10K
2
0
0
1
4
98
1
2
0
1
2
-1
0
Time
Dynamic simulation periods are specified in Time's definition. This is usually a list of numbers or labels, typically in some unit of time (days, weeks, months, etc.). Use the ÒDynamic()Ó function in your variables to perform dynamic simulation.
Sequence( 0, 23.99, 1/5 )
2,339,108,476,224
Log
Composite traffic v. 1.0.1 - Health and costs in the Helsinki metropolitan area
This model is a decision analysis in a poorly studied area, trip aggregation, and it studies decisions of two different stakeholders, the passenger and the society. In composite traffic, a centralised system collects the information on all trips online, aggregates the trips with the same origin and destination into public vehicles with eight or four seats, and sends the travel instructions to the passengers' mobile phones. We show here that in an urban area with one million inhabitants, this system could reduce environmental and other pressures of car traffic typically by 50-70 %, would attract about half of the car passengers, and within a broad operational range needs no public subsidies. Composite traffic gives a new level of freedom in urban decision-making towards solving the problems of urban traffic.
The model is built using Analytica 3.0(TM) program that utilises a graphical interface for creating probabilistic (Monte Carlo) models. A free browser can be downloaded from the Analytica web site http://www.lumina.com . The file format for the models is XML, and therefore the code can also be viewed with a regular web browser.
In this material, we present the main views of the graphical model and describe several modules in more detail. The model consists of two parts: a deterministic trip aggregation model that produces the output tables used in decision analysis. The calculation of the results takes several days and therefore they are stored as static tables in the module 'Static nodes'. In the second part the aggregation results are combined with cost functions, emission factors and other uncertain and/or varying variables using probabilistic (Monte Carlo) simulation. This part of the model is readily available for detailed examination, and several input values can be changed and explored using the Analytica Browser. Note, however, that the model (depending on dimensions used) easily requires more than 1 GB of RAM memory.
jtue (Jouni Tuomisto)
7. Novta 2002 13:32
jtue
3. Novta 2005 13:22
48,24
1,53,24,812,662,21
2,10,87,476,467
Arial, 13
0,Model Composite_traffic_v_,2,2,0,1,N:\Huippuyksikko\Tutkimus\R25_CompositeTraffic\Mallit\CompositeTraffic_1_0_1.ANA
81,1,1,0,2,1,4900,6400,7
2,40,7,450,720
Composite traffic reduces pressures typically by 50-70%
1
656,512,1
52,44
65535,65532,19661
Composite_traffic_re
Help for pyrkilo diagrams
28.6.2004 Jouni Tuomisto
This module contains brief description about pyrkilo diagram method in Analytica platform. There are explanations for node usage and colours. Version 5, 28.6.2004. Copyright KTL (National Public Health Institute, Finland).
mtad
16. Aprta 2003 12:56
jtue
29. Junta 2004 10:55
48,24
56,149,0
48,29
1,1,1,1,1,1,0,0,0,0
1,40,8,715,558,17
Arial, 13
81,1,1,0,2,9,4744,6798,7
Original data 3R1B
Contains data that comes from a referrable source. The reference must be mentioned in the Reference attribute. Colour 3R1B.
1
168,336,1
48,24
2,102,90,476,516
65535,52427,65534
Author judgement 4R2B
Contains data that comes from a non-referrable source, i.e. some general knowledge or author judgement. Colour 4R2B.
1
168,392,1
48,24
52425,39321,65535
Log 4L3B
Contains information about general issues related to the structure and content of a model. Text is written to Description. Each addition is started with the date and the name of the user. The title of the node is Loki n or Log n (n=version number of the model). You should not write information related to a particular node, that should be written in the node itself so that the information will be inherited with the node. Colour 4L3B.
1
56,464,1
48,12
65535,54067,19661
Argument (claim) 2L3B
Argument about a node, data, or relationship in a model; or a description of its importance. Colour: automatic (2L3B).
1
280,280,1
48,24
65535,31131,19661
Causal node 8R3B
This is the basic building block of an Analytica model. It is a variable that defines a (typically) measurable entity. Usually it is calculated based on data on and relationships about its causes.
1
168,280,1
48,24
Module
6R3B
Modules are used to create a hierarchical structure. Modules may contain nodes and other modules inside them.
mtad
16. Aprta 2003 12:56
48,24
56,416,1
48,24
1,40,0,-2351,430,17
Conclusion
6L3B
A conclusion is basically an argument. The colour is used to enhance the fact that the data for this argument originates from the results of the model. Colour 6L3B.
1
280,392,1
48,24
2,44,90,476,224
65535,65532,19661
Index 5R2B
Index related to the node beside it. Indexes should be as close as possible to the place where they are used. Otherwise there is the risk of a connection brake. Colour: automatic (5R2B).
[0]
56,316,1
48,12
2,341,157,476,224
Colour description: xLyT describes the coordinates in the colour palette, xth cell from left and yth cell from top. Directions are L left, R right, T top, B bottom, e.g. 1R1B is the right bottom cell.
464,312,-1
112,56
Decision
9L3B
Decision mode defines a decision under analysis. Other decisions (such as those decided by someone else) can be defined as uncertain variables instead of decisions.
0
56,280,1
48,24
Outcome
1R3B
Outcome of interest. The optimisation of this variable is often defined as the criteria for choosing between decision options.
0
56,360,1
48,24
Chance
11L4B
An uncertain variable that is defined as a probability distribution.
0
168,448,1
48,24
Read about attributes
This node describes the use of attributes. All attributes should be used as described in the manuals of Analytica. Exceptions are described here. This description is written for those who read as well as for those who write pyrkilo diagrams.
Class: Shows the type of the node. Some of the variable classes have a special meaning in pyrkilo diagrams. These are presented in Help for pyrkilo diagrams module.
Identifier: Name of the node that is used in definitions. This must be unique. When drafting a model, use automatic identifiers. Only when there is no expectation of many changes in node Titles, you can streamline all identifiers. Try to use short names and the same structure as in the Title. E.g. if title is Long-range transport, use identifier Lrt.
Units: The unit of the value calculated in the node. Should always be defined when the node is a part of causal diagram. If the variable described by the node is dimensionless, '-' should be used. If an explicit unit is not (yet) defined, a description about how the variable could be measured should be used. E.g. 'mass', 'rate', 'age'.
Title: The title that is shown on the node in diagram mode. First use a working name that roughly describes the contents. After your model is stabilised, you can rename nodes to better represent the final essence. Try to avoid intermediate nodes where it is difficult to understand what the outcome means; instead, combine consequent nodes so that the outcome is an understandable (measurable) variable.
Description: A free-text area for describing the contents of the node. All nodes should be explicitly described and justified in the Description so that a user is able to get an idea of the node without looking at the Definition. If the definiton changes remarkably between versions, it is good to describe this and use dates and user's name for clarity (in a similar manner as in Log nodes).
Definition: This defines what is calculated in this node. If the node is a non-numerical argument, it should contain a formula that refers to all nodes that are used to justify the claim; it this case, the numerical result will be nonsense. Pay attention to indexes: all important indexes must be included, but try to work with as few as possible. Use the ';' operator to chop the syntax into pieces.
Check: Criteria to check the values entered.
Reference: This contains a detailed information about the source of the data. The article or book should be found with this data. When building a model, there should be an accompanying RefMan file with the same name but a different extension. This file contains the full information about each reference cited in the model. The name and path of the RefMan file must be mentioned in the Reference of the model. If there is a relevant internet page or a network file, its path can be added here. Analytica 3.0 understands html-code and makes these links clickable. E.g. this is a link to the <a href=http://www.lumina.com>Lumina home page</a>. You can download Analytica Player from there to browse these models.
0
736,272,1
48,24
2,236,80,581,552
Argument structure
mtad
30. Aprta 2003 10:22
jtue
7. Mayta 2003 10:26
48,24
736,416,1
48,24
1,1,1,1,1,1,0,0,0,0
1,40,10,-2391,679,17
Arial, 13
79,1,1,0,2,9,4744,6798,7
D (data)
Lhttiedot
0
56,448,1
48,24
1,1,1,1,1,1,0,,0,
65535,52427,65534
B (backing)
Taustatuki
0
160,576,1
48,24
1,1,1,1,1,1,0,,0,
65535,52427,65534
R (rebuttals)
Varaukset
0
160,392,1
48,24
1,1,1,1,1,1,0,,0,
65535,52427,65534
Q (qualifier)
Tarkennus
D_+R_+W_
160,448,1
48,24
2,102,90,476,507
W (warrant)
Peruste
B_
160,512,1
48,24
1,1,1,1,1,1,0,,0,
2,102,90,476,224
65535,52427,65534
C (claim)
Johtopts
Q_+Model_variable
264,448,1
48,24
D: Hoek et al 2002: association between traffic vicinity & mortality
0
552,424,1
64,40
65535,52427,65534
B: Greenland: Cohort study is the best design in observational epi
0
680,576,1
64,38
65535,52427,65534
R: if the effect was due to PM
0
680,352,1
48,28
49151,49151,49151
Q: therefore probably
D__hoek_et_al_2002__+R__if_the_effect_was+W__design_was_approp
680,424,1
48,24
19661,48336,65535
W: Design was appropriate
B__greenland__cohort
680,488,1
52,24
65535,31131,19661
C: Traffic PM increases cardiopulm mortality
Hoek et al (Lancet 2002) found out in a cohort study that a higway near home was a risk factor for overall and cardiopulmonary mortality. The study was well designed and performed, and the results are convincing, althought the risk estimates were large. However, the exposure estimation was based on the vicinity of a major road and black smoke and nitric dioxide ambient concentrations. The current knowledge tends to associate especially fine particles (PM) with cardiopulmonary mortality, and in this study the exposure measure clearly was an indicator of traffic-related PM. However, other explanations exist as well, and e.g. noise was not ruled out as a confounder.
Taken together, the study increases the plausibility of PM being causally linked to cardiopulmonary mortality.
Q__therefore_probabl+Pm_plausibility
792,424,1
48,40
2,412,106,476,224
65535,31131,19661
D: Harry is born in Bermuda
0
576,136,1
48,28
52425,39321,65535
W: because
B: those born in Bermuda are citizens of Great Britain
0
688,232,1
48,55
65535,52427,65534
R: unless Harry was born during a holiday trip
0
688,56,1
48,38
49151,49151,49151
Q: therefore certainly
D__harry_is_born_in_+R__unless_harry_was_+W__because_b__those_
688,136,1
48,29
1,0,-23
19661,48336,65535
C: Harry is a citizen of GB
Q__therefore_certain
800,136,1
48,24
65535,31131,19661
PM plausibility
probability
0.9
904,424,1
48,24
2,102,90,476,224
52425,39321,65535
Model variable
0
376,448,1
48,24
19661,48336,65535
Here we show how to describe a complicated reasoning starting with different kinds of data and ending up with a claim. This follows the ideas of Stephen Toulmin (Uses of Argument, Cambridge University Press, 1958). In a simple case or drafting phase it is enough to create an argument by joining a piece of data to the claim. A claim node is often called an Argument node, but it should be remembered, that a full argument includes the reasoning in addition to the outcome. Instead of using several nodes to describe the reasoning, as is done here, it is often convenient to write it down inside the argument node, in description attribute (see 'C: Traffic PM increases cardiopulm mortality'). Note that the arrows usually point from the model to the claim. The logic of this is that the model is seen as a description of reality. And the reality affects the claim, not vice versa.
- Data (D) or premises describes the information that supports the claim.
- Warrant (W) makes the argument from data to claim a legitimate one. Often it is not explicitly mentioned in discussion, but it should be described in a pyrkilo unless it is obvious.
- Backing (B) contains some background information needed for warrant, and often it is practical to combine these two.
- Qualifier (Q) describes the strength of the argument.
- Rebuttal (R) defines the scope when the argument is valid.
256,180,-1
248,172
Less important node types
jtue
28. Junta 2004 18:03
48,24
736,472,1
48,29
1,257,40,-2382,515,17
Set
9L3T
The set module is used as a set containing items, such as a set of emission sources summing up to the total emission. However, it is not possible to refer to a module. Therefore a set node is used instead of the module for refering in the model. If there are items that belong to several sets, aliases are created and placed in each set module. A set node is located in the respective set module. Colour 9L3T.
jtue
30. Octta 2003 10:34
48,24
56,144,1
48,24
1,60,78,-6763,477,17
1,52427,26212
Set
9L3T
This node is like an alias to a set module. The set module is used as a set containing items, but it is not possible to refer to a module. Therefore a set node is created, and it is used instead of the module for refering in the model.
If there are items that belong to several sets, aliases are created and placed in each set. Set node is located in the respective set module. Colour 9L3T.
Item1+Item2+Item3+Item4+Item5
48,24,1
48,24
1,724,97
1,52427,26212
Item5
This is one item belonging to the set 'Set'.
0
168,24,1
48,24
Item1
This is one item belonging to the set 'Set'.
0
168,248,1
48,24
Item2
This is one item belonging to the set 'Set'.
0
168,192,1
48,24
Item3
This is one item belonging to the set 'Set'.
0
168,136,1
48,24
Item4
This is one item belonging to the set 'Set'.
0
168,80,1
48,24
Model place- holder 7L2B
Shows that there is a need for a model, but it is not yet defined explicitly. Colour 7L2B. Model prototype has the same meaning, either can be used depending on whether a node or a module is more convenient. Colour 7L2B.
1
56,88,1
48,24
52429,65535,39321
Model prototype
Shows that there is a need for a model, but it is not yet defined explicitly. Colour 7L2B. Placeholder for a model has the same meaning, either can be used depending on whether a node or a module is more convenient. Colour 7L2B.
mtad
16. Aprta 2003 12:56
48,24
56,32,1
48,24
52429,65535,39321
Question, Lack of information 5R1T
A question or a lack of knowledge. An item that would be important in a model, but there is no information about its value and it cannot therefore be used in calculations. Colour: 5R1T.
0
56,272,1
52,28
49151,49151,49151
Constant
Note: colour depends on the source of information and can be that of original data, author judgement or causal node. Do NOT use the automatic colour (L2B3), because it is reserved for the argument.
0
168,256,1
48,24
65535,52427,65534
(param1)
Function 4R2B
0
168,32,1
48,24
param1
Q (qualifier)
8R3B
Shows the strength of an argument (or more precisely, the strength of the data, warrant, and backing to support the argument). There may be several pieces of data connected by several qualifiers to one argument (claim). Colour: automatic (8R3B).
0
168,144,1
48,24
Nuisance parameter 7L1B
This is used to emphasize that there is a lack of knowledge about this variable, but the variable is still important for understanding causality. In a well-built model, the nuisance parameters are cancelled out before the outcome, so that they do not affect the result given the data used. E.g., we may want to model the human exposure to traffic emissions. We have an estimate about the relative contributions of the most important sources to the exposure, but we don't have absolute values from fate and dispersion models. Therefore, when we want to express causal connections, we must
0
56,208,1
48,29
58981,65535,52427
Non-causal node 8R2B
Non-causal nodes are used when the relation between nodes is not causal. Ice cream consumption and drowning accidents are correlated (at least in Finland). One is not a cause of the other, but both are affected by the outside temperature during summer. Non-causal connections can be used in models for deducting values for one node when the other is known. A typical example of this is a top-down model, where we may have information on 1) total concentration of a pollutant and 2) source contribution of certain emission sources (as a fraction of total concentration). The source contribution is not a causal variable, it is merely an index of all (unknown) causal variables, but it can be used to estimate the concentration caused by a particular emission source.
0
168,200,1
48,24
2,587,271,476,412
39321,55707,65535
Log 3
29.10.2003 Jouni Tuomisto
This is the third version of the Help model. Originally it was planned that it would habe been included in each model as a linked module, but soon it was found that the link caused much more trouble than benefit. It is therefore used as a stand alone model. However, it may be a good idea to embed it into each model using Copy (not Link).
N:\huippuyksikko\tutkimus\mallit\TainioTheUsesOfArgument.ana (7.5.2003) is closed and connected to this file in the module 'Argument strucure'. It is edited to reflect the current thinking about the argument structure.
1
736,368,1
48,12
1,1,1,1,1,1,1,,0,
2,433,83,476,398
65535,54067,19661
Arial, 13
Preference
8L4B
A value or preference. Colour 8L4B.
0
280,448,1
48,24
5,65535,1
Introduction to pyrkilo diagrams
Pyrkilo diagram method (or structured deliberation as it is sometimes called) has been developed to facilitate the Science-Policy Interface.
There is a need for methods facilitating the flow of information and understanding between science and policy. The principle is to describe a risk situation in a formal manner. Pyrkilo is an enhanced causal diagram that contains items along a causal pathway (or network) from e.g. abatement strategies to emissions to dispersion to exposure to effects. It has been designed to describe also other than causal connections such as non-causal reasoning, values, preferences, and arguments.
These diagrams use Analytica(TM) platform, a graphical Monte Carlo simulation program. It is based on nodes (or variables or objects). They are used to describe and define all the pieces needed for a description of the situation under scrutiny.
Many nodes are used as described in Analytica manuals. However, there are also special colours and shapes representing features that are important for pyrkilo diagrams. See Description of each node for more details. You can see the definitions and descriptions by clicking or double-clicking the nodes.
408,124,-1
400,116
2,402,92,530,558
Read more about pyrkilo
Understanding of a particular risk develops simultaneously at various levels and using differently structured methods. At one end there is a "discussion layer": political and public discussions about risks of a hazard with a wide interest on e.g. economical consequences of available decision options, public health, and social justification equity. This discussion is sometimes poorly structured and does not give scientists or risk assessors clear questions that could be answered by scientific methods. At the other end there is a "modelling layer": models dealing with specific questions such as air concentrations of a pollutant from a specific source or risk-benefit analyses of particular actions. The models are complex and use several assumptions that are not abvious to outsiders.
There is a need for methods facilitating the flow of information and understanding between the existing layers. Pyrkilo (from the Finnish word pyrki, to aim at) diagrams aim at offering an interface between the two disciplines. The principle is to describe a risk situation in a formal manner. It is an enhanced causal diagram that contains items along the causal pathway (or network) from e.g. emissions to dispersion to exposure to effects. It has been designed to describe also other than causal connections such as values, preferences, and arguments.
The pyrkilo method has several objecitves. The structure is relatively easily understandable and readable. It has a basic structure similar to but simpler than mathematical causal models. Translation into a natural language or mathematical model is relatively easy, as is required from an interface. The diagram is fast to build with little data, and the critical parts of the diagram can subsequently be developed into a full-scale model. It is easy to expand into new areas, as the political discussion proceeds. Because of its structured and formal nature, it requires that many assumptions are made explicit unlike in political rhetoric, and therefore it is easier to identify possibly illogical or conflicting issues. It can be used to explore the validity or importance of an aspect before it is brought into the other discipline of heavy modelling or political discourse.
0
736,328,1
48,24
2,54,111,476,224
Scope
2L3B
A scope node is basically an argument. The bevel is used to enhance the fact that the argument is about the scope of the model, (i.e. about the existence of a node or module). Colour: automatic (2L3B).
1
280,336,1
48,24
1,1,1,1,1,1,0,,1,
65535,31131,19661
Personal car traffic causes problems in urban city centres
Traffic congestion in urban areas is rapidly becoming the most important obstacle for town development. In addition traffic is causing major environmental, health, and economical problems. On the other hand it is vital for the functions of the modern society.
Pressure
224,128,1
48,46
2,102,90,476,357
There are several reasons why many people are not willing to use public transportation.
Many people driving cars are not willing to use public transportation. This may be due to poor connections, difficult timing, uncomfort of changing etc.
Pressure
224,232,1
60,52
2,50,301,476,372
Traffic is a major source of fine particles, which kill 300000 people/a in Europe
Pressure;
Effect
368,504,1
56,55
2,102,90,476,414
Steve Pye and Paul Watkiss: CAFE CBA: Baseline analysis 2000 to 2020. AEAT/ED51014/ Baseline Issue 2.
<a href= "http://www.iiasa.ac.at/docs/HOTP/Mar05/cafe-cba-baseline-results.pdf" >Click</a>
CO2 emissions must be reduced to prevent climate change
State;
Effect
224,336,1
56,48
Private car is a very inefficient way of transporting people. Its superiority is based on flexibility, not efficiency. Therefore, systems that are both flexible and efficient must be developed.
Pressure
224,472,1
76,80
Driving force
Other_actions
368,176,1
48,24
Pressure
Other_actions;
Driving_force
368,232,1
48,24
[Constant Co2_emissions_must_b]
State
Pressure
368,288,1
48,24
Exposure
State
368,344,1
48,24
Effect
Exposure
368,400,1
48,24
[Constant Traffic_is_major_sou]
The marginal cost of car is low given the passenger already owns one. An alternative must be efficient enough to compete with this
Other_actions;
Effect
656,232,1
68,64
65535,31131,19661
Composite traffic gives new freedom and flexibility to decision-makers in urban policy-making
The maybe most important effect (and the most difficult to model) comes from the increased degree of freedom in urban policy-making.
Some examples of the possible changes:
The pressures towards enlarging road infrastructure are relieved, giving resources to other possible targets.
Car limits in e.g. historical city centres can be implemented without disrupting peoples' possibilities to move freely in the city.
Public transportation can be provided in areas where sparse population or poor urban planning hamper efficient bus service.
It will become cheaper to implement technical measures to reduce emissions with a smaller, intensively used fleet.
Many families can give up the second, and sometimes even the first car, when most trips can be performed without an own vehicle.
Reduced pressures to buy an own car decrease problems of car-owning to city infrastructure.
Elderly, disabled, and young people get more freedom to move around.
Parents don't need to drive their children so much.
The need for driving drunk reduces.
The connection between the freedom to move and car ownership is loosened.
Emission reduction techniques are more economic, as there are fewer vehicles that drive more. Even expensive solutions such as hydrogen or electricity may become profitable. The question of mileage per tank is not an issue with composite vehicles, which makes it easier to use electricity.
Composite_traffic_re
504,512,1
68,48
2,379,84,520,386
65535,65532,19661
Personal transport is necessary in urban areas. The question is how to organise the transport with minimal harm
Driving_force
364,84,1
68,55
Action
ktluser
8. maata 2005 6:30
48,24
504,232,1
48,24
1,76,97,830,564,17
With composite traffic
1. the service and flexibility is comparable to the car
2. most pressures reduce by 50-70% but driver salary costs are high
3. ca. 50 % of passengers found it attractive
4. system can start in a small way and expand later
We found out that with composite traffic
1. most trips are direct; 40% involve one change
2. most pressures reduce by 50-70% but driver salary costs are high
3. ca. 50 % of passengers found it cheaper
4. day-time traffic does not need subsidies
composite_traffic_dummy
680,304,1
92,92
2,512,136,476,381
65535,65532,19661
We studied
1. how effectively trips can be combined
2. what the various costs of each option are
3. what is the variation of perceived costs among passengers
4. what incentives are needed to reach targets
We studied
1. how effectively trips can be combined
2. what are the various costs of each option
3. what is the variation of perceived costs among passengers
4. what incentives are needed to reach targets
composite_traffic_dummy
680,104,1
88,89
1,1,1,1,1,1,0,,1,
2,102,90,476,473
Composite traffic
jtue
24. Febta 2005 15:24
48,24
504,160,1
48,24
1,267,117,778,445,17
100,1,1,1,2,9,2970,2100,15
2,53,21,627,600
45-60% composite fraction is optimal
The best alternative for society is about 45-60% of current car traffic to change to composite traffic. The fraction is relative to the area of guarantee but is still rather robust. With evening trips, composite traffic is better only at high guarantee. In contrast, during night composite traffic is not competitive, and it is always more expensive than car traffic. However, the availability of composite traffic around the clock is an important factor when car-owners are considering not to buy a new car at all. This pheniomenon is not modelled here, but it is probably important. If composite traffic is subvented during nights, the overall societal costs are still well in favor of composite traffic. This is because night trips are not numerous and can easily be subsidised.
Societal_cost
584,64,1
48,38
2,102,90,476,452
[Alias A45_60__composite_f2]
65535,65532,19661
Composite traffic reduces pressures typically by 50-70%
We show here that in an urban area with one million inhabitants, this system could reduce environmental and other pressures of car traffic typically by 50-70 %, would attract about half of the car passengers, and within a broad operational range needs no public subsidies. Composite traffic gives a new level of freedom in urban decision-making towards solving the problems of urban traffic.
Table_1_pressures
352,80,1
52,44
2,131,221,476,279
[Alias Composite_traffic_r1]
65535,65532,19661
Trip aggregation
This module calculates the actual trips, modes of transportation, and delays during trips and vehicle transfers. It also calculates the kilometres traveled by each type of vehicle and number of vehicles needed.
The composite traffic trips are allocated into different vehicles. The following hierarchy is used in allocation. If the criterion is fulfilled, that number of passengers is allocated, and the rest will go to the next criterion. The criteria are used for a group of trips that has the same origin, destination, and time. Time resolution is 12 min. Origin and destination are described as '129-areas' used for city authorities in Helsinki metropolitan area. The 129 areas have on average 7300 inhabitants (0, 25%, 50%, 75%, and 100% percentiles are 0, 3400, 6800, 10300, and 28300, respectively).
1) Use an 8-seat vehicle if there are enough passengers to get it full.
2) Use a 4-seat vehicle if there are enough passengers to get it full.
Divide the trips into two parts so that the passengers change vehicle in the most busy point along the route. Then,
3) Use an 8-seat vehicle if there are enough passengers to get it full.
4) Use a 4-seat vehicle if there are enough passengers to get it full.
5) Use a 4-seat vehicle for all remaining trips.
The criterion is checked at the actual arrival time at the transfer point, i.e. the model takes into account the different travel times between areas.
The following outputs are calculated:
Number of passenger trips by mode (car or composite traffic)
Number of passenger trips by vehicle type. Note that in this output, the trip that includes a transfer is calculated twice.
Vehicle kilometres driven
Parking lots needed for the vehicles that are used
Average vehicle numbers per hour for the 30 most busy links at 8.00-9.00 in the morning
Number of vehicles needed
Waiting time due to traffic jams and waiting for composite vehicle to arrive.
The outputs of each scenario are indexed (when relevant) by period (day, evening, night); zone (Helsinki downtown, other centre, suburb), length of trip (less or more than 5 km), and vehicle type (8-seat or 4-seat vehicle with of without transfer, or car).
jtue
6. helta 2003 18:55
48,24
304,232,1
48,24
1,262,42,378,573,17
2,102,90,476,451
67,1,1,0,1,1,2794,1728,0
Delay
time units
Travel time between two city areas. It includes the time that is spent in the composite vehicle when it drives within the origin or destination area picking up or dropping off other passengers. However, the travel times of composite vehicles and car are estimated to be so close to each other that the same value is used for both. (In any case, the resolution is 12 min anyway).
ceil(Distances/Traffic_speed/time_unit)
168,56,1
48,24
2,262,247,476,324
2,414,130,694,363,0,MIDM
[From,To1]
Vehicle size
passengers
Size of vehicles that is used to allocate passengers into vehicles. For cars, the average number of passengers is 1.345 (See Car occupancy). A slightly higher number is used here, because with low volumes (1-4 passengers) the need of cars is overestimated if the actual number is used. Even if the higher number overcompensates this and causes bias, it is in favour of personal cars.
Table(Vehicle)(
8,8,4,4,4,1.5)
280,56,1
48,24
1,1,1,1,1,1,0,,0,
2,9,108,476,406
2,88,98,416,303,0,MIDM
52425,39321,65535
[Hellman, 2004 54 /id]
Trips
trips/time unit
The composite traffic trips are allocated into different vehicles. The following hierarchy is used in allocation. If the criterion is fulfilled, that number of passengers is allocated, and the rest will go to the next criterion. The criteria are used for a group of trips that has the same origin, destination, and time.
1) Use an 8-seat vehicle if there are enough passengers to get it full.
2) Use a 4-seat vehicle if there are enough passengers to get it full.
Divide the trips into two parts so that the passenger changes vehicle in the most busy point along the route. Then,
3) Use an 8-seat vehicle if there are enough passengers to get it full.
4) Use a 4-seat vehicle if there are enough passengers to get it full.
5) Use a 4-seat vehicle for all the remaining trips.
The criterion is checked at the actual arrival time at a transfer point, i.e. the model takes into account the different travel times between areas.
var v:= Transfer_point;
var b:= All_trips[Mode1='Composite'];
var h:= mod(b,vehicle_size[Vehicle='Bus no change']);
var bus:= b-h;
b:= h;
h:= mod(b,vehicle_size[Vehicle='Cab no change']);
var cab:= b-h;
b:= h;
var noch:= round(b*scenario_input[input_var='No-change fraction']);
b:= b-noch;
var a:= From&','&To1;
var j:= if v=a then b else 0;
b:= b-j;
a:= ','&To1;
{laskee alkumatkan matkasuoritteen}
var d:= for x[]:= a do (
var c:= (if findintext(From&x,v)>0 then b else 0);
c:= sum(c,To1) );
{siirt matkasuoritetta alkumatkan viipeen verran.}
var e:= selecttext(v,6,9);
e:= for x[]:= evaluate(e) do delay[To1=x];
b:= time_shift(b,e);
{laskee loppumatkan matkasuoritteen}
a:= From&',';
b:= for x[]:= a do (
var c:= (if findintext(x&To1,v)>0 then b else 0);
c:= sum(c,From) );
b:= j+d+b;
b:= b+noch;
h:= mod(b,vehicle_size[Vehicle='Bus one change']);
var bus1:= b-h;
b:= h;
h:= mod(b,vehicle_size[Vehicle='Cab one change']);
var cab1:= b-h;
var rix1:= h;
var car:= All_trips[Mode1='Car'];
array(Vehicle_noch,[bus,bus1,cab,cab1,rix1,car,noch])
168,128,1
48,24
2,460,35,476,575
2,95,119,696,484,0,MIDM
[To1,From]
[Index Mista]
Total vehicle need
vehicles
Total number of vehicles needed to run the system. It is assumed that cars can be used in a similar way as composite vehicles, i.e. that if a car is parked, anyone can take and use it. This is of course unrealistic, but the bias is in the favour of car travelling. In addition, this number is not used for the final car need calculations.
var a:= cumulative_balance;
var driving:= -sum(a,from);
a:= a-min(a,time);
a:= sum(a,from)+driving;
max(a,time)
280,272,1
48,24
2,518,118,476,305
2,43,183,670,431,1,MIDM
[Time,Vehicle]
[Index Travel_type]
Areal vehicle peak
vehicles
The highest number of vehicles during the observation period in each area. This excludes vehicles that are driving through the area. This is a proxy of parking lot need in the area. For practical reasons, the numbers are aggregated into zone level.
