92K,0,0,0,0,0,0,0,0,0,0,0, 0,1800,60,3120,6460,20.5K,0,0,0,0,0,0,0,0,0,0,0, 0,4680,280,5280,7845,15.9K,0,0,0,0,0,0,0,0,0,0,0, 40,6240,420,5040,8045,14.88K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,36.99K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,60,1170,35.92K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,380,2645,35.81K,0,0,0,0,0,0,0,0,0,0,0, 0,400,0,1220,4700,33.18K,0,0,0,0,0,0,0,0,0,0,0, 0,3240,180,4560,7465,27.84K,0,0,0,0,0,0,0,0,0,0,0, 0,8200,600,6340,9140,22.41K,0,0,0,0,0,0,0,0,0,0,0, 80,9760,1080,7140,9185,20.17K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,51.32K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,80,1520,51.08K,0,0,0,0,0,0,0,0,0,0,0, 0,40,0,660,3545,48.71K,0,0,0,0,0,0,0,0,0,0,0, 0,1000,0,2080,5600,46.29K,0,0,0,0,0,0,0,0,0,0,0, 0,6480,400,5580,8335,37.8K,0,0,0,0,0,0,0,0,0,0,0, 40,13.84K,1420,8060,9635,30.57K,0,0,0,0,0,0,0,0,0,0,0, 80,16.28K,1880,8360,10.29K,28.11K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,67.06K,0,0,0,0,0,0,0,0,0,0,0, 0,40,0,260,2040,67.72K,0,0,0,0,0,0,0,0,0,0,0, 0,200,0,1200,4530,64.97K,0,0,0,0,0,0,0,0,0,0,0, 0,1880,100,3160,6530,61.52K,0,0,0,0,0,0,0,0,0,0,0, 0,10.8K,860,6840,9465,49.7K,0,0,0,0,0,0,0,0,0,0,0, 320,21.68K,3000,9440,10.53K,40.51K,0,0,0,0,0,0,0,0,0,0,0, 360,25.32K,3380,9540,10.96K,36.88K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,84.33K,0,0,0,0,0,0,0,0,0,0,0, 0,40,0,240,2735,83.05K,0,0,0,0,0,0,0,0,0,0,0, 0,600,0,1800,5095,79.71K,0,0,0,0,0,0,0,0,0,0,0, 0,3120,120,3840,7405,76.58K,0,0,0,0,0,0,0,0,0,0,0, 200,15.68K,1600,8040,10.25K,63.19K,0,0,0,0,0,0,0,0,0,0,0, 680,28.88K,4580,10.38K,11.01K,50.42K,0,0,0,0,0,0,0,0,0,0,0, 1240,34.48K,5780,10.18K,11.32K,46.76K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,100.5K,0,0,0,0,0,0,0,0,0,0,0, 0,40,0,560,3095,99.43K,0,0,0,0,0,0,0,0,0,0,0, 0,880,0,2280,5615,96.06K,0,0,0,0,0,0,0,0,0,0,0, 0,4800,140,5040,7865,91.22K,0,0,0,0,0,0,0,0,0,0,0, 240,21.4K,2420,8860,10.07K,76.11K,0,0,0,0,0,0,0,0,0,0,0, 1240,36.8K,6640,11.16K,11.68K,60.79K,0,0,0,0,0,0,0,0,0,0,0, 1640,41.72K,7960,12.14K,11.91K,56.19K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,115.8K,0,0,0,0,0,0,0,0,0,0,0, 0,80,0,760,3365,113.2K,0,0,0,0,0,0,0,0,0,0,0, 0,1440,20,3000,6320,110K,0,0,0,0,0,0,0,0,0,0,0, 0,6120,300,6000,8335,103.2K,0,0,0,0,0,0,0,0,0,0,0, 280,26.24K,3040,9700,10.95K,87.53K,0,0,0,0,0,0,0,0,0,0,0, 1800,43.6K,8120,12.3K,11.49K,68.91K,0,0,0,0,0,0,0,0,0,0,0, 2920,49.68K,9840,11.58K,12.13K,64.03K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,128.4K,0,0,0,0,0,0,0,0,0,0,0, 0,160,0,660,3840,125.7K,0,0,0,0,0,0,0,0,0,0,0, 0,1680,40,3300,6720,119.9K,0,0,0,0,0,0,0,0,0,0,0, 40,7800,400,6300,8660,113.9K,0,0,0,0,0,0,0,0,0,0,0, 560,29.96K,3560,10.24K,11.02K,95.59K,0,0,0,0,0,0,0,0,0,0,0, 2520,48K,9480,12.56K,12.16K,77.47K,0,0,0,0,0,0,0,0,0,0,0, 3440,55.28K,11.56K,12.76K,11.82K,69.82K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,133.7K,0,0,0,0,0,0,0,0,0,0,0, 0,200,0,840,4040,131.1K,0,0,0,0,0,0,0,0,0,0,0, 0,2400,80,3840,6545,126.2K,0,0,0,0,0,0,0,0,0,0,0, 40,9520,520,6720,9000,120.2K,0,0,0,0,0,0,0,0,0,0,0, 680,33.88K,4520,10.22K,11.06K,99.92K,0,0,0,0,0,0,0,0,0,0,0, 2680,53.04K,10.6K,12.14K,11.92K,79.56K,0,0,0,0,0,0,0,0,0,0,0, 4400,59.68K,12.54K,13.04K,12.37K,73.73K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,135.2K,0,0,0,0,0,0,0,0,0,0,0, 0,360,0,1060,4010,133.3K,0,0,0,0,0,0,0,0,0,0,0, 0,2120,20,3720,7360,130.7K,0,0,0,0,0,0,0,0,0,0,0, 0,10.32K,340,6700,9185,121.6K,0,0,0,0,0,0,0,0,0,0,0, 400,34.64K,4800,10.56K,11.08K,101.8K,0,0,0,0,0,0,0,0,0,0,0, 2800,54.76K,10.18K,12.48K,12.01K,81.08K,0,0,0,0,0,0,0,0,0,0,0, 4520,59.92K,13.14K,13.14K,12.44K,73.84K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,134.7K,0,0,0,0,0,0,0,0,0,0,0, 0,160,20,920,3955,129.4K,0,0,0,0,0,0,0,0,0,0,0, 0,2400,40,3520,6835,126K,0,0,0,0,0,0,0,0,0,0,0, 0,9920,500,6460,9255,120.8K,0,0,0,0,0,0,0,0,0,0,0, 680,33.72K,4540,10.64K,11.04K,99.35K,0,0,0,0,0,0,0,0,0,0,0, 2720,54K,10.64K,12.26K,12.42K,80.56K,0,0,0,0,0,0,0,0,0,0,0, 4240,60.96K,12.3K,12.52K,12.03K,72.48K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,126.1K,0,0,0,0,0,0,0,0,0,0,0, 0,120,0,880,3810,122K,0,0,0,0,0,0,0,0,0,0,0, 0,2240,60,3560,6735,120.4K,0,0,0,0,0,0,0,0,0,0,0, 0,9520,340,6940,8510,111.9K,0,0,0,0,0,0,0,0,0,0,0, 640,33.2K,3560,10.42K,11.02K,93.86K,0,0,0,0,0,0,0,0,0,0,0, 2480,52.4K,9860,12.38K,12.15K,75.84K,0,0,0,0,0,0,0,0,0,0,0, 3240,58.48K,12.28K,12.38K,11.93K,69.92K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,112.8K,0,0,0,0,0,0,0,0,0,0,0, 0,240,0,740,3310,110.5K,0,0,0,0,0,0,0,0,0,0,0, 0,2200,100,3180,6250,106K,0,0,0,0,0,0,0,0,0,0,0, 0,7920,340,6460,8380,101.1K,0,0,0,0,0,0,0,0,0,0,0, 400,28.84K,2940,10.04K,11.18K,84.86K,0,0,0,0,0,0,0,0,0,0,0, 1600,48.76K,8140,12.8K,11.88K,66.81K,0,0,0,0,0,0,0,0,0,0,0, 2280,55.28K,10.32K,11.98K,11.94K,61.01K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,97.52K,0,0,0,0,0,0,0,0,0,0,0, 0,120,0,580,3170,94.08K,0,0,0,0,0,0,0,0,0,0,0, 0,1600,20,2760,6065,90.77K,0,0,0,0,0,0,0,0,0,0,0, 0,6920,200,5600,8135,86.64K,0,0,0,0,0,0,0,0,0,0,0, 200,24.88K,1880,9960,10.69K,72.04K,0,0,0,0,0,0,0,0,0,0,0, 1040,45K,5780,11.06K,11.69K,56.72K,0,0,0,0,0,0,0,0,0,0,0, 1680,49.08K,7540,11.92K,12.1K,53.37K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,78.81K,0,0,0,0,0,0,0,0,0,0,0, 0,40,0,380,2975,76.61K,0,0,0,0,0,0,0,0,0,0,0, 0,960,20,2100,5460,74.92K,0,0,0,0,0,0,0,0,0,0,0, 0,4760,100,5100,7640,70.18K,0,0,0,0,0,0,0,0,0,0,0, 120,21.48K,1300,8660,10.2K,59.91K,0,0,0,0,0,0,0,0,0,0,0, 560,36.92K,4060,10.72K,11.24K,47.16K,0,0,0,0,0,0,0,0,0,0,0, 960,41K,5220,11.46K,11.69K,44.02K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,64.21K,0,0,0,0,0,0,0,0,0,0,0, 0,80,0,180,2485,62.49K,0,0,0,0,0,0,0,0,0,0,0, 0,520,20,1580,4955,59.77K,0,0,0,0,0,0,0,0,0,0,0, 0,3240,100,4020,6875,55.88K,0,0,0,0,0,0,0,0,0,0,0, 120,15.52K,620,8300,9495,47.48K,0,0,0,0,0,0,0,0,0,0,0, 160,29.44K,2540,10.08K,10.68K,37.48K,0,0,0,0,0,0,0,0,0,0,0, 360,32.68K,3340,11K,11.24K,35.34K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,50.77K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,100,2210,51.2K,0,0,0,0,0,0,0,0,0,0,0, 0,160,20,1140,4435,49.02K,0,0,0,0,0,0,0,0,0,0,0, 0,2280,20,2740,6530,46.89K,0,0,0,0,0,0,0,0,0,0,0, 40,11.48K,380,7120,9055,38.92K,0,0,0,0,0,0,0,0,0,0,0, 80,23.36K,1680,9700,9865,31.54K,0,0,0,0,0,0,0,0,0,0,0, 