It is assumed that cars can be used in a similar way as composite vehicles, i.e. that if a car is parked, anyone can take and use it. This is of course unrealistic, but the bias underestimates the parking lot need in favour of car travelling. It is also assumed that composite vehicles and cars use separate parking areas. In this way the beforementioned bias does not affect the estimate for composite traffic.
var a:= cumulative_balance;
var b:= a[Vehicle='Car'];
a:= sum(a,Vehicle)-b;
a:= array(Vehicle,[a,0,0,0,0,b]);
a:= max(a,time)-min(a,time);
var c:= zones[area1=from];
a:= if zone=c then a else 0;
a:= sum(a,from);
a
56,208,1
48,24
2,25,35,476,460
2,-30,196,686,341,0,MIDM
[Zone,Vehicle]
[Index Region2]
36,1,1,0,1,9,6798,4744,7
Link intensity
vehicles/h
The average number of vehicles per hour driving along a link for the 30 most busy links at 8.00-9.00 in the morning. Note that each street consists of two links going to opposite directions.
average(link_intensity_per_name,link_intensity_per_name.link)
512,272,1
48,24
2,385,178,476,384
2,14,8,345,248,0,MIDM
Basic ranking
The 30 most busy links based on the scenario with cars only.
index Top30:= 1..30;
var b:= trips_per_link_BAU;
b:= b[From=Floor(Link/10000),To1=(Link-Floor(Link/10000)*10000)];
b:= sortindex(-b,Link);
var a:= 1..size(Top30);
a:=slice(b,a);
slice(a,Top30)
512,128,1
48,24
2,457,82,476,421
2,735,44,226,642,0,MIDM
[To1,From]
1,I,4,2,0,0
Link intensity per name
vehicles/h
The number of vehicles per hour driving along a link for the 30 most busy links at 8.00-9.00 in the morning. The result is indexed by the names of the areas that are connected by the particular link.
var d:= basic_ranking;
var mist:= floor(d/10000);
var mihi:= d-floor(d/10000)*10000;
var a:= Vehicles_per_link;
a:= a[From=mist,To1=mihi];
d:= area_name[area1=floor(d/10000)]&' - '&area_name[area1=d-floor(d/10000)*10000];
index link:= d;
var c:=cumulate(1,link);
slice(a,a.top30,c)
512,208,1
48,24
2,129,54,476,566
2,46,12,824,709,0,MIDM
[Index Travel_type]
Transfer intensity
passengers/d
The number of transfers (changing composite vehicle in the middle of a trip) in each area.
var a:= sum(Trips[vehicle_noch=vehicle],Vehicle);
a:= sum(a-sum(All_trips,Mode1),time);
var fro:= sum(a,To1);
var to:= sum(a,from);
fro+to[to1=from]
56,56,1
48,24
2,109,186,476,425
2,781,43,296,405,0,MIDM
[To1,From]
Trips per hour
trips/h
Total number of trips travelled per hour in the whole area.
var a:= Trips[vehicle_noch=vehicle];
a:= sum(sum(a,From),To1)/time_unit;
a
56,128,1
48,24
2,637,66,476,410
2,25,49,676,547,0,MIDM
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:10
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:0
Ymaximum:7.25M
Zminimum:1
Zmaximum:2
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
Arial, 8
[Vehicle,Time]
Cumulative balance
vehicles
Cumulative net balance of vehicles and its development in time. This could take into account the compensative gap filling, i.e. if there is shortage of composite vehicles, empty vehicles are transported into the area. However, in the current version, it is assumed that empty vehicles are not transported. Because of this, there must be enough vehicles in each area so that it will not run out of them at any time of the day.
dynamic(0,Cumulative_balance[time-1]+Vehicle_balance)
168,272,1
48,24
2,102,90,476,369
2,178,119,756,399,1,MIDM
[Time,Vehicle]
[Index From]
Vehicle balance
vehicles/time unit
Number of vehicles coming to and leaving each area, i.e. the net balance of the area for each time point.
var b:= ceil(Trips[vehicle_noch=vehicle]/vehicle_size);
var a:= time_shift(b,delay+1);
a:= sum(a,From);
a:= a[To1=From];
a:= -sum(b,To1)+a;
var bus:= a[Vehicle='Bus no change'] +a[Vehicle='Bus one change'];
var cab:= a[Vehicle='Cab no change'] +a[Vehicle='Cab one change'] +a[Vehicle='Cab non-full'];
var car:= a[Vehicle='Car'];
array(Vehicle,[bus,0,cab,0,0,car])
168,208,1
48,24
2,471,43,476,649
2,181,47,694,349,1,MIDM
[Time,Vehicle]
[Index From]
Vehicles per link
vehicles/h
The number of vehicles in each link.
var v:= Route_matrix;
var a:= From&','&To1;
index e:= Sequence(8,8.99,time_unit);
var g:= ceil(Trips[vehicle_noch=vehicle]/vehicle_size);
g:= sum(g[time=e],e);
{laskee matkasuoritteen joka linkille erikseen}
var d:= for x[]:= a do (
var c:= (if findintext(x,v)>0 then g else 0);
c:= sum(sum(c,From),To1) );
d
392,208,1
48,24
2,425,58,476,528
2,96,75,797,552,0,MIDM
[To1,From]
Trips per link BAU
trips/h
Vehicles per link in a scenario with cars only. This is used to rank the links according to their vehicle intensities.
var v:= Route_matrix;
var a:= From&','&To1;
index e:= sequence(8,8.99,time_unit);
var f:= sum(adjusted_trip_rate[time=e],e);
for x[]:= a do (
var c:= (if findintext(x,v)>0 then f else 0);
c:= sum(sum(c,From),To1) )
512,56,1
48,24
2,102,90,476,354
2,74,10,797,552,0,MIDM
[To1,From]
Vehicle km
km/time unit
Number of vehicle kilometres driven during each time unit.
var a:= ceil(Trips[vehicle_noch=vehicle]/vehicle_size);
a:= aggr_period(a);
var b:= array(length,[0,1]);
b:= if distances < 5 then 1-b else b;
a:= b*a;
sum(sum(a*Distances,From),To1)
280,128,1
48,24
2,368,50,476,445
2,529,11,591,291,0,MIDM
[Period,Vehicle]
[Sysvar Time]
88,1,1,0,2,9,4744,6798,7
Waiting
min
Calculates the waiting time for composite traffic. First, we calculate the number of vehicles running between each points at each time. This is calculated for short (< 5 km) and long trips separately. We assume that the vehicles run at relatively regular intervals, and then the expected waiting time is half of the time difference between the vehicles. Then we sum over areas and aggregate over time, and calculate the trip-number-weighted waiting time.
var a:= if Vehicle='Car' then 0 else trips[vehicle_noch=vehicle];
a:= sum(ceil(a/vehicle_size),Vehicle);
var e:= array(length,[0,1]);
e:= if distances < 5 then 1-e else e;
var b:= ceil(time_unit*60/a/2);
var c:= for x:= waiting_time do (
var d:= if b=x then a*e else 0;
d:= sum(sum(d,From),To1);
aggr_period(d));
c:= sum(c*waiting_time,waiting_time)/sum(c,waiting_time);
array(Vehicle,[c,c*2,c,c*2,c*2,0])
400,56,1
48,24
2,530,58,474,601
2,11,131,416,303,0,MIDM
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:1
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:0
Ymaximum:1
Zminimum:0
Zmaximum:1
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
[Period,Vehicle]
[Index J]
Waiting time
A dummy index
1..12
400,88,1
48,12
Zones
The areas are classified into three categories: 1) downtown (downtown of Helsinki), 2) centre (other major centres within the Metropolitan area), and 3) suburb (all other areas).
Table(Area1)(
1,1,1,1,2,2,2,2,2,2,2,2,3,3,2,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,3,3,3,3,2,2,3,3,3,3,3,3,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,3,3,3,3,3,3,3,2,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,0)
56,272,1
48,24
2,782,11,215,614,0,MIDM
52425,39321,65535
Trips.m by zone
trips
Total composite and car trips classified into zones and periods. This is the number of original trips, which is divided into car and composite trips. Compare Trips.v by zone.
var a:= aggr_period(All_trips[Mode1='Composite']);
var b:= aggr_period(All_trips[Mode1='Car']);
a:= array(Vehicle,[a,0,0,0,0,b]);
var c:= array(length,[0,1]);
c:= if distances < 5 then 1-c else c;
a:= sum(a*c,From);
b:= zones[area1=to1];
a:= if zone=b then a else 0;
a:= sum(a,to1);
a
56,336,1
48,24
2,670,35,476,371
2,253,263,718,295,0,MIDM
[Zone,Vehicle]
Outputs
The combined result of various variables using the basic assumptions. This output is copied to the module 'Static nodes' and subsequently used as the basis for cost calculations.
var a:= array(output1,[0,0,0,0,link_intensity,total_vehicle_need,0]);
a:= if length='< 5 km' then a else 0;
a:= if periods=1 then a else 0;
a:= a+array(output1,[0,0,vehicle_km,0,0,0,waiting]);
a:= if zone=1 then a else 0;
var b:= if length='< 5 km' and periods=1 then areal_vehicle_peak else 0;
a:= a+array(output1,[Trips_m_by_zone,0,0,b,0,0,0]);
a:= a[vehicle=vehicle_noch];
a:= if a = null then 0 else a;
a+array(output1,[0,trips_v_by_zone,0,0,0,0,0])
400,272,1
48,24
2,622,28,476,522
2,760,134,487,304,0,MIDM
[Alias Bau_scenario_output1]
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:1
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:0
Ymaximum:1
Zminimum:0
Zmaximum:1
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
[Period,Vehicle_noch]
[Index Length]
Length
The length of the trip classified as short (< 5 km) and long.
['< 5 km','>= 5 km']
280,160,1
48,12
We should also look suboptimal aggregation (non-full vehicles) BEFORE dividing the trips into two parts.
We should also look suboptimal aggregation (non-full vehicles) BEFORE dividing the trips into two parts. However, this is not easy as we do not know which trips can be aggregated into full vehicles before we have already divided the trip into two parts. I would say that this has little practical significance, as with large traffic volumes, the non-full vehicles are a minority. If, however, the need to transfer appeared to be a major hindrance of using composite traffic, this could be a method to increase direct connections.
trips
88,432,1
64,63
2,102,90,476,392
Trips.v by zone
trips
Total composite and car trips classified into zones and periods. This is indexed by different vehicle types based on the modelled allocation. Note that this number is greater than Trips.m by zone, because here all trips with transfer are calculated as two separate trips.
var a:= aggr_period(trips);
var c:= array(length,[0,1]);
c:= if distances < 5 then 1-c else c;
a:= sum(a*c,From);
c:= zones[area1=to1];
a:= if zone=c then a else 0;
a:= sum(a,to1);
a
248,336,1
48,24
2,102,90,476,388
2,455,302,450,295,0,MIDM
[Zone,Vehicle_noch]
Vehicle balance
vehicles/time unit
Number of vehicles coming to and leaving each area, i.e. the net balance of the area for each time point.
var b:= ceil(Trips[vehicle_noch=vehicle]/vehicle_size);
var a:= time_shift(b,delay+1);
a:= sum(a,From);
a:= a[To1=From];
a:= sum(b,To1)-a;
var bus:= a[Vehicle='Bus no change'] +a[Vehicle='Bus one change'];
var cab:= a[Vehicle='Cab no change'] +a[Vehicle='Cab one change'] +a[Vehicle='Cab non-full'];
var car:= a[Vehicle='Car'];
a:= array(Vehicle,[bus,0,cab,0,0,car]);
sum(a,from)
280,208,1
48,24
2,102,90,476,384
2,280,25,694,349,1,MIDM
[Time,Vehicle]
Total vehicle need
vehicles
Total number of vehicles needed to run the system. It is assumed that cars can be used in a similar way as composite vehicles, i.e. that if a car is parked, anyone can take and use it. This is of course unrealistic, but the bias is in the favour of car travelling. In addition, this number is not used for the final car need calculations.
var a:= cumulative_balance;
var driving:= -sum(a,from);
a:= a-min(a,time);
a:= sum(a,from)+driving;
max(a,time); a
376,352,1
48,24
2,43,183,623,292,1,MIDM
[Time,Vehicle]
Costs
This module calculates various pressures of different traffic scenarios. The estimates are based on Outputs node (which has been calculated beforehand due to slow calculations) and the numbers are stored in Static nodes). The outputs of each scenario are indexed (when relevant) by period (day, evening, night); zone (Helsinki downtown, other centre, suburb), length of trip (less or more than 5 km), and vehicle type (8-seat or 4-seat vehicle with of without transfer, or car).
Costs are separately calculated for the passenger and the society. Some costs affect these stakeholders differently, such as fine particle and carbon dioxide emissions: they are calculated as societal costs only, not as costs to a passenger.
The following endpoints are considered (see Table 1):
Fraction of composite trips without change (%)
Vehicles needed (number)
Parking places need (number)
Average vehicle flow on the 30 most busy roads (vehicles/h at 8.00-9.00 AM)
Fine particle (<2.5 µm of diameter) emissions (kg per day)
Carbon dioxide emissions (ton per day)
Driver salaries (thousand e per day)
Vehicle capital and operational costs (thousand e per day)
Time cost (thousand e per day)
Average car trip cost to passenger (e per trip)
Expected composite trip cost to passenger (e per trip)
The following costs are taken into account for passenger (P) or societal (S) costs:
Vehicle capital cost (P+S)
Driver salary cost (P+S)
Driving cost (fuel) (P+S)
Parking (parking fees for individual drivers) (P)
Parking land (opportunity cost of reserving land to parking purposes) (P+S)
Emissions (fine particles and carbon dioxide causing health and climate change effects, respectively (S)
Time for waiting composite vahicles, time spent in traffic jams (P+S)
Accidents (an option only, not used in the current model)
Ticket (profit for composite service provider) (P)
The module has a submodule Cost elements. It contains the detailed descriptions of the unit costs and other input variables that are used to calculate the pressures of each scenario. The values used are dependent on the stakeholder. For example, the car price is the price that a random new car would cost, and it has therefore large uncertainty. On the other hand, the price of a 4-seat composite vehicle is the average price a taxi-style car would cost in Finland, and the confidence intervals are narrower because there is no individual uncertainty. This is because the price of an individual car affects the costs of individual car trips, while the cost of composite trip is dependent on the total cost of vehicles.
Variation between individuals has been separately estimated for three variables: how passengers evaluate the capital costs of owning a car; how passengers are willing to pay for either the right to drive themselves or to not need to drive; and how many passengers are traveling together.
jtue
6. syyta 2004 13:46
48,24
424,232,1
48,24
1,124,20,384,617,17
Scenarios output
# or #/h
A set of scenarios organised along two indexes:
Guar is the level of composite traffic guarantee. This means that trips within a certain area will be organised by composite travel, while areas outside this guarantee remain without the service. The point in using this index is to explore whether composite traffic can be started with low profile and expanded geographically as more people start using it.
Comp_fr is the fraction of trips that were previously performed by personal car but are performed by composite traffic in the scenario.
var a:= scen1_0[vehicle_noch=vehicle];
var b:= Scenarios1_0;
a:= if b[input_var='Composite fraction']=comp_fr then a else 0;
a:= if b[input_var='Guarantee level']=guar then a else 0;
a:= if comp_fr=0 then a[guar=7] else a;
a:= a[guar=choose_guar];
a:= if comp_fr=0 and output1='Waiting' then 0 else a;
a:= a[comp_fr=choose_comp];
a:= if b[input_var='Flexible fraction']=choose_flexible then a else 0;
a:= if b[input_var='No-change fraction']=choose_nochange then a else 0;
a:= if b[input_var='Large guarantee?']='Yes' then
(if large='Yes' then a else 0) else (if large='No' then a else 0);
a:= a[large=choose_large];
a:= sum(a,scenario1_0);
a
176,32,1
48,24
2,132,53,476,620
2,18,41,837,433,0,MIDM
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:10
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:5
Xmaximum:15
Yminimum:0
Ymaximum:1M
Zminimum:1
Zmaximum:6
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1, 1, 1, 1, 1, 0, 0, 0]
Probindex:[5%, 25%, 50%, 75%, 95%]
Arial, 5
[Output1,Vehicle]
[Index Vehicle]
Transport cost
e/d
The total cost (per day) of various cost elements calculated for each vehicle type separately.
var park:= if Vehicle='Car' then sum(Car_parking_cost,zone) else 0;
var land:= sum(Parking_land_cost,zone);
var emiss:= sum(Emission_cost,emission);
{var tim:= sum(time_cost,time_cost.i);}
array(cost_structure,[Vehicle_cost,Driver_cost,Driving_cost,park,land, emiss,time_cost,acc_costs,0])
304,216,1
48,24
2,535,61,476,624
2,14,49,754,524,0,MEAN
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:10
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:0
Ymaximum:7.25M
Zminimum:1
Zmaximum:2
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1, 1, 1, 1, 1, 0, 0, 0]
Probindex:[5%, 25%, 50%, 75%, 95%]
Arial, 6
[Cost_structure,Vehicle]
[Index Length]
[0,0,0,0]
Cost structure
The various costs that are included in the model. The details of each cost are described in the respective node in the 'Detailed costs' module. Accidents are omitted, although there is a placeholder.
['Vehicle','Driver','Driving','Parking','Parking land','Emissions','Time','Accidents','Ticket']
304,248,1
52,12
2,102,90,476,466
2,15,262,416,303,0,MIDM
Cost per trip
e/trip
The costs calculated per trip. These numbers are not yet weighted by stakeholder-specific weights (Cost strength), and therefore eg. the driver costs for car trips is high (the assumption is that all car drivers get full salary).
var a:= transport_cost[vehicle='Car'];
a:= array(mode1,[a,sum(transport_cost,vehicle)-a]);
var b:= trips_per_period;
a:= if cost_structure='Vehicle' or cost_structure='Parking land' then sum(a,period)/sum(b,period) else a/b;
a:= a[period=choose_period];
a:= if cost_structure='Ticket' and Mode1='Composite' then ticket-group_subvention else a;
a
304,296,1
48,24
2,52,74,476,436
2,165,80,756,459,0,MEAN
[Comp_fr,Cost_structure]
1,D,4,2,0,0
[Index Length]
[0,0,0,0]
Car capital valuation
The variation of how much an individual values the capital costs of the personal car when estimating the costs of a single trip. If the person needs the car only for trips within the composite traffic area, the valuation might be 1. However, the car is often needed for other purposes also such as longer trips (value: <1), and some people like to own a car in any case (value: 0).
ktluser
24. lokta 2004 12:48
ktluser
28. lokta 2004 23:31
48,24
56,304,1
48,24
1,1,1,1,1,1,0,0,0,0
1,103,163,-169,294,17
Arial, 13
Cap variab
fraction
Each row represents one possibility for the distribution of individual valuations in the population. Probability distributions are used to represent this variation within population.
Table(Self)(
Uniform(0,1),Triangular(0,0,1),Bernoulli(0.2))
[1,2,3]
56,32,1
48,24
2,376,89,476,280
2,252,12,416,303,0,MIDM
2,280,290,465,303,1,PDFP
65535,52427,65534
Based on author judgement, as there is no data available.
Cap uncert
The uncertainty between several valuation distributions on the population level.
Probtable(Self)(
(1/3),(1/3),(1/3))
56,96,1
48,24
2,144,331,416,303,0,MIDM
2,248,258,416,303,0,SAMP
52425,39321,65535
[1,2,3]
Based on author judgement, as there is no data available.
Cap
fraction
The aggregate of the car capital variation and uncertainty.
Cap_variab_2[Cap_variab=Cap_uncert]
56,160,1
48,24
2,247,96,476,420
2,83,220,416,303,1,CDFP
Cap variation
fractile
The fractile of the sample within the population.
average(sample(Cap_variab_2),cap_variab)
168,32,1
48,24
2,199,80,476,224
2,510,212,416,303,1,CDFP
[Run,Cap_variab]
9.5.2005 Jouni Tuomisto
Vanha syntaksi, ennen kuin keksin miten epvarmuus ja vaihtelu erotetaan:
var a:= rank(cap_variab,run)/samplesize;
a[Cap_variab=Cap_uncert]
Cap variab 2
var a:= cap_variab[run=sortindex(cap_variab,run)];
var b:= uniform(0,1);
a[run=sortindex(b,run)]
168,96,1
48,24
2,576,48,377,441,0,SAMP
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:10
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:100
Yminimum:0
Ymaximum:1
Zminimum:1
Zmaximum:3
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
Arial, 8
[Cap_variab,Run]
Willingness to drive
The price that the passenger is willing to pay to be able to drive the vehicle him/herself compared with the situation where the composite driver drives the vehicle. Note that for car passengers, the question is not about driving but being a passenger in a car or in a composite vehicle.
There are also cases where the car driver is not traveling but only chauffeuring passengers that do not have driver's license. The willingness to drive is probably low in these cases, but we were very modest in these estimates.
There exists no data about this variable, because it is about a comparison between the current and a hypothetical situation. Author judgement is therefore used.
ktluser
24. lokta 2004 12:48
48,24
56,360,1
48,24
1,1,1,1,1,1,0,0,0,0
1,263,92,-468,333,17
Arial, 13
Drive variab
fraction
Willingness to drive. This is expressed as fraction of composite driver's salary. Each row represents one possibility for the distribution of individual valuations in the population. Probability distributions are used to represent this variation within population.
Table(Self)(
Uniform(-0.3,0),Triangular(-0.1,0,0.3),Uniform(-0.2,0.2))
[1,2,3]
64,40,1
48,24
2,102,90,476,405
2,79,219,457,274,0,MIDM
2,152,162,416,303,1,PDFP
65535,52427,65534
Based on author judgement, as there is no data available.
Drive uncert
The uncertainty between several valuation distributions on the population level.
Probtable(Self)(
(1/3),(1/3),(1/3))
64,104,1
48,24
2,248,258,416,303,0,SAMP
52425,39321,65535
[1,2,3]
Based on author judgement, as there is no data available.
Drive
fraction
The aggregate of the willingness to drive variation and uncertainty. It is expressed as a fraction of composite driver's salary.
Drive_variab_2[Drive_variab=Drive_uncert]
64,168,1
48,24
2,366,255,416,303,1,CDFP
Drive variation
fractile
The fractile of the sample within the population.
average(sample(drive_variab_2),drive_variab)
176,40,1
48,24
2,104,69,476,224
2,120,130,416,303,1,CDFP
[Run,Cap_variab]
Drive variab 2
var a:= drive_variab[run=sortindex(drive_variab,run)];
var b:= uniform(0,1);
a[run=sortindex(b,run)]
176,104,1
48,24
2,576,48,377,441,0,SAMP
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:10
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:100
Yminimum:0
Ymaximum:1
Zminimum:1
Zmaximum:3
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
Arial, 8
[Cap_variab,Run]
Trips per period
trips/period
Number of trips per period
var a:= sum(scenarios_output[output1='Trips'],zone);
a:= if Mode1='Composite' then a else 0;
a:= if Vehicle='Car' then (if Mode1='Car' then a[Mode1='Composite'] else 0) else a;
a:= sum(a,Vehicle);
a
56,216,1
48,24
2,102,90,476,257
2,20,201,446,428,0,MIDM
[Length,Comp_fr]
[Index Length]
Cost to stakeholder
e/trip
The cost per trip for a random individual passenger. These values have been weighted by the stakeholder-specific weights (Cost strength).
The costs are first calculated for an average trip from total costs and total numbers of trips. The costs of individual car trips depend on the number of passengers. Therefore, the average cost is multiplied by the average number of passengers and divided by the number of passengers in the particular case we are looking at.
var a:= mean(Group_size)/sample(Group_size);
a:= if cost_structure <>'Time' and Mode1='Car' then a else 1;
a:= a*cost_per_trip;
a:= if isnan(a) then 0 else a;
a:= a*cost_strength;
sum(a,cost_structure)
304,360,1
48,24
2,468,14,515,590
2,133,66,833,363,0,MEAN
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:10
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:100
Yminimum:0
Ymaximum:9
Zminimum:1
Zmaximum:2
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
Arial, 2
[Stakeholder,Mode1]
[Index Cost_structure]
[0,0,0,0]
Stakeholder
There are three different stakeholders:
'Passenger' is a random sample of passengers who have chosen the personal car in the business-as-usual scenario, and may choose between car and composite traffic in other scenarios.
'Society' the community that is responsible for the well-being of citizens in the metropolitan area. It also has the ability to pay subsidies to public transportation. Societal costs include other costs than passenger costs, such as health effects of air pollution, and opportunity costs of parking space.
'Bus company', the composite traffic service provider, is a simple stakeholder and does not therefore show up in the stakeholder index. Its only interest (in the model) is to get a reasonable profit ('Ticket' cost) from each composite trip (in addition to covering direct costs).
['Passenger','Society']
176,392,1
48,12
Cost elements
This module contains the detailed descriptions of the unit costs and other input variables that are used to calculate the pressures of each scenario. The values used are dependent on the context. For example, the car price is the price that a random new car would cost, and it has therefore large uncertainty. On the other hand, the price of a 4-seat composite vehicle is the average price a taxi-style car would cost in Finland, and the confidence intervals are narrower because there is no individual uncertainty. This is because the price of an individual car affects the costs of individual car trips, while the cost of a composite trip is dependent on the total cost of vehicles to the service provider.
ktluser
3. marta 2004 16:37
48,24
176,296,1
48,24
1,158,13,397,505,17
[Alias Cost_elements1]
Emission factor
g/km
Fine particle and carbon dioxide unit emissions for average vehicles. Fine particle emissions are taken from the Lipasto model using average (mixed gasoline and diesel) values for personal car and diesel EURO3 (applied since 2000) values for composite vahicles. For CO2, typical emissions of a new car were used based on the Finnish Vehicle Administration AKE. The following vehicles are used as typical examples of the class:
8-seat vehicle: Toyota Hiace 2.5 D4D 100 4 door long DX bus
4-seat vehicle: Toyota Corolla 2.0 90 D4D Linea Terra 5 door Hatchback (diesel)
Car: Toyota Corolla 1.6 VVT-i Linea Terra 5ov Hatchback (gasoline)
var a:= triangular(0.3,1,1.7);
var b:= triangular(0.9,1,1.1);
Table(Vehicle,Emission)(
0.1*a,232*b,
0.1*a,232*b,
0.1*a,153*b,
0.1*a,153*b,
0.1*a,153*b,
0.047*triangular(0,1,2),168*triangular(0.9,1,1.1)
)
192,88,1
48,24
2,45,51,618,623
2,545,214,416,303,0,MIDM
2,56,66,416,303,0,MEAN
65535,52427,65534
[Emission,Vehicle]
[Emission,Vehicle]
http://lipasto.vtt.fi/yksikkopaastot/henkiloautotkeskimaarin.htm
Pkaupunkiseudun julkaisusarja B1999: 5. Vaihtoehtoisten polttoaineiden kyttmahdollisuudet joukkoliikentess Pkaupunkiseudulla. Taulukko 3, Keskusta ja esikaupunki.
Autorekisterikeskus AKE: Uuden auton kulutustiedot. EKOAKE, huhtikuu 2003.
Emission
['PM','CO2']
192,120,1
48,12
Vehicle price
e/vehicle
Price of a new vehicle. Note that the interpretation is slightly different with different vehicles.
The car price is the price that a random new car would cost, and it has therefore large uncertainty. The price of a composite vehicle is the average price of a taxi-style car in Finland, and the confidence intervals are narrower because there is no individual uncertainty. This is because the price of an individual car affects the costs of individual car trips, while the cost of a composite trip is dependent on the total cost of vehicles to the service provider.
var a:= 39.52K*Triangular(0.75,1,1.25);
var b:= 22.6K*Triangular(0.75,1,1.25);
var c:= lognormal(19.1K,1.5);
array(vehicle,[a,a,b,b,b,c])
56,32,1
48,24
2,102,90,476,375
2,22,50,416,303,0,MIDM
2,68,58,839,549,1,PDFP
65535,52427,65534
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:1
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:-20K
Xmaximum:80K
Yminimum:-1u
Ymaximum:1u
Zminimum:1
Zmaximum:6
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
Vehicle lifetime
a
Expected operation time of a new vehicle.
var a:= 7*Triangular(0.75,1,1.25);
var b:= 5*Triangular(0.75,1,1.25);
var c:= 9*Triangular(0.7,1,1.3);
array(vehicle,[a,a,b,b,b,c])
56,88,1
48,24
2,102,90,476,484
2,14,383,416,303,0,MIDM
65535,52427,65534
Fuel consumption
l/km
Fuel consumption of a vehicle. It is assumed that composite vehicles use diesel fuel and cars use gasoline. The values are based on standardised European consumption values of a new car.
var a:= (8.7/100)*Triangular(0.75,1,1.25);
var b:= (5.7/100)*Triangular(0.75,1,1.25);
var c:= (8/100)*Triangular(0.5,1,1.5);
array(vehicle,[a,a,b,b,b,c])
56,160,1
48,24
2,454,28,476,455
2,425,410,416,303,0,MIDM
2,152,162,416,303,1,PDFP
65535,52427,65534
Fuel price
e/l
Diesel price for composite vehicles; gasoline price for cars. The values are based on rough follow-up of retail prices in Finland in fall 2004 - summer 2005.
var a:= 0.95*triangular(0.8,1,1.2);
var b:= 1.22*triangular(0.8,1,1.2);
array(Vehicle,[a,a,a,a,a,b])
56,216,1
48,24
2,102,90,476,529
2,481,182,416,246,0,MIDM
2,264,274,697,303,1,PDFP
65535,52427,65534
[0,0,0,0]
St1 gas station, Kuopio keskusta, 6.9.2004.
Driver salary
e/h
Monthly salary and social security costs (35 %), and scaled to one hour assuming 160 hours of work per month. The salary is based on that of bus drivers in municipality-owned bus companies.
var a:= 2313/160*1.35;
normal(a,a*0.18)
192,32,1
48,24
2,102,90,476,468
2,411,332,416,303,0,CONF
65535,52427,65534
[0,0,0,0]
Statistics Finland 2005 <a href= "http://statfin.stat.fi/StatWeb/start.asp?LA=en&lp=home&DM=SLEN" >Click</a>
Parking space
e/d/parking space
Cost of a parking space to the society due to the opportunity loss of the land, and maintenance costs.
var va1:= 1.05^30;
var a:= 20*3000;
a:= (a-a/va1)*va1;
a:= a/30/365;
a/2*lognormal(1,1.3)
192,272,1
48,24
2,102,90,476,328
2,40,50,416,303,0,MIDM
65535,52427,65534
[0,0,0,0]
Emission unit cost
e/kg
Assumptions: Primary fine particle emissions of 24290 kg/a caused 12.5 deaths in a risk assessment study in Helsinki (Tainio et al, 2005). We here use the distribution of deaths per emission derived from that study. The value of a statistical life is 0.98-2 Me (Watkiss et al., 2005). The official value for road economy calculations is 201.879 e/kg (LVM, 2003). This value is within the range derived from Tainio, but clearly lower than the mean.
CO2 emission price comes from the emission trade market. According to Helsingin Sanomat (7 May, 2005), it was 18 e/ton in 5 Apr, 2005, although it had been lower during previous months. In July, it was approaching 30 e/ton according to Taloussanomat. The official value for road economy calculations is 32 e/ton (LVM, 2003), which is within the range used here.
var a:= Pm_unit_lethality;
array(Emission, [a*uniform(0.98M,2M), uniform(5,40)/1000])
192,216,1
48,24
2,73,7,548,645
2,466,127,416,303,0,MIDM
2,54,148,672,472,1,PDFP
65535,52427,65534
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:1
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:0
Ymaximum:1
Zminimum:0
Zmaximum:1
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
[0,0,0,0]
Tainio, M., Tuomisto, J.T., Hnninen, O., Aarnio, P., Koistinen, K.J., Jantunen, M.J., and Pekkanen J. Health effects caused by primary particulate matter (PM2.5) emitted from buses in the Helsinki Metropolitan Area, Finland. Risk Analysis, Vol. 25, No.1, 2005. pp. 151-160.
{[Tainio, 2005 96 /id]}
<a href="http://www.blackwell-synergy.com/links/doi/10.1111/j.0272-4332.2005.00574.x/abs/">Link to publisher</a>
{[Watkiss, 2005]} <a href="http://europa.eu.int/comm/environment/air/cafe/activities/cba_baseline_results2000_2020.pdf">Click</a>
{[LVM, 2003]} <a href="http://www.mintc.fi/www/sivut/dokumentit/julkaisu/mietinnot/2003/b292003.pdf">Click</a>
Trips per car
trips/d/car
Number of trips per car per day, i.e. the cumulative number of passenger that use the car during the day. This value is used to calculate the need of cars.
uniform(4,10)
312,88,1
48,24
65535,52427,65534
Ticket
e/trip
The income the service provider wants to get from composite traffic users in addition to the price of the direct costs (vehicle, fuel, driver, and parking costs).
Uniform( 0.2, 0.6 )
312,160,1
48,24
65535,52427,65534
Group size
passengers
Size of group traveling together for a random passenger.
var a:= Car_occupancy*occupancy;
a:= a/sum(a,occupancy);
chancedist(a,occupancy,occupancy)
192,328,1
48,24
2,355,136,476,344
2,445,95,416,473,0,MEAN
65535,52427,65534
Occupancy
An index for the number of passengers in a personal car.
1..5
56,360,1
48,12
Rush delay
h, fraction
Delay that is caused by increased link intensity. The node contains two values. Delay is the average time of delay due to traffic jams during daytime. Reduction is the relative reduction to 'Link intensity' (average vehicle flow on the 30 most busy roads at 8.00-9.00 AM) that is needed to reduce the delay to 0 min.
Table(Self)(
(Triangular(0,0,10)/60),0.3)
['Delay','Reduction']
312,32,1
48,24
2,102,90,476,386
2,592,87,416,303,0,MIDM
2,40,50,416,303,0,SAMP
65535,52427,65534
[Rush_delay,Run]
[0,0,0,0]
Parking price
e/trip
The cost of 30 min parking in zones 1, 2, 3 in Helsinki. It is assumed that each car trip involves 30 min of parking during daytime, while during evening and night, the parking is free. Also daytime parking at home is included in these estimates, although it is difficult to valuate. In any case, it is common to pay at least 5-10 euro per month for a parking place (or more for a garage), which is 15-30 cents per day. Due to the uncertainties, the confidence intervals are large.
Table(Period,Zone)(
((2.4*0.5)*Triangular(0,1,2)),((1.2*0.5)*Triangular(0,1,2)),((0.6*0.5)*Triangular(0,1,2)),
0,0,0,
0,0,0
)
312,272,1
48,24
2,102,90,476,392
2,336,267,416,303,0,MIDM
2,232,242,416,303,1,PDFP
65535,52427,65534
[Period,Zone]
Accidents
cases/a
The number of injuries and deaths in traffic accidents in Vantaa, Espoo, and Helsinki, respectively. It is assumed that the number of 2002 or 2003 statistics is the expectation. Poisson distribution is used to describe the uncertainty.
Taulukko 1-1 Liikenneonnettomuudet Vantaalla v. 2002
Yhteens Hvo Ovo Loukkaantui Kuoli
Auto-onnettomuus 570 100 470 155 5
Moottoripyronnettomuus 23 15 8 13 2
Mopo-onnettomuus 14 6 8 7 0
Polkupyronnettomuus 47 37 10 40 0
Jalankulkijaonnettomuus 33 29 4 31 0
Yhteens tieliikenne 687 187 500 246 7
Raideliikenne (jk) 8 8 - 1 7
Hvo= henkilvahinkoon johtanut onn.
Ovo= omaisuusvahinkoon johtanut onn.
LIIKENNEONNETTOMUUDET VUONNA 2003
Pelti rytisi Espoon alueella viime vuonna yhteens 434 kertaa. Henkilvahinko-onnettomuuksia oli 135, niiss kuoli 3 ja loukkaantui 159 henkil. Edelliseen vuoteen verrattuna liikenneonnettomuuksien mr kntyi hienoiseen laskuun. Vuonna 2002 tilastoitiin 538 onnettomuutta. Liikenneonnettomuustiedot on koottu poliisille ilmoitetuista onnettomuustapauksista.
Onnettomuuskustannukset
Liikenneonnettomuudet aiheuttivat Helsingiss vuonna
2003 yhteens 244 miljoonan euron yhteiskunnalliset
kustannukset. Henkilvahinkoihin johtaneiden onnettomuuksien
osuus oli 213 miljoonaa euroa. Laskelma perustuu
liikenne- ja viestintministerin hyvksymiin liikenneonnettomuuksien
yksikkkustannuksiin vuodelta
2000. Kustannuksissa ovat mukana onnettomuuksien
aiheuttamat reaalitaloudelliset menetykset ja ns. hyvinvoinnin
menetys. Taloudellisia kustannuksia ovat sairaanhoitokulut,
uhrin tyn menetys, ajoneuvovahingot
sek muut aineelliset vahingot.