160,25.96K,1760,9640,10.62K,28.84K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,44.8K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,60,1695,43.63K,0,0,0,0,0,0,0,0,0,0,0, 0,200,0,1100,3750,42.73K,0,0,0,0,0,0,0,0,0,0,0, 0,1000,0,2940,5845,39.71K,0,0,0,0,0,0,0,0,0,0,0, 0,8480,320,6620,8290,33.77K,0,0,0,0,0,0,0,0,0,0,0, 40,17.72K,1100,8760,9690,27.31K,0,0,0,0,0,0,0,0,0,0,0, 80,21.08K,1380,8720,10.12K,24.76K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,42.2K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,60,1590,42.1K,0,0,0,0,0,0,0,0,0,0,0, 0,120,0,840,3575,40.89K,0,0,0,0,0,0,0,0,0,0,0, 0,1200,20,2140,5485,38.21K,0,0,0,0,0,0,0,0,0,0,0, 0,7720,260,5760,8000,31.28K,0,0,0,0,0,0,0,0,0,0,0, 40,15.88K,860,7460,9710,25.17K,0,0,0,0,0,0,0,0,0,0,0, 0,18.32K,1380,8200,9750,23.61K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,43.11K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,60,1690,41.96K,0,0,0,0,0,0,0,0,0,0,0, 0,200,0,560,3490,40.68K,0,0,0,0,0,0,0,0,0,0,0, 0,760,0,2240,5770,38.72K,0,0,0,0,0,0,0,0,0,0,0, 0,6880,300,5840,8190,32.63K,0,0,0,0,0,0,0,0,0,0,0, 80,14.88K,900,7620,9755,25.27K,0,0,0,0,0,0,0,0,0,0,0, 40,17.32K,1320,8200,10.02K,23.83K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,44.26K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,80,1780,45.32K,0,0,0,0,0,0,0,0,0,0,0, 0,80,0,560,3640,43.05K,0,0,0,0,0,0,0,0,0,0,0, 0,920,0,2240,5655,40.11K,0,0,0,0,0,0,0,0,0,0,0, 0,7000,260,5780,8635,33.39K,0,0,0,0,0,0,0,0,0,0,0, 120,15.8K,960,7820,9550,26.71K,0,0,0,0,0,0,0,0,0,0,0, 80,18.04K,1240,8320,9895,24.71K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,46.35K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,60,1805,46K,0,0,0,0,0,0,0,0,0,0,0, 0,40,0,780,3690,43.73K,0,0,0,0,0,0,0,0,0,0,0, 0,920,0,2100,5895,41.62K,0,0,0,0,0,0,0,0,0,0,0, 40,7200,300,5960,8620,35.09K,0,0,0,0,0,0,0,0,0,0,0, 40,15.8K,1260,8140,9985,27.24K,0,0,0,0,0,0,0,0,0,0,0, 120,18K,1460,8500,9915,25.74K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,46.06K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,100,1670,44.8K,0,0,0,0,0,0,0,0,0,0,0, 0,120,0,920,3490,43.52K,0,0,0,0,0,0,0,0,0,0,0, 0,880,0,2540,5590,41.08K,0,0,0,0,0,0,0,0,0,0,0, 0,7400,260,5900,8585,34.17K,0,0,0,0,0,0,0,0,0,0,0, 0,16.08K,1140,8280,9800,27.45K,0,0,0,0,0,0,0,0,0,0,0, 40,17.8K,1840,9220,10.05K,25.98K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,45.23K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,80,1775,43.86K,0,0,0,0,0,0,0,0,0,0,0, 0,160,0,660,3735,42.62K,0,0,0,0,0,0,0,0,0,0,0, 0,1000,0,2260,5685,40.14K,0,0,0,0,0,0,0,0,0,0,0, 40,6880,340,5700,8540,33.28K,0,0,0,0,0,0,0,0,0,0,0, 0,16.4K,1140,7720,9655,26.2K,0,0,0,0,0,0,0,0,0,0,0, 40,18.84K,1420,8460,10.16K,24.79K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,42.7K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,100,1660,41.61K,0,0,0,0,0,0,0,0,0,0,0, 0,160,0,600,3680,40.46K,0,0,0,0,0,0,0,0,0,0,0, 0,1160,20,1860,5550,39.19K,0,0,0,0,0,0,0,0,0,0,0, 0,6520,240,5880,8285,32.73K,0,0,0,0,0,0,0,0,0,0,0, 40,15.32K,800,8260,9645,25K,0,0,0,0,0,0,0,0,0,0,0, 0,17.92K,1220,8320,9955,23.61K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,41K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,60,1750,40.05K,0,0,0,0,0,0,0,0,0,0,0, 0,40,0,560,3545,39.01K,0,0,0,0,0,0,0,0,0,0,0, 0,880,0,2020,5195,36.48K,0,0,0,0,0,0,0,0,0,0,0, 0,6320,200,5720,7965,30.91K,0,0,0,0,0,0,0,0,0,0,0, 0,14.04K,1080,7740,9810,25.35K,0,0,0,0,0,0,0,0,0,0,0, 120,16.92K,860,8320,9375,22.54K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,41.3K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,40,1605,39.78K,0,0,0,0,0,0,0,0,0,0,0, 0,120,0,440,3395,38.98K,0,0,0,0,0,0,0,0,0,0,0, 0,560,0,1940,5445,36.32K,0,0,0,0,0,0,0,0,0,0,0, 0,6120,340,5440,7920,30.52K,0,0,0,0,0,0,0,0,0,0,0, 40,13.92K,740,6960,9945,24.32K,0,0,0,0,0,0,0,0,0,0,0, 80,15.76K,1160,8080,10.17K,22.18K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,40.55K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,100,1580,40.82K,0,0,0,0,0,0,0,0,0,0,0, 0,80,0,620,3275,38.91K,0,0,0,0,0,0,0,0,0,0,0, 0,560,0,2120,5165,37.19K,0,0,0,0,0,0,0,0,0,0,0, 0,5800,80,5660,8065,31.11K,0,0,0,0,0,0,0,0,0,0,0, 0,13.88K,700,7180,9320,24.54K,0,0,0,0,0,0,0,0,0,0,0, 0,15.8K,980,8220,9800,22.56K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,43.25K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,80,1695,42.19K,0,0,0,0,0,0,0,0,0,0,0, 0,160,0,560,3300,40.67K,0,0,0,0,0,0,0,0,0,0,0, 0,760,60,1920,5425,39.47K,0,0,0,0,0,0,0,0,0,0,0, 0,6120,260,5640,7830,32.25K,0,0,0,0,0,0,0,0,0,0,0, 40,14.4K,960,7480,9330,26.15K,0,0,0,0,0,0,0,0,0,0,0, 0,16.76K,1020,8340,9930,24.24K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,45.93K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,60,1605,44.3K,0,0,0,0,0,0,0,0,0,0,0, 0,80,0,720,3505,42.83K,0,0,0,0,0,0,0,0,0,0,0, 0,920,20,2100,5515,41.68K,0,0,0,0,0,0,0,0,0,0,0, 40,6560,280,5880,8115,33.22K,0,0,0,0,0,0,0,0,0,0,0, 40,15.28K,1040,8080,9245,27.56K,0,0,0,0,0,0,0,0,0,0,0, 120,17.84K,1460,8360,10.04K,24.93K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,46.92K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,140,1730,46.76K,0,0,0,0,0,0,0,0,0,0,0, 0,160,0,680,3665,44.14K,0,0,0,0,0,0,0,0,0,0,0, 0,1000,0,2060,5740,42.37K,0,0,0,0,0,0,0,0,0,0,0, 0,6840,380,5900,8275,35.01K,0,0,0,0,0,0,0,0,0,0,0, 200,15.72K,1180,8480,9865,28.47K,0,0,0,0,0,0,0,0,0,0,0, 120,18.64K,1380,8260,10.23K,25.75K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,49.16K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,180,1745,46.77K,0,0,0,0,0,0,0,0,0,0,0, 0,200,0,680,3850,46.13K,0,0,0,0,0,0,0,0,0,0,0, 0,920,40,2500,5660,43.14K,0,0,0,0,0,0,0,0,0,0,0, 0,7520,480,5940,8305,35.66K,0,0,0,0,0,0,0,0,0,0,0, 120,16.36K,1080,8780,9980,29.65K,0,0,0,0,0,0,0,0,0,0,0, 80,19.2K,1820,8640,10.05K,25.6K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,47.94K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,120,1725,47.45K,0,0,0,0,0,0,0,0,0,0,0, 0,120,0,840,3675,46.26K,0,0,0,0,0,0,0,0,0,0,0, 0,1160,60,1940,5795,43.47K,0,0,0,0,0,0,0,0,0,0,0, 0,8000,300,5700,8715,36.24K,0,0,0,0,0,0,0,0,0,0,0, 120,17.32K,1380,8220,9740,28.24K,0,0,0,0,0,0,0,0,0,0,0, 120,19.4K,1460,8760,10.43K,26.53K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,46.62K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,120,1715,46.17K,0,0,0,0,0,0,0,0,0,0,0, 0,120,0,680,3710,45.23K,0,0,0,0,0,0,0,0,0,0,0, 0,1120,0,2400,5820,43.04K,0,0,0,0,0,0,0,0,0,0,0, 40,7680,280,5700,8815,36.25K,0,0,0,0,0,0,0,0,0,0,0, 