Table(Self)(
Poisson(((246+159)+724)),Poisson(((7+3)+16)))
['Injuries','Deaths']
312,408,1
48,24
2,82,80,500,500
2,578,153,416,303,0,MIDM
2,136,146,416,303,0,STAT
65535,52427,65534
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:1
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:0
Ymaximum:1
Zminimum:0
Zmaximum:1
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
[0,0,0,1]
Liikenneonnettomuudet Vantaalla 2002. C21:2003. Vantaan kaupunki, Vantaa 2003. <a href="http://www.vantaa.fi/i_liitetiedosto.asp?path=1;135;137;221;1761;1827;7348;7349">Internet PDF</a>
Liikenneonnettomuudet Helsingiss vuonna 2003. <a href="http://www.hel.fi/ksv/hela/Kaupunkisuunnittelulautakunta/Esityslistat/liitteet/041670240.pdf">Internet file</a>
Espoon kaupunki, liikenneturvallisuus. <a href="http://www.espoo.fi/xsl_taso2_alasivuilla.asp?path=1;606;607;4214;7808">Internet page</a>
http://www.tieh.fi/liikenneturvallisuus/lion04.pdf
Accident costs
e/d
The societal costs of traffic accidents were 227 million euro in Helsinki in 2004. For the whole metropolitan area, this is more than 1 million euro per day. The numbers are scaled up from Helsinki to the metropolitan area based on the numbers of injured people in accidents. The uncertainty is based on the standard deviation of the variable Accidents (deaths), which is ca. 20% of the mean.
The accident cost number for Helsinki is scaled up by the number of injuries in the whole Helsinki Metropolitan Area (for data and references, see Accidents).
"Onnettomuuskustannukset
Liikenneonnettomuudet aiheuttivat Helsingiss vuonna
2003 yhteens 244 miljoonan euron yhteiskunnalliset
kustannukset. Henkilvahinkoihin johtaneiden onnettomuuksien
osuus oli 213 miljoonaa euroa. Laskelma perustuu
liikenne- ja viestintministerin hyvksymiin liikenneonnettomuuksien
yksikkkustannuksiin vuodelta
2000. Kustannuksissa ovat mukana onnettomuuksien
aiheuttamat reaalitaloudelliset menetykset ja ns. hyvinvoinnin
menetys. Taloudellisia kustannuksia ovat sairaanhoitokulut,
uhrin tyn menetys, ajoneuvovahingot
sek muut aineelliset vahingot."
var a:= 227M*((246+159+724)/724)/365;
normal(a,a/5)
312,328,1
48,24
2,511,78,500,544
2,26,124,416,303,1,PDFP
65535,52427,65534
[0,0,0,0]
Liikenneonnettomuudet Helsingiss vuonna 2003. <a href="http://www.hel.fi/ksv/hela/Kaupunkisuunnittelulautakunta/Esityslistat/liitteet/041670240.pdf">Internet file</a>
Liikenneonnettomuudet Helsingiss vuonna 2004. <a href="http://www.hel.fi/ksv/Mita_suunnitellaan/Liikenne/tilastoja/liikenneonnettomuudet2004.pdf"> Internet file </a>
http://www.ytv.fi/FIN/seutu_ymparistotietoja/liikkuminen/onnettomuudet/etusivu.htm
Cars should also have variation
The costs of car have large individual variation. This might be an important factor in the comparison of car and composite traffic. This is not currently done but could be considered in the future versions of the model.
Fuel_consumption;
Vehicle_lifetime;
Vehicle_price;
0
464,48,1
48,29
The costs are calculated for a passenger who has a car in the household and is trying to decide between the car and composite traffic
The costs are calculated for a passenger who has a car in the household and is trying to decide between the car and composite traffic.
vehicle_price
464,160,1
68,72
1,1,1,1,1,1,0,,1,
2,102,90,476,427
[Alias The_costs_are_calcu1]
Time unit cost
e/h
The cost of time spent waiting for a composite vehicle or in traffic jam.
Triangular( 0, 5.9, 11.8 )
['Delay','Reduction','Cost']
312,216,1
48,24
2,102,90,476,301
2,199,277,416,303,0,MIDM
65535,52427,65534
Group subvention
e/trip
This subvention is given to passengers that travel in groups with more than one person. The idea is that the subsidy is an amount (uncertain to the decision-maker) which is given to everyone in the group except the first one. In this way, the total group subsidy increases with the size of the group (just like the efficiency of car travelling increases with more passengers). We assume here that the groups are identical in both car and composite modes.
var a:= uniform(0,2);
a:= a*(sample(Group_size)-1)/sample(Group_size);
if subsidise_groups_='Yes' then a else 0
192,408,1
48,24
2,144,229,512,326
2,136,146,416,303,0,MIDM
65535,52427,65534
[Run,Subsidise_groups_]
Subsidise groups?
Personal car becomes more efficient if there are several passengers. To attract groups to use the composite traffic, it is possible to subsidise groups so that there is a certain reduction in the ticket price. This node determines whether group subsidies are considered in the model or not. In the default model, this variable is set to No.
Choice(Self,2)
56,408,1
48,24
2,102,90,476,342
[Formnode Subsidise_groups_1]
['Yes','No']
Car occupancy
fraction
Proportion of cars with different number of passengers. The last number is divided into occupancy '4' and '5' based on author judgement. The original data is from streets entering downtown Helsinki during a weekday (from 6.00 to 21.00) in May.
driver 72.0 %
driver+1 passenger 23.3 %
driver+2 passengers 3.3 %
driver+ at least 3 passenger 1.4 %
var a:= array(occupancy,[0.72,0.233,0.033,0.01,0.004]);
a
56,328,1
48,24
2,102,90,476,345
2,445,95,416,473,0,MIDM
65535,52427,65534
Car maintenance
e/km
Maintenance costs (service, tyres, oil etc.). This is based on Autoliitto's report 'Costs of car 2004'. Insurance and use tax are excluded, as like capital costs, there may be other reasons to own the car, and then these would be sunken costs.
Original values assuming an old car with the original price 20000 e, 20000 km/a of driving (e/a):
Maintenance 844
Tyres 320
total 1164/20000 = 0.0582 e/km
Triangular( 0.03, 0.058, 0.086 )
56,272,1
48,24
2,210,329,416,303,0,MEAN
65535,52427,65534
PM unit lethality
deaths/kg
Assumptions: Primary fine particle emissions of 24290 kg/a caused 12.5 deaths in a risk assessment study in Helsinki (Tainio et al, 2005). We use the distribution of deaths per emission derived from that study.
var a:= fractiles([
-7.223e-004,
5.640e-006,
4.228e-005,
5.987e-005,
8.013e-005,
1.150e-004,
2.037e-004,
2.939e-004,
3.598e-004,
4.132e-004,
4.640e-004,
5.139e-004,
5.662e-004,
6.233e-004,
6.854e-004,
7.577e-004,
8.441e-004,
9.519e-004,
1.093e-003,
1.314e-003,
2.805e-003]);
a
192,160,1
48,24
2,102,90,476,428
2,466,127,416,303,0,MIDM
2,54,148,672,472,1,PDFP
65535,52427,65534
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:1
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:0
Ymaximum:1
Zminimum:0
Zmaximum:1
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
[0,0,0,0]
Tainio, M., Tuomisto, J.T., Hnninen, O., Aarnio, P., Koistinen, K.J., Jantunen, M.J., and Pekkanen J. Health effects caused by primary particulate matter (PM2.5) emitted from buses in the Helsinki Metropolitan Area, Finland. Risk Analysis, Vol. 25, No.1, 2005. pp. 151-160.
{[Tainio, 2005 96 /id]}
<a href="http://www.blackwell-synergy.com/links/doi/10.1111/j.0272-4332.2005.00574.x/abs/">Link to publisher</a>
Comp fr
The fraction of trips that were previously performed by personal car but are performed by composite traffic in the scenario.
[0,0.02,0.05,0.1,0.25,0.4,0.45,0.5,0.55,0.65,0.75,0.9,1]
176,64,1
48,12
2,460,148,476,416
2,236,315,416,303,0,MIDM
[0,0,0,0]
Guar
The level of composite traffic guarantee. This means that trips within certain areas will be organised by composite travel, while areas outside this guarantee remain without the service. The point in using this index is to explore whether composite traffic can be started with low profile and expanded geographically as more people start using it.
[1,2,3,4,5,6,7]
176,88,1
48,12
[0,0,0,1]
Choose comp
You can choose which composite fraction(s) is (are) calculated. If you choose All, you will get a more thorough result, but it will take more memory and computation time, especially if 'Choose guar' or 'Choose period' are also All.
Choice(Comp_fr,0,True)
56,32,1
48,16
2,40,50,416,382,0,DEFA
[Formnode Choose_comp1]
52425,39321,65535
['item 1']
Choose guar
You can choose which guarantee level(s) is (are) calculated. If you choose All, you will get a more thorough result, but it will take more memory and computation time, especially if 'Choose comp' or 'Choose period' are also All.
Choice(Guar,7,True)
56,64,1
48,16
2,-2,232,476,224
[Formnode Choose_guar1]
52425,39321,65535
['item 1']
Choose period
You can choose which period(s) is (are) calculated. If you choose All, you will get a more thorough result, but it will take more memory and computation time, especially if 'Choose guar' or 'Choose comp' are also All.
Choice(Period,1,True)
416,296,1
48,16
[Formnode Choose_period1]
52425,39321,65535
['item 1']
Detailed costs
Detailed costs and pressures. See each individual node for a full description.
ktluser
24. marta 2004 0:00
48,24
176,216,1
48,24
1,402,104,96,441,17
Emission
kg/d
Total emissions based on kilometres driven. The unit emissions are based on standard values.
var a:= sum(scenarios_output,zone);
a:= a[output1='Vehicle km'];
a*Emission_factor/1000
64,192,1
48,16
2,218,232,476,224
2,43,56,717,317,0,MIDM
[Vehicle,Period]
[Index Travel_type]
Driver need
persons
The number of full-time drivers needed in the composite traffic. This is based on the kilometres driven and an 8-hour working day. It is assumed that there is no waiting for drivers. This assumption probably causes underestimation of the true number.
var a:= Scenarios_output[output1='Vehicle km'];
a:= slice(a,region,1);
ceil(a/traffic_speed/8)
176,304,1
48,16
2,102,90,476,286
2,19,38,868,392,1,MIDM
[Comp_fr,Period]
[Index Travel_type]
Cars needed
vehicles
For composite vehicles, this comes directly from traffic optimising; for cars, it is simply the number of trips divided by the average number of trips per car per day. For cars, the amount needed is difficult to estimate, because most cars are needed also for trips beyond the area modelled here. Therefore, even if some trips are performed by composite traffic, it is possible that the number of cars needed remains the same but the number of trips per car decreases.
var a:= Trips_per_period[Mode1='Car']/Trips_per_car;
var b:= trips_per_period[Mode1='Composite'];
b:= b/sum(b,length);
b:= b*sum(sum(scenarios_output[output1='Vehicles'],zone),length);
b:= if Vehicle='Car' then a else b;
if periods=1 then b else 0
64,32,1
48,16
2,470,127,477,494
2,228,80,711,417,0,MIDM
[Vehicle,Comp_fr]
[Index Length]
Car parking cost
e/d
It is assumed that each car trip involves parking. However, composite traffic does not pay anything in parking meters. Instead, they have to pay for the land. This cost is calculated as Parking land cost.
scenarios_output[output1='Trips',Vehicle='Car']*parking_price
176,128,1
48,16
2,77,296,476,402
2,278,125,602,242,0,MIDM
[Period,Zone]
Emission cost
e/d
Fine particles are assumed to cause 10 deaths per 17 ton emission, a result from buses in Helsinki (1). CO2 costs are based on the estimated costs of CO2 in the greenhouse gas emission market. The true health and environmental costs are probably clearly higher than the price of the emission market.
emission1*Emission_unit_cost
176,192,1
48,16
2,102,90,476,392
2,301,50,639,305,0,MIDM
[Vehicle,Emission]
[Index Travel_type]
Parking land cost
e/d
Cost of parking land. It is assumed that for composite vehicles, there is a fixed amount of reserved parking places. The cost is equal to the societal cost of the land use. This cost is allocated to short and long trips based on the number of trips.
var a:= scenarios_output;
var b:= a[output1='Trips'];
b:= b/sum(b,length);
a:= sum(a[output1='Parking lot'],length);
a*Parking_space*b
176,160,1
48,16
2,541,90,476,285
2,457,12,555,416,0,MIDM
[Zone,Vehicle]
[Index Length]
Taxi accident rate
"The accident risk of taxies (related to kilometres driven) is 40 percent lower than that of regular drivers. However, the accident density is 10.4 accidents per year per 100 cars, is double the number for private drivers."
.6
344,48,1
48,24
65535,52427,65534
Ammattiliikenteen turvallisuuden kehittminen. LINTU-projektin osaraportti 12. Research report 566/2000. VTT 2000, Espoo. <a href="http://www.vtt.fi/rte/projects/srs/raportit/lintu_osa12_ammattiliik.pdf">Internet PDF</a>
Acc costs
e/d
We assume that half of the accidents are attributable to personal car traffic, while the other half is attributable to other traffic modes (walking, cycling, public transportation). In addition, the accident risk is proportional to the change in traffic volume, but there is uncertainty about the slope. The expected value is that when traffic volume decreases 10%, accident risk decreases 5%; but it could vary between 0% and 10%.
It is likely that these two assumptions underestimate rather than overestimate the benefit of composite traffic, but we were careful not to exaggerate the benefits. The guidelines for road projects #REF# assume that accidents are proportional to the traffic volume.
var a:= sum(scenarios_output,zone);
a:= a[output1='Vehicle km'];
var b:= sum(sum(sum(a,vehicle),length),period);
b:= (1-b/b[comp_fr=0])*triangular(0,0.5,1);
b:= (1-b)*accident_costs*0.5;
a:= a/sum(sum(sum(a,vehicle),length),period);
b*a
464,104,1
48,24
2,523,131,476,433
2,52,9,714,303,0,MIDM
[Period,Vehicle]
[Index Length]
[0,0,0,0]
Acc num
A draft node. Not used in the model.
var a:= sum(scenarios_output,zone);
a:= a[output1='Vehicle km'];
var b:= sum(sum(sum(a,vehicle),length),period);
b:= (1-b/b[comp_fr=0])*triangular(0,0.5,1);
(1-b)*accidents*0.5
464,48,1
48,24
2,60,131,476,452
2,15,97,354,363,0,MIDM
[Accidents,Comp_fr]
[0,0,0,0]
Rush BAU
vehicles/h
The average number of vehicles per hour driving along a link for the 30 most busy links at 8.00-9.00 in the morning. These numbers are for business-as-usual scenario where there is no composite traffic.
var a:= Scen1_0[output1='Link intensity',length='< 5 km'];
var c:= Scenarios1_0[input_var='Composite fraction'];
var g:= Scenarios1_0[input_var='Guarantee level'];
a:= if c=0 and g=7 then a else 0;
sum(sum(sum(a,scenario1_0),Vehicle_noch),zone)
64,256,1
48,16
2,403,80,476,527
2,10,318,563,321,0,MIDM
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:10
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:5
Xmaximum:15
Yminimum:0
Ymaximum:1M
Zminimum:1
Zmaximum:6
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1, 1, 1, 1, 1, 0, 0, 0]
Probindex:[5%, 25%, 50%, 75%, 95%]
Arial, 5
[Vehicle_noch,Period]
Vehicle cost
e/d
Capital costs of the vehicle. It is assumed here that each vehicle is bought new and driven until the end of the vehicle's lifetime. In reality, of course many cars change owners during their lifetime, and this causes variation between individual car-owners about how much their way of owning a car really causes capital costs. However, this source of variation was excluded for simpilicity. This choice can be defended with an argument that those car-owners who spend most on the capital costs, i.e. buy the most expensive cars or sell them when they are still rather new, are likely to count a smaller fraction of the capital cost of the car when comparing different modes of transport.
cars_needed*vehicle_price/vehicle_lifetime/365
176,32,1
48,16
[Period,Vehicle]
Time cost
e/d
Time costs has two parts: the cost of delays due to traffic jams; and the cost of waiting for composite vehicles. The traffic jam cost includes only the direct costs of actual delays. However, a likely much bigger cost is the need to reserve extra time because of the risk of a traffic jam. If this was included, the costs for both car and composite passengers would be smaller especially with high volumes of composite traffic.
index i:= ['Passengers in traffic jam','Waiting a composite vehicle'];
var a:= sum(scenarios_output,zone);
var b:= a[output1='Waiting']/60*a[output1='Trips'];
b:= if Vehicle='Car' then 0 else b*time_unit_cost;
var c:= a[output1='Link intensity',length='< 5 km'];
c:= sum(c,Vehicle)/rush_bau;
c:= 1-min([(1-c)/rush_delay[rush_delay='Reduction'],1]);
var d:= a[output1='Trips'];
d:= if periods=1 then d else 0;
d:= d*rush_delay[rush_delay='Delay']*c*time_unit_cost;
d:= array(i,[d,b]);
sum(d,d.i)
176,256,1
48,16
2,30,65,476,526
2,165,294,634,303,0,MIDM
[Comp_fr,Vehicle]
[]
Driver cost
e/d
Salary and social security costs of the composite vehicle drivers. We assume that the drivers are paid only when driving, not when waiting for passengers. Although this might slightly underestimate the costs, this is a common practice among hired taxi drivers, who don't own the vehicle.
var a:= sum(scenarios_output,zone);
a:= a[output1='Vehicle km'];
a*driver_salary/traffic_speed
176,64,1
48,16
2,12,43,433,355,0,MIDM
[Period,Vehicle]
[Index Vehicle]
Driving cost
e/d
Costs due to fuel and maintenance.
var a:= sum(scenarios_output,zone);
a:= a[output1='Vehicle km'];
a*(fuel_price*fuel_consumption+car_maintenance)
176,96,1
48,16
[Period,Vehicle]
PM lethality
e/d
Fine particles are assumed to cause 10 deaths per 17 ton emission, a result from buses in Helsinki (1). CO2 costs are based on the estimated costs of CO2 in the greenhouse gas emission market. The true health and environmental costs are probably clearly higher than the price of the emission market.
var a:= emission1*Pm_unit_lethality;
a[emission='PM']
176,224,1
48,16
2,431,209,476,224
2,301,50,639,305,0,MIDM
[Vehicle,Comp_fr]
Emission cost
e/d
This version calculates emission costs per drive for a 10-km drive.
Fine particles are assumed to cause 10 deaths per 17 ton emission, a result from buses in Helsinki (1). CO2 costs are based on the estimated costs of CO2 in the greenhouse gas emission market. The true health and environmental costs are probably clearly higher than the price of the emission market.
var a:= 10*Emission_factor/1000*Emission_unit_cost;
sum(a,emission)
320,176,1
48,16
2,301,50,262,305,0,MIDM
[Vehicle,Emission]
Vehicle cost
e/drive
This version calculates the capital costs per trip assuming that each car takes 15 drives per day.
Capital costs of the vehicle. It is assumed here that each vehicle is bought new and driven until the end of the vehicle's lifetime. In reality, of course many cars change owners during their lifetime, and this causes variation between individual car-owners about how much their way of owning a car really causes capital costs. However, this source of variation was excluded for simpilicity. This choice can be defended with an argument that those car-owners who spend most on the capital costs, i.e. buy the most expensive cars or sell them when they are still rather new, are likely to count a smaller fraction of the capital cost of the car when comparing different modes of transport.
vehicle_price/vehicle_lifetime/365/15
320,112,1
48,16
2,340,200,476,312
2,82,146,654,409,0,MIDM
[Vehicle,Comp_fr]
Driving cost
e/drive
Costs due to fuel and maintenance for a 10-km drive.
10*(fuel_price*fuel_consumption+car_maintenance)
320,144,1
48,16
[Period,Vehicle]
Four-passenger drive
e/trip
Cost per trip of vehicle-dependent costs (=vehicle price, driving, emissions). The numbers are compared with the largest vehicle type.
var a:= array(cost_structure,[Vehicle_cost1,0,Driving_cost1,0,0,Emission_cost1,0,0,0]);
a:= sum(a,cost_structure)/4;
a/a[vehicle='Bus no change']
320,224,1
48,24
2,674,6,336,558,0,MEAN
[Index Cost_structure]
[0,0,0,0]
Stakeholders: Passenger Society
(Bus company)
There are three different stakeholders: Passenger, society, and bus company (which does not show up in the stakeholder index). See Stakeholder for more details.
cost_to_stakeholder
392,432,1
52,36
1,1,1,1,1,1,0,,1,
2,245,4,476,458
Cost strength
The stakeholder-specific weights that are given to different cost types. The weight is 1 always with the following exceptions:
- Car capital costs may be <1 because the owner may need the car for other purposes than the trips considered here.
- Willingness to drive (Driver costs for car drivers) may be positive or negative depending on how the the driving is valuated.
- 'Parking' is zero for composite traffic and society, because 'Parking land' cost is then calculated.
- 'Parking land ' is zero for car passengers, because 'Parking' is then calculated.
- 'Emission costs' and 'Accidents' are not calculated for passengers because they harm people in general, not any individual specifically.
- 'Ticket' cost is calculated only for composite traffic passengers. It is not relevant for cars; and from the societal point of view, it is only a money transfer from the passenger to the service provider.
Table(Cost_structure,Mode1,Stakeholder)(
Cap,1,
1,1,
(-Drive),(-Drive),
1,1,
1,1,
1,1,
1,1,
0,0,
0,0,
1,1,
0,1,
0,1,
1,1,
1,1,
0,1,
0,1,
0,0,
1,0
)
176,360,1
48,24
2,102,90,476,355
2,61,68,416,303,0,MIDM
2,211,203,671,281,0,CONF
[Stakeholder,Cost_structure]
[0,0,0,0]
Costs not included:
Street infrastructure
City planning
Recreational values Secondary health effects
We were careful not to unrealistically exaggerate the benefits of the composite traffic. On the contrary, we excluded several clear but not easily quantifiable benefits: Reduced road traffic volumes save road management and infrastructure. City planning gets more freedom when the vehicle volumes decrease. This also improves the recreational values of the area. There may be an increase in walking and cycling, if the dependence on car is relieved. This may have positive secondary health effects in the population.
transport_cost
480,216,1
68,52
1,1,1,1,1,1,0,,1,
[Alias Costs_not_included_1]
The costs are calculated for a passenger who has a car in the household and is trying to decide between the car and composite traffic
1
176,496,1
68,72
1,1,1,1,1,1,0,,1,
The_costs_are_calcul
Additional benefits of composite traffic:
Mass transit feeder
Quiet bus service replacement
Efficiency by correlation
Replacement of quiet bus routes with composite traffic would probably improve service and reduce costs at the same time. Composite traffic is probably an efficient feeder for high-volume transport modes such as buses and metro. We assumed that the trips are uncorrelated in time (given the total volume at each time point). However, in reality a large proportion of trips is clustered: they are directed to or from particular places such as schools, offices, ballparks, and supermarkets at specific times. With composite vehicles, it results in more efficient trip aggregation; with cars, it results in local traffic jams.
transport_cost
352,80,1
80,52
2,72,347,476,224
Nochange fr
[0,0.2,0.4,0.6,0.8,1]
176,112,1
48,12
['Yes','No']
176,136,0
48,12
1,1,1,1,1,1,0,0,0,0
Flexible fr
[0,.1,.2,.4,.6,.8,1]
176,160,1
48,12
VOI and importance analysis
Value of information analyses, studies on variation in the population, and other analyses on the results.
jtuomist
Tue, Mar 27, 2001 11:26
jtue
12. Aprta 2005 16:35
48,24
544,232,0
48,29
1,1,1,1,1,1,0,0,0,0
1,87,134,570,523,17
94,1,1,0,2,9,4744,6798,7
Fig 2 Trips
trips/h
Fig 1 in the main text. Trips by vehicle type as a function of time when the fraction of composite trips is 50% of the current personal car trips. In this graph, you can also view other composite fractions than 0.5 when guar is set to 7, and other other levels of guarantee when composite fraction is set to 0.5.
var a:= Trips1_0;
var b:= Scenarios1_0;
a:= if b[input_var='Composite fraction']=comp_fr then a else 0;
a:= if b[input_var='Guarantee level']=guar then a else 0;
a:= if comp_fr=0 then a[guar=7] else a;
a:= a[guar=choose_guar];
a:= a[comp_fr=choose_comp];
a:= if b[input_var='Flexible fraction']=choose_flexible then a else 0;
a:= if b[input_var='No-change fraction']=choose_nochange then a else 0;
a:= if b[input_var='Large guarantee?']='Yes' then
(if large='Yes' then a else 0) else (if large='No' then a else 0);
a:= a[large=choose_large];
a:= sum(a,scenario1_0);
a*array(vehicle,[1,0.5,1,0.5,0.5,1])
544,96,1
48,24
2,631,78,476,590
2,161,13,835,589,1,MIDM
[Formnode Figure_3]
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:10
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:5
Xmaximum:15
Yminimum:0
Ymaximum:1M
Zminimum:1
Zmaximum:6
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1, 1, 1, 1, 1, 0, 0, 0]
Probindex:[5%, 25%, 50%, 75%, 95%]
Arial, 5
[Time_stat,Vehicle]
Endpoint
Endpoints or pressures estimated.
['Fraction of composite trips without change (%)','Vehicles needed (number)','Parking places needed (number)','Average vehicle flow on the 30 most busy roads (vehicles/h at 8.00-9.00 AM)','Injuries due to accidents (cases per year)','Deaths due to accidents (cases per year)','Deaths due to fine particles (cases per year)','Fine particle (<2.5 µm of diameter) emissions (kg per day)','Carbon dioxide emissions (ton per day)','Driver salaries (thousand e per day)','Vehicle capital and operational costs (thousand e per day)','Time cost (thousand e per day)','Average car trip cost to passenger (e per trip)','Average composite trip cost to passenger (e per trip)']
664,128,1
48,12
2,17,81,625,372
2,-3,30,512,303,0,MIDM
Table 1 Pressures
Table 1 in the Main text of the article. To retrieve the same table, 'Choose guar' should be set to 7, 'Choose comp' to All, and 'Choose period' to All.
Footnotes:
Mean (90% confidence interval when applicable).
If a passenger requests a trip without a transfer, the additional price to him/her will be 3 - 6 euro/trip during daytime. This cost is due to reduced efficiency in trip aggregation.
The number of vehicles and parking places is theoretical and involves the modelled trips only; a car owner may need the car for trips outside Helsinki even if he/she uses composite traffic. The true number of cars in the area was 346 400 in 2001. (1)
The current ticket prices for buses, metro, and trams are 1.70 e per trip in Helsinki and 2.90 e per trip between communities in the Helsinki metropolitan area. Note that the car trip and composite trip costs include time costs.
var d:= sum(sum(sum(scenarios_output,zone),period),length);
d:= d[comp_fr=i];
var a:= d[output1='Trips by vehicle'];
a:= (slice(a,vehicle,1)+slice(a,vehicle,3)) +sum(sum(sum(no_change_trips[comp_fr=i],period),length),zone);
a:= a/d[output1='Trips',vehicle='Bus no change']*100;
var b:= sum(d[output1='Vehicles'],vehicle);
var c:= sum(d[output1='Parking lot'],vehicle);
d:= sum(d[output1='Link intensity'],vehicle);
a:= rounding(a,3);
b:= rounding(b,3);
c:= rounding(c,3);
d:= rounding(d,3);
var e:= tm(sample(acc_num[accidents='Injuries']));
var f:= tm(sample(acc_num[accidents='Deaths']));
var g:= tm(sample(pm_lethality)*365);
var h:= tm(sample(emission1[emission='PM']));
var i:= tm(sample(emission1[emission='CO2'])/1000);
var j:= tm((if Vehicle='Car' then 0 else sample(driver_cost))/1k);
var k:= tm(sample(vehicle_cost[guar=7])/1k+sample(driving_cost)/1k);
var l:= tm(sample(time_cost)/1k);
var x:= tm(sample(Cost_passenger));
var m:= (x[Mode1='Car']);
var n:= (x[Mode1='Composite']);
array(endpoint,[a,b,c,d,e,f,g,h,i,j,k,l,m,n])
664,96,1
48,24
2,439,7,545,621
2,357,353,682,303,0,MIDM
2,5,2,990,352,0,MIDM
[Formnode Table_4]
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:1
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:0
Ymaximum:1
Zminimum:0
Zmaximum:1
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
[I,Endpoint]
1,D,4,2,0,0
85,1,1,0,2,9,4744,6798,7
YTV: Liikkumisen nykytila (The Present-day Traffic Situation) PJS B 2001:10 <a hfref="http://www.ytv.fi/liikenne/julk/nykytila.pdf">PDF file</a>
Uncertain inputs
A list of uncertain variables used in the model. This list is used to analyse the role of each variable by e.g. value-of-information analysis or importance analysis. The variables with 'V:' are not uncertain but describe variability within the population. Note that the last variable 'Blank' is NOT included in the model and therefore whatever significance is attached to this variable, is just a random effect.
Table(Uncertain_var)(
Vehicle_price[Vehicle='Car'],Vehicle_lifetime[Vehicle='Car'],Fuel_price[Vehicle='Car'],Car_maintenance,Driver_salary,Rush_delay[Rush_delay='Delay'],Time_unit_cost,Trips_per_car,Emission_factor[Vehicle='Car', Emission='PM'],Emission_unit_cost[Emission='PM'],Sum(Sum(Sum(Accident_costs,Period),Vehicle),Length),Cap_uncert,Drive_uncert,Group_subvention,Group_size,Cap_variation,Drive_variation,Uniform(0,1))
['Pollutant levels in fish feed after lower limits (S+P)','Salmon consumption after feed limits (S+P)','Does omega-3 help CHD patients or everyone? (S)','Dose-response of health benefit (S)','Highest omega-3 dose with health benefit (S)','Current average consumption of salmon (S)','Fraction of farmed from total salmon use (S)','Omega3 content in salmon (S)','Consider pollutant or net health effect? (P)','Dieldrin concentration in farmed salmon (S)','Toxaphene concentration in farmed salmon (S)','PCB concentration in farmed salmon (S)','Farmed salmon use after recommendation (S)','Lower limits for pollutants in fish feed? (P)','Recommend restricted farmed salmon consumption? (P)']
408,56,1
48,24
1,1,1,1,1,1,0,0,0,0
2,541,193,476,275
2,525,42,465,461,0,MIDM
2,148,242,582,361,0,MIDM
52425,39321,65535
[Self,Self]
Uncertain var
A list of uncertain variables used in the model.
['Car price','Car lifetime','Fuel price','Vehicle maintenance','Driver salary','Delay due to rush','Unit cost of time','Trips per car','Car fine particle emission','Fine particle unit cost','Accident costs','Car capital','Willingness to drive','Group subvention','V: Car occupancy','V: Car capital','V: Willingness to drive','Blank']
408,88,1
48,12
1,1,1,1,1,1,0,0,0,0
2,123,124,476,469
2,351,356,688,342,0,MIDM
2,168,178,582,361,0,MIDM
[Self,Self]
Subvention
e/d
Direct costs occurring to the society if it subsidises the composite traffic ticket prices so much that the target level of composite fraction is reached, i.e. that that fraction of population thinks that composite traffic is equally or more economic for them than car traffic.
var a:= Expected_total_varia[stakeholder='Passenger'];
a:= Linearinterp(a.i,a, choose_comp,a.i);
(a+mean(group_subvention))*trips_per_period[period=choose_period, Mode1='Composite']
288,208,1
48,24
2,102,90,476,475
2,336,56,550,289,1,MIDM
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:10
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:1
Xmaximum:14
Yminimum:-100K
Ymaximum:909.4K
Zminimum:1
Zmaximum:2
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
Arial, 8
[Comp_fr,Length]
[Index Length]
Cost variation
e/trip
This node is a combination of variables that represent variation, not uncertainty. In other words, all variation between the Monte Carlo iterations are due to variation within the population. (However, there are actually two variables, namely Cap_uncert and Drive_uncert that represent uncertainty of capital cost of car and willingness to drive, respectively. It would be tricky to separate these from variation, and therefore this discrepancy is allowed.)
var a:= mean(Group_size)/sample(Group_size);
a:= if cost_structure <>'Time' and Mode1='Car' then a else 1;
a:= a*mid(cost_per_trip);
a:= if isnan(a) then 0 else a;
a:= a*cost_strength_variability;
a:= sum(a,cost_structure);
{a:= a[stakeholder='Passenger',length='>= 5 km'];
a[Mode1='Composite']-a[Mode1='Car']}
168,136,1
48,24
2,424,37,476,584
2,0,8,394,483,0,SAMP
[Mode1,Run]
Expected total variation
e/trip
Cost difference of composite and car trips shown as the expectation. The X axis shows the fractiles of the total variation within the population. See also 'Expected variations'. These lines are used in Figure 2 of the main text. See 'Figure 2'.
var a:= cost_variation[Mode1='Composite']-cost_variation[Mode1='Car'];
a:= variation1(a,Cost,9);
var b:= a[.varia=1/9]+(a[.varia=1/9]-a[.varia=2/9])/2;
var c:= a[.varia=9/9]+(a[.varia=9/9]-a[.varia=8/9])/2;
index i:= [0,1/18,3/18,5/18,7/18,9/18,11/18,13/18,15/18,17/18,1];
array(i,[b,a[.varia=1/9],a[.varia=2/9],a[.varia=3/9],a[.varia=4/9],a[.varia=5/9],a[.varia=6/9],a[.varia=7/9],a[.varia=8/9],a[.varia=9/9],c])
288,136,1
48,24
2,102,90,476,340
2,94,158,860,436,0,MIDM
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:1
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:-4
Ymaximum:4
Zminimum:0.1111
Zmaximum:1
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
[0,0,0,0]
Classes
The number of classes in the value-of-information analysis. This is a technical parametre only, and it should be large enough. However, the samplesize should be at least 100 times larger than this to avoid random noise.
17
528,280,1
48,12
2,102,90,476,405
52425,39321,65535
Variation
fractile
Total variation expressed as fractiles. See 'Cost variation'.
var a:= sample(cost_variation);
a:= a[Mode1='Composite']-a[Mode1='Car'];
a:= rank(a,run)/samplesize;
slice(a[guar=7,comp_fr=0.5, stakeholder='Passenger'], period,1)
168,88,1
48,12
2,102,90,476,335
2,142,191,670,314,1,SAMP
[Run,Length]
1,D,4,2,0,0
Passenger VOI
e/trip
Value of information analysis for the input variables with the passenger decision between composite and car traffic. The analysis calculates the expected benefit for the passenger when the uncertainty of a variable is resolved.
var a:= sample(cost__variation[stakeholder='Passenger']);
a:= sum(a*sum(trip_fraction,mode1),length);
Voi(a,Mode1,uncertain_inputs,uncertain_var,Classes)
408,208,1
48,24
2,68,266,476,284
2,28,44,735,480,0,MIDM
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:1
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:1
Xmaximum:20
Yminimum:-0.3
Ymaximum:0
Zminimum:1
Zmaximum:1
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
1,F,4,3,0,0
[Index Comp_fr]
Societal cost
e/d
Total societal costs including subsidies.
var a:= cost_to_stakeholder[stakeholder='Society'];
a:= a*trips_per_period[period=choose_period];
if mode1='Composite' then a+subvention else a
288,280,1
48,24
2,104,11,736,486,0,MEAN
[Comp_fr,Mode1]
[Index Length]
[0,0,0,0]
Societal VOI 0-100
e/d
Value of information analysis for the input variables with the societal decision about the target level of composite fraction. Each level involves a particular amount of subsidies to composite traffic to reach the target. The analysis calculates the expected benefit for the society when the uncertainty of a variable is resolved.
var a:= sum(sum(sample(Societal_cost__varia),length),mode1);
a:= if comp_fr=1 then a[comp_fr=0.9] else a;
Voi(a,comp_fr,uncertain_inputs,uncertain_var,classes)
408,408,1
48,24
2,506,97,476,310
2,18,41,377,506,0,MIDM
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:9
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:1
Xmaximum:3
Yminimum:-70K
Ymaximum:0
Zminimum:1
Zmaximum:12
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
Arial, 6
Fig 5A Societal costs
e/d
Figure 3 top panel of the main text.
Marginal societal costs of traffic (composite+car) as a function of the fraction that composite replaces personal car trips (composite fraction). Top: Societal costs (excluding subsidies for composite traffic) during different periods of day.
To reproduce the figure in the article, set
Choose comp = All
Choose guar = 7
Choose period = All
Subsidise groups? = No
Choose large = No
Choose_nochange = 0
Uncertainty options: Sample size 5000, random seed = 98, Median Latin Hypercube
Warning: This will require > 1 MB of system memory
var a:= sum(sum(Societal_cost,mode1)-subvention,length);
a-a[comp_fr=0]
288,352,1
48,29
2,521,109,476,271
2,277,24,326,548,0,MEAN
[Formnode Figure_3_top2]
[Comp_fr,Period]
[0,0,0,0]
Fig 5B Subsidies
e/d
Figure 3 middle panel of the main text.
Marginal societal costs of traffic (composite+car) as a function of the fraction that composite replaces personal car trips (composite fraction). Middle: Subsidies to ticket prices needed to reach the target fraction of composite traffic (i.e., to make that fraction of current car passengers to favour composite traffic). For comparison, the current subsidies to public transportation in Helsinki area are on the range of 380 000 e per day.
The public transport subsidies in Helsinki, Espoo (incl Kauniainen), and Vantaa were 93.30, 25.95, and 19.49 million euro in 2003, which is approximately 380 000 euro per day for the whole area.
To reproduce the figure in the article, set
Choose comp = All
Choose guar = 7
Choose period = All
Subsidise groups? = No
Choose large = No
Choose_nochange = 0
Uncertainty options: Sample size 5000, random seed = 98, Median Latin Hypercube
Warning: This will require > 1 MB of system memory
var a:= sum(subvention,length);
a
168,208,1
48,24
2,120,77,476,224
2,62,10,324,463,0,MIDM
[Formnode Figure_3_middle2]
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:10
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:-100K
Ymaximum:100K
Zminimum:1
Zmaximum:7
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
Arial, 6
[Comp_fr,Period]
[Index Period]
[Rosenberg, 2005 55 /id]
<a href="http://www.mintc.fi/oliver/upl471-Julkaisuja_2_2005.pdf">PDF file</a>
Fig 5C Expanding
e/d
Figure 3 bottom panel of the main text.
Marginal societal costs of traffic (composite+car) as a function of the fraction that composite replaces personal car trips (composite fraction). Bottom: Societal costs (including subsidies) during daytime with increasing areal coverage of composite traffic (starting from the most densely populated areas). Both origin and destination must be in the covered area. The legend shows the number of inhabitants living in the covered area.
(To see the legend, calculate Population_guaranteed.)
To reproduce the figure in the article, set
Choose comp = All
Choose guar = All
Choose period = 6.00-20.00
Subsidise groups? = No
Choose large = No
Choose_nochange = 0
Uncertainty options: Sample size 5000, random seed = 98, Median Latin Hypercube
Warning: This will require > 1 MB of system memory
var a:= Societal_cost;
a:= a-a[comp_fr=0];
sum(sum(a,length),mode1);
168,352,1
48,24
2,411,30,476,357
2,558,40,290,520,1,MEAN
[Formnode Figure_3_bottom2]
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:10
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:-1.2M
Ymaximum:200K
Zminimum:1
Zmaximum:1
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
Arial, 2
[Comp_fr,Guar]
[0,0,0,0]
Fig 4 Cost variation
e/trip
Figure 2 in the main text. Individual variation in the cost of a composite trip compared with a personal car trip for an individual passenger. The estimates include daytime trips with 50% composite fraction scenario. The trips are divided into two groups based on length. The variation between individuals is shown on X axis, with people most in favour of composite traffic on left. The expected values across individuals are shown as lines, and the dots represent the uncertainty of the value.
Note that the lines of expectations are shown in another node, 'Expected total variation'.
To reproduce the figure in the article, set
Choose comp = 0.5
Choose guar = 7
Choose period = 6.00-20.00
Subsidise groups? = No
Choose large = No
Choose_nochange = 0
Uncertainty options: Sample size 1000, random seed = 98, Median Latin Hypercube
slice(Cost[guar=7,comp_fr=0.5,stakeholder='Passenger'],period,1)
168,56,1
48,24
2,102,90,476,385
2,159,34,670,538,1,SAMP
[Formnode Figure_6]
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:4
Baroverlap:0
Linestyle:4
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:-4
Ymaximum:3
Zminimum:1
Zmaximum:2
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
Arial, 2
[Run,Length]
Variation
[0,0,0,0]
Cost
e/trip
The cost difference of the composite and car trips for the passenger (negative values: composite traffic is more beneficial).
var a:= sample(cost_to_stakeholder{[stakeholder='Passenger']});
a:= a[Mode1='Composite']-a[Mode1='Car'];
a
288,56,1
48,24
2,77,76,476,325
2,8,10,285,422,0,MEAN
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:10
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:-4
Ymaximum:10
Zminimum:1
Zmaximum:7
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1, 1, 1, 1, 1, 0, 0, 0]
Probindex:[5%, 25%, 50%, 75%, 95%]
Arial, 5
[Length,Comp_fr]
[0,0,0,0]
Single passenger VOI
e/trip
Same as 'Passenger VOI' except that the value of information is estimated for the subgroup that travels alone.
var a:= sample(cost__variation[stakeholder='Passenger']);
a:= sum(a*sum(trip_fraction,mode1),length);
a:= if sample(Group_size)=1 then a else 0;
Voi(a,Mode1,uncertain_inputs,uncertain_var,Classes)
408,280,1
52,24
2,15,127,476,224
2,393,95,352,473,0,MIDM
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:1
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:0
Ymaximum:1
Zminimum:0
Zmaximum:1
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
1,F,4,3,0,0
[Index Comp_fr]
The highest VOI is in willingness to drive
The highest VOI is in willingness to drive, when 'Car occupancy' is standardised to 1; otherwise the variation of 'Car occupancy' drives the VOI analysis.
single_passenger_voi
664,240,1
48,38
65535,65532,19661
Composite traffic is more attractive to those with long (>= 5 km) trips
Composite traffic is more attractive to those with long (>= 5 km trips).
Fig_4_cost_variation
56,56,1
52,48
[Alias Composite_traffic_i1]
65535,65532,19661
Cost \variation
cost_to_stakeholder-(Cost_variation-mean(cost_variation))
408,136,1
48,24
2,122,153,476,567
2,257,61,680,471,1,SAMP
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:4
Baroverlap:0
Linestyle:4
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1000
Yminimum:-3
Ymaximum:3
Zminimum:1
Zmaximum:2
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1, 1, 1, 1, 1, 0, 0, 0]
Probindex:[5%, 25%, 50%, 75%, 95%]
Arial, 8
[Run,Length]
Variation
Societal cost \variation
e/d
Total societal costs including subsidies. Here we exclude the variation so that the VOI is calculated based on uncertainty only.
var a:= Cost_variation-mean(cost_variation);
a:= cost_to_stakeholder-a;
a:= a[stakeholder='Society'];
a:= a*trips_per_period[period=choose_period];
if mode1='Composite' then a+subvention else a
408,344,1
48,24
2,542,125,476,224
2,154,69,736,486,1,MEAN
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:10
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:1
Xmaximum:14
Yminimum:0
Ymaximum:600K
Zminimum:1
Zmaximum:1
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
Arial, 8
[Comp_fr,Undefined]
[Index Length]
[0,0,0,0]
Other parts
ktluser
10. touta 2005 21:28
48,24
664,32,1
48,24
1,0,0,1,1,1,0,,0,
1,483,26,130,528,17
Trips by vehicle type
trips/d
Number of trips per day by vehicle type. Set guar to 7 to view the trips as a function of composite fraction. Set comp fr to 0.5 to view the trips as a function of guarantee level.
sum(Fig_2_trips,time_stat)*time_unit
312,400,1
48,24
2,102,90,476,345
2,13,28,811,629,1,MIDM
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:10
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:1
Xmaximum:7
Yminimum:0
Ymaximum:100K
Zminimum:1
Zmaximum:6
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
Arial, 5
Fig1 flexible
var a:= slice(time_stat,time_stat,ceil(rank(time_stat)/2)*2-1);
index tim:= sequence(0,max(time_stat),time_unit*2);
sum((if tim=a then Fig_2_trips else 0),time_stat)/2
312,344,1
48,24
2,320,289,476,224
2,7,15,469,587,1,MIDM
Cost.passenger
e/trip
Costs per trip to the passenger.
var b:= cost__variation;
var a:= (sum(sum(trips_per_period,length),period));
a:= trips_per_period/a;
a:= sum(sum(a*b,length),period);
a[stakeholder='Passenger']
176,360,1
48,24
2,641,24,476,562
2,132,15,788,516,1,MEAN
[Comp_fr,Mode1]
[Index Cost_structure]
[0,0,0,0]
Fig 3 Cost by source
e/trip
The cost per trip for a random individual passenger. These values have been weighted by the stakeholder-specific weights (Cost strength).
The costs are first calculated for an average trip from total costs and total numbers of trips. The costs of individual car trips depend on the number of passengers. Therefore, the average cost is multiplied by the average number of passengers and divided by the number of passengers in the particular case we are looking at.
var a:= mean(Group_size)/sample(Group_size);
a:= if cost_structure <>'Time' and Mode1='Car' then a else 1;
a:= a*cost_per_trip[comp_fr=0.5,guar=7];
a:= if isnan(a) then 0 else a;
a:= a*cost_strength;
var b:= trips_per_period[comp_fr=0.5, guar=7];
b:= b/(sum(sum(b,length),period));
sum(sum(a*b,length),period);
176,480,1
52,24
2,589,137,476,456
2,61,3,833,348,1,MEAN
[Formnode Cost_by_type_to_sta1]
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:9
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:10
Yminimum:0
Ymaximum:0.6
Zminimum:1
Zmaximum:2
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.95]
Arial, 2
[Cost_structure,Mode1]
[Index Cost_structure]
[0,0,0,0]
Trip fraction
var a:= trips_per_period/sum(sum(trips_per_period,length),mode1);
a[period=choose_period]
176,208,1
48,24
2,18,307,416,303,0,MIDM
[Mode1,Length]
[Index Length]
No-change trips
# or #/h
A set of scenarios organised along two indexes:
Guar is the level of composite traffic guarantee. This means that trips within a certain area will be organised by composite travel, while areas outside this guarantee remain without the service. The point in using this index is to explore whether composite traffic can be started with low profile and expanded geographically as more people start using it.
Comp_fr is the fraction of trips that were previously performed by personal car but are performed by composite traffic in the scenario.
var a:= scen1_0;
a:= a[vehicle_noch='No-change',output1='Trips by vehicle'];
var b:= Scenarios1_0;
a:= if b[input_var='Flexible fraction']=flexible_fr then a else 0;
a:= a[flexible_fr=choose_flexible];
a:= if b[input_var='No-change fraction']=nochange_fr then a else 0;
a:= a[nochange_fr=choose_nochange];
a:= if b[input_var='Large guarantee?']='Yes' then
(if large='Yes' then a else 0) else (if large='No' then a else 0);
a:= a[large=choose_large];
a:= if b[input_var='Composite fraction']=comp_fr then a else 0;
a:= if b[input_var='Guarantee level']=guar then a else 0;
a:= sum(a,scenario1_0);
a:= if comp_fr=0 then a[guar=7] else a;
a:= a[comp_fr=choose_comp];
a:= a[guar=choose_guar];
a[period=choose_period]
56,424,1
48,24
2,462,53,476,517
2,69,383,591,222,0,MIDM
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:10
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:5
Xmaximum:15
Yminimum:0
Ymaximum:1M
Zminimum:1
Zmaximum:6
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1, 1, 1, 1, 1, 0, 0, 0]
Probindex:[5%, 25%, 50%, 75%, 95%]
Arial, 5
[Length,Zone]
No-change cost
e/trip
Calculates the additional cost to those passengers that want a direct trip even if there is not a full vehicle available. First, the additional cost per trip of having these trips in the system is calculated. This is multiplied by the total number of trips to get the total additional cost per day. This is divided by the number of these special-service trips. Taken together, everyone must pay the price shown with No-change fraction=0, and the No-change cost is added to this price to cover the additional costs.
var a:= cost_passenger-cost_passenger[nochange_fr=0];
a:= a[mode1='Composite'];
a:= a*sum(trips_per_period[period=choose_period,mode1='Composite'],length);
var b:= sum(sum(no_change_trips,length),zone);
a/b
176,424,1
48,24
2,102,90,485,430
2,281,258,643,324,0,MEAN
[Comp_fr,Period]
[Index Cost_structure]
Cost strength variability
The same as Cost strength, except that this node only contains the variability, not uncertainty.
The stakeholder-specific weights that are given to different cost types. The weight is 1 always with the following exceptions:
- Car capital costs may be <1 because the owner may need the car for other purposes than the trips considered here.
- Willingness to drive (Driver costs for car drivers) may be positive or negative depending on how the the driving is valuated.
- 'Parking' is zero for composite traffic and society, because 'Parking land' cost is then calculated.
- 'Parking land ' is zero for car passengers, because 'Parking' is then calculated.
- 'Emission costs' and 'Accidents' are not calculated for passengers because they harm people in general, not any individual specifically.
- 'Ticket' cost is calculated only for composite traffic passengers. It is not relevant for cars; and from the societal point of view, it is only a money transfer from the passenger to the service provider.
Table(Cost_structure,Mode1,Stakeholder)(
Cap_variation,Cap_variation,
1,1,
(-Drive_variation),(-Drive_variation),
1,1,
1,1,
1,1,
1,0,
0,0,
0,1,
1,1,
0,1,
0,1,
1,1,
1,1,
0,1,
0,1,
0,0,
1,0
)
312,456,1
48,24
2,102,90,476,422
2,61,68,416,303,0,MIDM
2,564,215,350,281,0,MEAN
[Mode1,Cost_structure]
[Mode1,Cost_structure]
Most of the VOI (esp. car occupancy) is actually in variables known to the passenger
Most of the VOI (esp. car occupancy) is actually in variables known to the passenger.
passenger_voi_and_voc
456,208,1
48,63
65535,65532,19661
Most of the VOI is actually VOC=value of consensus
Most of the VOI is actually VOC=value of consensus. This means that VOI is calculated for an input variable that is not actually unknown, but it reflects true variability in the population. Therefore the reduction of the spread of this variable does not mean that uncertainty is decreased. It means that the variability is decreased, i.e. that the population is approaching consensus.
Societal_voi_and_voc
336,128,1
48,46
65535,65532,19661
Outcome Importance
Spearman r
Importance analysis of the uncertain input variables. It is a Spearman rank correlation between the input variables and the outcome ('Cost').
Abs( RankCorrel( Uncertain_inputs,Cost) )
64,120,1
48,24
1,1,1,1,1,1,0,0,0,0
2,127,41,402,453,0,MIDM
[Length,Uncertain_var]
Uncertainties
fractile
Uncertain input variables standardised as fractiles.
rank(uncertain_inputs,run)/samplesize
64,72,1
48,12
2,97,189,665,420,0,SAMP
[Run,Uncertain_var]
Expected variations
e/trip
Cost difference of composite and car trips shown as the expectation. The X axis shows the fractiles of one uncertain variable. If there is a trend, this varible has a large impact on the cost difference. See also 'Cost by uncertainty'.
variation1(uncertain_inputs,Cost,9)
64,240,1
48,24
2,116,222,476,224
2,12,12,607,474,1,MIDM
[Comp_fr,Uncertain_var]
Costs \car occupancy
e/trip
An alternative way of calculating costs given a certain input variable ('Car occupancy' in this case).
var classes:= 100;
index varia:= 1..classes;
var c:= getfract(Group_size,varia/classes);
average(for x[]:= c do (whatif(Costs__cap,Group_size,x)),varia)
176,304,1
48,24
2,45,0,833,212,1,SAMP
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:10
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:100
Yminimum:-4
Ymaximum:4
Zminimum:1
Zmaximum:1
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1, 1, 1, 1, 1, 0, 0, 0]
Probindex:[5%, 25%, 50%, 75%, 95%]
Arial, 6
Costs \cap
e/trip
An alternative way of calculating costs given a certain input variable ('Cap' in this case).
var classes:= 100;
index varia:= 1..classes;
var c:= getfract(cap,varia/classes);
average(for x[]:= c do (whatif(Cost,cap,x)),varia)
64,304,1
48,24
2,47,207,833,237,1,SAMP
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:10
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:100
Yminimum:-4
Ymaximum:4
Zminimum:1
Zmaximum:1
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1, 1, 1, 1, 1, 0, 0, 0]
Probindex:[5%, 25%, 50%, 75%, 95%]
Arial, 6
Cost by uncertainty
e/trip
Cost difference of composite and car trips shown as a scatter plot. The X axis shows the fractiles of one uncertain variable. If there is a trend, this varible has a large impact on the cost difference.
Cost
64,40,1
48,24
2,82,65,830,529,1,SAMP
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:4
Baroverlap:0
Linestyle:4
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:-2.5
Ymaximum:2.5
Zminimum:1
Zmaximum:1
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1, 1, 1, 1, 1, 0, 0, 0]
Probindex:[5%, 25%, 50%, 75%, 95%]
Arial, 6
[Run,Undefined]
Uncertainties
S Costs \car occupancy
e/trip
An alternative way of calculating costs given a certain input variable ('Car occupancy' in this case).
var classes:= 100;
index varia:= 1..classes;
var c:= getfract(Group_size,varia/classes);
average(for x[]:= c do (whatif(societal_cost,Group_size,x)),varia)
64,184,1
48,24
2,45,0,833,212,1,SAMP
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:10
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:100
Yminimum:-4
Ymaximum:4
Zminimum:1
Zmaximum:1
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1, 1, 1, 1, 1, 0, 0, 0]
Probindex:[5%, 25%, 50%, 75%, 95%]
Arial, 6
Cost classified
var x:= 9;
var a:= sample(cost_variation);
a:= a[stakeholder='Passenger'];
a:= a[mode1='Composite']-a[mode1='Car'];
index vari:= sequence(1/x,1,1/x);
var in:= ceil(rank(a,run)*x/samplesize)/x;
a:= if in=Vari then a else 0;
176,40,1
48,24
[Run,Comp_fr]
Classified passenger VOI
The iterations are classified into 9 groups based on variability, and these groups are calculated separately. This is reasonable, because there is no point in calculating a common VOI for two individuals, who are on opposite extremes of the variation according to favourness of composite traffic. However, both Passenger VOI and Single passenger VOI are doing this (except that the latter matches for the most important variating variable).
var a:= array(Mode1,[sample(Cost_classified)*9,0]);
a:= sum(a*sum(trip_fraction,mode1),length);
Voi(a,Mode1,uncertain_inputs,uncertain_var,Classes)
336,40,1
52,24
2,389,72,366,497,0,MIDM
Societal VOI and VOC
e/d
Value of information analysis for the input variables with the societal decision about the target level of composite fraction. Each level involves a particular amount of subsidies to composite traffic to reach the target. The analysis calculates the expected benefit for the society when the uncertainty of a variable is resolved.
var a:= sum(sum(sample(Societal_cost),length),mode1);
a:= if comp_fr=1 then a[comp_fr=0.9] else a;
Voi(a,comp_fr,uncertain_inputs,uncertain_var,classes)
176,128,1
48,24
2,581,43,377,506,0,MIDM
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:9
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:1
Xmaximum:17
Yminimum:-225K
Ymaximum:0
Zminimum:1
Zmaximum:2
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
Arial, 6
Passenger VOI and VOC
e/trip
Value of information analysis for the input variables with the passenger decision between composite and car traffic. The analysis calculates the expected benefit for the passenger when the uncertainty of a variable is resolved.
var a:= sample(cost[stakeholder='Passenger']);
a:= sum(a*sum(trip_fraction,mode1),length);
a:= array(mode1,[a,0]);
Voi(a,Mode1,uncertain_inputs,uncertain_var,Classes){missing ')'}
312,208,1
48,24
2,482,80,398,480,0,MIDM
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:1
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:0
Ymaximum:1
Zminimum:0
Zmaximum:1
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
1,F,4,3,0,0
Cost \variation
var a:= cost_variation[Mode1='Composite']-cost_variation[Mode1='Car'];
a:= rank(a,run)/samplesize;
var b:= expected_total_varia;
a:= Linearinterp(b.i,b, a,b.i);
cost-a
424,344,1
48,24
2,102,90,476,375
2,257,61,680,471,1,SAMP
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:4
Baroverlap:0
Linestyle:4
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1000
Yminimum:-3
Ymaximum:3
Zminimum:1
Zmaximum:2
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1, 1, 1, 1, 1, 0, 0, 0]
Probindex:[5%, 25%, 50%, 75%, 95%]
Arial, 8
[Run,Length]
Total societal VOI is 30000 euro/d, which implies robust conclusions
For the societal question whether to subsidise composite traffic at 50 % composite fraction or not at all, the total value of resolving all uncertainty is only about 30 000 e per day, and the value for every single variable was zero. This means that the conclusion is robust and that even if the truth about a variable were found out to be the most unfavourable to the composite traffic, the optimal decision would still be the same.
Societal_voi_0_or_50
648,408,1
52,44
2,102,90,475,224
[Alias Total_societal__voi1]
65535,65532,19661
Fig 6A Passenger VOI
passenger_voi
528,208,1
48,29
2,17,59,799,413,0,MIDM
[Formnode Fig_6a_passenger_vo1]
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:9
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:1
Xmaximum:3
Yminimum:-70K
Ymaximum:0
Zminimum:1
Zmaximum:12
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
Fig 6B Societal VOI
Societal_voi_0_100
288,408,1
48,24
2,563,94,416,435,0,MIDM
[Formnode Fig_6b_societal_voi1]
Societal VOI 0 or 50
e/d
Value of information analysis for the input variables with the societal decision about the target level of composite fraction. Each level involves a particular amount of subsidies to composite traffic to reach the target. The analysis calculates the expected benefit for the society when the uncertainty of a variable is resolved.
var a:= sum(sum(sample(Societal_cost__varia),length),mode1);
index comp:= [0,0.5];
a:= a[comp_fr=comp];
Voi(a,comp,uncertain_inputs,uncertain_var,classes)
528,408,1
48,24
2,18,41,377,506,0,MIDM
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:9
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:1
Xmaximum:3
Yminimum:-70K
Ymaximum:0
Zminimum:1
Zmaximum:12
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
Arial, 6
(a:probtype)
Tm
a:= if size(a)=size(sum(a,length)) then a else sum(a,length);
a:= if size(a)=size(sum(a,vehicle)) then a else sum(a,vehicle);
a:= if size(a)=size(sum(a,period)) then a else sum(a,period);
a:= rounding(mean(a),3)&' ('& rounding(Getfract(a,0.05),3)&'-'& rounding(getfract(a,0.95),3)&')';
a:= if a='NAN (NAN-NAN)' then '' else a;
a:= a;
a[comp_fr=i]
664,176,1
48,12
2,7,86,476,512
a
i
[0,0.25,0.5,0.75,1]
664,152,1
48,12
Trip data
This module calculates the trip rate for each origin-destination pair (129^2 pairs) and for each time point (12 min intervals resulting in 120 time points) based on trip data from three separate hours (morning rush, midday, afternoon rush) and time activity (based on diaries) in traffic along 24 hours.
The total number of trips equals the number of car trips in Helsinki area on a working day in 2000. All scenarios have the same street strucure and number of trips with a particular origin, destination, and time. The trips are divided into car trips and composite trips differently in each scenario based on two variables. Composite fraction is the percentage of the trips that are handled by composite traffic; the remaining trips are handled by personal cars. Guaranteed area defines the area where composite traffic is provided (i.e. the area where you are guaranteed to get a composite vehicle if you want one). The default assumption is that both the origin AND the destination must be in the guaranteed area, but it is also easy to evaluate scenarios where the guarantee covers all trips in the Helsinki area as long as either the origin OR the destination is in the guaranteed area.
The model calculates the expected number of trips for each origin-destination-time cell, and picks one random number from Poisson distributioin based on the expectation. After that, the model is deterministic all the way to Outputs node.
jtue
26. Junta 2003 12:49
jtue
18. elota 2004 18:12
48,24
184,232,1
48,24
1,1,1,1,1,1,0,0,0,0
1,146,3,420,493,17
2,244,212,476,362
Arial, 13
All trips
trips/time unit
Calculates number of individuals in the composite traffic and in car traffic for each route and time. Composite traffic may be restricted by area or by the fraction of trips that switch from car traffic to composite traffic.
var a:= max([100u,adjusted_trip_rate]);
a:= slice(sample(Poisson(a)),run,1);
var g:= Scenario_input[input_var='Guarantee level'];
var comp:= Scenario_input[input_var='Composite fraction'];
var b:= guaranteed_areas;
var c:= From&'';
b:= if findintext(c,Regions) then b else 0;
b:= sum(b,Region);
b:= b[guarantee=g];
b:= if Scenario_input[input_var='Large guarantee?']='Yes' then b+b[From=To1] else b*b[From=To1];
b:= if b>0 then 1 else 0;
b:= b*comp;
b:= slice(sample(binomial(a,b)),run,1);
array(Mode1,[a-b,b])
336,160,1
48,24
2,461,110,476,493
2,43,0,831,468,0,MIDM
[Time,From]
[Index Mista]
Flow
passengers/time unit
Passenger flow at each point. This is a sum of people who start, continue or end their trip from or to here.
var a:= From&'';
var c:= sum(All_trips[Mode1='Composite'],time);
for x[]:= a do (
var b:= (if findintext(x,Route_matrix)>0 then c else 0);
sum(sum(b,From),To1) )
448,160,1
48,24
2,102,90,476,316
2,142,149,654,249,0,MIDM
[To1,From]
Transfer point
The most busy point along the trip. In a case where there is no direct composite vehicle driving from the origin to the destination, the passenger is dropped at this point, and the latter part of the trip is organised separately.
index etappi:= 1..max(max((textlength(route_matrix)+1)/5,From),To1);
var a:= sum(Flow,To1);
var b:= '0*'&Route_matrix&'*0';
b:= for x[]:= b do slice(splittext(x,','),etappi);
var c:= a[From=evaluate(b)];
var d:= if istext(c) or isnumber(c) then c else 0;
c:= argmax(d,etappi);
c:= if max(d,etappi)=0 or c=1 then '' else b[etappi=c]&',';
From&','&c&To1
448,224,1
48,24
2,504,112,476,513
2,43,10,972,486,0,MIDM
[To1,From]
Guarantee
A dummy index.
[1,2,3,4,5,6,7]
336,256,1
48,12
2,102,90,476,533
2,104,114,416,494,0,MIDM
Guaranteed areas
Guarantee means that any trip within the specified region is organised by the composite traffic, if wanted. 1=guarantee, 0=no guarantee. The default assumption is that both the origin AND the destination must be in the guaranteed area, but it is also easy to evaluate scenarios where the guarantee covers all trips in the Helsinki area as long as either the origin OR the destination is in the guaranteed area.
Table(Guarantee,Region)(
0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,
0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,
0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,
0,0,1,1,0,0,0,0,1,1,1,1,1,1,1,
0,0,1,1,0,1,0,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
)
336,224,1
48,24
2,102,90,476,434
2,354,113,582,448,0,MIDM
2,49,233,589,346,0,MIDM
52425,39321,65535
[Guarantee,Region]
[Guarantee,Region]
Scenario input
Input variable values for base case scenario. If Large guarantee? is 'Yes', then it is assumed that the guarantee covers the whole area, if the origin OR the destination of the trip are in the guaranteed area. Otherwise, both O and D must be in the covered area.
Table(Input_var)(
0.5,7,0,0,0)
['Composite fraction','Guarantee level','Lim']
336,80,1
48,24
2,597,125,416,303,0,MIDM
52425,39321,65535
[Scenario_input,Scenario]
Input var
Index for variables that may affect the number of composite traffic trips.
['Composite fraction','Guarantee level','Large guarantee?','No-change fraction','Flexible fraction']
336,112,1
48,12
Unadjusted trip rate
trips/time unit
Calculates the traffic volume for each time point of the day. First, the matrix is selected based on the Base_time Name column, and then the numbers are scaled as the proportion of the traffic activity per each hour and the peak hour for which the matrix was calculated.
var c:= Trips_by_hour[Reg=From,Reg1=To1];
c:= if c=null then 0 else c;
c:= cubicinterp(hour,c,time,hour)
168,96,1
48,24
2,454,141,476,358
2,151,124,782,471,0,MIDM
[Time,From]
[To1,From]
Adjusted trip rate
trips/time unit
Calculates the traffic volume for each time point of the day. Adjusting is taken into account to yield results where the population in an area is not much different after the day.
var g:= unadjusted_trip_rate;
{index x:= copyindex(From);
var b:= 0;
var c:= 0;
var e:= 0;
var a:= sum(Unadjusted_trip_rate,time);
b:= sum(a,From);
b:= b[To1=From];
c:= sum(a,To1);
c:= (b-c)*a/sum(a,To1);
e:= if c<0 then -c else 0;
c:= if c<0 then 0 else c;
e:= e[From=x,To1=From];
e:= e[x=To1];
a:= c+e;
var g:= if time>7 and time<19 then 1 else 0;
g:= g/sum(g,time);
g:= Unadjusted_trip_rate+a*g;}
g:= g/sum(sum(sum(g,from),to1),time)*total_trips;
var h:= if rank(time)/2 = floor(rank(time)/2) then g *scenario_input[input_var='Flexible fraction'] else 0;
var i:= h[time=time+time_unit] ;
i:= if i=null then 0 else i;
g+i-h
168,160,1
48,24
2,26,34,476,518
2,578,39,507,476,0,MIDM
Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:1
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:0
Ymaximum:1
Zminimum:0
Zmaximum:1
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
[Time,From]
[To1,From]
Total trips
trips
Total number of trips travelled in a personal car in Helsinki Metropolitan area during a working day. The total number of trips is 2.9 million, and 44% of them are by personal cars.
Trips by traffic mode on weekday in the Helsinki metropolitan area in 2000.
Total trips 2.9 million
22 % Walking
7 % Cycling
16 % Bus
3 % Tram
3 % Train
4 % Metro
34 % Personal car (driver)
10 % Personal car (passenger) and taxi
2.9M*0.44
56,160,1
48,24
2,102,90,476,478
65535,52427,65534
YTV: Helsingin seudun nykytila (The Current State of Helsinki Region) PJS B 2002:1 <a hfref="http://www.ytv.fi/seutukeh/pks/pks2025/nykytila.pdf">PDF file</a>
Population
inhabitants
Population of the Helsinki Metropolitan Area by area in 2003.
Table(Area1)(
389,10.248K,8215,882,6768,4157,11.62K,761,2407,3401,13.137K,14.569K,8705,6832,4746,0,3542,2284,15.89K,7028,11.8K,6825,3344,5755,10.28K,19K,9940,7288,12.956K,12.983K,10.358K,4523,8375,12.656K,5284,8470,13.653K,6422,8695,3549,8782,4169,11.435K,10.766K,2122,5480,7962,11.615K,10.91K,7636,5795,3710,16.146K,9493,8819,8331,11.226K,4023,8631,28.283K,5951,8259,16.458K,13.495K,12,829,9,3235,9228,6191,3145,7835,8819,16.405K,14.91K,6105,8003,15.762K,14.608K,2209,2888,12.29K,7692,3475,8069,2237,5239,8905,9199,8253,15.238K,5847,5934,1845,4671,549,3999,572,3579,9299,6466,18.695K,14.052K,2140,4118,2619,112,3145,3465,215,47,1807,10.396K,4301,11.36K,4840,2895,1346,3723,8338,2620,5403,3375,9873,12.478K,3167,4698,14.244K,9899,0)
56,224,1
48,24
2,388,82,476,459
2,415,198,416,303,0,MIDM
2,510,11,258,615,0,MIDM
65535,52427,65534
Seutu-CD '03. YTV (The Helsinki Metropolitan Area Council), Helsinki, 2004.
Population guaranteed
inhabitants
Number of inhabitants in the area in which the composite traffic operates.
var b:= guaranteed_areas;
var c:= From&'';
b:= if findintext(c,Regions) then b else 0;
{b:= sum(b,Region);}
b:= if b>0 then population[area1=from] else 0;
sum(b,from)
168,224,1
48,24
2,480,131,476,440
2,202,71,609,369,0,MIDM
[Guarantee,Region]
[Index Region]
Areal surface
arbitrary
The areal surface of each area. (A rough classification).