80,17.08K,1160,8260,10K,28.63K,0,0,0,0,0,0,0,0,0,0,0, 40,20.48K,1800,8840,10.09K,25.77K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,46.71K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,100,1870,45.74K,0,0,0,0,0,0,0,0,0,0,0, 0,80,0,680,3740,44.05K,0,0,0,0,0,0,0,0,0,0,0, 0,1000,40,2640,5690,41.82K,0,0,0,0,0,0,0,0,0,0,0, 0,7480,240,5940,8555,34.96K,0,0,0,0,0,0,0,0,0,0,0, 40,16.96K,940,8420,9530,27.64K,0,0,0,0,0,0,0,0,0,0,0, 40,20.2K,1520,8560,10.06K,25.91K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,47.29K,0,0,0,0,0,0,0,0,0,0,0, 0,40,0,80,1825,45.13K,0,0,0,0,0,0,0,0,0,0,0, 0,120,0,580,3660,43.6K,0,0,0,0,0,0,0,0,0,0,0, 0,880,0,2460,5895,41.37K,0,0,0,0,0,0,0,0,0,0,0, 0,7600,280,5740,8490,34.01K,0,0,0,0,0,0,0,0,0,0,0, 0,15.64K,940,7940,9950,27.37K,0,0,0,0,0,0,0,0,0,0,0, 160,18.6K,1560,8880,10.32K,24.78K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,47.1K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,40,1810,45.47K,0,0,0,0,0,0,0,0,0,0,0, 0,200,20,640,3560,44.39K,0,0,0,0,0,0,0,0,0,0,0, 0,880,0,2340,5825,41.97K,0,0,0,0,0,0,0,0,0,0,0, 40,7360,280,6440,8685,35.07K,0,0,0,0,0,0,0,0,0,0,0, 120,16.88K,1100,8200,9665,28.34K,0,0,0,0,0,0,0,0,0,0,0, 240,18.88K,1560,8660,10.15K,25.98K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,49.7K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,80,1825,47.62K,0,0,0,0,0,0,0,0,0,0,0, 0,120,0,680,3755,46.05K,0,0,0,0,0,0,0,0,0,0,0, 0,1360,20,2180,5855,43.88K,0,0,0,0,0,0,0,0,0,0,0, 40,8120,380,5940,8775,37.2K,0,0,0,0,0,0,0,0,0,0,0, 40,16.88K,1280,7680,10.24K,29.41K,0,0,0,0,0,0,0,0,0,0,0, 80,19.48K,1760,8780,9880,26.91K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,53.01K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,180,1885,51.25K,0,0,0,0,0,0,0,0,0,0,0, 0,280,0,900,3745,50.15K,0,0,0,0,0,0,0,0,0,0,0, 0,1360,40,2780,5925,47.24K,0,0,0,0,0,0,0,0,0,0,0, 0,9320,460,6360,8840,39.1K,0,0,0,0,0,0,0,0,0,0,0, 40,18.88K,1840,8260,10.09K,32.17K,0,0,0,0,0,0,0,0,0,0,0, 280,21.04K,1980,8800,10.38K,29.31K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,56.46K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,200,1915,56.41K,0,0,0,0,0,0,0,0,0,0,0, 0,360,0,980,4160,53.53K,0,0,0,0,0,0,0,0,0,0,0, 0,1680,20,2840,6045,50.5K,0,0,0,0,0,0,0,0,0,0,0, 0,9720,520,6240,9280,42.52K,0,0,0,0,0,0,0,0,0,0,0, 240,19.92K,1700,9240,10.86K,33.4K,0,0,0,0,0,0,0,0,0,0,0, 320,23.12K,2780,9160,10.29K,31.08K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,60.58K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,220,2195,58.9K,0,0,0,0,0,0,0,0,0,0,0, 0,200,0,1160,4435,57.66K,0,0,0,0,0,0,0,0,0,0,0, 40,1880,40,3020,6330,54.58K,0,0,0,0,0,0,0,0,0,0,0, 40,11.16K,620,6540,9380,45.57K,0,0,0,0,0,0,0,0,0,0,0, 80,21.96K,2200,8960,10.61K,36.4K,0,0,0,0,0,0,0,0,0,0,0, 160,24.8K,2640,10.1K,10.5K,33.47K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,62.93K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,240,2255,62.49K,0,0,0,0,0,0,0,0,0,0,0, 0,240,0,1340,4480,59.81K,0,0,0,0,0,0,0,0,0,0,0, 0,2280,40,3460,6490,57.36K,0,0,0,0,0,0,0,0,0,0,0, 0,11.56K,640,7580,9315,48.1K,0,0,0,0,0,0,0,0,0,0,0, 320,23.96K,3000,9320,10.59K,38K,0,0,0,0,0,0,0,0,0,0,0, 280,27.68K,3120,10.1K,10.71K,35.53K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,66.44K,0,0,0,0,0,0,0,0,0,0,0, 0,40,0,220,2340,64.91K,0,0,0,0,0,0,0,0,0,0,0, 0,600,0,1060,4535,62.73K,0,0,0,0,0,0,0,0,0,0,0, 0,2520,80,3380,6685,58.96K,0,0,0,0,0,0,0,0,0,0,0, 0,12.4K,940,7280,9580,49.68K,0,0,0,0,0,0,0,0,0,0,0, 160,24.92K,2660,9640,10.89K,40.13K,0,0,0,0,0,0,0,0,0,0,0, 200,29.56K,3260,10.06K,10.86K,36.67K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,68.05K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,260,2460,66.57K,0,0,0,0,0,0,0,0,0,0,0, 0,280,0,1460,4790,64.8K,0,0,0,0,0,0,0,0,0,0,0, 0,2120,20,4100,6910,62.11K,0,0,0,0,0,0,0,0,0,0,0, 0,13K,900,7980,9505,51.28K,0,0,0,0,0,0,0,0,0,0,0, 160,26K,2700,9700,10.78K,41.03K,0,0,0,0,0,0,0,0,0,0,0, 360,30.36K,4100,10.04K,10.74K,37.15K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,71.1K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,200,2480,70.23K,0,0,0,0,0,0,0,0,0,0,0, 0,480,0,1340,5000,67.85K,0,0,0,0,0,0,0,0,0,0,0, 0,2800,120,3860,6895,63.74K,0,0,0,0,0,0,0,0,0,0,0, 40,14.68K,1120,7380,9975,53.27K,0,0,0,0,0,0,0,0,0,0,0, 280,26.84K,2900,10.6K,10.87K,42.96K,0,0,0,0,0,0,0,0,0,0,0, 440,31.52K,4120,10.78K,11.07K,39.31K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,76.18K,0,0,0,0,0,0,0,0,0,0,0, 0,40,0,240,2610,74.43K,0,0,0,0,0,0,0,0,0,0,0, 0,640,40,2020,4760,72.43K,0,0,0,0,0,0,0,0,0,0,0, 0,2800,60,4160,7040,68.87K,0,0,0,0,0,0,0,0,0,0,0, 160,16.16K,1420,8080,9840,57.09K,0,0,0,0,0,0,0,0,0,0,0, 360,29.04K,3520,10.46K,11.11K,45.56K,0,0,0,0,0,0,0,0,0,0,0, 840,33.6K,4580,10.66K,11.22K,42.26K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,84.57K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,340,2865,83.23K,0,0,0,0,0,0,0,0,0,0,0, 0,800,20,1660,5480,80.32K,0,0,0,0,0,0,0,0,0,0,0, 0,3120,80,4740,7555,76.42K,0,0,0,0,0,0,0,0,0,0,0, 80,17.8K,1560,8660,10.05K,63.85K,0,0,0,0,0,0,0,0,0,0,0, 720,32.2K,4820,10.42K,11.12K,50.6K,0,0,0,0,0,0,0,0,0,0,0, 680,37.92K,5420,10.14K,11.4K,46.85K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,97.33K,0,0,0,0,0,0,0,0,0,0,0, 0,40,0,340,3020,95.22K,0,0,0,0,0,0,0,0,0,0,0, 0,1000,0,2460,5710,92.76K,0,0,0,0,0,0,0,0,0,0,0, 0,4600,180,4820,7890,87.83K,0,0,0,0,0,0,0,0,0,0,0, 200,21.24K,2120,8920,10K,72.82K,0,0,0,0,0,0,0,0,0,0,0, 1160,37.84K,6180,10.26K,11.09K,58.66K,0,0,0,0,0,0,0,0,0,0,0, 1760,42.64K,7120,11.24K,11.43K,54.04K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,112.2K,0,0,0,0,0,0,0,0,0,0,0, 0,160,0,440,3510,110.5K,0,0,0,0,0,0,0,0,0,0,0, 0,1280,0,2780,5945,106.9K,0,0,0,0,0,0,0,0,0,0,0, 0,6600,360,5380,8230,101.8K,0,0,0,0,0,0,0,0,0,0,0, 280,24.12K,3200,9640,10.58K,83.76K,0,0,0,0,0,0,0,0,0,0,0, 1680,43.24K,7660,11.84K,11.44K,67.41K,0,0,0,0,0,0,0,0,0,0,0, 2800,47.76K,9840,11.9K,11.83K,61.3K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,126.5K,0,0,0,0,0,0,0,0,0,0,0, 0,240,20,660,3510,125.1K,0,0,0,0,0,0,0,0,0,0,0, 0,1560,40,3240,6490,122K,0,0,0,0,0,0,0,0,0,0,0, 0,8360,560,5580,8525,115K,0,0,0,0,0,0,0,0,0,0,0, 480,29K,4060,9780,10.92K,95.24K,0,0,0,0,0,0,0,0,0,0,0, 2440,49K,9580,11.62K,11.9K,77.16K,0,0,0,0,0,0,0,0,0,0,0, 3640,53.4K,12.1K,12.56K,12.09K,69.99K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,141K,0,0,0,0,0,0,0,0,0,0,0, 0,160,0,1040,4040,138.9K,0,0,0,0,0,0,0,0,0,0,0, 