Table(Region)(
7,4,3,2.5,5,2,3,1,1,1,1,1,1,2,3)
56,288,1
48,24
2,541,153,416,352,0,MIDM
2,526,136,416,386,0,MIDM
65535,52427,65534
Based on rough estimates with a map on scale 1:40000.
Population density
arbitrary
Population density in each area. (A rough classification.)
var c:= From&'';
var b:= if findintext(c,Regions) then 1 else 0;
b:= if b>0 then population[area1=from] else 0;
sum(b,from)/areal_surface
168,288,1
48,24
2,481,162,476,400
2,93,219,954,423,0,MIDM
[From,Region]
Modelled trip rate
jtue
13. Febta 2003 16:03
ktluser
25. touta 2005 12:30
48,24
168,32,1
48,24
1,1,1,1,1,1,0,0,0,0
1,85,42,345,530,17
Arial, 13
Hour
Hour of day.
Sequence( 0, 23 )
400,272,1
48,12
1,1,1,1,1,1,0,,0,
1,104,114,416,303,0,MIDM
(param1, param2;suurind,pienind:indextype;indtieto)
Normitus
A function used to divide aggragate data into its disaggregate units based on weighting factors.
using a:=sum((if indtieto=Suurind then param1 else 0), pienind)
do using b:= sum((if indtieto=suurind then a else 0), suurind)
do param2/b
168,368,1
48,24
2,591,58,476,514
param1,param2,suurind,pienind,indtieto
(param1, param2; suurind, pienind:indextype;indtieto)
Si_pi
A function used to divide aggragate data into its disaggregate units based on weighting factors.
using a:= Normitus(param2,param2,suurind,pienind,indtieto)
do using b:= (if indtieto=suurind then param1*a else 0)
do using c:= sum(b, suurind)
do c
168,424,1
48,24
2,36,83,476,312
param1,param2,suurind,pienind,indtieto
Trips municipality
1000 tips/d
One-way trips from one municipality to another.
Table(Municipality,Municipality1)(
223,(365/2),(130/2),(95/2),
(365/2),332,(103/2),(117/2),
(130/2),(103/2),320,(49/2),
(95/2),(117/2),(49/2),179
)
56,64,1
48,24
2,422,91,476,513
1,77,139,758,383,0,MIDM
2,52,332,708,188,0,MIDM
65535,52427,65534
[Self,Municipality1]
[Municipality,Municipality1]
[Index Suuralue]
YTV: Liikkumisen nykytila. Pkaupunkiseudun julkaisusarja B 2001:10. Fig 6. <a href="http://www.ytv.fi/NR/rdonlyres/F6B8A4F8-C394-4972-A1DE-C64E2B69EE6D/0/nykytila_B2001_10.pdf>PDF file</a>
Trips place
1000 trips/d
One-way trips from one place to another (such as home, work etc).
Table(Place,Place1)(
29,(642/2),(67/2),(283/2),(1315/2),
(642/2),4,(71/2),(9/2),(184/2),
(67/2),(71/2),21,(1/2),(21/2),
(283/2),(9/2),(1/2),2,(50/2),
(1315/2),(184/2),(21/2),(50/2),193
)
56,176,1
48,24
2,402,104,476,603
2,44,37,504,196,0,MIDM
65535,52427,65534
[Place,Place1]
[Place,Place1]
[Index Kohde]
YTV: Liikkumisen nykytila. Pkaupunkiseudun julkaisusarja B 2001:10. Fig 7. <a href="http://www.ytv.fi/NR/rdonlyres/F6B8A4F8-C394-4972-A1DE-C64E2B69EE6D/0/nykytila_B2001_10.pdf>PDF file</a>
Trips place&mode
fraction
The distribution of trips among transportation modes.
Table(Place,Place1,Mode2)(
0.34,0.19,0.46,0.01,
0.15,0.39,0.46,0,
0.34,0.19,0.46,0.01,
0.42,0.42,0.15,0.01,
0.34,0.19,0.46,0.01,
0.15,0.39,0.46,0,
0.25,0.24,0.5,0.01,
0.25,0.24,0.5,0.01,
0.25,0.24,0.5,0.01,
0.25,0.24,0.5,0.01,
0.34,0.19,0.46,0.01,
0.25,0.24,0.5,0.01,
0.25,0.24,0.5,0.01,
0.25,0.24,0.5,0.01,
0.25,0.24,0.5,0.01,
0.42,0.42,0.15,0.01,
0.25,0.24,0.5,0.01,
0.25,0.24,0.5,0.01,
0.25,0.24,0.5,0.01,
0.25,0.24,0.5,0.01,
0.34,0.19,0.46,0.01,
0.25,0.24,0.5,0.01,
0.25,0.24,0.5,0.01,
0.25,0.24,0.5,0.01,
0.25,0.24,0.5,0.01
)
64,288,1
48,24
2,377,111,476,441
1,494,125,416,303,0,MIDM
2,27,185,456,199,0,MIDM
65535,52427,65534
[Mode2,Place1]
[Place,Place1]
[Index Kohde]
YTV: Liikkumisen nykytila. Pkaupunkiseudun julkaisusarja B 2001:10. Fig 8. <a href="http://www.ytv.fi/NR/rdonlyres/F6B8A4F8-C394-4972-A1DE-C64E2B69EE6D/0/nykytila_B2001_10.pdf>PDF file</a>
Trips munic&mode
trips/d/inh
Number of trips per inhabitant of each transportation mode in different municipalities. These data are not used in the model.
Table(Municipality,Mode2)(
1.31,1.1,0.93,0.03,
0.89,1.01,1.34,0.03,
0.92,0.72,2.03,0.03,
0.92,0.73,1.67,0.05
)
64,368,1
48,24
2,491,162,476,551
1,136,146,595,314,0,MIDM
2,30,208,649,187,0,MIDM
65535,52427,65534
[Mode2,Self]
[Municipality,Mode2]
[Index Suuralue]
YTV: Liikkumisen nykytila. Pkaupunkiseudun julkaisusarja B 2001:10. Fig 9. <a href="http://www.ytv.fi/NR/rdonlyres/F6B8A4F8-C394-4972-A1DE-C64E2B69EE6D/0/nykytila_B2001_10.pdf>PDF file</a>
Fraction pub tr munic
fraction
The fraction of public transportation in municipalities. These data are not used in the model.
Table(Municipality,Municipality1)(
0.64,0.59,0.5,0.57,
0.59,0.33,0.24,0.21,
0.5,0.24,0.22,0.14,
0.57,0.21,0.14,0.23
)
64,424,1
48,24
2,102,90,476,471
1,200,210,666,291,0,MIDM
1,200,210,752,301,1,MIDM
65535,52427,65534
[Self,Municipality1]
[Self,Municipality1]
YTV: Liikkumisen nykytila. Pkaupunkiseudun julkaisusarja B 2001:10. Fig 6. <a href="http://www.ytv.fi/NR/rdonlyres/F6B8A4F8-C394-4972-A1DE-C64E2B69EE6D/0/nykytila_B2001_10.pdf>PDF file</a>
Place weight by hour
A rough weighting of different trips along the day. The purpose of this node is to take into account the fact that residences and workplaces are located differently in the area, and therefore the different trips occur unevenly in time and space.
var a:= table(Time_of_day)(0.1,0.3,1,0.1,0.1);
var c:= table(Time_of_day)(1,0.3,0.2,0.1,0.1);
a:= (if Place='Workplace' or Place='Business' then a else if Place1='Workplace' or Place1='Business' then c else 1);
a:= a[Time_of_day=Time_of_day_by_hour];
a/sum(a,hour)
504,96,1
48,24
2,667,115,476,570
2,400,26,509,574,0,MIDM
52425,39321,65535
[Place1,Hour]
[Index Tunti]
Municipality
Municipalities in the Helsinki metropolitan area. Helsinki is divided into two parts; Kauniainen is together with Espoo.
['Helsinki, downtown','Helsinki, suburbs','Espoo, Kauniainen','Vantaa']
56,96,1
48,12
2,243,104,476,437
2,17,221,416,303,0,MIDM
Municipality1
The same as Municipality; this index is used as the destination.
copyindex(Municipality)
56,120,1
48,12
2,451,144,476,421
2,72,82,416,303,0,MIDM
Place
The place where the trip origines/ends. Workplace is a trip to/from the workplace; business is a work-related trip outside the workplace.
['Home','Workplace','Business','School','Other']
56,208,1
48,12
2,704,209,476,464
Place1
The place where the trip ends.
copyindex(Place)
56,232,1
48,12
2,120,130,416,303,0,MIDM
Mode
The modes of transportation.
['Kevyt liikenne','Joukkoliikenne','Henkilauto','Muu']
64,320,1
48,12
2,102,90,476,446
Time of day
Time of day
['Morning','Day','Afternoon','Evening','Night']
504,128,1
48,12
2,102,90,476,423
Time in traffic
min/h
Time spent in personal car traffic in Helsinki. Based on personal diaries of adult subjects in Expolis study in 1996-97.
Table(hour)(
0.5434,0.3511,0.2547,0.2885,0.1949,0.4356,1.521,4.747,5.118,2.106,1.892,1.663,1.966,1.91,2.608,3.477,6.161,5.567,3.811,2.833,2.158,1.254,0.7295,0.5768)
400,240,1
48,24
2,161,264,476,428
2,136,28,416,569,0,MIDM
2,288,21,316,544,0,MIDM
65535,52427,65534
[Index Tunti]
Anu Kousa, Expolis database 12.11.2002.
Car trips
trips/d
Car trips per day.
var a:= Trips_place*Trips_place_mode*1000;
a[Mode2='Henkilauto']
176,176,1
48,24
2,108,133,476,462
2,32,12,489,204,0,MIDM
[Place,Place1]
Time of day by hour
Time of day by hour
Table(Hour)(
'Night','Night','Night','Night','Night','Night','Morning','Morning','Morning','Day','Day','Day','Day','Day','Day','Afternoon','Afternoon','Afternoon','Evening','Evening','Evening','Evening','Night','Night')
504,32,1
48,24
2,18,279,476,224
2,884,115,416,538,0,MIDM
2,56,66,416,303,0,MIDM
52425,39321,65535
Inhabitants
#
Number of inhabitants by district in Jan 1st, 2001.
Table(Area1)(
389,10.248K,8215,882,6768,4157,11.62K,761,2407,3401,13.137K,14.569K,8705,6832,4746,10,3542,2284,15.89K,7028,11.8K,6825,3344,5755,10.28K,19K,9940,7288,12.956K,12.983K,10.358K,4523,8375,12.656K,5284,8470,13.653K,6422,8695,3549,8782,4169,11.435K,10.766K,2122,5480,7962,11.615K,10.91K,7636,5795,3710,16.146K,9493,8819,8331,11.226K,4023,8631,28.283K,5951,8259,16.458K,13.495K,12,829,9,3235,9228,6191,3145,7835,8819,16.405K,14.91K,6105,8003,15.762K,14.608K,2209,2888,12.29K,7692,3475,8069,2237,5239,8905,9199,8253,15.238K,5847,5934,1845,4671,549,3999,572,3579,9299,6466,18.695K,14.052K,2140,4118,2619,112,3145,3465,215,47,1807,10.396K,4301,11.36K,4840,2895,1346,3723,8338,2620,5403,3375,9873,12.478K,3167,4698,14.244K,9899,0)
400,32,1
48,24
2,102,90,476,492
1,216,226,703,303,0,MIDM
2,489,294,416,303,0,MIDM
65535,52427,65534
SeutuCD 02, a CD ROM database about the Helsinki area.
Workplaces
#
The number of workplaces by district
Table(Area1)(
23.894K,28.844K,6227,11.46K,9798,6390,4771,3018,1284,6659,8195,8960,17.766K,4184,12.672K,4232,8797,5226,8561,11.629K,3571,17.037K,2849,3602,3469,9525,2861,2476,3305,5571,17.35K,5016,1728,4239,1053,3709,5964,1673,849,1308,1604,2162,1287,8431,2242,975,720,1853,1668,2334,538,699,1596,1333,7414,1828,1070,7452,1394,3051,893,849,1463,1481,443,1723,4068,9201,6916,2818,6321,3340,1389,2487,7270,1709,690,2794,2389,1237,3399,3463,3694,1581,7038,3254,519,832,1336,1927,2510,4198,4122,309,1681,79,2301,478,1629,3254,2826,7822,5587,2206,1529,504,3285,1814,4254,3928,9509,2633,7034,275,1063,1958,1856,2519,232,1023,346,1808,478,1358,1605,308,2012,3644,794,0)
288,32,1
48,24
2,102,90,476,548
1,248,258,713,303,0,MIDM
2,583,35,416,303,1,MIDM
65535,52427,65534
SeutuCD 02, a CD ROM database about the Helsinki area.
Municipality info
The municipality to which each district belongs.
Table(Area1)(
'Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa',0)
184,32,1
48,24
2,102,90,476,356
2,696,93,416,532,0,MIDM
52425,39321,65535
Trips place munic
trips/d
Car trips per day by municipality and place. Several weighting factors are used to derive the numbers from the original data.
var ap:= array(Place,[Inhabitants, Workplaces, Workplaces, Inhabitants, Inhabitants]);
ap:= sum((if Municipality=Municipality_info then ap else 0),area1);
ap:= ap/sum(ap,Municipality);
var a:= ap*Car_trips;
ap:= ap[Municipality=Municipality1, Place=Place1];
a:= ap*a;
a:= a/sum(sum(a,Place),Place1);
a:= a*Trips_municipality;
a:= a/sum(sum(sum(sum(a, Municipality), Municipality1), Place), Place1);
a*sum(sum(Car_trips,Place),Place1)
288,176,1
48,24
2,16,104,498,591
1,339,342,644,303,0,MIDM
2,49,67,784,245,0,MIDM
[Place,Place1]
[Municipality1,Municipality]
[Index Suuralue]
Trips by hour
trips/h
Trips by hour from one district to another district.
var ap:= array(Place,[Inhabitants, Workplaces, Workplaces, Inhabitants, Workplaces]);
ap:= ap/sum(ap,area1);
var a:= si_pi(Trips_place_munic,ap,Municipality,area1,Municipality_info);
a:= si_pi(a,ap[area1=reg1],Municipality1,reg1,Municipality_info[area1=reg1]);
var va4:= Place_weight_by_hour*Time_in_traffic;
va4:= va4/sum(va4,hour);
a:= a*va4;
a:= a/sum(sum(a,Place),Place1) *sum(sum(sum(a,Place),Place1),hour) *Time_in_traffic/sum(Time_in_traffic,hour);
a:= sum(sum(a,Place),Place1);
a[area1=reg]
400,176,1
48,24
2,38,32,562,688
2,571,93,540,493,0,MIDM
[Reg1,Reg]
Other parts
Contains functions, indexes, and nodes that are used in several modules, and log nodes.
jtue
2. Aprta 2004 14:19
48,24
56,144,1
48,24
1,0,0,1,1,1,0,,0,
1,338,47,467,530,17
Choose flexible
Flexible passengers mean those who are willing to start their trip 12 min earlier to improve the trip aggregation. This increases the volume of the time point (and respectively decreases it in the next time point), which has a positive net effect on trip aggregation.
Choice(Flexible_fr,1,True)
296,88,1
48,16
[Formnode Choose_flexible1]
52425,39321,65535
['item 1']
Choose large
The areal coverage of composite traffic can be defined in two ways. First, all requested trips within a certain area will be organised (i.e. both the origin AND the destination are inside the area). Second, all trips in the metropolitan area will be organised, if either the origin OR the destination is inside the area. The latter is denoted 'Large guarantee' in the model. That approach could be used, if an important aim is to reduce the need for an own car by offering a service that can handle most trips for those people who live in the area. The first approach is the default in the model.
Choice(Large,2,True)
296,56,0
48,16
1,1,1,1,1,1,0,0,0,0
[Formnode Choose_large1]
52425,39321,65535
['item 1']
Choose nochange
You can choose which nochange fraction(s) is (are) calculated. The number means the fraction of passengers that request a trip without a transfer. If you choose All, you will get a more thorough result, but it will take more memory and computation time, especially if 'Choose guar' or 'Choose period' are also All.
Choice(Nochange_fr,1,True)
296,24,1
48,16
2,46,180,476,369
[Formnode Choose_nochange1]
52425,39321,65535
[Choose_comp,['item 1']]
Mode
The transport mode: either personal car or composite traffic.
['Car','Composite']
176,280,1
48,12
1,0,0,1,1,1,0,,0,
2,220,199,476,224
Trip length
km
The lengths of the trips shown as a frequency distribution.
var comp:= aggr_period(All_trips);
comp:= comp[Mode1='Composite'];
var car:= comp[Mode1='Car'];
var a:= array(Vehicle,[comp,0,0,0,0,car]);
index length:= 1..50;
for x[]:= length do (
var e:= if round(distances)=x then a else 0;
e:= sum(sum(e,from),to1) )
56,88,1
48,24
2,102,90,476,407
2,55,202,932,513,1,MIDM
Zone
The areas are classified into three categories: 1) downtown (downtown of Helsinki), 2) centre (other major centres within the Metropolitan area), and 3) suburb (all other areas).
Table(Self)(
1,2,3)
['Downtown','Centre','Suburb']
56,16,1
48,12
2,10,257,476,405
2,414,239,416,303,0,MIDM
52425,39321,65535
Traffic speed
km/h
Average speed of traffic.
40
56,312,1
48,24
2,93,231,476,322
65535,52427,65534
Vehicle
Index of travel type (vehicle type including the number of changes).
['Bus no change','Bus one change','Cab no change','Cab one change','Cab non-full','Car']
176,192,1
48,12
1,1,1,1,1,1,0,,0,
2,186,152,476,399
General functions
Functions that are used in several modules of this model, or in several models. It is therefore practical to place them into one module.
jtue
2. Aprta 2004 14:47
48,24
56,200,1
48,24
1,109,108,379,340,21
(in,out:prob;classes)
Variation
Toistaiseksi Variation1 ei toimi, jos classes on indeksi. Tmn voi koettaa ratkaista siten, ett tehdn isompi indeksi, jossa concatataan kaikki eripituiset varia-indeksit, sortataan suuruusjrjestykseen, ja slicataan pienemmt indeksit siihen. Tmn lisksi tytyy linearinterp-funktiolla luoda puuttuviin kohtiin lukuja, jossa funktio kulkee ntisti. Nyt tt ei ruveta tekemn.
for x[]:= classes do (
index varia:= sequence(1/x,1,1/x);
var c:= rank(sample(in),run);
c:= ceil(c*x/samplesize)/x;
var a:= if c=Varia then sample(out) else 0;
var b:= if c=Varia then 1 else 0;
a:= sum(a,run)/sum(b,run);
if isnan(a) then 0 else a )
168,208,1
48,24
2,57,16,476,648
in,out,classes
(out:prob;deci:indextype;input:prob;input_ind:indextype;luokkia)
VOI
Versio 1.
index a:= ['Total VOI'];
index variable:= concat(a,input_ind);
for x[]:= luokkia do (
index varia:= sequence(1/x,1,1/x);
var in:= ceil(rank(input,run)*x/samplesize)/x;
var ncuu:= min(mean(sample(out)),deci);
var d:= (if a='Total VOI' then mean(min(sample(out),deci))-ncuu else 0);
var evpi:= if in=Varia then out else 0;
evpi:= sum(min(mean(evpi),deci),varia)-ncuu;
concat(d,evpi,a,input_ind,variable) )
56,208,1
48,24
2,474,71,476,546
out,deci,input,input_ind,luokkia
Time unit
h
Time unit in hours. (Should equal the acceptable waiting time.)
1/(size(time)/24)
56,96,1
48,24
1,1,1,1,1,1,0,,0,
52425,39321,65535
(Trips,Delay)
Time shift
time units
shifts travels forward and backward in time. This is the way how travel times are taken into account.
Trips = number of trips traveled at each time point.
Delay = Travel time as number of time units. If delay is negative, the result is earlier in time than Trip.
Time_order = a helper variable containing the rank number of each time point.
var time_order:= time/time_unit+1;
var a:= Time_order-Delay;
var b:= (if a >max(Time_order,time) or a< min(Time_order,time) then 1 else a);
slice(Trips,time,b)
168,96,1
48,24
1,1,1,1,1,1,0,,0,
2,367,75,476,512
Trips,Delay
(data)
Clean rows
index in1:= 1..size(data);
var b:= slice(data,in1);
var c:= unique(b,in1);
b:= slice(b,in1,c);
b:= slice(b,in1);
c:= subset(istext(b));
b:= slice(b,in1,c);
index a:= 1..size(b);
slice(b,a)
168,32,1
48,24
2,102,90,476,389
data
(d;roa:indextype)
index etappi:= 1..max((textlength(d)+1)/5,roa);
index a:= 1..size(d)*2;
var c:= for x[]:= d do slice(Splittext(x,','),Etappi);
c:= (if istext(c) then c else '');
var b:= c[Etappi=1];
var x:=2;
while x<= size(Etappi) do (
b:= (if c[Etappi=x] = '' then b else c[Etappi=x] & ',' & b);
x:= x+1);
c:= concat(d,b,roa,roa,a);
c
56,32,1
48,24
d,roa
(a)
Aggr period
var b:= if time>=6 and time<20 then a else 0;
b:= sum(b,time);
var c:= if time>=20 and time<24 then a else 0;
c:= sum(c,time);
var d:= if time>=24 or time<6 then a else 0;
d:= sum(d,time);
array(period,[b,c,d])
56,152,1
48,24
2,253,78,476,311
a
(in,out:prob;classes)
Variation
Toistaiseksi Variation1 ei toimi, jos classes on indeksi. Tmn voi koettaa ratkaista siten, ett tehdn isompi indeksi, jossa concatataan kaikki eripituiset varia-indeksit, sortataan suuruusjrjestykseen, ja slicataan pienemmt indeksit siihen. Tmn lisksi tytyy linearinterp-funktiolla luoda puuttuviin kohtiin lukuja, jossa funktio kulkee ntisti. Nyt tt ei ruveta tekemn.
for x[]:= classes do (
index varia:= sequence(1/x,1,1/x);
var c:= rank(sample(in),run);
c:= ceil(c*x/samplesize)/x;
var a:= if c=Varia then sample(out) else 0;
var b:= if c=Varia then 1 else 0;
a:= sum(a,run)/sum(b,run);
if isnan(a) then 0 else a )
168,152,1
48,24
in,out,classes
(param1,sigdigits)
rounding
var a:= floor(logten(param1));
var b:= param1/10^(a+1-sigdigits);
round(b)*10^(a+1-sigdigits)
272,32,1
48,24
param1,sigdigits
Profiling
Use this library to see which variables and functions are taking most of the computation time when running your model.
This library requires Analytica Enterprise, or ADE. It will not work for other versions of Analytica.
Here's how to use the library:
1. First run your model, i.e. show (and therefore compute) results for the outputs you are interested in timing.
2. Click Timing "Result" button to show an array showing how long it took to evaluate each variable (in CPU seconds), ordered to show the largest times first.
If you want to time additional calculations, added to existing timings.
3. Make those calculations by showing results for those variables.
4. Click button "Recompute Timings"
5. Click Timing "Result" button again.
If you want to time additional calculations, starting from zero again.
6. Change relevant inputs to cause their dependents to need to be recomputed.
7. Click "Reset Timings" to set to zero.
8. Show results for outputs of interest.
9. Click Timing "Result" again to see new timings.
Lonnie Chrisman
Sun, Jul 13, 2003 12:18 PM
indirect
Sun, Sep 14, 2003 7:20 AM
48,24
56,144,1
48,24
1,1,1,1,1,1,0,0,0,0
1,433,261,-4339,266,21
2,90,44,476,224
(m: TextType)
Descendant Objects
Returns a list including module m and all its descendants, i.e. objects (variables, functions, and modules) contained in m - and in any modules it contains, recursively.
VAR res := [m];
VAR c := contains OF (m);
IFONLY IsUndef(c) THEN res
ELSE BEGIN
FOR v := c Do BEGIN
VAR d := Descendant_objects(Identifier OF v);
res := Concat(res, d);
0
END;
res
END
80,176,1
52,24
2,97,125,476,394
m
1
(m: TextType)
Computation Profile
sec
Returns an array of the computation time (in seconds) taken to evaluate each variable (or user-defined function). Results exclude time spent evaluating each variable's inputs. Times are sorted in descending order to show the variables taking the most time at the top. The result is indexed by .objects, a local index containing only those variables with a nonzero computation time.
This function is useful for profiling a computationally intensive model to find where the time is being spent. The time includes all time spent in computing each variable since the model was opened, or since the last call to "Reset Timings".
INDEX allobjs := Descendant_Objects(m);
VAR allTimings := (FOR obj:=allobjs DO EvaluationTime OF (obj));
INDEX UnsortedNodes := Subset(allTimings > 0);
VAR timings := allTimings[allobjs = UnsortedNodes];
INDEX objects := sortIndex(-timings, UnsortedNodes);
timings[UnsortedNodes = objects]
200,176,1
60,24
2,88,-2,481,571
m
Timing profile
CPU Sec
Returns an array with the evaluation Time spent in each variable and function.
/* First, determine which node is the "root" node of the model */
VAR m := Identifier OF (Isin OF Self);
VAR top := WHILE (NOT IsUndef(Isin OF (m)))
DO m := Identifier OF (Isin OF (m));
Computation_profile(top)
328,176,1
48,24
2,723,11,247,592,0,MIDM
[Formnode Whole_model_computat, Formnode Timing_profile1]
1,F,10,3,0,0
Whole Model Computational Profile
1
256,40,1
124,16
1,0,0,1,0,0,0,72,0,1
Timing_profile
(m: TextType)
Computation Profile all
sec
Returns an array of the computation time (in seconds) taken to evaluate each variable (or user-defined function). Results exclude time spent evaluating each variable's inputs. Times are sorted in descending order to show the variables taking the most time at the top. The result is indexed by .objects, a local index containing only those variables with a nonzero computation time.
This function is useful for profiling a computationally intensive model to find where the time is being spent. The time includes all time spent in computing each variable since the model was opened, or since the last call to "Reset Timings".
INDEX allobjs := Descendant_Objects(m);
VAR allTimings := (FOR obj:=allobjs DO EvaluationTimeAll OF (obj));
INDEX UnsortedNodes := Subset(allTimings > 0);
VAR timings := allTimings[allobjs = UnsortedNodes];
INDEX objects := sortIndex(-timings, UnsortedNodes);
timings[UnsortedNodes = objects]
200,240,1
60,24
2,102,90,529,521
m
Timing profile all
CPU Sec
This displays the Time spent in each variable and function
/* First, determine which node is the "root" node of the model */
VAR m := Identifier OF (Isin OF Self);
VAR top := WHILE (NOT IsUndef(Isin OF (m)))
DO m := Identifier OF (Isin OF (m));
Computation_profile_(top)
328,240,1
48,24
2,655,142,407,516,0,MIDM
1,F,10,3,0,0
From
Area number of the origin. Equals the Area 129 coding (plus 1000) by Helsinki Metropolitan Area Council.
1001..1129
176,80,1
48,12
2,518,124,476,424
[Formnode Mista2]
To
Area number of the destination. Equals the Area 129 coding (plus 1000) by Helsinki Metropolitan Area Council.
copyindex(From)
176,104,1
48,12
Reg
An index for areal data tables. Transformed to 'From' index.
1001..1129
176,24,1
48,12
2,446,194,476,288
Reg1
An index for areal data tables. Transformed to 'To' index.
1001..1129
176,48,1
48,12
Area
The number of area. Equals the Area 129 coding (plus 1000) by Helsinki Metropolitan Area Council.
[1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1011,1012,1013,1014,1015,1016,1017,1018,1019,1020,1021,1022,1023,1024,1025,1026,1027,1028,1029,1030,1031,1032,1033,1034,1035,1036,1037,1038,1039,1040,1041,1042,1043,1044,1045,1046,1047,1048,1049,1050,1051,1052,1053,1054,1055,1056,1057,1058,1059,1060,1061,1062,1063,1064,1065,1066,1067,1068,1069,1070,1071,1072,1073,1074,1075,1076,1077,1078,1079,1080,1081,1082,1083,1084,1085,1086,1087,1088,1089,1090,1091,1092,1093,1094,1095,1096,1097,1098,1099,1100,1101,1102,1103,1104,1105,1106,1107,1108,1109,1110,1111,1112,1113,1114,1115,1116,1117,1118,1119,1120,1121,1122,1123,1124,1125,1126,1127,1128,1129,1130]
176,136,1
48,12
2,531,226,476,224
Region
The names of the larger regions used in the model.
['+Lnsi-Espoo','+Pohjois-Espoo','+Etel-Espoo','+Keski-Espoo','+Lnsi-Vantaa','+Keski-Vantaa','+Pohjois-Vantaa','+It-Vantaa','+Kanta-Helsinki','+Lnsi-Helsinki','+Vanha-Helsinki','+Konalanseutu','+Pakilanseutu','+Malminseutu','+It-Helsinki']
176,160,1
48,12
2,470,236,476,365
Composite traffic dummy
The placeholder for the composite traffic. This is used when an argument is linked to composite traffic in general, and there is no obvious node to which it can be linked.
0
56,256,1
48,24
Periods
Morning-day, evening, and night are looked at separately.
table(period)(1,2,3)
56,48,1
48,12
52425,39321,65535
Vehicle_noch
Index of travel type (vehicle type including the number of changes). This index is the same as Vehicle except that there is an additional row, No-change trips. This is the number of trips that are forced not to be divided into two parts. Note that these trips are included in other rows, and therefore this index must not be summed up.
['Bus no change','Bus one change','Cab no change','Cab one change','Cab non-full','Car','No-change']
176,240,1
48,12
1,1,1,1,1,1,0,,0,
Timing profile
1
176,472,1
160,12
1,0,0,1,0,0,0,72,0,1
Timing_profile
Mista
0
176,448,1
160,12
1,0,0,1,0,0,0,72,0,1
From
Subsidise groups?
0
172,348,1
156,12
1,0,0,1,0,0,0,72,0,1
Subsidise_groups_
Choose large
0
172,372,1
156,12
1,0,0,1,0,0,0,72,0,1
52425,39321,65535
Choose_large
Choose nochange
0
172,396,1
156,12
1,0,0,1,0,0,0,72,0,1
52425,39321,65535
Choose_nochange
Choose flexible
0
172,420,1
156,12
1,0,0,1,0,0,0,72,0,1
52425,39321,65535
Choose_flexible
Road data
This module creates the node Route matrix, which contains the driving instructions from all areas to all other areas. Distances calculates the distances (by road) between the areas.
To make the construction of Route matrix as simple as possible for a new city, the roads are defined in the following way. First, the whole metropolitan are is divided into 15 regions, and these regions are further divided into 129 areas with 7300 inhabitants on average. The 129 areas are standard areas for urban planning, but the regions were formed for this particular purpose. The criteria for forming a region were that they
1) are exclusive and mutually exhaustive
2) are as large as possible without creating very unrealistic routes between areas. Routes are defined in a way that between any two regions, there is only one specific road that is used to cross the region borders (and travel the distance between the regions if they are not neighbours).
It is thus necessary to describe the routes between all areas within each region, and the routes between all regions. However, then it is possible to deduce the detailed routes between two areas that are in different regions using these hierarchical instructions.
The routes are described as lists of areas that are along the road between the origin and destination. The route description needs not be in full detail if the details between two areas are defined in Roads node. A minimum number of existing roads were selected so that the routes in the model would not be very unrealistic. This work was done manually with a map. Note that the absolute numbers of 'Average vehicle flow on the 30 most busy roads' are likely biased upwards because all traffic from smaller streets is packed to the major roads in the model.
jtue
8. Aprta 2004 14:15
jtue
19. elota 2004 10:43
48,24
184,168,1
48,24
1,257,106,376,409,17
2,102,90,476,282
Arial, 13
Route matrix
The complete route instruction matrix including all relevant information.
var a:= Prematrix;
index e:= 1..max(max((textlength(a)+1)/5,From),To1);
var g:= for x[]:= a do slice(splittext(x,','),e);
g:= if g=null then 'tyhj' else g;
var y:= 1;
while y<=size(e)-1 do (
var x:= 1;
while x<= size(Road_mirror) do (
var h:= Road_mirror[.a=x];
var b:= g[.e=y];
var c:= g[.e=y+1];
var d:= findintext(b,h);
var f:= findintext(c,h);
a:= if d>0 and f>0 and f>d then Textreplace(a,b&','&c,selecttext(h,d,f+3),true) else a;
x:=x+1);
y:=y+1);
a
288,200,1
48,24
2,478,35,476,480
2,70,80,784,348,0,MIDM
[To1,From]
Distances
km
The length of each origin-destination trip.
var b:= for x[]:= route_matrix do (
var a:= if findintext(links_1,x)>0 then link_length1 else 0;
sum(a,links_1) );
b + in_area_distance[area1=From] + in_area_distance[area1=To1]
400,200,1
48,24
2,32,14,476,521
2,27,18,883,552,0,MIDM
[To1,From]
In-area distance
km
The distance that is travelled within an area collecting people before the actual trip to another area starts.
Distances are rough estimates measured with a string and a ruler. This approach was considered exact enough, as the road structure is the same in all scenarios considered.
Note that although not quite realistic, this value is the same for both composite and car traffic.
Table(Area1)(
1,1,0.6,0.6,0.6,1,1,0.1,1,1,1,1,1.5,1.5,1,1,0.6,0.6,1,1,0.6,0.6,1,1.5,1.5,2.5,1.5,1.5,1.5,2.5,1.5,1.5,1.5,1.5,2.5,1.5,1.5,1.5,1.5,1,1.5,1.5,1.5,2.5,1.5,1,2.5,1.5,1.5,2.5,1.5,1,4,1.5,1.5,2.5,1.5,1.5,1,2.5,1.5,1.5,1.5,2.5,1.5,0.6,0.6,1.5,1.5,1.5,1.5,2.5,2.5,2.5,2.5,2.5,2.5,1.5,2.5,2.5,0.6,1.5,1.5,1.5,1.5,1,1.5,2.5,2.5,2.5,4,4,4,8,2.5,4,4,4,8,2.5,1.5,2.5,2.5,2.5,4,8,4,1.5,1.5,1.5,1,2.5,1.5,1.5,1.5,1.5,1.5,2.5,2.5,1.5,1.5,2.5,1.5,4,2.5,2.5,4,4,4,0)
400,32,1
48,24
2,148,93,416,561,0,MIDM
65535,52427,65534
Data based on a map of Helsinki Metropolitan area (YTV liikenne: Pkaupunkiseudun joukkoliikennekartta 11.8.2002).
Area name
The name of each area.
Table(Area1)(
'Kluuvi','Kamppi','Punavuori','Kaartinkaupunki','Kruunuhaka','Katajanokka','Kaivopuisto','Munkkisaari','Ruoholahti','Salmisaari','Etu-Tl','Taka-Tl','Meilahti','Ruskeasuo','Lnsi-Pasila','Pohjois-Pasila','It-Pasila','Hakaniemi','Kallio','Srninen','Alppila','Vallila','Hermanni','Arabianranta','Kpyl','Lauttasaari','Munkkiniemi','Munkkivuori','Etel-Haaga','Pohjois-Haaga','Pitjnmki','Konala','Malminkartano','Kannelmki','Hakuninmaa','Maunula','Patola','Lnsi-Pakila','Palohein','It-Pakila','Pukinmki','Viikki','Pihlajamki','Malmi','Malmin lentokentt','Tapanila','Tapaninvainio','Siltamki','Tapulikaupunki','Puistola','Jakomki','Kulosaari','Laajasalo','Roihuvuori','Herttoniemenranta','Herttoniemi','Puotila','Puotinharju','Myllypuro','Kontula','Vartioharju','Mellunmki','Vuosaari','Kallahti','Niinisaari','Suomenlinna','Keilaniemi','Otaniemi','Tapiola','Pohjois-Tapiola','Niittykumpu','Mankkaa','Westend','Matinkyl','Olari','Iivisniemi','Suvisaaristo','Espoonlahti','Nykki','Saunalahti','Mkkyl','Lintuvaara','Etel-Leppvaara','Laajalahti','Sepnkyl','Kuninkainen','Karakallio','Laaksolahti','Viherlaakso','Kauniainen','Tuomarila','Muurala','Bemble','Nuuksio','Kauklahti','Espoonkartano','Vanhakartano','Ryl','Kalajrvi','Hmeenkyl','Varisto','Myyrmki','Martinlaakso','Petikko','Kivist','Seutula','Viinikkala','Ylst','Pakkala','Veromies','Helsinki airport','Koivuhaka','Tikkurila','Ruskeasanta','Simonkyl','Jokiniemi','Kuninkaala','Hakkila','Pivkumpu','Havukoski','Rekola','Koivukyl','Ilola','Korso','Metsola','Jokivarsi','Sotunki','Hakunila','Lnsimki','Vaihtopiste')
512,32,1
48,24
2,102,90,476,452
2,510,11,258,615,0,MIDM
65535,52427,65534
Modified names from the Area 129 coding by Helsinki Metropolitan Area Council.
A dummy index.
[1,2,3,4,5,6,7,8,9,10,11,12,13,14]
64,64,1
48,12
A dummy index.
[1,2,3,4,5,6,7,8,9,10,11,12,13,14]
64,88,1
48,12
Roads
A list of frequently used roads. The purpose of this node is to simplify definitions in nodes Routes outside and routes inside.
Table(Self)(
'1078,1076,1074,1073,1067,1010,1002,1001','1093,1085,1084,1028','1104,1032,1029,1028,1027,1013,1011,1002','1105,1103,1102,1035,1034,1030,1014,1012,1001','1123,1112,1109,1040,1025,1022,1020,1001,1002,1010','1125,1127,1128,1045,1042,1024,1025,1016,1014,1029','1062,1061,1058,1054,1055,1052,1020,1018,1001','1095,1093,1097,1104,1103,1107,1110,1109,1117,1128,1129','1067,1068,1084,1083,1032,1034,1038,1040,1041,1043,1045,1060,1058','1080,1078,1076,1074,1073,1067,1068','1096,1095,1093,1094','1090,1085,1084,1083,1082','1088,1087,1083,1084','1042,1041,1047,1048','1042,1043,1044,1046,1049','1052,1055,1054,1058,1057,1063,1065','1059,1060,1062,1065','1026,1010,1002,1001,1005,1006','1008,1003,1004,1001','1008,1003,1004,1005,1006','1032,1029,1014,1016,1025,1024')
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21]
288,32,1
48,24
2,166,156,470,457,0,MIDM
2,104,114,802,486,0,MIDM
65535,52427,65534
Data based on a map of Helsinki Metropolitan area (YTV liikenne: Pkaupunkiseudun joukkoliikennekartta 11.8.2002).
Routes outside
Routes are defined in a way that between any two regions, there is only one route that is used. This route is described in this node. The route description needs not be in full detail, e.g. if a route between two areas is defined in Roads node, it is enough to define the start and end areas here.
Table(In3,In4)(
'+Lnsi-Espoo,1093,1097,+Pohjois-Espoo',0,0,0,0,0,0,0,0,0,0,0,0,0,
'+Lnsi-Espoo,1093,1085,1074,+Etel-Espoo','+Pohjois-Espoo,1097,1093,1085,1074,+Etel-Espoo',0,0,0,0,0,0,0,0,0,0,0,0,
'+Lnsi-Espoo,1093,1085,+Keski-Espoo','+Pohjois-Espoo,1097,1093,1085,+Keski-Espoo','+Etel-Espoo,1068,1084,+Keski-Espoo',0,0,0,0,0,0,0,0,0,0,0,
'+Lnsi-Espoo,1093,1104,+Lnsi-Vantaa','+Pohjois-Espoo,1097,1104,+Lnsi-Vantaa','+Etel-Espoo,1068,1032,1104,+Lnsi-Vantaa','+Keski-Espoo,1084,1032,1104,+Lnsi-Vantaa',0,0,0,0,0,0,0,0,0,0,
'+Lnsi-Espoo,1093,1110,+Keski-Vantaa','+Pohjois-Espoo,1097,1104,1110,+Keski-Vantaa','+Etel-Espoo,1068,1040,1109,+Keski-Vantaa','+Keski-Espoo,1084,1040,1109,+Keski-Vantaa','+Lnsi-Vantaa,1107,1110,+Keski-Vantaa',0,0,0,0,0,0,0,0,0,
'+Lnsi-Espoo,1093,1128,1127,+Pohjois-Vantaa','+Pohjois-Espoo,1097,1128,1127,+Pohjois-Vantaa','+Etel-Espoo,1068,1045,1127,+Pohjois-Vantaa','+Keski-Espoo,1084,1045,1127,+Pohjois-Vantaa','+Lnsi-Vantaa,1107,1128,1127,+Pohjois-Vantaa','+Keski-Vantaa,1109,1128,1127,+Pohjois-Vantaa',0,0,0,0,0,0,0,0,
'+Lnsi-Espoo,1093,1128,+It-Vantaa','+Pohjois-Espoo,1097,1128,+It-Vantaa','+Etel-Espoo,1068,1045,1128,+It-Vantaa','+Keski-Espoo,1084,1045,1128,+It-Vantaa','+Lnsi-Vantaa,1107,1128,+It-Vantaa','+Keski-Vantaa,1109,1117,1128,+It-Vantaa','+Pohjois-Vantaa,1127,1128,+It-Vantaa',0,0,0,0,0,0,0,
'+Lnsi-Espoo,1093,1028,1011,+Kanta-Helsinki','+Pohjois-Espoo,1097,1104,1011,+Kanta-Helsinki','+Etel-Espoo,1067,1010,+Kanta-Helsinki','+Keski-Espoo,1084,1028,1011,+Kanta-Helsinki','+Lnsi-Vantaa,1102,1001,+Kanta-Helsinki','+Keski-Vantaa,1109,1001,+Kanta-Helsinki','+Pohjois-Vantaa,1127,1025,1001,+Kanta-Helsinki','+It-Vantaa,1128,1025,1001,+Kanta-Helsinki',0,0,0,0,0,0,
'+Lnsi-Espoo,1093,1028,+Lnsi-Helsinki','+Pohjois-Espoo,1097,1104,1029,+Lnsi-Helsinki','+Etel-Espoo,1068,1084,1028,+Lnsi-Helsinki','+Keski-Espoo,1084,1028,+Lnsi-Helsinki','+Lnsi-Vantaa,1102,1014,+Lnsi-Helsinki','+Keski-Vantaa,1109,1025,1016,+Lnsi-Helsinki','+Pohjois-Vantaa,1127,1016,+Lnsi-Helsinki','+It-Vantaa,1128,1016,+Lnsi-Helsinki','+Kanta-Helsinki,1001,1012,+Lnsi-Helsinki',0,0,0,0,0,
'+Lnsi-Espoo,1093,1028,1029,1025,+Vanha-Helsinki','+Pohjois-Espoo,1097,1104,1029,1025,+Vanha-Helsinki','+Etel-Espoo,1068,1032,1025,+Vanha-Helsinki','+Keski-Espoo,1084,1028,1029,1025,+Vanha-Helsinki','+Lnsi-Vantaa,1102,1014,1025,+Vanha-Helsinki','+Keski-Vantaa,1109,1025,+Vanha-Helsinki','+Pohjois-Vantaa,1127,1024,+Vanha-Helsinki','+It-Vantaa,1128,1024,+Vanha-Helsinki','+Kanta-Helsinki,1001,1018,+Vanha-Helsinki','+Lnsi-Helsinki,1016,1025,+Vanha-Helsinki',0,0,0,0,
'+Lnsi-Espoo,1093,1084,1032,+Konalanseutu','+Pohjois-Espoo,1097,1104,1032,+Konalanseutu','+Etel-Espoo,1068,1032,+Konalanseutu','+Keski-Espoo,1084,1032,+Konalanseutu','+Lnsi-Vantaa,1102,1035,+Konalanseutu','+Keski-Vantaa,1109,1040,1034,+Konalanseutu','+Pohjois-Vantaa,1127,1045,1034,+Konalanseutu','+It-Vantaa,1128,1045,1034,+Konalanseutu','+Kanta-Helsinki,1001,1030,+Konalanseutu','+Lnsi-Helsinki,1014,1030,+Konalanseutu','+Vanha-Helsinki,1025,1014,1030,+Konalanseutu',0,0,0,
'+Lnsi-Espoo,1093,1084,1032,1038,+Pakilanseutu','+Pohjois-Espoo,1097,1104,1032,1038,+Pakilanseutu','+Etel-Espoo,1068,1038,+Pakilanseutu','+Keski-Espoo,1084,1038,+Pakilanseutu','+Lnsi-Vantaa,1102,1034,1038,+Pakilanseutu','+Keski-Vantaa,1109,1040,+Pakilanseutu','+Pohjois-Vantaa,1127,1045,1040,+Pakilanseutu','+It-Vantaa,1128,1045,1040,+Pakilanseutu','+Kanta-Helsinki,1001,1020,1040,+Pakilanseutu','+Lnsi-Helsinki,1014,1030,1034,1038,+Pakilanseutu','+Vanha-Helsinki,1025,1040,+Pakilanseutu','+Konalanseutu,1034,1038,+Pakilanseutu',0,0,
'+Lnsi-Espoo,1093,1084,1041,+Malminseutu','+Pohjois-Espoo,1097,1104,1032,1041,+Malminseutu','+Etel-Espoo,1068,1041,+Malminseutu','+Keski-Espoo,1084,1041,+Malminseutu','+Lnsi-Vantaa,1102,1034,1041,+Malminseutu','+Keski-Vantaa,1109,1040,1041,+Malminseutu','+Pohjois-Vantaa,1127,1045,+Malminseutu','+It-Vantaa,1128,1045,+Malminseutu','+Kanta-Helsinki,1001,1020,1040,1041,+Malminseutu','+Lnsi-Helsinki,1014,1030,1034,1041,+Malminseutu','+Vanha-Helsinki,1025,1040,1041,+Malminseutu','+Konalanseutu,1034,1041,+Malminseutu','+Pakilanseutu,1040,1041,+Malminseutu',0,
'+Lnsi-Espoo,1093,1084,1045,1060,+It-Helsinki','+Pohjois-Espoo,1097,1104,1032,1045,1060,+It-Helsinki','+Etel-Espoo,1068,1045,1060,+It-Helsinki','+Keski-Espoo,1084,1045,1060,+It-Helsinki','+Lnsi-Vantaa,1102,1034,1045,1060,+It-Helsinki','+Keski-Vantaa,1109,1040,1045,1060,+It-Helsinki','+Pohjois-Vantaa,1127,1045,1060,+It-Helsinki','+It-Vantaa,1128,1045,1060,+It-Helsinki','+Kanta-Helsinki,1001,1020,1052,+It-Helsinki','+Lnsi-Helsinki,1014,1030,1034,1045,1060,+It-Helsinki','+Vanha-Helsinki,1020,1052,+It-Helsinki','+Konalanseutu,1034,1045,1060,+It-Helsinki','+Pakilanseutu,1040,1045,1060,+It-Helsinki','+Malminseutu,1045,1060,+It-Helsinki'
)
64,32,1
48,24
2,560,183,476,508
2,70,2,872,335,0,MIDM
2,198,39,805,439,0,MIDM
65535,52427,65534
[In3,In4]
[In3,In4]
Data based on a map of Helsinki Metropolitan area (YTV liikenne: Pkaupunkiseudun joukkoliikennekartta 11.8.2002).
Route list
Changes the Routes outside into a one-dimensional list.
var c:= if Routes_outside=0 then 0 else 1;
c:= sum(sum(c,in3),in4);
Index a:= 1..c;
Index b:= ['In3','In4','Data'];
var d:= Mdarraytotable(Routes_outside,a,b);
d:= d[.b='Data'];
d
64,136,1
48,24
2,102,90,476,297
2,214,56,537,610,0,MIDM
Region explode
'Explodes' the regional route lists in a way that any driving instruction that applies to a region, applies also to all areas within the region.
var b:= route_list;
var x:= 1;
while x<= size(Region) do ( {Ky lpi jokainen alue}
var c:= slice(Region,x);
var d:= slice(Regions,x);
var h:= b;
var j:= size(b);
d:= splittext(d,',');
var y:= 1;
while y<= size(b) do ( {Ky lpi jokainen ajo-ohje}
var f:= slice(h,y);
f:= if Istext(f) then f else '';
(if findintext(c,f)>0 then (
f:= textreplace(f,c,d,true); {Korvaa ryhmaluenimet aluenimill}
b:= concat(b,f)) else 0);
y:= y+1);
x:= x+1);
{Tst alkaa vanha Aluerajaytys_b}
index In3:= 1..size(b);
b:= slice(b, In3);
b:= (if findintext('+',b)>0 then null else b); { Hvitetn aluenimet
var c:= unique(b,in3); Romauta kaikki toistuvat rivit
b:= slice(b,in3,c);
b:= slice(b,in3);}
var c:= subset(istext(b)); {Romauta kaikki tyhjt rivit}
b:= slice(b,in3,c);
index in5:= 1..size(b);
b:= slice(b,in5);
{Poista reitist samat toistuvat pisteet
x:=1;
while x<=size(mista) do (
c:= slice(mista,x)&'';
b:= textreplace(b,c&','&c,c,true);
x:=x+1 );
b}
64,200,1
48,24
2,102,90,476,590
2,10,11,474,620,0,MIDM
Regions
Describes the small areas that belong into each larger region. The region names must start with '+'. All areas must be mentioned exactly once. Regions were selected in a way that they are as large as possible without creating very unrealistic routes between areas.
Table(Region)(
'1091,1092,1093,1094,1095,1096','1097,1098,1099','1067,1068,1069,1070,1071,1073,1074,1075,1076,1077,1078,1079,1080','1072,1081,1082,1083,1084,1085,1086,1087,1088,1089,1090','1100,1101,1102,1103,1104,1105,1106,1107,1108','1109,1110,1111,1112,1113,1114,1115,1116,1123','1118,1119,1120,1121,1122,1124,1125,1126,1127','1117,1128,1129','1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1011,1026,1066','1012,1013,1014,1015,1016,1027,1028,1029','1017,1018,1019,1020,1021,1022,1023,1024,1025','1030,1031,1032,1033,1034,1035','1036,1037,1038,1039,1040','1041,1042,1043,1044,1045,1046,1047,1048,1049,1050,1051','1052,1053,1054,1055,1056,1057,1058,1059,1060,1061,1062,1063,1064,1065')
64,264,1
48,24
2,88,98,771,523,0,MIDM
2,20,224,651,394,0,MIDM
52425,39321,65535
Data based on a map of Helsinki Metropolitan area (YTV liikenne: Pkaupunkiseudun joukkoliikennekartta 11.8.2002).
Prematrix
The crude route instruction matrix without the information from Routes inside and Roads nodes.
var mirror2:= mirror(region_explode,region_explode.in5);
var a:= mirror2;
a:= evaluate(selecttext(a,1,4))*10000+evaluate(selecttext(a,textlength(a)-3));
index b:=a;
index c:= [1];
index d:= 2..size(Mirror2.a);
var e:= concat(c,d,c,d,b);
e:= slice(Mirror2,Mirror2.a,e);
e:= e[.b=From*10000+To1];
if e=null then From&','&To1 else e
176,200,1
48,24
2,102,90,476,586
2,212,13,759,604,0,MIDM
[To1,From]
1,I,4,2,0,0
Road mirror
'Mirrors' the driving instructions in a way that if an instruction applies to 'from A to B', its reverse applies to 'from B to A'.
index roa:= 1..size(route_list1)+size(roads);
var a:= concat(roads,route_list1,roads,route_list1.a,roa);
a:= mirror(a,roa);
a:= clean_rows(a);
var c:= for y[]:= a do (
var e:= (if findintext(y,a)>0 then 1 else 0);
e:= sum(e,e.a)-1 );
a:= if c>0 then 0 else a;
clean_rows(a)
288,136,1
48,24
2,102,90,476,409
2,219,-3,563,627,0,MIDM
Routes inside
Defines the routes between every two areas within a region. The route description needs not be in full detail, e.g. if a route between two areas is defined in Roads node, it is enough to define the start and end areas here. A minimum number of existing roads were selected so that the routes in the model would not be very unrealistic. This work was done manually with a map.
Table(In3,In4,region)(
'1091,1092','1097,1098','1067,1068','1072,1085,1084,1083,1081','1100,1101','1109,1110','1118,1127,1119','1117,1128','1001,1002','1012,1013','1017,1019,1018','1030,1034,1031','1036,1037','1041,1042','1052,1055,1053',
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
'1091,1092,1093','1097,1099','1067,1069','1072,1085,1084,1083,1082','1100,1101,1102','1109,1110,1111','1118,1120','1117,1128,1129','1001,1004,1003','1012,1014','1017,1019','1030,1034,1032','1036,1038','1041,1043','1052,1055,1054',
'1092,1093','1098,1097,1099','1068,1069','1081,1082','1101,1102','1110,1111','1119,1127,1120','1128,1129','1002,1004,1003','1013,1014','1018,1019','1031,1032','1037,1036,1038','1042,1043','1053,1055,1054',
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
'1091,1092,1093,1094',0,'1067,1073,1070','1072,1085,1084,1083','1100,1104,1103','1109,1112','1118,1120,1121','1117,1130','1001,1004','1012,1015','1017,1020','1030,1034,1032,1033','1036,1038,1039','1041,1044','1052,1055',
'1092,1093,1094',0,'1068,1070','1081,1083','1101,1103','1110,1109,1112','1119,1121','1128,1130','1002,1004','1013,1015','1018,1020','1031,1032,1033','1037,1040,1039','1042,1043,1044','1053,1055',
'1093,1094',0,'1069,1070','1082,1083','1102,1103','1111,1112','1120,1121','1129,1130','1003,1004','1014,1016,1015','1019,1020','1032,1033','1038,1039','1043,1044','1054,1055',
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
'1091,1092,1095',0,'1067,1073,1071','1072,1085,1084','1100,1104','1109,1113','1118,1120,1122',0,'1001,1005','1012,1015,1016','1017,1021','1030,1034','1036,1038,1040','1041,1043,1045','1052,1055,1056',
'1092,1095',0,'1068,1070,1071','1081,1083,1084','1101,1104','1110,1109,1113','1119,1121,1122',0,'1002,1001,1005','1013,1015,1016','1018,1019,1021','1031,1034','1037,1040','1042,1045','1053,1055,1056',
'1093,1095',0,'1069,1071','1082,1083,1084','1102,1101,1104','1111,1110,1109,1113','1120,1122',0,'1003,1004,1005','1014,1016','1019,1021','1032,1034','1038,1040','1043,1045','1054,1056',
'1094,1093,1095',0,'1070,1071','1083,1084','1103,1104','1112,1113','1121,1122',0,'1004,1005','1015,1016','1020,1021','1033,1032,1034','1039,1040','1044,1043,1045','1055,1056',
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
'1091,1092,1095,1096',0,'1067,1073','1072,1085','1100,1104,1103,1105','1109,1112,1114','1118,1120,1121,1124',0,'1001,1005,1006','1012,1013,1027','1017,1022','1030,1034,1035',0,'1041,10441046','1052,1055,1054,1058,1057',
'1092,1095,1096',0,'1068,1067,1073','1081,1083,1084,1085','1101,1103,1105','1110,1109,1112,1114','1119,1121,1124',0,'1002,1001,1005,1006','1013,1027','1018,1020,1022','1031,1034,1035',0,'1042,1043,10441046','1053,1055,1054,1058,1057',
'1093,1095,1096',0,'1069,1073','1082,1083,1084,1085','1102,1103,1105','1111,1110,1109,1112,1114','1120,1121,1124',0,'1003,1004,1005,1006','1014,1013,1027','1019,1022','1032,1035',0,'1043,1044,1046','1054,1058,1057',
'1094,1093,1095,1096',0,'1070,1073','1083,1084,1085','1103,1105','1112,1114','1121,1124',0,'1004,1006','1015,1027','1020,1022','1033,1032,1035',0,'1044,1046','1055,1054,1058,1057',
'1095,1096',0,'1071,1073','1084,1085','1104,1103,1105','1113,1114','1122,1121,1124',0,'1005,1006','1016,1015,1013,1027','1021,1022','1034,1035',0,'1045,1044,1046','1056,1054,1058,1057',
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,'1067,1073,1074','1072,1085,1086','1100,1104,1103,1106','1109,1113,1115','1118,1127,1125',0,'1001,1004,1007','1012,1013,1027,1028','1017,1022,1023','1030,1014',0,'1041,1047','1052,1055,1054,1058',
0,0,'1068,1067,1073,1074','1081,1083,1086','1101,1103,1106','1110,1109,1113,1115','1119,1126,1125',0,'1002,1004,1007','1013,1027,1028','1018,1020,1023','1031,1029,1014',0,'1042,1041,1047','1053,1055,1054,1058',
0,0,'1069,1073,1074','1082,1086','1102,1103,1106','1111,1110,1109,1113,1115','1120,1121,1125',0,'1003,1007','1014,1029,1028','1019,1022,1023','1032,1029,1014',0,'1043,1041,1047','1054,1058',
0,0,'1070,1073,1074','1083,1086','1103,1106','1112,1115','1121,1125',0,'1004,1007','1015,1013,1027,1028','1020,1023','1033,1032,1029,1014',0,'1044,1047','1055,1054,1058',
0,0,'1071,1074','1084,1086','1104,1103,1106','1113,1115','1122,1121,1125',0,'1005,1007','1016,1014,1029,1028','1021,1022,1023','1034,1030,1014',0,'1045,1044,1047','1056,1054,1058',
0,0,'1073,1074','1085,1086','1105,1106','1114,1115','1124,1125',0,'1006,1005,1007','1027,1028','1022,1023','1035,1034,1030,1014',0,'1046,1047','1057,1058',
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,'1067,1073,1074,1075','1072,1085,1086,1087','1100,1104,1103,1107','1109,1113,1116','1118,1127,1125,1126',0,'1001,1004,1003,1008','1012,1014,1029','1017,1025,1024',0,0,'1041,1047,1048','1052,1055,1054,1059',
0,0,'1068,1067,1073,1074,1075','1081,1083,1087','1101,1103,1107','1110,1109,1113,1116','1119,1126',0,'1002,1004,1003,1008','1013,1027,1028,1029','1018,1020,1023,1024',0,0,'1042,1041,1047,1048','1053,1055,1054,1059',
0,0,'1069,1073,1074,1075','1082,1087','1102,1107','1111,1110,1109,1113,1116','1120,1121,1125,1126',0,'1003,1008','1014,1029','1019,1022,1023,1024',0,0,'1043,1041,1047,1048','1054,1059',
0,0,'1070,1073,1074,1075','1083,1087','1103,1107','1112,1115,1116','1121,1125,1126',0,'1004,1008','1015,1016,1014,1029','1020,1023,1024',0,0,'1044,1047,1048','1055,1054,1059',
0,0,'1071,1074,1075','1084,1086,1087','1104,1103,1107','1113,1116','1122,1121,1125,1126',0,'1005,1008','1016,1014,1029','1021,1022,1023,1024',0,0,'1045,1044,1047,1048','1056,1059',
0,0,'1073,1074,1075','1085,1086,1087','1105,1103,1107','1114,1115,1116','1124,1125,1126',0,'1006,1008','1027,1028,1029','1022,1023,1024',0,0,'1046,1048','1057,1060,1059',
0,0,'1074,1075','1086,1087','1106,1103,1107','1115,1116','1125,1126',0,'1007,1003,1008','1028,1029','1023,1024',0,0,'1047,1048','1058,1059',
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,'1067,1073,1074,1076','1072,1085,1090,1089,1088','1100,1104,1103,1108','1109,1112,1123','1118,1127',0,'1001,1002,1009',0,'1017,1025',0,0,'1041,1044,1046,1049','1052,1055,1054,1058,1060',
0,0,'1068,1067,1073,1074,1076','1081,1083,1087,1088','1101,1103,1108','1110,1109,1112,1123','1119,1127',0,'1002,1009',0,'1018,1020,1022,1025',0,0,'1042,1043,1044,1046,1049','1053,1055,1054,1058,1060',
0,0,'1069,1073,1074,1076','1082,1087,1088','1102,1108','1111,1110,1109,1112,1123','1120,1127',0,'1003,1009',0,'1019,1022,1025',0,0,'1043,1044,1046,1049','1054,1058,1060',
0,0,'1070,1073,1074,1076','1083,1087,1088','1103,1108','1112,1123','1121,1120,1127',0,'1004,1009',0,'1020,1022,1025',0,0,'1044,1046,1049','1055,1054,1058,1060',
0,0,'1071,1074,1076','1084,1083,1087,1088','1104,1103,1108','1113,1112,1123','1122,1120,1127',0,'1005,1004,1009',0,'1021,1025',0,0,'1045,1044,1046,1049','1056,1059,1060',
0,0,'1073,1074,1076','1085,1090,1089,1088','1105,1103,1108','1114,1123','1124,1125,1127',0,'1006,1005,1004,1009',0,'1022,1025',0,0,'1046,1049','1057,1060',
0,0,'1074,1076','1086,1087,1088','1106,1103,1108','1115,1114,1123','1125,1127',0,'1007,1003,1009',0,'1023,1022,1025',0,0,'1047,1046,1049','1058,1060',
0,0,'1075,1076','1087,1088','1107,1108','1116,1115,1114,1123','1126,1127',0,'1008,1003,1009',0,'1024,1025',0,0,'1048,1049','1059,1060',
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,'1067,1073,1074,1076,1077','1072,1085,1090,1089',0,0,0,0,'1001,1002,1010',0,0,0,0,'1041,1043,1050','1052,1055,1054,1058,1061',
0,0,'1068,1067,1073,1074,1076,1077','1081,1083,1087,1089',0,0,0,0,'1002,1010',0,0,0,0,'1042,1043,1050','1053,1055,1054,1058,1061',
0,0,'1069,1073,1074,1076,1077','1082,1087,1089',0,0,0,0,'1003,1010',0,0,0,0,'1043,1050','1054,1058,1061',
0,0,'1070,1073,1074,1076,1077','1083,1087,1089',0,0,0,0,'1004,1010',0,0,0,0,'1044,1046,1050','1055,1054,1058,1061',
0,0,'1071,1074,1076,1077','1084,1083,1087,1089',0,0,0,0,'1005,1001,1002,1010',0,0,0,0,'1045,1050','1056,1054,1058,1061',
0,0,'1073,1074,1076,1077','1085,1090,1089',0,0,0,0,'1006,1005,1001,1002,1010',0,0,0,0,'1046,1050','1057,1061',
0,0,'1074,1076,1077','1086,1087,1089',0,0,0,0,'1007,1003,1010',0,0,0,0,'1047,1046,1050','1058,1061',
0,0,'1075,1076,1077','1087,1089',0,0,0,0,'1008,1003,1010',0,0,0,0,'1048,1046,1050','1059,1060,1061',
0,0,'1076,1077','1088,1089',0,0,0,0,'1009,1010',0,0,0,0,'1049,1050','1060,1061',
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,'1067,1073,1074,1076,1078','1072,1085,1090',0,0,0,0,'1001,1002,1011',0,0,0,0,'1041,1043,1045,1051','1052,1055,1054,1058,1061,1062',
0,0,'1068,1067,1073,1074,1076,1078','1081,1083,1084,1085,1090',0,0,0,0,'1002,1011',0,0,0,0,'1042,1045,1051','1053,1055,1054,1058,1061,1062',
0,0,'1069,1073,1074,1076,1078','1082,1083,1084,1085,1090',0,0,0,0,'1003,1002,1011',0,0,0,0,'1043,1045,1051','1054,1058,1061,1062',
0,0,'1070,1073,1074,1076,1078','1083,1084,1085,1090',0,0,0,0,'1004,1002,1011',0,0,0,0,'1044,1043,1045,1051','1055,1054,1058,1061,1062',
0,0,'1071,1074,1076,1078','1084,1085,1090',0,0,0,0,'1005,1001,1002,1011',0,0,0,0,'1045,1051','1056,1054,1058,1061,1062',
0,0,'1073,1074,1076,1078','1085,1090',0,0,0,0,'1006,1005,1001,1002,1011',0,0,0,0,'1046,1050,1051','1057,1061,1062',
0,0,'1074,1076,1078','1086,1090',0,0,0,0,'1007,1003,1002,1011',0,0,0,0,'1047,1046,1050,1051','1058,1061,1062',
0,0,'1075,1076,1078','1087,1089,1090',0,0,0,0,'1008,1003,1002,1011',0,0,0,0,'1048,1046,1050,1051','1059,1060,1062',
0,0,'1076,1078','1088,1089,1090',0,0,0,0,'1009,1002,1011',0,0,0,0,'1049,1050,1051','1060,1062',
0,0,'1077,1078','1089,1090',0,0,0,0,'1010,1002,1011',0,0,0,0,'1050,1051','1061,1062',
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,'1067,1073,1074,1076,1079',0,0,0,0,0,'1001,1002,1010,1026',0,0,0,0,0,'1052,1055,1054,1058,1057,1063',
0,0,'1068,1067,1073,1074,1076,1079',0,0,0,0,0,'1002,1010,1026',0,0,0,0,0,'1053,1055,1054,1058,1057,1063',
0,0,'1069,1073,1074,1076,1079',0,0,0,0,0,'1003,1010,1026',0,0,0,0,0,'1054,1058,1057,1063',
0,0,'1070,1073,1074,1076,1079',0,0,0,0,0,'1004,1010,1026',0,0,0,0,0,'1055,1054,1058,1057,1063',
0,0,'1071,1074,1076,1079',0,0,0,0,0,'1005,1001,1002,1010,1026',0,0,0,0,0,'1056,1054,1058,1057,1063',
0,0,'1073,1074,1076,1079',0,0,0,0,0,'1006,1005,1001,1002,1010,1026',0,0,0,0,0,'1057,1063',
0,0,'1074,1076,1079',0,0,0,0,0,'1007,1003,1010,1026',0,0,0,0,0,'1058,1057,1063',
0,0,'1075,1076,1079',0,0,0,0,0,'1008,1003,1010,1026',0,0,0,0,0,'1059,1060,1057,1063',
0,0,'1076,1079',0,0,0,0,0,'1009,1010,1026',0,0,0,0,0,'1060,1057,1063',
0,0,'1077,1076,1079',0,0,0,0,0,'1010,1026',0,0,0,0,0,'1061,1057,1063',
0,0,'1078,1079',0,0,0,0,0,'1011,1002,1010,1026',0,0,0,0,0,'1062,1063',
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,'1067,1073,1074,1076,1078,1080',0,0,0,0,0,'1001,1005,1066',0,0,0,0,0,'1052,1055,1054,1058,1057,1063,1064',
0,0,'1068,1067,1073,1074,1076,1078,1080',0,0,0,0,0,'1002,1001,1005,1066',0,0,0,0,0,'1053,1055,1054,1058,1057,1063,1064',
0,0,'1069,1073,1074,1076,1078,1080',0,0,0,0,0,'1003,1004,1005,1066',0,0,0,0,0,'1054,1058,1057,1063,1064',
0,0,'1070,1073,1074,1076,1078,1080',0,0,0,0,0,'1004,1005,1066',0,0,0,0,0,'1055,1054,1058,1057,1063,1064',
0,0,'1071,1074,1076,1078,1080',0,0,0,0,0,'1005,1066',0,0,0,0,0,'1056,1054,1058,1057,1063,1064',
0,0,'1073,1074,1076,1078,1080',0,0,0,0,0,'1006,1005,1066',0,0,0,0,0,'1057,1063,1064',
0,0,'1074,1076,1078,1080',0,0,0,0,0,'1007,1005,1066',0,0,0,0,0,'1058,1057,1063,1064',
0,0,'1075,1076,1078,1080',0,0,0,0,0,'1008,1003,1004,1005,1066',0,0,0,0,0,'1059,1060,1057,1063,1064',
0,0,'1076,1078,1080',0,0,0,0,0,'1009,1002,1001,1005,1066',0,0,0,0,0,'1060,1057,1063,1064',
0,0,'1077,1078,1080',0,0,0,0,0,'1010,1002,1001,1005,1066',0,0,0,0,0,'1061,1057,1063,1064',
0,0,'1078,1080',0,0,0,0,0,'1011,1002,1001,1005,1066',0,0,0,0,0,'1062,1063,1064',
0,0,'1079,1080',0,0,0,0,0,'1026,1010,1002,1001,1005,1066',0,0,0,0,0,'1063,1064',
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,'1052,1055,1054,1058,1057,1063,1065',
0,0,0,0,0,0,0,0,0,0,0,0,0,0,'1053,1055,1054,1058,1057,1063,1065',
0,0,0,0,0,0,0,0,0,0,0,0,0,0,'1054,1058,1057,1063,1065',
0,0,0,0,0,0,0,0,0,0,0,0,0,0,'1055,1054,1058,1057,1063,1065',
0,0,0,0,0,0,0,0,0,0,0,0,0,0,'1056,1054,1058,1057,1063,1065',
0,0,0,0,0,0,0,0,0,0,0,0,0,0,'1057,1063,1065',
0,0,0,0,0,0,0,0,0,0,0,0,0,0,'1058,1057,1063,1065',
0,0,0,0,0,0,0,0,0,0,0,0,0,0,'1059,1060,1062,1065',
0,0,0,0,0,0,0,0,0,0,0,0,0,0,'1060,1062,1065',
0,0,0,0,0,0,0,0,0,0,0,0,0,0,'1061,1062,1065',
0,0,0,0,0,0,0,0,0,0,0,0,0,0,'1062,1065',
0,0,0,0,0,0,0,0,0,0,0,0,0,0,'1063,1065',
0,0,0,0,0,0,0,0,0,0,0,0,0,0,'1064,1065',
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
)
176,32,1
48,24
2,109,4,872,346,0,MIDM
2,184,194,805,439,0,MIDM
65535,52427,65534
[In3,In4]
[In3,In4]
Data based on a map of Helsinki Metropolitan area (YTV liikenne: Pkaupunkiseudun joukkoliikennekartta 11.8.2002).