40,2120,40,3640,6805,133.6K,0,0,0,0,0,0,0,0,0,0,0, 40,9680,680,6720,9025,126.5K,0,0,0,0,0,0,0,0,0,0,0, 840,33.4K,4540,10.52K,11.04K,105.1K,0,0,0,0,0,0,0,0,0,0,0, 3440,54K,11.58K,12.22K,12.02K,84.44K,0,0,0,0,0,0,0,0,0,0,0, 5080,58.44K,14.02K,13K,12.36K,77.37K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,151.7K,0,0,0,0,0,0,0,0,0,0,0, 0,280,0,1160,4415,146.8K,0,0,0,0,0,0,0,0,0,0,0, 0,3080,140,3960,7025,142.4K,0,0,0,0,0,0,0,0,0,0,0, 0,10.96K,680,6940,9320,135.9K,0,0,0,0,0,0,0,0,0,0,0, 1160,36.68K,5600,11.66K,11.24K,112.2K,0,0,0,0,0,0,0,0,0,0,0, 4200,58.28K,13.22K,12.12K,12.45K,90.54K,0,0,0,0,0,0,0,0,0,0,0, 5320,64.64K,15.06K,13.06K,12.38K,83K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,155K,0,0,0,0,0,0,0,0,0,0,0, 0,240,0,1220,4495,151.4K,0,0,0,0,0,0,0,0,0,0,0, 0,3200,80,4360,7275,147.4K,0,0,0,0,0,0,0,0,0,0,0, 0,12K,620,7280,9355,139.5K,0,0,0,0,0,0,0,0,0,0,0, 1200,39.24K,5560,11.58K,11.5K,117.2K,0,0,0,0,0,0,0,0,0,0,0, 4320,61.92K,13.5K,12.4K,12.14K,92.23K,0,0,0,0,0,0,0,0,0,0,0, 6160,66.52K,16.24K,13.04K,12.78K,84.64K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,153.7K,0,0,0,0,0,0,0,0,0,0,0, 0,320,0,1140,4510,151.5K,0,0,0,0,0,0,0,0,0,0,0, 0,3040,100,4180,7595,146.8K,0,0,0,0,0,0,0,0,0,0,0, 0,12.68K,860,7280,9205,139.6K,0,0,0,0,0,0,0,0,0,0,0, 840,40K,5640,11.16K,11.51K,116.2K,0,0,0,0,0,0,0,0,0,0,0, 4800,62.96K,13.38K,12.68K,12.39K,92.57K,0,0,0,0,0,0,0,0,0,0,0, 6360,67.64K,15.6K,14K,12.7K,85.62K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,150.3K,0,0,0,0,0,0,0,0,0,0,0, 0,440,0,1260,4535,148.4K,0,0,0,0,0,0,0,0,0,0,0, 0,3440,20,3880,7240,143.2K,0,0,0,0,0,0,0,0,0,0,0, 40,11.36K,620,7920,9055,136.8K,0,0,0,0,0,0,0,0,0,0,0, 1160,39.04K,5580,11.42K,11.42K,113K,0,0,0,0,0,0,0,0,0,0,0, 4240,62.16K,12.32K,13.24K,12.19K,91.24K,0,0,0,0,0,0,0,0,0,0,0, 5560,68.48K,15.74K,12.94K,12.65K,85.09K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,143.9K,0,0,0,0,0,0,0,0,0,0,0, 0,360,0,1200,4155,140.9K,0,0,0,0,0,0,0,0,0,0,0, 0,3120,40,4360,7045,137.6K,0,0,0,0,0,0,0,0,0,0,0, 0,11.44K,640,7060,9300,129.3K,0,0,0,0,0,0,0,0,0,0,0, 720,38.88K,5480,10.9K,11.29K,108.1K,0,0,0,0,0,0,0,0,0,0,0, 4320,61.24K,12K,12.26K,12K,88K,0,0,0,0,0,0,0,0,0,0,0, 5120,66.08K,14.68K,13.5K,12.57K,80.08K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,135.6K,0,0,0,0,0,0,0,0,0,0,0, 0,280,0,1200,4420,134.3K,0,0,0,0,0,0,0,0,0,0,0, 0,3560,60,3440,6900,130.4K,0,0,0,0,0,0,0,0,0,0,0, 0,10.56K,520,6900,8955,121.8K,0,0,0,0,0,0,0,0,0,0,0, 480,36.36K,4480,11K,11.42K,101.1K,0,0,0,0,0,0,0,0,0,0,0, 3160,57.4K,10.92K,12.04K,11.95K,81.8K,0,0,0,0,0,0,0,0,0,0,0, 4400,64.88K,12.8K,12.74K,12.68K,75.8K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,127K,0,0,0,0,0,0,0,0,0,0,0, 0,240,0,740,4250,125.5K,0,0,0,0,0,0,0,0,0,0,0, 0,2200,40,3580,6870,120.9K,0,0,0,0,0,0,0,0,0,0,0, 40,9320,280,6780,8690,114.1K,0,0,0,0,0,0,0,0,0,0,0, 440,33.88K,3960,11.2K,11.15K,95.34K,0,0,0,0,0,0,0,0,0,0,0, 2880,55.44K,8940,12.3K,11.88K,76.57K,0,0,0,0,0,0,0,0,0,0,0, 3800,60K,11.44K,13.1K,12.05K,69.88K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,118.7K,0,0,0,0,0,0,0,0,0,0,0, 0,240,0,800,3870,115.9K,0,0,0,0,0,0,0,0,0,0,0, 0,2120,0,3300,6650,111.5K,0,0,0,0,0,0,0,0,0,0,0, 0,8560,300,6620,8330,107.5K,0,0,0,0,0,0,0,0,0,0,0, 480,31.12K,3280,10.74K,11.14K,88.28K,0,0,0,0,0,0,0,0,0,0,0, 2240,51.64K,8260,12.18K,11.85K,69.9K,0,0,0,0,0,0,0,0,0,0,0, 3600,56.84K,10.08K,12.44K,11.99K,64.45K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,110K,0,0,0,0,0,0,0,0,0,0,0, 0,200,0,600,3590,107.9K,0,0,0,0,0,0,0,0,0,0,0, 0,1680,40,2900,6320,104.5K,0,0,0,0,0,0,0,0,0,0,0, 0,7320,260,5860,8465,97.96K,0,0,0,0,0,0,0,0,0,0,0, 280,28.88K,3200,9780,11.03K,81.57K,0,0,0,0,0,0,0,0,0,0,0, 1280,47.24K,7300,11.78K,11.89K,65.65K,0,0,0,0,0,0,0,0,0,0,0, 2040,53.04K,9340,12.14K,11.42K,59.57K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,100.2K,0,0,0,0,0,0,0,0,0,0,0, 0,120,0,560,3550,98.01K,0,0,0,0,0,0,0,0,0,0,0, 0,1200,40,2520,6345,94.63K,0,0,0,0,0,0,0,0,0,0,0, 0,6360,160,5660,8375,91.49K,0,0,0,0,0,0,0,0,0,0,0, 280,25.6K,2540,9880,11.01K,75.46K,0,0,0,0,0,0,0,0,0,0,0, 1240,44.16K,5820,11.7K,11.69K,60.68K,0,0,0,0,0,0,0,0,0,0,0, 1840,49.72K,7460,11.76K,11.97K,55.24K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,94.7K,0,0,0,0,0,0,0,0,0,0,0, 0,120,0,460,3285,90.98K,0,0,0,0,0,0,0,0,0,0,0, 0,1120,20,2540,5890,87.49K,0,0,0,0,0,0,0,0,0,0,0, 0,5840,160,5360,7990,84.13K,0,0,0,0,0,0,0,0,0,0,0, 160,23.52K,1900,9160,10.2K,68.91K,0,0,0,0,0,0,0,0,0,0,0, 1120,40.04K,5360,11.56K,11.46K,55.74K,0,0,0,0,0,0,0,0,0,0,0, 1240,45.24K,6660,11.78K,12.15K,52.26K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,87.13K,0,0,0,0,0,0,0,0,0,0,0, 0,80,0,440,3320,84.82K,0,0,0,0,0,0,0,0,0,0,0, 0,1120,20,2280,5725,82.08K,0,0,0,0,0,0,0,0,0,0,0, 0,4680,160,4880,7995,78.61K,0,0,0,0,0,0,0,0,0,0,0, 120,20.36K,1940,9800,10.21K,65.28K,0,0,0,0,0,0,0,0,0,0,0, 760,37.2K,4480,10.82K,11.41K,52.47K,0,0,0,0,0,0,0,0,0,0,0, 960,42.24K,5840,11.54K,11.7K,46.88K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,80.56K,0,0,0,0,0,0,0,0,0,0,0, 0,80,0,480,2790,80.08K,0,0,0,0,0,0,0,0,0,0,0, 0,840,60,2240,5465,77.15K,0,0,0,0,0,0,0,0,0,0,0, 0,4880,120,4360,7885,73.38K,0,0,0,0,0,0,0,0,0,0,0, 160,18.88K,1360,8520,10.29K,61.62K,0,0,0,0,0,0,0,0,0,0,0, 440,34.96K,3940,11.08K,10.95K,48.62K,0,0,0,0,0,0,0,0,0,0,0, 920,39.84K,5020,11.3K,11.4K,44.56K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,76.22K,0,0,0,0,0,0,0,0,0,0,0, 0,40,0,320,2730,76.2K,0,0,0,0,0,0,0,0,0,0,0, 0,520,0,2060,5405,72.6K,0,0,0,0,0,0,0,0,0,0,0, 0,3800,160,4440,7350,69.03K,0,0,0,0,0,0,0,0,0,0,0, 0,18.12K,1260,8120,10.15K,57.06K,0,0,0,0,0,0,0,0,0,0,0, 280,32.12K,3640,10.84K,11.03K,46.6K,0,0,0,0,0,0,0,0,0,0,0, 640,36.96K,4220,10.98K,11.38K,42.88K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,72.24K,0,0,0,0,0,0,0,0,0,0,0, 0,80,0,400,2565,70.91K,0,0,0,0,0,0,0,0,0,0,0, 0,440,0,1780,4875,69.69K,0,0,0,0,0,0,0,0,0,0,0, 0,3240,80,4000,7330,64.97K,0,0,0,0,0,0,0,0,0,0,0, 160,16.36K,1040,8160,9880,54.05K,0,0,0,0,0,0,0,0,0,0,0, 240,30.68K,3280,9640,11.25K,43.66K,0,0,0,0,0,0,0,0,0,0,0, 440,35K,4360,10.36K,11.42K,40.44K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,69.27K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,360,2455,68.23K,0,0,0,0,0,0,0,0,0,0,0, 0,760,0,1420,4800,66.7K,0,0,0,0,0,0,0,0,0,0,0, 0,2920,60,3920,6960,62.85K,0,0,0,0,0,0,0,0,0,0,0, 40,15.52K,980,7680,9825,52.18K,0,0,0,0,0,0,0,0,0,0,0, 400,28.88K,3300,10.08K,10.91K,41.81K,0,0,0,0,0,0,0,0,0,0,0, 280,32.96K,3620,10.34K,11.3K,38.43K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,66.35K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,180,2480,65.16K,0,0,0,0,0,0,0,0,0,0,0, 0,480,0,1500,4830,62.14K,0,0,0,0,0,0,0,0,0,0,0, 0,2440,80,3960,6780,59.88K,0,0,0,0,0,0,0,0,0,0,0, 40,14K,1060,7700,9590,49.94K,0,0,0,0,0,0,0,0,0,0,0, 200,27.48K,2900,9920,10.88K,40.53K,0,0,0,0,0,0,0,0,0,0,0, 240,30.92K,3600,10.42K,10.86K,36.33K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,63.28K,0,0,0,0,0,0,0,0,0,0,0, 0,40,0,300,2195,62.53K,0,0,0,0,0,0,0,0,0,0,0, 0,240,0,1080,4785,58.99K,0,0,0,0,0,0,0,0,0,0,0, 0,2560,40,3640,6540,57.04K,0,0,0,0,0,0,0,0,0,0,0, 40,12.72K,780,7540,9570,47.47K,0,0,0,0,0,0,0,0,0,0,0, 80,25.64K,2680,9340,10.85K,37.51K,0,0,0,0,0,0,0,0,0,0,0, 360,29.32K,3280,10.12K,10.72K,34.91K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,59.24K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,160,2220,58.85K,0,0,0,0,0,0,0,0,0,0,0, 0,200,0,1520,4380,56.36K,0,0,0,0,0,0,0,0,0,0,0, 0,2240,80,3140,6740,53.82K,0,0,0,0,0,0,0,0,0,0,0, 80,12.28K,520,7380,9395,44.17K,0,0,0,0,0,0,0,0,0,0,0, 320,24.36K,1880,9520,10.76K,35.99K,0,0,0,0,0,0,0,0,0,0,0, 200,28.12K,2700,9660,11.02K,32.27K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,56.96K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,120,1840,55.66K,0,0,0,0,0,0,0,0,0,0,0, 0,240,0,1160,4275,53.11K,0,0,0,0,0,0,0,0,0,0,0, 0,1720,20,3380,6420,51.02K,0,0,0,0,0,0,0,0,0,0,0, 40,11.32K,580,7100,9250,42.84K,0,0,0,0,0,0,0,0,0,0,0, 80,21.92K,1980,8960,10.86K,34.07K,0,0,0,0,0,0,0,0,0,0,0, 200,26.4K,2700,9460,10.61K,30.68K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,53.04K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,100,1790,51.84K,0,0,0,0,0,0,0,0,0,0,0, 0,280,0,1180,3935,50.18K,0,0,0,0,0,0,0,0,0,0,0, 0,1880,0,2900,6170,46.83K,0,0,0,0,0,0,0,0,0,0,0, 0,10.68K,540,6440,9035,39.33K,0,0,0,0,0,0,0,0,0,0,0, 40,19.88K,1480,9140,10.36K,32.06K,0,0,0,0,0,0,0,0,0,0,0, 240,24.36K,2180,9180,10.52K,28.77K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,48.36K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,80,1865,47.02K,0,0,0,0,0,0,0,0,0,0,0, 0,160,0,820,3815,46.58K,0,0,0,0,0,0,0,0,0,0,0, 0,1240,40,2560,6005,42.95K,0,0,0,0,0,0,0,0,0,0,0, 0,9200,520,6080,8385,36.65K,0,0,0,0,0,0,0,0,0,0,0, 80,18.64K,1360,8060,9605,28.37K,0,0,0,0,0,0,0,0,0,0,0, 80,21.64K,1860,9160,10.31K,26.65K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,44.03K,0,0,0,0,0,0,0,0,0,0,0, 0,40,0,20,1905,43.86K,0,0,0,0,0,0,0,0,0,0,0, 0,80,0,820,3695,42.16K,0,0,0,0,0,0,0,0,0,0,0, 0,1120,20,2300,5495,39.65K,0,0,0,0,0,0,0,0,0,0,0, 40,7600,300,5580,8700,33.01K,0,0,0,0,0,0,0,0,0,0,0, 40,16.4K,940,8020,9665,25.66K,0,0,0,0,0,0,0,0,0,0,0, 80,19.76K,1520,8640,9830,24.07K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,39.35K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,20,1535,37.95K,0,0,0,0,0,0,0,0,0,0,0, 0,80,0,460,3375,37.6K,0,0,0,0,0,0,0,0,0,0,0, 0,1000,20,1840,5380,35.16K,0,0,0,0,0,0,0,0,0,0,0, 0,7040,160,5140,8050,30.27K,0,0,0,0,0,0,0,0,0,0,0, 40,14.48K,560,7480,9630,23.9K,0,0,0,0,0,0,0,0,0,0,0, 40,16.84K,1000,7800,9840,21.86K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,35.17K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,40,1375,33.97K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,480,2985,33.52K,0,0,0,0,0,0,0,0,0,0,0, 0,600,0,1740,4995,31.08K,0,0,0,0,0,0,0,0,0,0,0, 0,5040,120,4840,7895,26K,0,0,0,0,0,0,0,0,0,0,0, 40,12.32K,520,6880,9500,21.14K,0,0,0,0,0,0,0,0,0,0,0, 40,14K,800,7440,9280,19.32K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,30.61K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,20,1325,30.14K,0,0,0,0,0,0,0,0,0,0,0, 0,80,0,440,2795,29.51K,0,0,0,0,0,0,0,0,0,0,0, 0,680,20,1560,4505,27.08K,0,0,0,0,0,0,0,0,0,0,0, 0,3840,80,4160,7390,22.53K,0,0,0,0,0,0,0,0,0,0,0, 0,10.44K,460,6320,8825,18.22K,0,0,0,0,0,0,0,0,0,0,0, 40,11.24K,540,7200,8865,16.98K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,26.64K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,20,1140,26.48K,0,0,0,0,0,0,0,0,0,0,0, 0,40,0,400,2580,25.85K,0,0,0,0,0,0,0,0,0,0,0, 0,320,0,1320,4360,24.02K,0,0,0,0,0,0,0,0,0,0,0, 0,2600,60,3760,7030,20.65K,0,0,0,0,0,0,0,0,0,0,0, 0,8680,200,5880,8130,16.3K,0,0,0,0,0,0,0,0,0,0,0, 0,9160,380,6860,8625,14.67K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,23.98K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,60,1005,23.26K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,280,2200,22.6K,0,0,0,0,0,0,0,0,0,0,0, 0,160,20,720,4195,21.93K,0,0,0,0,0,0,0,0,0,0,0, 0,2600,20,3300,6455,18.52K,0,0,0,0,0,0,0,0,0,0,0, 0,6560,320,5520,8315,13.9K,0,0,0,0,0,0,0,0,0,0,0, 0,7560,320,5680,8545,13.47K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,21.56K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,900,21.56K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,140,1990,20.85K,0,0,0,0,0,0,0,0,0,0,0, 0,160,0,620,3485,19.13K,0,0,0,0,0,0,0,0,0,0,0, 0,1840,0,3080,6265,16.13K,0,0,0,0,0,0,0,0,0,0,0, 0,5360,240,5100,8110,12.77K,0,0,0,0,0,0,0,0,0,0,0, 0,5560,100,6000,7980,11.66K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,19.58K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,775,18.88K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,160,1915,18.6K,0,0,0,0,0,0,0,0,0,0,0, 0,120,0,740,3405,17.97K,0,0,0,0,0,0,0,0,0,0,0, 0,1520,0,2640,6005,14.44K,0,0,0,0,0,0,0,0,0,0,0, 0,4160,140,4480,7665,11.22K,0,0,0,0,0,0,0,0,0,0,0, 0,4840,220,5020,7805,11K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,18.45K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,690,17.57K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,80,1740,16.8K,0,0,0,0,0,0,0,0,0,0,0, 0,120,0,320,3245,15.89K,0,0,0,0,0,0,0,0,0,0,0, 0,1280,40,2420,5595,13.34K,0,0,0,0,0,0,0,0,0,0,0, 0,3160,140,4300,7085,10.97K,0,0,0,0,0,0,0,0,0,0,0, 0,4440,80,4380,7405,9995,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,17.05K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,635,16.21K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,160,1585,15.6K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,500,2750,15.29K,0,0,0,0,0,0,0,0,0,0,0, 0,880,40,2360,5455,12.23K,0,0,0,0,0,0,0,0,0,0,0, 0,2680,80,3680,6815,9945,0,0,0,0,0,0,0,0,0,0,0, 0,3560,80,4460,7260,9345,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,15.96K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,610,15.7K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,40,1565,14.92K,0,0,0,0,0,0,0,0,0,0,0, 