Route list
Changes the Routes inside into a one-dimensional list.
var c:= if Routes_inside=0 then 0 else 1;
c:= sum(sum(sum(c,in3),in4),region);
Index f:= 1..c;
Index b:= ['Region','In3','In4','Data'];
var d:= Mdarraytotable(Routes_inside,f,b);
d:= d[.b='Data'];
d:= if textlength(d)=9 then 0 else d;
clean_rows(d)
176,136,1
48,24
2,283,96,476,346
2,49,13,370,610,0,MIDM
Link length
km
The distance between two areas.
Distances are rough estimates measured with a string and a ruler. This approach was considered exact enough, as the road structure is the same in all scenarios considered.
Table(Links_1)(
0,0.8,1,0.6,1.7,1.1,1.2,1.5,1.7,1.2,0.8,0.8,0.8,2.1,2.9,2.2,1.1,0.8,3,2.4,1.1,1.3,3.3,1.7,9999,9999,3,5.4,2.8,3,3.6,3,2,2.6,1,9999,1.6,9999,1.2,1.4,1,9999,9999,1,9999,2.3,2.2,1.1,1.6,1.8,9999,1.1,1.4,1.2,1,1.1,1.7,0.8,0.9,9999,2.4,1.6,2.3,0.4,1.8,2.4,1.9,2.5,9999,9999,4,0.8,9999,1.3,9999,3.7,9999,2.8,1.8,1.9,2.5,2.4,2.1,2.8,3.4,5.6,1.4,1.7,9999,1.8,1.8,0.8,2.6,2.7,1.2,2.2,2.8,5.3,1.9,1.3,1.4,2.3,2,2,1.4,1.2,4.6,3.2,1.7,1.8,4,2.9,9999,9999,9999,9999,9999,9999,9999,2.2,9999,9999,9999,9999,9999,5,2.4,3.6,1.4,2.4,1.6,3,3.2,2,1.5,1.5,2.1,1.2,1.1,2.6,9999,1.7,9999,9999,2.6,1,2.2,1.3,2.6,2.7,2.6,1.9,1.1,2.5,4,2,3,9999,3,1.3,2.7,3.2,2.6,1.7,1.1,2,0.9,2.8,1.6,2.4,1.5,2.8,1.7,2.7,1.3,1.5,3,2.8,2.7,5,2.2,3.8,4.2,3.4,5.2,4.7,1.1,5.5,1,0.9,1.2,9999,3,2.9,1.1,2.8,2.3,3.3,3,3,2.1,6.8,1.5,4.1,3.2,2,1.7,2,1.4,3.2,4.8,3.6,5.8,6.8,2.3,5.2,8.7,4.2,1.6,3.4,9999,3,5.4,4.1,3.6,5.9,5.4,3.6,2,6.8,1.6,3,6.2,2.1,4.2,1.4,2.3,4,3.6,2.8,9999,3.4,2,3.8,9999,1.8,3.4,1.8,2,9999,3.2,9999,1.5,1.2,9999,9999,9999,2.5,4.1,3,3,9999,2.9,2.3,2.2,1.8,2,1.6,2.4,3.5,2,0.9,4.7,3.6,2.8)
400,112,1
48,24
2,743,190,227,419,0,MIDM
2,288,18,177,576,0,MIDM
65535,52427,65534
1,D,4,2,0,0
Data based on a map of Helsinki Metropolitan area (YTV liikenne: Pkaupunkiseudun joukkoliikennekartta 11.8.2002).
Index showing the direct links that exist in reality, i.e. excluding those routes from one area to another where you have to go through a third area.
['1001,1001','1001,1002','1001,1004','1001,1005','1001,1012','1001,1018','1002,1003','1002,1004','1002,1009','1002,1010','1002,1011','1003,1004','1003,1007','1003,1008','1003,1009','1003,1010','1004,1005','1004,1007','1004,1009','1004,1010','1005,1006','1005,1007','1005,1066','1009,1010','1009,1085','1009,1089','1010,1026','1010,1067','1011,1013','1012,1013','1012,1014','1012,1015','1013,1014','1013,1015','1013,1027','1013,1030','1014,1016','1014,1017','1014,1029','1014,1030','1015,1016','1015,1017','1015,1030','1016,1025','1016,1030','1017,1019','1017,1020','1017,1021','1017,1022','1017,1025','1017,1027','1018,1019','1018,1020','1019,1020','1019,1021','1019,1022','1020,1021','1020,1022','1020,1023','1020,1028','1020,1052','1021,1022','1021,1025','1022,1023','1022,1025','1023,1024','1024,1025','1024,1042','1025,1028','1025,1032','1025,1040','1027,1028','1027,1030','1028,1029','1028,1030','1028,1084','1029,1030','1029,1032','1030,1034','1031,1032','1031,1034','1032,1033','1032,1034','1032,1035','1032,1083','1032,1104','1034,1035','1034,1038','1034,1109','1035,1102','1036,1037','1036,1038','1037,1040','1038,1039','1038,1040','1039,1040','1040,1041','1040,1109','1041,1042','1041,1043','1041,1044','1041,1047','1042,1043','1042,1045','1043,1044','1043,1045','1043,1050','1044,1045','1044,1046','1044,1047','1045,1050','1045,1051','1045,1052','1045,1053','1045,1054','1045,1055','1045,1056','1045,1057','1045,1059','1045,1060','1045,1061','1045,1062','1045,1063','1045,1064','1045,1065','1045,1128','1046,1047','1046,1048','1046,1049','1046,1050','1047,1048','1048,1049','1049,1050','1050,1051','1052,1055','1053,1055','1054,1055','1054,1056','1054,1058','1054,1059','1054,1061','1055,1056','1055,1058','1055,1061','1056,1059','1057,1058','1057,1060','1057,1061','1057,1063','1058,1059','1058,1060','1058,1061','1059,1060','1060,1061','1060,1062','1061,1062','1062,1063','1062,1064','1062,1065','1063,1064','1063,1065','1064,1065','1067,1068','1067,1069','1067,1073','1068,1069','1068,1070','1068,1084','1069,1070','1069,1071','1069,1073','1070,1071','1070,1073','1071,1073','1071,1074','1072,1085','1073,1074','1074,1075','1074,1076','1074,1085','1075,1076','1076,1077','1076,1078','1076,1079','1077,1078','1078,1079','1078,1080','1079,1080','1081,1082','1081,1083','1082,1083','1082,1084','1082,1086','1082,1087','1083,1084','1083,1086','1083,1087','1084,1085','1084,1086','1085,1086','1085,1090','1085,1093','1086,1087','1086,1090','1087,1088','1087,1089','1088,1089','1089,1090','1091,1092','1092,1093','1092,1095','1093,1094','1093,1095','1093,1097','1095,1096','1097,1098','1097,1099','1097,1104','1100,1101','1100,1104','1100,1111','1101,1102','1101,1103','1101,1104','1102,1103','1102,1107','1102,1108','1103,1104','1103,1105','1103,1106','1103,1107','1103,1108','1105,1106','1107,1108','1107,1110','1109,1110','1109,1112','1109,1113','1109,1117','1110,1111','1111,1117','1112,1113','1112,1114','1112,1115','1112,1117','1112,1123','1113,1114','1113,1115','1113,1116','1113,1117','1114,1115','1114,1117','1114,1123','1115,1116','1115,1117','1116,1117','1117,1123','1117,1128','1118,1120','1118,1127','1119,1121','1119,1125','1119,1126','1119,1127','1120,1121','1120,1122','1120,1127','1121,1122','1121,1124','1121,1125','1124,1125','1125,1126','1125,1127','1127,1128','1128,1129']
400,144,1
48,12
1,D,4,2,0,0
For creating Links_1
This module is only for creating the index Links_1, and now when the index has been created, these nodes are no longer needed.
ktluser
3. marta 2004 16:37
48,24
400,264,1
48,24
1,40,0,-1894,294,17
Link
var x:= 1;
var a:= slice(From,x)*10000+From;
while x<size(From) do (
x:= x+1;
var b:= slice(From,x)*10000+From;
a:= concat(a,b) )
48,88,1
48,12
2,146,145,416,303,0,MIDM
1,I,4,2,0,0
Links
var a:=From&','&To1;
var c:= for x[]:= a do (
var b:= if findintext(x,Route_matrix)>0 then 1 else 0;
sum(sum(b,From),To1) );
c:= c[From=floor(link/10000),To1=(link-floor(link/10000)*10000)];
c:= if c>0 then link else 0;
c
48,56,1
48,24
2,102,90,476,283
2,44,74,598,377,0,MIDM
[To1,From]
1,I,4,2,0,0
var c:= if floor(link/10000)>=(link-floor(link/10000)*10000) then 0 else links1;
c:= unique(c,link);
index b:= 1..size(c);
c:= slice(c,b);
floor(c/10000)&','&c-floor(c/10000)*10000
160,56,1
48,24
2,349,22,593,572,0,MIDM
Link_teko2
var a:= max(distances,To1);
link_teko;
a
272,56,1
48,24
2,216,156,476,436
Static nodes
'Static nodes' contains previously computed simulations in a static form. The traffic optimising is rather time-consuming work (1 hour per scenario), and it cannot be done in real time. Therefore, all health effect and cost estimates are calculated from previously computed numbers that are stored in this module.
ktluser
30. lokta 2004 9:45
48,24
56,32,1
48,24
1,0,0,1,1,1,0,,0,
1,243,48,247,429,17
Scenarios
A table of different scenarios to be studied. Each row contains the values for the input variables used for the scenario.
Table(Input_var,Scenario)(
0,0.02,0.05,0.1,0.25,0.4,0.45,0.5,0.55,0.65,0.75,0.9,1,0.02,0.05,0.1,0.25,0.4,0.45,0.5,0.55,0.65,0.75,0.9,1,0.02,0.05,0.1,0.25,0.4,0.45,0.5,0.55,0.65,0.75,0.9,1,0.02,0.05,0.1,0.25,0.4,0.45,0.5,0.55,0.65,0.75,0.9,1,0.02,0.05,0.1,0.25,0.4,0.45,0.5,0.55,0.65,0.75,0.9,1,0.02,0.05,0.1,0.25,0.4,0.45,0.5,0.55,0.65,0.75,0.9,1,0.02,0.05,0.1,0.25,0.4,0.45,0.5,0.55,0.65,0.75,0.9,1,
7,7,7,7,7,7,7,7,7,7,7,7,7,6,6,6,6,6,6,6,6,6,6,6,6,5,5,5,5,5,5,5,5,5,5,5,5,4,4,4,4,4,4,4,4,4,4,4,4,3,3,3,3,3,3,3,3,3,3,3,3,2,2,2,2,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
)
['Composite fraction','Guarantee level','Lim']
288,48,1
48,24
2,344,113,476,224
2,394,67,698,560,0,MIDM
2,45,69,655,554,0,MIDM
52425,39321,65535
[Input_var,Scenario]
[Input_var,Scenario]
Scenario
Index for a list of scenarios to be modelled.
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85]
288,80,1
48,12
2,102,90,476,547
Iterator
The combined result of various variables using the assumptions listed in Scenarios node. Each scenario is run one by one, and the results are stored in this node.
var x:= 1;
var a:= 0;
var c:= 0;
while x<= size(scenario) do (
a:= scenarios[scenario=x];
a:= whatif(Outputs1,Scenario_input,a);
c:= if scenario=x then a else c;
x:= x+1);
c
176,48,1
48,12
2,463,75,476,367
2,24,7,629,389,0,MIDM
[Scenario,Period]
[Index Travel_type]
Output
The output variables from the traffic optimising module:
Number of passenger trips
Vehicle kilometres driven
Parking lots needed for the vehicles that are used
Average vehicle numbers per hour for the 30 most busy links at 8.00-9.00 in the morning
Number of vehicles needed
Waiting time due to traffic jams and waiting for composite vehicle to arrive.
['Trips','Trips by vehicle','Vehicle km','Parking lot','Link intensity','Vehicles','Waiting']
64,80,1
48,12
2,19,357,209,266,0,MIDM
[0,0,1,0]
sequence(0,23.99,0.2)
288,320,1
48,12
Period
Morning-day, evening, and night are looked at separately.
[' 6.00-20.00','20.00-24.00',' 0.00- 6.00']
64,104,1
48,12
2,102,90,476,402
BAU scenario output
1
64,48,1
48,24
Outputs1
Trip iterator
trips/h
The combined result of Trips per hour using the assumptions listed in Scenarios node. Each scenario is run one by one, and the results are stored in this node.
var x:= 1;
var a:= 0;
var c:= 0;
while x<= size(scenario) do (
a:= scenarios[scenario=x];
a:= whatif(Trips_per_hour,Scenario_input,a);
c:= if scenario=x then a else c;
x:= x+1);
c
176,24,1
48,12
2,386,142,476,476
2,479,39,629,389,1,MIDM
[Time,Vehicle]
Scen1.0
Table(Output1,Vehicle_noch,Zone,Length,Scenario1_0,Period)(
0,0,0,
1029,85,50,
2521,226,130,
5196,454,235,
12.68K,1196,652,
20.3K,1870,998,
23.11K,2061,1119,
25.96K,2273,1303,
28.21K,2550,1409,
33.25K,2985,1622,
38.85K,3364,1849,
46.45K,4199,2283,
51.6K,4453,2531,
1014,93,47,
2593,222,116,
4996,483,266,
12.59K,1067,593,
20.22K,1802,957,
22.54K,2018,1110,
25.17K,2262,1214,
27.7K,2467,1339,
33.2K,2884,1599,
37.87K,3345,1777,
45.41K,3893,2171,
50.49K,4380,2485,
1006,82,59,
2455,213,116,
4948,396,225,
12.24K,1013,584,
19.41K,1727,935,
21.79K,1914,1090,
24.21K,2157,1167,
26.52K,2369,1320,
31.61K,2770,1519,
36.48K,3174,1831,
43.16K,3756,2174,
48.36K,4061,2362,
792,73,48,
2228,178,92,
4308,388,214,
10.78K,903,527,
17.23K,1541,852,
19.16K,1709,902,
21.36K,1826,1015,
23.59K,2058,1180,
27.63K,2389,1391,
32.11K,2798,1596,
38.29K,3422,1899,
42.33K,3674,2125,
643,66,25,
1633,140,66,
3276,283,158,
7925,654,413,
12.76K,1125,658,
14.42K,1214,722,
15.97K,1438,762,
17.62K,1544,855,
20.94K,1864,1043,
24.19K,2086,1149,
28.7K,2485,1336,
32.11K,2816,1533,
506,37,24,
1181,99,64,
2393,239,113,
6145,530,322,
9735,845,470,
11.13K,955,506,
12.02K,1144,624,
13.3K,1158,646,
15.94K,1363,743,
18.48K,1573,876,
21.97K,1952,1082,
24.25K,2109,1183,
331,17,22,
771,47,43,
1495,120,73,
3905,327,192,
6091,547,281,
6913,603,340,
7727,699,376,
8462,727,443,
9882,876,503,
11.69K,1028,548,
13.65K,1218,715,
15.58K,1356,751,
0,0,0,
303,18,18,
702,68,25,
1416,107,68,
3482,333,182,
5683,506,277,
6345,506,336,
7031,579,334,
7767,664,391,
9048,789,425,
10.63K,958,504,
12.51K,1121,631,
14.12K,1213,682,
220,13,10,
533,48,23,
1071,84,53,
2675,246,120,
4248,387,226,
4713,373,218,
5345,467,251,
5743,491,298,
6818,621,339,
8182,699,422,
9606,837,511,
10.49K,962,534,
195,21,13,
494,43,18,
993,73,57,
2510,201,131,
3942,377,220,
4604,391,207,
5108,467,263,
5575,473,290,
6678,597,321,
7513,664,370,
9155,788,442,
10.18K,863,507,
184,17,10,
483,36,25,
920,75,48,
2346,206,102,
3684,339,188,
4253,398,172,
4691,394,224,
5204,432,241,
6016,546,309,
6914,586,302,
8588,691,406,
9444,812,441,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
1421,140,80,
3646,316,199,
7365,636,374,
18.12K,1552,914,
29.24K,2516,1442,
32.67K,2855,1579,
36.56K,3189,1734,
40.14K,3474,1968,
47.14K,4359,2251,
54.46K,4818,2717,
65.34K,5762,3116,
72.73K,6318,3593,
1429,121,68,
3465,271,179,
7109,583,338,
17.74K,1501,835,
28.21K,2481,1372,
31.96K,2805,1577,
35.58K,3145,1714,
39.17K,3389,1849,
45.94K,4081,2339,
53K,4708,2635,
63.45K,5639,3075,
71.05K,6194,3409,
1392,125,68,
3421,291,149,
6522,575,331,
16.56K,1446,792,
26.62K,2367,1263,
29.81K,2510,1445,
32.99K,2955,1633,
36.02K,3277,1759,
42.91K,3780,2091,
49.6K,4236,2457,
59.79K,5351,2917,
66.06K,5973,3239,
1001,116,46,
2635,222,119,
5285,453,277,
13.28K,1197,642,
21.19K,1866,1032,
23.6K,2149,1164,
26.49K,2309,1291,
29.06K,2557,1414,
34.31K,2961,1624,
39.81K,3568,1950,
47.7K,4216,2201,
53.11K,4693,2680,
796,81,43,
1899,161,87,
3914,334,205,
9742,869,495,
15.54K,1397,734,
17.56K,1548,841,
19.46K,1717,965,
21.42K,1807,1042,
25.22K,2143,1244,
29.27K,2654,1401,
35.38K,3049,1694,
38.92K,3268,1944,
473,40,20,
1034,117,40,
2209,184,98,
5585,499,280,
9257,765,465,
10.24K,916,490,
11.5K,1004,522,
12.44K,1150,618,
14.62K,1254,733,
16.77K,1487,861,
20.48K,1840,978,
22.62K,1969,1126,
250,25,16,
589,60,29,
1216,92,59,
3054,266,147,
4810,443,243,
5441,477,263,
6114,519,293,
6685,598,330,
8124,673,395,
9139,803,439,
11K,945,524,
12.24K,1012,566,
0,0,0,
2460,230,101,
6273,556,284,
12.35K,1048,565,
31.12K,2610,1493,
49.91K,4377,2433,
55.62K,5049,2738,
61.9K,5537,2953,
68.3K,6053,3375,
80.87K,7039,3985,
93.06K,8325,4519,
111.7K,9779,5556,
124.2K,10.89K,6065,
1748,149,84,
4297,387,233,
8575,745,413,
21.96K,1941,1070,
35.52K,3105,1679,
39.61K,3397,1935,
43.93K,3890,2142,
48.12K,4237,2270,
56.99K,4919,2826,
65.42K,5828,3161,
78.92K,6936,3877,
87.71K,7555,4278,
1360,115,65,
3394,295,158,
6961,670,365,
17.29K,1497,822,
27.19K,2452,1353,
30.74K,2696,1518,
34.22K,3023,1634,
37.95K,3369,1838,
44.56K,3825,2141,
51.55K,4449,2524,
62.29K,5505,2927,
68.41K,5881,3293,
508,42,22,
1162,110,65,
2464,240,140,
6142,548,316,
9862,846,481,
11.19K,963,568,
12.54K,1058,599,
13.81K,1240,662,
16.14K,1445,830,
18.68K,1604,890,
22.26K,2034,1106,
24.95K,2150,1220,
97,7,7,
346,24,20,
638,56,28,
1652,141,75,
2660,222,117,
3002,241,132,
3265,288,170,
3521,314,185,
4264,398,210,
4876,444,235,
5792,553,300,
6493,528,341,
23,2,2,
63,8,2,
100,11,3,
289,27,11,
446,30,20,
537,46,25,
588,54,35,
620,57,32,
767,67,31,
792,75,42,
974,85,49,
1159,89,50,
5,0,0,
8,0,0,
19,1,1,
54,9,4,
82,4,5,
109,10,4,
105,8,5,
141,15,7,
173,15,10,
163,17,11,
195,17,10,
240,29,8,
0,0,0,
3013,259,147,
7464,621,375,
15K,1294,785,
37.24K,3195,1803,
60.15K,5356,2865,
66.95K,5832,3267,
74.32K,6519,3667,
81.64K,7248,4091,
97.16K,8615,4601,
111.5K,9876,5269,
134.2K,11.68K,6632,
149.2K,13.33K,7325,
2753,257,126,
7033,621,356,
14.15K,1256,656,
35.46K,2982,1776,
56.57K,5003,2676,
63.35K,5441,3047,
69.98K,6157,3359,
77.44K,6811,3862,
91.94K,7918,4458,
105.7K,9257,5283,
127.4K,10.88K,6152,
141K,12.23K,7001,
2534,235,127,
6511,529,366,
12.74K,1099,649,
31.94K,2748,1610,
51.92K,4560,2468,
57.68K,5097,2898,
64.1K,5624,3038,
70.76K,6268,3520,
83.44K,7360,4076,
96.24K,8529,4707,
115.5K,10.2K,5676,
128.2K,11.31K,6410,
2012,188,107,
5193,477,253,
10.09K,894,534,
25.48K,2218,1217,
40.55K,3553,2031,
45.43K,3902,2276,
50.79K,4357,2503,
55.54K,5039,2703,
65.92K,5751,3292,
76K,6649,3720,
91.03K,8086,4457,
101.2K,9030,5010,
667,78,34,
1640,147,91,
3298,286,169,
8285,721,394,
12.98K,1062,630,
14.75K,1262,718,
16.33K,1453,759,
18.01K,1646,867,
21.4K,1844,1044,
24.65K,2245,1264,
29.15K,2622,1422,
32.7K,2882,1478,
456,36,23,
1178,96,51,
2237,205,109,
5599,510,263,
8976,809,423,
10.22K,872,503,
11.13K,961,522,
12.35K,1050,606,
14.61K,1230,722,
16.83K,1526,815,
20.04K,1763,1026,
22.62K,1984,1153,
2,0,0,
3,0,0,
12,1,1,
36,3,6,
53,4,4,
56,2,5,
70,10,6,
77,5,4,
94,9,3,
97,7,5,
109,11,8,
155,9,5,
0,0,0,
14.32K,1256,693,
35.65K,3167,1712,
71.67K,6343,3498,
177.1K,15.6K,8712,
285.1K,25.01K,13.9K,
320.6K,27.99K,15.52K,
356.4K,31.01K,17.35K,
390.2K,33.79K,18.93K,
462.6K,40.59K,22.59K,
532.6K,46.96K,26.24K,
638.8K,55.95K,31.25K,
712.1K,62K,35.08K,
10.04K,927,489,
25K,2239,1242,
50.17K,4440,2494,
125.3K,10.95K,6162,
200.3K,17.46K,9893,
226.4K,19.82K,11.11K,
251.2K,22.25K,12.29K,
276.5K,24.23K,13.45K,
326.3K,28.52K,16K,
376.2K,33.11K,18.58K,
451.8K,39.62K,22.16K,
501.3K,43.72K,24.73K,
9209,848,412,
22.69K,2008,1108,
45.38K,4037,2195,
113.6K,10.05K,5629,
182.4K,16.1K,8909,
204.9K,17.96K,9908,
227.1K,19.91K,11.05K,
251.1K,21.93K,12.3K,
296.3K,25.9K,14.64K,
341.8K,29.91K,16.72K,
410.7K,35.93K,19.97K,
455.7K,39.99K,22.25K,
6258,549,284,
15.5K,1397,795,
31.12K,2663,1575,
76.92K,6681,3815,
123.3K,10.81K,6212,
138.6K,12K,6893,
154.5K,13.3K,7432,
170.2K,14.78K,8390,
200.4K,17.67K,9888,
232K,20.29K,11.25K,
278.1K,24.36K,13.68K,
308.6K,27.24K,15.19K,
854,74,38,
1985,181,134,
4063,382,212,
10.36K,932,504,
16.71K,1419,799,
18.71K,1664,925,
20.75K,1738,1049,
22.58K,2003,1126,
27.11K,2395,1354,
30.64K,2767,1553,
37.2K,3250,1784,
41.3K,3636,2052,
304,26,18,
752,75,30,
1492,102,90,
3623,354,194,
5858,518,271,
6640,594,333,
7440,682,387,
8224,732,416,
9571,827,494,
11.26K,968,547,
13.38K,1207,624,
14.87K,1303,734,
76,9,2,
239,23,12,
473,35,25,
1130,111,57,
1841,143,105,
1971,182,118,
2266,218,109,
2460,221,126,
2948,249,158,
3404,315,175,
4019,366,179,
4452,403,216,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
52.13K,4594,2495,
50.99K,4382,2479,
48.99K,4319,2448,
46.35K,4028,2307,
38.87K,3347,1957,
31.45K,2714,1561,
28.84K,2455,1399,
25.89K,2253,1216,
23.49K,1939,1127,
17.99K,1601,899,
13.03K,1142,601,
4953,444,254,
0,0,0,
50.7K,4382,2435,
49.08K,4321,2408,
46.76K,4068,2244,
39.18K,3466,1997,
31.6K,2714,1574,
29.08K,2513,1406,
26.23K,2394,1269,
24.01K,2081,1215,
18.72K,1614,899,
13.55K,1240,632,
6299,549,293,
1316,125,66,
50.73K,4488,2580,
49.58K,4362,2357,
46.86K,4065,2315,
39.52K,3511,2004,
32.12K,2863,1491,
29.64K,2735,1434,
27.38K,2431,1336,
24.94K,2218,1218,
20.36K,1788,978,
15.58K,1309,779,
8306,663,393,
3465,317,162,
50.66K,4469,2417,
49.64K,4266,2443,
47.54K,4124,2307,
41.3K,3628,2084,
34.4K,3091,1696,
32.52K,2850,1600,
30.44K,2750,1446,
28.43K,2514,1380,
24.16K,2153,1157,
19.6K,1665,974,
13.18K,1152,676,
9008,795,431,
50.88K,4409,2508,
49.87K,4357,2494,
48.3K,4244,2343,
43.86K,3912,2173,
39.07K,3453,1962,
37.43K,3385,1813,
35.48K,3218,1770,
34.39K,3011,1656,
30.54K,2696,1466,
27.38K,2439,1332,
22.82K,1950,1109,
19.47K,1754,941,
51.27K,4496,2534,
50.73K,4400,2388,
49.2K,4363,2434,
45.95K,4114,2193,
41.92K,3590,2047,
40.83K,3603,1984,
39.73K,3381,1919,
38.26K,3384,1876,
36.21K,3161,1722,
33.52K,2990,1712,
29.58K,2632,1487,
27.26K,2500,1316,
51.26K,4413,2564,
50.7K,4378,2388,
50.19K,4411,2406,
48.11K,4180,2294,
46.12K,3932,2218,
44.99K,4073,2200,
44.11K,3845,2190,
43.21K,3814,2155,
41.66K,3710,1973,
40.54K,3518,1983,
37.8K,3369,1811,
36.71K,3197,1747,
13.95K,1247,703,
13.68K,1194,652,
13.33K,1177,696,
12.73K,1103,635,
10.42K,987,493,
8378,721,412,
7821,688,372,
7052,604,324,
6355,556,295,
4810,448,237,
3499,322,193,
1398,144,67,
0,0,0,
13.93K,1200,684,
13.42K,1215,648,
12.81K,1140,660,
11.24K,989,552,
9625,848,459,
9185,783,467,
8649,766,421,
8118,657,421,
7031,606,328,
6174,504,312,
4355,361,240,
3319,289,148,
13.8K,1223,661,
13.48K,1128,673,
12.91K,1139,639,
11.48K,1017,540,
9780,847,473,
9447,805,459,
8936,818,440,
8544,676,423,
7254,639,367,
6522,534,322,
4913,448,257,
3773,338,185,
13.89K,1193,682,
13.62K,1161,707,
13.06K,1065,626,
11.8K,1000,574,
10.26K,917,493,
9744,866,426,
9425,841,453,
8758,746,410,
7853,676,401,
7044,645,335,
5723,486,271,
4586,393,220,
14.08K,1207,722,
13.96K,1217,679,
13.85K,1224,707,
13.96K,1144,669,
13.85K,1233,664,
13.97K,1247,683,
14.19K,1236,726,
14.03K,1224,666,
13.82K,1278,666,
13.76K,1241,643,
13.75K,1259,660,
13.72K,1169,715,
13.99K,1263,701,
14.02K,1192,705,
13.93K,1214,738,
14.09K,1173,682,
14.07K,1255,700,
13.97K,1280,680,
13.93K,1236,670,
13.78K,1218,676,
13.89K,1211,697,
14K,1165,691,
13.78K,1250,662,
14.17K,1261,707,
14.14K,1210,649,
13.92K,1269,722,
13.85K,1227,671,
14.09K,1267,719,
14K,1299,717,
14.01K,1232,689,
13.93K,1244,661,
14.01K,1251,665,
13.85K,1196,715,
13.95K,1214,649,
13.91K,1267,666,
13.92K,1246,709,
72.53K,6427,3587,
71.55K,6161,3591,
68.99K,6109,3392,
66.33K,5696,3153,
54.48K,4781,2609,
43.74K,3887,2154,
40.09K,3514,1952,
36.61K,3190,1847,
32.65K,2887,1620,
25.42K,2249,1275,
18.23K,1525,926,
7375,626,336,
0,0,0,
71.62K,6390,3588,
69.49K,6006,3494,
65.3K,5779,3215,
55.1K,4902,2639,
44.31K,3881,2121,
40.92K,3645,2003,
37.37K,3255,1841,
34.25K,3000,1726,
26.73K,2343,1325,
19.73K,1795,946,
8943,792,446,
2086,169,87,
71.92K,6229,3432,
69.7K,6166,3376,
66.26K,5890,3231,
56.38K,4906,2715,
46.24K,4179,2285,
43.27K,3756,2213,
39.77K,3560,1886,
36.59K,3314,1805,
30.17K,2650,1481,
23.1K,2042,1110,
13.43K,1167,673,
6802,653,315,
72.24K,6458,3496,
70.48K,6234,3388,
66.95K,5891,3317,
59.7K,5195,3030,
51.83K,4541,2520,
48.76K,4313,2430,
46.48K,4082,2246,
43.99K,3770,2147,
38.61K,3479,1954,
33.29K,2925,1637,
25.21K,2184,1252,
19.81K,1759,1019,
72.01K,6491,3501,
71.35K,6186,3515,
68.85K,5925,3427,
63.56K,5560,3059,
57.38K,5002,2879,
55.56K,4879,2702,
53.61K,4913,2574,
51.11K,4547,2551,
47.88K,4106,2316,
44.06K,3846,2202,
37.45K,3242,1849,
33.77K,3072,1648,
72.85K,6408,3577,
71.7K,6225,3595,
70.53K,6272,3429,
67.16K,5990,3307,
63.11K,5624,3093,
62.91K,5487,3100,
61.26K,5397,2863,