0,40,0,280,2750,13.95K,0,0,0,0,0,0,0,0,0,0,0, 0,720,20,2020,5270,11.85K,0,0,0,0,0,0,0,0,0,0,0, 0,2080,40,4180,6935,9480,0,0,0,0,0,0,0,0,0,0,0, 0,3120,40,4140,7165,8460,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,15.15K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,590,15.22K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,20,1525,14.51K,0,0,0,0,0,0,0,0,0,0,0, 0,40,0,340,2765,13.47K,0,0,0,0,0,0,0,0,0,0,0, 0,800,20,1700,5365,11.4K,0,0,0,0,0,0,0,0,0,0,0, 0,2080,60,3440,6730,9385,0,0,0,0,0,0,0,0,0,0,0, 0,3320,60,4020,6925,7955,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,14.72K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,20,650,14.49K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,40,1490,13.62K,0,0,0,0,0,0,0,0,0,0,0, 0,40,0,300,2740,12.9K,0,0,0,0,0,0,0,0,0,0,0, 0,440,0,1800,4970,10.57K,0,0,0,0,0,0,0,0,0,0,0, 0,1800,40,3460,6540,8895,0,0,0,0,0,0,0,0,0,0,0, 0,2440,100,4200,6710,7840,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,13.65K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,610,13.56K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,100,1390,13.61K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,360,2375,12.49K,0,0,0,0,0,0,0,0,0,0,0, 0,560,0,1500,5095,10.41K,0,0,0,0,0,0,0,0,0,0,0, 0,1960,40,3080,6470,8435,0,0,0,0,0,0,0,0,0,0,0, 0,2480,60,3580,6675,7325,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,13.97K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,605,13.87K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,40,1455,13.47K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,360,2325,12.47K,0,0,0,0,0,0,0,0,0,0,0, 0,440,20,1520,4965,10.71K,0,0,0,0,0,0,0,0,0,0,0, 0,1520,80,3080,6405,8345,0,0,0,0,0,0,0,0,0,0,0, 0,2520,0,3140,6730,8075,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,13.9K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,535,13.65K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,60,1385,13.15K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,160,2520,12.31K,0,0,0,0,0,0,0,0,0,0,0, 0,480,0,1540,4755,10.96K,0,0,0,0,0,0,0,0,0,0,0, 0,1600,20,2980,6005,8720,0,0,0,0,0,0,0,0,0,0,0, 0,2040,100,3720,6440,8100,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,13.99K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,555,14.05K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,40,1360,13.69K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,320,2410,12.63K,0,0,0,0,0,0,0,0,0,0,0, 0,480,0,1720,4775,10.61K,0,0,0,0,0,0,0,0,0,0,0, 0,1640,80,3280,5995,8450,0,0,0,0,0,0,0,0,0,0,0, 0,2440,40,3640,6585,7665,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,14.35K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,40,590,13.63K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,20,1430,13.37K,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,180,2490,12.91K,0,0,0,0,0,0,0,0,0,0,0, 0,720,0,1560,4665,10.71K,0,0,0,0,0,0,0,0,0,0,0, 0,1840,40,3200,6010,8275,0,0,0,0,0,0,0,0,0,0,0, 0,2040,40,3540,6710,7550,0,0,0,0,0,0,0,0,0,0,0 ) 288,288,1 48,24 2,165,61,553,492,0,MIDM 2,152,162,661,477,1,MIDM [Vehicle,Scenario1_0] [Time_stat,Vehicle] Scenario selection 20.6.2006 Jouni Tuomisto Esimerkki kuinka 1.0.4-versiossa valitaan eri skenaarioajojen vŠliltŠ. var a:= 0; a:= if choose_scen = 'Article + sensitivity' then Scen1 else 0; a:= if choose_scen='Inverse guarantee' then Scen1_0_4 else a; a:= if choose_scen='Only 9 seat vehicles' then Scen_9seats else a; index scenario:= if choose_scen = 'Article + sensitivity' then copyindex(Scen1_1) else (if choose_scen='Inverse guarantee' then copyindex(Scenario1_0) else (if choose_scen='Only 9 seat vehicles' then copyindex(Scenario5) else [0])); a:= if choose_scen = 'Article + sensitivity' then a[Scen1_1=scenario] else a; a:= if choose_scen='Inverse guarantee' then a[Scenario1_0=scenario] else a; a:= if choose_scen='Only 9 seat vehicles' then a[Scenario5=scenario] else a; a 0 64,160,1 48,24 Cost elements 1 56,88,1 48,24 1,0,0,1,1,1,0,,0, Cost_elements Costs not included: Accidents Street infrastructure City planning 1 208,72,1 68,55 1,1,1,1,1,1,0,,1, Costs_not_included__ Composite traffic is more attractive to those with long (>= 5 km trips) 1 472,56,1 52,48 65535,65532,19661 Composite_traffic_is Total societal VOI is only 23000 e/d, which implies robust conclusions 1 688,96,1 52,48 65535,65532,19661 Total_societal__voi_ Other actions 0 104,256,1 96,12 There are several new personal rapid transit (PRT) solutions under operation or preparation. However, all require extensive new infrastructure, either vehicles or roads Under operation: CyberCab: The CyberCab is a new people mover system which first application is a temporary installation during the Floriade 2002 Ð a horticultural exposition organized once every ten years. 25 CyberCabs will provide transportation to the summit of the 40 meter high observation point: Big SpottersÕ Hill. The CyberCab is a fully automated vehicle seating 4 passengers. The system is operated by 2getthere.<a href="http://faculty.washington.edu/jbs/itrans/cybercab.htm">Click</a> Under planning: HiLoMag: special high-speed gateways for dual-mode cars <a href="http://faculty.washington.edu/~jbs/itrans/hilo1.htm">Click</a> BiWay dual mode transport: network of elevated tracks along which vehicles are magnetically levitated, and guided under computer control. <a href="http://www.buick.co.uk/biway/intro4.html">Click</a> Other_actions 104,360,1 76,72 2,299,66,476,385 Composite traffic alone cannot cover all needs of car ownership, but it is almost as good when combined with car sharing or rental composite_traffic_dummy 504,264,1 76,56 There is an inefficiency bump at 0-20% composite fraction: with too low trip volumes, the benefits from aggregating trips are not realised, and the system is not profitable There is an inefficiency bump at 0-30% (depending on various details about organising the traffic) composite fraction: with too low trip volumes, the benefits from aggregating trips are not realised, and the system is not profitable Inefficiency bump in Finnish: tehottomuustšyssy. composite_traffic_dummy 480,408,1 80,72 2,103,257,476,343 65535,65532,19661 Composite traffic aggregates similar trips into public vehicles In composite traffic, a centralised system collects the information on all trips online, aggregates the trips with the same origin and destination into public vehicles with eight or four seats, and sends the travel instructions to the passengers' mobile phones. composite_traffic_dummy 504,64,1 48,55 1,1,1,1,1,1,0,,1, [Alias Composite_traffic_a1] The pressures from road traffic have stimulated efforts to reduce emissions, congestion, injuries, and need to travel The pressures from road traffic have stimulated efforts to reduce emissions (electric, hybrid, and hydrogen cars1, natural gas buses2, catalysts and particle traps3, and driving style4); congestion (traffic control5, street tolls, public transport subsidies); injuries (anti-locking brakes, airbags, speed limits6); and need to travel (urban planning7). Emissions 328,336,1 72,52 2,310,109,596,455 1. Ortmeyer,T.H. & Pillay,P. Trends in transportation sector technology energy use and greenhouse gas emissions. Proceedings of the Ieee 89, 1837-1847 (2001). 2. Tainio,M. et al. Health effect caused by primary fine particulate matter (PM2.5) emitted from busses in Helsinki Metropolitan Area, Finland. Risk Anal. 25, 149-158 (2005). 3. Mediavilla-Sahagun,A. & ApSimon,H.M. Urban scale integrated assessment of options to reduce PM10 in London towards attainment of air quality objectives. Atmos. Environ. 37, 4651-4665 (2003). 4. Vangi,D. & Virga,A. Evaluation of energy-saving driving styles for bus drivers. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering 217, 299-305 (2003). 5. Hounsell,N.B. & McDonald,M. Urban network traffic control. Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering 215, 325-334 (2001). 6. Elvik,R. Optimal speed limits - Limits of optimality models. Transportation Research Record 32-38 (2002). 7. Banister,D. Reducing the need to travel. Environment and Planning B-Planning & Design 24, 437-449 (1997). New fuels and engines 0 104,64,1 96,12 Particle traps, catalysts 0 104,96,1 96,12 Driving style 0 104,128,1 96,12 Traffic control, speed limits 0 104,160,1 96,12 Subsidies to public transport 0 104,32,1 96,12 Airbags, ABS brakes 0 104,192,1 96,12 Urban planning 0 104,224,1 96,12 Emissions New_fuels_and_engine; Particle_traps__cata; Driving_style; Traffic_control__spe; Urban_planning; Composite_traffic_du 328,64,1 88,12 Congestion Driving_style; Traffic_control__spe; Subsidies_to_public_; Urban_planning; Composite_traffic_du 328,128,1 88,12 Injuries Traffic_control__spe; Airbags__abs_brakes; Composite_traffic_du; Driving_style 328,160,1 88,12 Need to travel Urban_planning 328,256,1 88,12 City infrastructure Urban_planning; Composite_traffic_du 328,192,1 88,12 Price of a trip Subsidies_to_public_; Composite_traffic_du 328,32,1 88,12 Recreational values Urban_planning; Composite_traffic_du 328,224,1 88,12 Other details jtue 15. Aprta 2005 14:34 48,24 56,144,1 48,24 1,0,1,1,1,1,0,,0, 1,40,0,-40,398,17 However, the marginal cost of buying a new car given a good composite traffic is high. This benefit realises itself only during years, not months Other_actions; Effect; The_marginal_cost_of 320,240,1 72,72 65535,31131,19661 Van Bohemen: Source-oriented measures (volume and technical) will thus have more effect on environmental quality than measures that treat runoff. State 432,96,1 88,60 There is a need for studies on the full chain from emissions to health. Especially, measures to reduce kilometres driven by car should be studied Only a few studies have estimated the full chain from control techniques to health effects. Our previous work and a few others have compared the effects of emissions control techniques to health in full-scale risk assessment or cost-benefit analysis. The conclusion has been that the reduction of emissions has significant public health benefits. There are risk assessment studies on various technologies, but they are using emission-per-car models. Measures to reduce kilometres driven by car have not been much studied. It would be interesting to compare these results to studies with control technologies. Pressure 248,80,1 76,64 Bus ticket price ARVO Henkilškohtaiset ja haltijakohtaiset matkakortit Kaikilla arvolipuilla voi vaihtaa lipun voimassaoloaikana. Liput ovat voimassa ¥ Helsingin sisŠisillŠ matkoilla 60 minuuttia ¥ seutumatkoilla sekŠ Espoon, Kauniaisten ja Vantaan sisŠisillŠ matkoilla 80 minuuttia. SEUTU Aikuinen Lapsi ¥ arvolippu 2,90 ­ 1,45 ­ ¥ pŠivŠarvolippu ma-pe 9-14 2,70 ­ ¥ yšarvolippu ma-su 2-4.30 4,00 ­ HELSINGIN SIS€INEN Aikuinen Lapsi ¥ arvolippu 1,70 ­ 0,70 ­ ¥ pŠivŠarvolippu ma-pe 9-14 1,40 ­ ¥ yšarvolippu ma-su 2-4.30 2,50 ­ ¥ arvolippu, raitiovaunu 1,28 ­ ________________________________ Matkakorttiyksikšn toimintamenot vuonna 2005 ovat noin 4,2 milj. euroa, mikŠ on hieman vŠhemmŠn kuin edellisvuonna. __________________________________ YTV:n matkakorttijŠrjestelmŠn piirissŠ on 800.000 matkakortin kŠyttŠjŠŠ pŠŠkaupunkiseudulla. PŠivittŠin jŠrjestelmŠŠ kŠytetŠŠn yli miljoonan matkan tekemiseen. 4.2M/1M/365 64,136,1 48,24 2,325,106,476,384 65535,52427,65534 <a href="http://www.ytv.fi/matkakortti/mitamaksaa.html">Ticket prices (in Finnish)</a> <a href="http://www.ytv.fi/yleis/asiak/poutakirjat/04015347.HTM"> Total costs of the travel card system (matkakortti)</a> <a href="http://www.ytv.fi/liikenne/ajank/uutinen.php?id=2774">Total trip volumes using travel card</a> If most of the trips are known well beforehand, there is room for last-minute flexibility in the composite traffic The major advantage of a personal car is that you can drive it from your starting point directly to your destination according to your own time schedule. This public transportation model does the same. When a large enough population moves around, its transportation needs can be met even if a part of it is not known until, let's say, five minutes beforehand. The system is based on assumptions that a vast majority of trips can be predicted based on statistics and on consumers' early orders, and that it is possible to organise the public vehicles, the 'buses' and 'scooters' to fulfill the needs and run optimally at the same time. 0 120,224,1 64,60 Acknolwedgements We wish to thank Prof. Matti Jantunen, M.Sc. Olli Leino, M.Sc. Marjo Niittynen, M.Sc. Sanna Lensu, and Ms. Arja Tamminen for their helpful comments, evaluations, and work to collect data. The idea of a transportation system with public vehicles running without predetermined route was independently and interdepently developed by Matti Jantunen and Jouni Tuomisto. Jouni T. Tuomisto invented the idea of the work and performed most of the modelling. The first drafts of the model were written in November 2002 by Jouni Tuomisto. Marko Tainio reviewed the literature, checked the model, and wrote the first draft of the paper. This study was funded by the Academy of Finland, grant 53307, and the National Technology Agency of Finland (Tekes), grant 40715/01. 0 472,200,1 48,24 2,102,90,476,405 Composite traffic aggregates similar trips into public vehicles 1 656,360,1 48,55 1,1,1,1,1,1,0,,1, Composite_traffic_ag Argument 0 56,456,1 48,24 Conclusion 0 56,512,1 48,24 65535,65532,19661 Calculations 0 56,400,1 48,24 Module: more details inside 0 jtue 15. Aprta 2005 14:34 56,344,1 48,29 Legend Code legend for model items 64,277,-1 64,37 1,0,0,1,0,0,1,,0, 39321,52431,65535 Arial, 19 45-60% composite fraction is optimal 1 504,128,1 48,38 65535,65532,19661 A45_60__composite_fr Model info URN:NBN:fi-fe20051439 DC-attribute with refinement Scheme (if any) Value Title Composite traffic model 1.0.1 Creator Tuomisto, Jouni Creator Tainio, Marko Subject Trip aggregation Subject Urban traffic Subject Public transportation Description.abstract Background Traffic congestion is rapidly becoming the most important obstacle to urban development. In addition, traffic creates major health, environmental, and economical problems. Nonetheless, automobiles are crucial for the functions of the modern society. Most proposals for sustainable traffic solutions face major political opposition, economical consequences, or technical problems. Methods We performed a decision analysis in a poorly studied area, trip aggregation, and studied decisions from the perspective of two different stakeholders, the passenger and society. We modelled the impact and potential of composite traffic, a hypothetical large-scale demand-responsive public transport system for the Helsinki metropolitan area, where a centralised system would collect the information on all trip demands online, would merge the trips with the same origin and destination into public vehicles with eight or four seats, and then would transmit the trip instructions to the passengers' mobile phones. Results We show here that in an urban area with one million inhabitants, trip aggregation could reduce the health, environmental, and other detrimental impacts of car traffic typically by 50-70 %, and if implemented could attract about half of the car passengers, and within a broad operational range would require no public subsidies. Conclusions Composite traffic provides new degrees of freedom in urban decision-making in identifying novel solutions to the problems of urban traffic. Publisher Kansanterveyslaitos (KTL; National Public Health Institute) Date.issued W3C-DTF 2005-11-30 Type DCMIType Software Format IMT text/xml Format.medium computerFile Format 836 kB Identifier http://www.ktl.fi/risk Identifier URN URN:NBN:fi-fe20051439 Language ISO639-2 en Rights Copyright Kansanterveyslaitos, 2005 0 88,28,1 80,20 2,105,198,476,499 65535,54067,19661 Most proposed solutions aiming at sustainable traffic involve severe political, economical, or technical problems other_actions 504,400,1 72,56 End-user assumptions and outputs ktluser 12. heita 2005 22:51 48,24 56,85,1 48,29 1,0,0,1,1,1,0,,0, 1,274,10,169,466,17 Choose comp 0 172,20,1 156,12 1,0,0,1,0,0,0,72,0,1 Choose_comp Choose guar 0 172,44,1 156,12 1,0,0,1,0,0,0,72,0,1 Choose_guar Choose period 0 172,68,1 156,12 1,0,0,1,0,0,0,105,0,1 Choose_period Table 1 1 172,196,1 156,12 1,0,0,1,0,0,0,72,0,1 Table_1_pressures Figure 3.top 1 172,292,1 156,12 1,0,0,1,0,0,0,72,0,1 Fig_5a_societal_cost Figure 3.middle 1 172,316,1 156,12 1,0,0,1,0,0,0,72,0,1 Fig_5b_subsidies Figure 3.bottom 1 172,340,1 156,12 1,0,0,1,0,0,0,72,0,1 Fig_5c_expanding Figure 2 1 172,268,1 156,12 1,0,0,1,0,0,0,72,0,1 Fig_4_cost_variation Figure 1 1 172,220,1 156,12 1,0,0,1,0,0,0,72,0,1 Fig_2_trips Cost by type to stakeholder 1 172,244,1 156,12 1,0,0,1,0,0,0,72,0,1 Fig_3_cost_by_source Fig 6A Passenger VOI 1 172,364,1 156,12 1,0,0,1,0,0,0,72,0,1 Fig_6a_passenger_voi Fig 6B Societal VOI 1 172,388,1 156,12 1,0,0,1,0,0,0,72,0,1 Fig_6b_societal_voi Decision 0 56,568,1 48,24 Log 1.2 20.6.2006 Jouni Tuomisto Nyt kun pitŠisi tosissaan ruveta tekemŠŠn uutta yhdistelmŠliikennemallia, herŠŠ kysymys, mitŠ mallia/malleja pitŠisi kŠyttŠŠ pohjana. TŠssŠ siis ensimmŠisenŠ kuvaus nyt olemassaolevista malleista (esitelty aikajŠrjestyksessŠ). Lopputulos on, ettŠ kehitys aloitetaan yhdistŠmŠllŠ olennaiset osat versioista 1.1, 1.0.5, ja sup1_metro. Muut siirretŠŠn Old-kansioon. NŠistŠ otetaan peruskehityksen kohteeksi 1.0.5, ja muiden muutokset siirretŠŠn ja kopioidaan siihen. Versionumeroksi annetaan 1.2. Alustavasti tŠmŠ onnistuikin, ja kaikki muiden versioiden olennaiset ominaisuudet siirrettiin 1.2:een. NŠitŠ ovat * Eri skenarioajojen vŠliltŠ valitseminen (epŠaktiivinen koodi vain) * uusi liukuvasti aggregoiva Trips-solmu 1.1-versiosta ja tŠhŠn liittyen uusi Vehicle-indeksi. * Autotyyppikohtaiset autotiedot erotuksena vanhaan, jossa koka vehicle-indeksin riville annettiin oma tieto. * Passiivinen koodi metron mukaanotosta malliin, sisŠltŠen Metro_matrixin ja Va1-solmun. Seuraavaksi tehtŠviŠ hommia ovat * rakentaa joukkoliikenteen matkamatriisi * syšttŠŠ sisŠŠn joukkoliikennereitit (Virpi tekee) * Mieti, mitkŠ olisivat jŠrkevŠt skenaariot laskettavaksi. * tehdŠ solmu, joka pistŠŠ public fraction:in verran vŠkeŠ joukkoliikenteeseen jos se on tarjolla, ja yhdistelmŠliikenteeseen loput; tŠmŠn pitŠŠ olla Tripsin ylŠvirrassa. * Muuttaa vehicle balance- ja muita solmuja siten, ettŠ ne eivŠt ole ajoneuvoriippuvaisia. * TehdŠ solmu jolla valitaan, millainen auto on N henkilšn kuljetuksessa kŠytšssŠ. TŠtŠ pitŠŠ pystyŠ vaihtelemaan Scenario_inputilla. *Korjata Tripsia, koska nyt se antaa korkeintaan 1:n yhdistelmŠliikennemuodoille, ja loput menevŠt autoihin. * Tarkistaa tarvitaanko Vehicle_balance1-solmua johonkin ja poistaa se jos ei. * MiettiŠ onko tarpeen kerŠtŠ matkatiedot nyt suunnitellulla Vehicle-indeksin tarkkuudella. Jos auton kokoluokka on mŠŠritelty erikseen (ks 3 palloa ylšs), ei ole vŠliŠ montako ihmistŠ siinŠ on. SenhŠn voinee laskea jŠlkeenpŠin, tosin vain keskiarvon (?) TŠmŠ voi olla kriittinen asia muistin kannalta, koska nyt vehicle-indeksi on paljon isompi kuin ennen. 0 600,32,1 48,12 2,528,159,476,418 65535,54067,19661