60.96K,5268,2833,
57.96K,5102,2821,
55.94K,5025,2573,
52.55K,4523,2524,
49.88K,4538,2502,
72.3K,6203,3632,
72.29K,6229,3562,
71.45K,6372,3452,
69.87K,6142,3375,
67.84K,6046,3370,
67.15K,5831,3288,
66.6K,5922,3147,
66.01K,5846,3305,
64.74K,5736,3111,
63.68K,5513,3114,
62.24K,5442,3018,
60.4K,5398,2954,
124.2K,10.92K,6033,
121.7K,10.61K,5990,
117.8K,10.46K,5630,
111.5K,9836,5407,
92.49K,8201,4630,
74.14K,6481,3573,
68.4K,5916,3352,
62.43K,5403,3097,
55.76K,4948,2672,
43.73K,3841,2179,
31.36K,2744,1513,
12.37K,1060,614,
0,0,0,
123.1K,10.85K,6141,
120K,10.49K,5768,
115.8K,10.26K,5697,
102.4K,9071,5068,
89.2K,7967,4344,
84.66K,7444,4229,
80.09K,7163,3915,
76.15K,6603,3705,
67.33K,5975,3225,
58.24K,5021,2832,
45.31K,3985,2337,
36.14K,3233,1881,
122.5K,10.69K,6089,
121K,10.63K,6020,
117.2K,10.15K,5706,
106.7K,9294,5084,
96.86K,8582,4755,
93.5K,8174,4594,
89.09K,7941,4367,
86.35K,7665,4122,
80.21K,7084,3750,
72.2K,6327,3499,
61.96K,5397,3101,
55.61K,4713,2721,
123.3K,10.85K,6026,
122.7K,10.77K,5970,
122.2K,10.73K,5898,
117.9K,10.52K,5751,
113.4K,9970,5545,
112.9K,10.04K,5512,
111.5K,9766,5515,
110.2K,9737,5457,
108K,9561,5243,
105K,9471,5197,
102K,8979,4978,
99.87K,8766,4855,
124.3K,11.01K,6071,
123.3K,10.85K,5991,
123.3K,10.83K,5882,
122.1K,10.69K,5934,
121.6K,10.79K,5968,
120.8K,10.48K,6022,
121.5K,10.62K,5996,
120.6K,10.59K,5993,
120.3K,10.45K,5887,
119.6K,10.39K,5798,
118.5K,10.32K,5665,
117.8K,10.42K,5759,
123.7K,11.09K,6191,
123.7K,10.79K,6097,
123.7K,10.93K,6082,
124.3K,11K,6031,
124K,10.73K,5949,
123.3K,10.71K,6208,
123.5K,10.74K,6074,
123.6K,10.84K,6054,
122.8K,10.93K,6005,
123K,10.82K,6038,
123.5K,10.8K,5972,
123.7K,10.73K,6022,
123.7K,10.96K,6208,
124.7K,10.83K,6101,
124.2K,10.97K,6024,
124.2K,10.74K,5977,
124.4K,10.84K,6065,
124.2K,10.8K,5988,
124K,10.83K,6232,
124.3K,11.04K,5891,
123.6K,10.69K,6015,
123.7K,11.09K,6088,
123.6K,10.84K,6228,
123.7K,10.63K,5975,
149.5K,13.08K,7274,
146K,12.9K,7216,
142K,12.53K,6902,
134.1K,11.54K,6626,
111.7K,9963,5402,
88.96K,7773,4342,
81.62K,7273,3960,
74.51K,6515,3678,
67.04K,5990,3315,
51.93K,4634,2578,
37.34K,3316,1802,
14.85K,1248,712,
0,0,0,
146.4K,12.9K,7310,
141.9K,12.56K,6939,
134.8K,11.7K,6493,
113.4K,10.14K,5566,
92.19K,8006,4481,
85.46K,7539,4249,
78.27K,6804,3876,
71.28K,6241,3389,
57.05K,4876,2768,
43.08K,3753,2164,
22.2K,2021,1062,
7769,628,394,
145.5K,12.88K,7139,
142.3K,12.37K,7044,
136.2K,11.92K,6685,
116.7K,10.27K,5733,
97.94K,8540,4771,
91.07K,7972,4457,
84.89K,7525,4148,
78.71K,6770,3876,
65.86K,5644,3273,
52.26K,4669,2625,
33.26K,2862,1610,
20.59K,1789,993,
147K,13K,7177,
143.5K,12.43K,7043,
138.4K,12.14K,6955,
123.4K,10.84K,5973,
108.3K,9462,5204,
103.3K,9041,5073,
98.01K,8638,4758,
93.32K,8049,4507,
82.71K,7324,4021,
72.49K,6276,3562,
57.77K,5127,2909,
47.5K,4205,2329,
149.1K,13.01K,7034,
147.7K,12.87K,7277,
145.7K,13.15K,7160,
140.7K,12.46K,6912,
136K,11.64K,6608,
134.9K,11.8K,6484,
132.6K,11.65K,6553,
130.6K,11.47K,6391,
127.9K,11.33K,6259,
124.5K,10.86K,6148,
119K,10.51K,5635,
116.1K,10.33K,5612,
148.4K,13.08K,7181,
148.2K,13.06K,7264,
146K,12.98K,7103,
143.1K,12.72K,7006,
139.8K,12.31K,6848,
139K,12.12K,6749,
137.7K,11.98K,6642,
136.4K,12.07K,6586,
134.6K,11.92K,6746,
132.1K,11.73K,6294,
129K,11.34K,6273,
126.9K,10.95K,6268,
148.6K,13.01K,7357,
149.1K,12.97K,7391,
148.4K,12.8K,7267,
149.2K,12.97K,7196,
149.2K,13.2K,7232,
148.5K,13.06K,7278,
148.7K,13.15K,7516,
148.7K,12.91K,7339,
148.7K,12.99K,7322,
149K,13.06K,7320,
148.3K,13.18K,7333,
148.9K,13.04K,7341,
710.5K,62.43K,34.54K,
697.4K,61.32K,34.08K,
674.3K,59.44K,32.8K,
639.2K,55.81K,31.33K,
532.8K,46.78K,26.04K,
426.9K,37.31K,20.71K,
391.7K,34.3K,18.94K,
355K,31.25K,17.23K,
321.6K,27.86K,15.67K,
248.8K,21.65K,12.34K,
177.7K,15.53K,8780,
71.05K,6198,3478,
0,0,0,
701.5K,61.43K,34.06K,
685.7K,60.76K,33.63K,
660.9K,58.07K,32.62K,
584.7K,51.35K,28.61K,
510.1K,44.99K,24.79K,
485.9K,42.69K,23.57K,
460.9K,40.3K,22.45K,
435.1K,38K,21.35K,
385.5K,34.03K,18.85K,
334.8K,29.38K,16.35K,
258.7K,22.66K,12.75K,
209.6K,18.28K,10.31K,
702.5K,61.69K,34.31K,
689.3K,60.18K,33.64K,
665.5K,58.16K,32.44K,
598.3K,52.61K,29.55K,
528.1K,46.36K,26.03K,
505.5K,44.38K,24.71K,
483.1K,42.16K,23.78K,
460.1K,40.84K,22.85K,
414.5K,36.69K,20.17K,
368.9K,32.43K,18.05K,
300.1K,26.6K,14.6K,
255.2K,22.42K,12.38K,
705K,61.83K,34.33K,
695.7K,60.86K,34.26K,
679.6K,59.47K,33.22K,
633.4K,55.24K,30.99K,
587.2K,51.86K,28.7K,
572.5K,50.39K,28.24K,
555.9K,48.91K,27.19K,
539.9K,47.83K,26.93K,
510.5K,44.69K,24.9K,
479.2K,42.64K,23.29K,
431.5K,38.1K,21.17K,
402.9K,34.95K,19.71K,
710.5K,62.29K,34.75K,
709.1K,61.91K,34.62K,
707.3K,61.77K,34.55K,
701.7K,61.63K,34.57K,
694K,61.06K,33.99K,
692.4K,60.67K,33.36K,
690.5K,60.61K,33.88K,
688.5K,59.98K,33.46K,
684.4K,60K,33.3K,
680.1K,59.57K,33.43K,
673.7K,59.46K,32.83K,
669K,58.63K,32.98K,
710.1K,61.59K,34.88K,
711.1K,62.77K,34.16K,
710.4K,62.53K,34.57K,
708.9K,61.87K,34.45K,
704.7K,62.06K,34.56K,
703K,61.69K,34.36K,
702.3K,61.45K,34.31K,
703.7K,61.5K,34.34K,
702.3K,61.33K,34.12K,
700.5K,61.55K,34.31K,
698.1K,61.15K,34.13K,
696.7K,61.18K,33.73K,
711.6K,62.16K,34.88K,
711.2K,62.72K,34.88K,
711.7K,62.28K,34.95K,
710.7K,62.31K,34.61K,
707.8K,62.12K,34.71K,
708.8K,62.16K,34.85K,
709.1K,61.95K,34.44K,
708.8K,62.4K,35.01K,
708K,62.05K,34.49K,
707.5K,62.15K,34.68K,
708K,61.83K,34.81K,
705.2K,61.51K,34.31K,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
320,0,0,
1456,0,0,
2272,8,0,
2976,32,0,
3848,32,0,
5528,72,0,
7672,72,16,
11.37K,240,8,
13.78K,192,8,
0,0,0,
0,0,0,
0,0,0,
352,0,0,
1560,32,0,
2264,16,0,
2592,80,0,
3776,48,0,
5832,48,0,
7664,112,0,
11.26K,144,0,
13.9K,256,16,
0,0,0,
0,0,0,
16,0,0,
352,8,0,
1616,8,0,
2168,16,0,
2952,32,0,
3520,24,0,
5408,40,0,
7688,72,0,
11.06K,192,16,
13.94K,176,0,
0,0,0,
0,0,0,
8,0,0,
352,0,0,
1696,8,0,
2288,0,0,
2760,8,0,
3840,16,0,
5560,40,0,
7904,80,8,
11.21K,184,8,
13.38K,264,16,
0,0,0,
0,0,0,
16,0,0,
400,0,0,
1576,8,0,
2104,16,0,
2608,16,0,
3208,8,0,
4944,56,8,
6984,104,8,
9760,120,8,
12.13K,184,0,
0,0,0,
0,0,0,
8,0,0,
312,0,0,
1216,0,0,
1720,16,0,
2032,24,0,
2632,24,0,
4008,56,8,
5576,48,0,
7760,136,16,
9536,216,8,
0,0,0,
0,0,0,
0,0,0,
264,0,0,
968,8,0,
1216,8,0,
1720,16,0,
2040,8,0,
2952,16,0,
3992,72,8,
5200,160,16,
6896,176,16,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
88,0,0,
296,0,0,
408,0,0,
528,16,0,
712,0,0,
1008,32,0,
1440,32,0,
2168,56,0,
2784,56,8,
0,0,0,
0,0,0,
0,0,0,
104,0,0,
328,0,0,
400,0,0,
608,0,0,
768,8,0,
1032,0,0,
1576,16,0,
2216,32,0,
2576,40,0,
0,0,0,
0,0,0,
0,0,0,
72,0,0,
296,0,0,
528,0,0,
576,16,0,
776,8,0,
1120,0,0,
1408,0,0,
2240,16,8,
2768,16,0,
0,0,0,
0,0,0,
0,0,0,
96,0,0,
280,8,0,
384,0,0,
672,0,0,
792,0,0,
1024,0,0,
1376,8,0,
2168,32,0,
2672,32,8,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
128,0,0,
816,0,0,
1152,8,0,
1776,0,0,
2176,0,0,
3560,16,0,
5600,40,0,
8936,64,0,
11.92K,88,0,
0,0,0,
0,0,0,
0,0,0,
152,0,0,
712,0,0,
976,0,0,
1712,8,0,
2056,8,0,
3520,24,0,
5240,0,0,
8648,88,0,
11.36K,112,0,
0,0,0,
0,0,0,
0,0,0,
64,0,0,
688,0,0,
944,8,0,
1104,0,0,
1568,0,0,
2904,0,0,
4840,32,0,
8336,56,0,
10.48K,104,0,
0,0,0,
0,0,0,
0,0,0,
32,0,0,
320,0,0,
448,0,0,
720,8,0,
1176,8,0,
1880,0,0,
3312,8,0,
5424,32,0,
7800,56,0,
0,0,0,
0,0,0,
0,0,0,
32,0,0,
272,0,0,
424,0,0,
656,0,0,
944,8,0,
1824,0,0,
2872,16,0,
5120,16,0,
6624,8,0,
0,0,0,
0,0,0,
0,0,0,
8,0,0,
224,0,0,
192,0,0,
392,0,0,
584,0,0,
936,0,0,
1544,0,0,
2616,0,0,
3528,24,0,
0,0,0,
0,0,0,
0,0,0,
16,0,0,
104,0,0,
112,0,0,
312,0,0,
296,0,0,
736,0,0,
1080,8,0,
1584,0,0,
2368,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
320,0,0,
1880,0,0,
2568,8,0,
3592,24,0,
4752,56,0,
7880,32,8,
11K,88,0,
17.38K,144,0,
21.53K,256,8,
0,0,0,
0,0,0,
0,0,0,
168,0,0,
1152,0,0,
1888,8,0,
2456,16,0,
3256,24,0,
5248,32,0,
7616,32,0,
11.94K,144,0,
15.2K,184,0,
0,0,0,
0,0,0,
0,0,0,
232,0,0,
1056,8,0,
1592,0,0,
2272,24,0,
2952,16,0,
4688,32,0,
6248,16,0,
10.49K,136,0,
13.09K,112,8,
0,0,0,
0,0,0,
0,0,0,
16,0,0,
152,0,0,
288,0,0,
392,0,0,
664,0,0,
856,0,0,
1520,0,0,
2320,8,0,
3232,8,0,
0,0,0,
0,0,0,
0,0,0,
8,0,0,
120,0,0,
192,0,0,
232,0,0,
264,0,0,
496,0,0,
712,0,0,
1112,0,0,
1440,24,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
8,0,0,
8,0,0,
72,0,0,
64,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
8,0,0,
48,0,0,
0,0,0,
0,0,0,
8,0,0,
40,0,0,
776,8,0,
2920,40,0,
3864,64,8,
4944,64,8,
6672,72,0,
9936,112,0,
13.91K,192,32,
20.99K,344,8,
27.7K,448,32,
0,0,0,
8,0,0,
56,0,0,
768,0,0,
2736,32,0,
3896,32,16,
4880,56,0,
6336,80,8,
9552,104,16,
13.3K,184,0,
20.68K,288,32,
26.19K,456,56,
0,0,0,
16,0,0,
72,0,0,
664,8,0,
2704,32,0,
3720,56,0,
4800,32,0,
6320,80,8,
9264,112,16,
13.34K,208,24,
20.1K,256,24,
24.9K,384,56,
0,0,0,
8,0,0,
64,0,0,
664,24,0,
2336,32,0,
2768,40,0,
3792,56,8,
4656,64,8,
6800,104,8,
9592,112,24,
14.23K,296,24,
18.23K,344,56,
0,0,0,
0,0,0,
0,0,0,
56,0,0,
488,0,0,
688,0,0,
928,8,0,
1296,0,0,
2184,16,0,
2960,16,0,
4816,56,0,
6400,24,0,
0,0,0,
0,0,0,
0,0,0,
48,0,0,
448,0,0,
536,0,0,
736,0,0,
1016,0,0,
1608,0,0,
2488,24,0,
3752,24,0,
5128,40,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
8,0,0,
1328,0,0,
6552,8,0,
9680,16,0,
13.21K,104,8,
17.65K,80,0,
28.29K,136,0,
40.92K,312,0,
65.82K,600,24,
85.07K,920,48,
0,0,0,
0,0,0,
16,0,0,
1168,0,0,
5448,8,0,
8056,32,0,
10.72K,72,0,
14.25K,80,0,
23.1K,184,0,
32.87K,336,0,
52.52K,520,24,
68.02K,712,8,
0,0,0,
0,0,0,
24,0,0,
1144,8,0,
5536,16,0,
7880,8,0,
10.84K,88,8,
14.67K,112,0,
22.78K,128,0,
32.28K,320,0,
52.23K,440,24,
65.92K,808,24,
0,0,0,
0,0,0,
8,0,0,
1000,0,0,
4512,0,0,
6480,16,0,
8512,32,0,
11.59K,64,0,
18.13K,152,0,
25.74K,336,16,
40.86K,456,0,
52.02K,680,24,
0,0,0,
0,0,0,
0,0,0,
96,0,0,
648,0,0,
1008,0,0,
1224,16,0,
1776,0,0,
3088,16,0,
4120,32,0,
6992,48,0,
8872,80,0,
0,0,0,
0,0,0,
0,0,0,
32,0,0,
192,8,0,
344,0,0,
608,0,0,
792,0,0,
1280,0,0,
1864,8,0,
3008,40,0,
3768,40,0,
0,0,0,
0,0,0,
0,0,0,
32,0,0,
112,0,0,
152,0,0,
392,0,0,
464,0,0,
536,0,0,
848,0,0,
1296,8,0,
1592,24,0,
0,0,0,
360,8,0,
2368,32,0,
8392,312,8,
27.67K,1768,304,
44.84K,3416,880,
49.03K,3896,1056,
53.32K,4520,1320,
57.46K,5192,1552,
64.38K,6200,1984,
71.6K,7632,2680,
78.91K,9160,3736,
84.17K,9848,4232,
240,0,0,
2288,80,0,
7776,296,16,
26.21K,1408,288,
42.09K,3144,744,
45.91K,3840,928,
50.41K,4320,1232,
53.74K,4912,1496,
60.09K,5856,2104,
66.31K,7120,2640,
72.94K,8552,3384,
78.22K,9224,4056,
264,0,0,
2368,40,0,
7776,240,24,
25.81K,1440,264,
40.69K,3032,736,
44.87K,3648,976,
48.64K,4264,1240,
52.06K,4616,1432,
57.87K,5776,1856,
64.34K,6768,2424,
70.59K,8240,3176,
75.02K,8800,3680,
520,0,0,
3568,96,0,
10.6K,408,40,
33.08K,2024,600,
50.33K,4120,1304,
56.1K,4960,1528,
60.55K,5456,1792,
64.86K,5928,2176,
73.07K,7592,2880,
80.07K,8760,3496,
89.41K,10.56K,4576,
94.34K,11.29K,5456,
32,0,0,
992,0,0,
4328,96,8,
14.67K,752,88,
23.23K,1704,344,
25.48K,1976,424,
27.95K,2344,624,
29.61K,2736,632,
32.13K,3192,904,
35K,3848,1320,
37.9K,4824,1768,
40.04K,5184,2208,
0,0,0,
312,0,0,
1744,0,0,
7888,360,40,
12.53K,752,112,
13.99K,1056,152,
15.1K,1144,192,
15.98K,1392,264,
17.97K,1768,416,
19.39K,2056,520,
21.34K,2472,768,
22.14K,2704,1024,
0,0,0,
8,0,0,
152,0,0,
960,48,0,
1960,120,8,
2136,104,8,
2336,144,16,
2464,120,0,
2544,160,24,
3264,264,24,
3600,328,72,
3368,336,88,
0,0,0,
0,0,0,
16,0,0,
64,0,0,
864,8,0,
1744,80,0,
2256,56,0,
2368,64,8,
2752,88,8,
3400,128,8,
3848,200,16,
4912,312,40,
5320,312,56,
0,0,0,
8,0,0,
48,0,0,
736,8,0,
1728,32,8,
1952,56,16,
2120,96,16,
2536,88,0,
2904,160,16,
3480,208,0,
4056,248,64,
4472,328,48,
0,0,0,
0,0,0,
56,0,0,
672,8,0,
1592,32,0,
1784,24,0,
2064,56,8,
2200,88,8,
2632,128,16,
2968,128,24,
3488,240,48,
3608,296,48,
0,0,0,
80,0,0,
424,0,0,
1776,72,0,
3184,168,16,
3576,232,56,
3768,224,48,
4104,296,72,
4384,432,80,
5064,488,80,
5552,552,160,
5880,600,208,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
40,0,0,
680,0,0,
3104,72,0,
13.17K,648,24,
23.28K,1544,112,
25.66K,1896,240,
29.06K,2200,240,
31.97K,2464,432,
35.99K,3168,648,
40.79K,3976,792,
47.02K,4856,1200,
50.69K,5360,1512,
16,0,0,
448,0,0,
2576,64,0,
11.55K,408,0,
20.19K,1240,152,
22.6K,1608,152,
25.01K,1800,264,
26.86K,2008,320,
31.32K,2720,480,
34.96K,3320,712,
40.08K,4112,984,
42.61K,4480,1224,
0,0,0,
464,0,0,
2280,48,0,
10.44K,528,24,
18.17K,1200,88,
20.54K,1336,96,
22.66K,1752,184,
24.58K,2024,296,
28.3K,2344,440,
31.87K,2904,632,
36.17K,3872,904,
39.07K,4360,1112,
40,0,0,
656,0,0,
2672,80,0,
9920,616,0,
16.59K,1192,200,
17.86K,1424,320,
20.22K,1632,312,
21.66K,1872,352,
24.73K,2304,488,
27.26K,2912,640,
30.63K,3496,1032,
32.26K,3872,1384,
8,0,0,
56,0,0,
840,0,0,
3824,144,0,
6872,392,0,
7624,472,16,
8376,568,48,
9104,656,48,
9912,912,120,
11.3K,1144,160,
12.82K,1344,256,
13.22K,1424,408,
0,0,0,
0,0,0,
240,0,0,
1816,24,0,
3328,120,8,
3672,240,0,
4208,304,0,
4552,320,40,
5224,400,40,
5568,552,32,
6400,648,72,
6744,672,88,
0,0,0,
16,0,0,
80,0,0,
440,8,0,
1032,40,0,
1224,24,0,
1288,64,0,
1464,96,0,
1800,120,32,
2016,144,16,
2288,216,24,
2480,208,24,
0,0,0,
24,0,0,
888,8,0,
4384,72,0,
17.77K,896,32,
28.79K,2008,248,
31.84K,2624,456,
35.02K,3040,408,
37.34K,3336,648,
42.19K,4176,928,
46.77K,4952,1256,
52.56K,6024,1960,
56.14K,6760,2176,
8,0,0,
296,0,0,
1472,8,0,
6512,376,8,
11.55K,736,56,
12.98K,968,144,
14.18K,1056,104,
15.6K,1336,120,
17.97K,1600,328,
20.15K,1888,440,
22.89K,2552,680,
24.45K,2592,800,
0,0,0,
208,8,0,
976,16,0,
3976,176,0,
6592,464,32,
7496,576,72,
8064,632,96,
9088,720,104,
10.24K,912,136,
11.68K,1088,240,
13.13K,1392,384,
14.27K,1440,504,
0,0,0,
0,0,0,
56,0,0,
408,16,0,
672,56,0,
736,72,0,
768,40,0,
768,72,8,
880,112,8,
936,120,24,
1056,144,56,
1104,184,40,
0,0,0,
24,0,0,
96,0,0,
416,24,0,
696,56,0,
744,64,8,
760,64,8,
848,88,0,
936,136,16,
992,160,32,
936,136,40,
1096,112,32,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
336,0,0,
3968,72,16,
18.14K,440,8,
73.91K,3400,344,
129.6K,8280,1160,
145.5K,9728,1848,
161.8K,11.63K,2296,
175.7K,13.14K,2704,
204.4K,17.22K,4168,
230.5K,20.54K,5144,
264.8K,25.27K,7480,
286.6K,28.84K,9320,
224,0,0,
3240,64,0,
14.32K,320,8,
62.47K,2792,232,
109.1K,6712,968,
121.8K,7920,1304,
134.8K,9544,1728,
147.4K,10.87K,2096,
171.3K,13.82K,3152,
192.2K,17.06K,4520,
222.5K,20.87K,6104,
238K,23.94K,7568,
216,0,0,
2856,32,0,
12.26K,320,8,
53.78K,2448,280,
93.25K,5808,816,
104.7K,6968,1112,
115.9K,8368,1528,
127.3K,9744,1904,
145.8K,12.33K,2888,
163.4K,14.92K,3536,
186.4K,18.79K,5296,
200.3K,21.05K,6528,
40,0,0,
1256,16,0,
6288,104,0,
32.1K,1280,48,
58.51K,2984,368,
63.72K,3792,432,
73.64K,4472,576,
78.78K,5416,816,
91.69K,6952,1296,
102.3K,8208,1704,
117.2K,10.82K,2632,
124.9K,12.46K,3120,
0,0,0,
72,0,0,
768,0,0,
4664,160,0,
8160,320,32,
9896,488,16,
10.64K,672,24,
11.66K,752,88,
13.2K,1040,128,
15.18K,1240,200,
16.81K,1616,272,
18.35K,1864,352,
0,0,0,
112,0,0,
424,8,0,
1952,72,0,
3008,248,8,
3312,232,24,
3448,288,40,
3952,360,24,
4360,408,64,
4808,552,88,
5256,680,168,
5712,624,256,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
8,0,0,
8,0,0,
0,0,0,
8,0,0,
16,0,0,
32,0,0,
64,0,0,
96,0,0,
0,0,0,
352,0,0,
4992,32,0,
24.73K,608,8,
114.1K,5032,472,
212.6K,12.13K,1608,
243.3K,14.47K,2072,
274.1K,16.92K,2832,
301.1K,19.96K,3424,
358K,26.3K,4944,
407.8K,32.25K,7080,
480.6K,40.7K,9832,
524.4K,46.73K,12.37K,
240,0,0,
3784,32,0,
17.96K,480,0,
81.62K,3280,264,
148.1K,8608,1344,
170.9K,10.41K,1664,
190.2K,12.54K,2216,
209.5K,14.38K,2472,
246.3K,18.54K,3832,
279.5K,22.99K,5336,
325.5K,29.03K,7328,
350.8K,32.76K,9776,
216,0,0,
3320,48,0,
16.48K,400,32,
72.81K,3328,344,
130.3K,7736,976,
148.2K,9368,1336,
164.6K,11.25K,1824,
180.8K,13.06K,2216,
211.8K,16.44K,3384,
238.5K,20.16K,4720,
275K,25.75K,6480,
297.7K,29.19K,8344,
160,0,0,
1928,24,0,
9152,216,8,
42.73K,1576,192,
75.98K,4160,600,
87.24K,5176,856,
96.28K,6280,960,
106.4K,7680,1352,
122.7K,9848,1928,
137.1K,11.9K,2608,
156.7K,14.85K,3752,
166.6K,17.51K,4952,
0,0,0,
144,0,0,
520,0,0,
2904,112,0,
5312,344,32,
6168,440,24,
6776,400,56,
7520,536,88,
8432,624,120,
9288,776,184,
10.5K,976,240,
11.56K,1232,256,
0,0,0,
0,0,0,
136,0,0,
800,56,0,
1664,56,0,
2008,96,8,
2224,112,8,
2328,160,8,
2664,232,24,
3104,288,32,
3608,376,40,
3624,368,56,
0,0,0,
0,0,0,
16,0,0,
160,0,0,
312,8,0,
288,24,0,
392,24,0,
440,16,0,
512,32,0,
528,80,0,
552,56,0,
584,56,0,
0,0,0,
0,0,0,
28,0,0,
260,0,0,
1892,44,8,
4420,164,8,
5124,164,16,
6224,188,24,
6824,248,52,
8664,388,60,
10.4K,492,116,
12.52K,680,112,
14.18K,824,116,
0,0,0,
24,0,0,
256,0,0,
2144,40,4,
4444,120,4,
5284,232,28,
6324,212,24,
6960,236,24,
8768,440,52,
10.14K,484,72,
12.52K,648,120,
13.74K,816,152,
0,0,0,
28,0,0,
216,8,0,
2040,28,0,
4332,124,12,
5168,136,24,
6072,240,28,
6948,308,32,
8768,348,44,
9800,492,88,
11.88K,676,116,
13.29K,796,172,
0,0,0,
28,0,0,
284,8,0,
1968,48,4,
4380,144,16,
4960,176,16,
6008,188,44,
6684,268,32,
7656,340,52,
9092,456,68,
10.88K,692,84,
12.08K,788,164,
0,0,0,
32,0,0,
280,4,0,
1716,36,0,
3544,140,8,
4084,124,12,
4800,168,4,
5440,252,36,
6460,368,52,
7256,464,48,
8528,548,96,
9148,716,140,
0,0,0,
28,0,0,
192,4,0,
1348,32,8,
2760,104,16,
3264,100,20,
3620,172,24,
4140,188,28,
4936,240,20,
5560,312,40,
6552,492,100,
6828,500,132,
8,0,0,
32,0,0,
136,4,0,
944,24,0,
1676,56,16,
2084,88,8,
2240,124,28,
2468,172,48,
2896,216,16,
3368,256,28,
3920,280,88,
4156,364,84,
0,0,0,
0,0,0,
4,0,0,
36,4,0,
412,20,0,
868,40,0,
1140,36,4,
1272,36,8,
1516,60,4,
1776,68,12,
2304,88,8,
2712,120,24,
3100,160,36,
0,0,0,
4,0,0,
52,0,0,
376,20,0,
828,32,12,
980,28,0,
1224,36,0,
1264,36,4,
1648,88,8,
2000,88,12,
2524,136,28,
2764,172,32,
0,0,0,
12,0,0,
64,0,0,
364,8,0,
824,32,0,
1020,32,8,
1184,44,8,
1312,36,16,
1656,80,12,
1936,116,24,
2420,132,32,
2624,176,48,
0,0,0,
0,0,0,
52,0,0,
404,12,4,
868,28,8,
1016,36,0,
1104,44,4,
1276,48,4,
1712,76,12,
1872,120,16,
2472,104,36,
2636,180,20,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
4,0,0,
168,0,0,
1728,8,0,
4860,92,12,
6172,128,4,
7284,140,12,
8752,180,20,
11.68K,360,28,
14.05K,428,48,
17.7K,680,72,
20.28K,792,100,
0,0,0,
12,0,0,
116,0,0,
1596,4,4,
4600,68,12,
6256,104,12,
7220,152,12,
8788,196,24,
10.94K,304,44,
13.75K,400,60,
17.35K,612,44,
20.33K,852,92,
0,0,0,
12,0,0,
132,0,0,
1560,20,0,
4480,96,0,
5552,76,4,
6720,136,20,
8084,200,12,
10.76K,300,24,
13.26K,372,32,
16.83K,640,56,
18.95K,800,48,
0,0,0,
4,0,0,
76,0,0,
1096,8,0,
3468,60,0,
4464,72,4,
5536,68,8,
6588,120,16,
8916,164,24,
10.78K,264,12,
14.22K,436,32,
16.15K,536,88,
0,0,0,
4,0,0,
40,0,0,
1008,8,0,
2928,44,8,
3724,48,8,
4688,84,0,
5452,72,8,
7120,148,8,
8916,272,8,
11.18K,420,32,
12.6K,436,48,
0,0,0,
0,0,0,
36,0,0,
496,0,0,
1768,28,0,
2188,20,8,
2624,20,8,
2944,76,0,
3964,76,8,
4840,144,12,
6488,256,16,
7240,300,32,
0,0,0,
0,0,0,
20,0,0,
376,0,0,
956,0,0,
1268,20,0,
1444,32,0,
1788,48,0,
2352,60,4,
2652,96,16,
3396,132,8,
3744,120,16,
0,0,0,
0,0,0,
16,0,0,
280,0,0,
3316,56,0,
8116,204,40,
10.13K,312,28,
11.9K,308,36,
13.91K,404,28,
17.46K,668,76,
21.27K,844,100,
26.86K,1084,140,
30.64K,1436,216,
0,0,0,
28,0,0,
148,0,0,
2368,20,4,
6100,140,12,
6832,172,32,
8468,228,12,
9684,284,16,
12.36K,364,40,
14.78K,588,68,
19.02K,776,92,
21.74K,1040,200,
0,0,0,
20,0,0,
172,0,0,
1952,24,0,
4716,140,16,
5804,124,16,
6964,168,12,
8252,272,28,
10.17K,348,60,
12.81K,472,60,
15.79K,728,104,
17.58K,784,152,
0,0,0,
8,0,0,
24,0,0,
480,8,0,
1376,24,4,
1864,28,0,
2420,40,0,
2740,56,4,
3728,76,4,
4616,100,0,
6048,188,28,
7304,232,32,
0,0,0,
0,0,0,
20,0,0,
224,0,0,
624,0,4,
712,4,0,
752,32,4,
944,28,4,
1220,32,8,
1468,52,8,
1816,96,12,
2012,96,16,
0,0,0,
0,0,0,
0,0,0,
20,0,0,
64,0,0,
88,0,0,
104,0,0,
100,0,0,
176,0,0,
180,0,0,
288,4,0,
380,8,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
16,0,0,
24,0,0,
16,0,0,
28,0,0,
56,4,0,
48,4,0,
64,4,0,
76,4,0,
0,0,0,
4,0,0,
60,0,0,
444,12,0,
3968,56,0,
9996,236,20,
12.2K,276,32,
14.42K,400,60,
17.25K,520,64,
22.38K,720,100,
26.98K,1024,156,
35.61K,1356,232,
39.31K,1940,304,
8,0,0,
104,4,0,
392,8,0,
3760,72,8,
9080,244,28,
11.53K,268,20,
13.56K,384,36,
15.95K,504,52,
21.01K,680,92,
26.12K,964,160,
33.07K,1296,248,
37.6K,1592,308,
4,0,0,
64,0,0,
392,16,0,
3608,104,8,
9216,184,16,
10.8K,292,40,
13.06K,356,56,
15.08K,464,92,
19.88K,660,84,
24.18K,936,148,
30.86K,1300,228,
35.41K,1580,264,
16,0,0,
72,0,0,
404,0,4,
2564,32,12,
6300,152,20,
7864,180,48,
9664,248,40,
11.06K,420,52,
14.66K,436,100,
18.14K,724,112,
23.64K,904,216,
26.84K,1140,252,
0,0,0,
4,0,0,
80,0,0,
996,12,4,
2608,24,8,
3164,64,8,
3656,72,0,
4488,108,8,
5924,196,20,
7300,280,12,
8924,360,48,
9944,504,48,
0,0,0,
8,0,0,
88,4,0,
708,4,0,
1936,40,4,
2476,52,8,
2812,80,4,
3464,116,16,
4396,132,20,
5212,256,16,
6320,272,28,
7148,396,40,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
8,0,0,
0,0,0,
4,0,0,
140,0,0,
1208,8,0,
12.98K,204,8,
35.44K,632,60,
44.24K,988,104,
53.77K,1120,104,
62.99K,1580,104,
84.56K,2336,228,
106K,3220,380,
138.1K,4956,644,
161.7K,6080,868,
4,0,0,
128,0,0,
984,4,0,
10.21K,152,4,
26.94K,488,60,
34.24K,704,80,
41.38K,1060,124,
48.99K,1188,160,
64.09K,1868,224,
80.15K,2348,396,
104.1K,3828,520,
119.8K,4776,644,
0,0,0,
76,0,4,
992,0,0,
9816,140,20,
26.46K,564,52,
32.7K,740,96,
39.64K,956,84,
47.27K,1156,120,
61.96K,1844,276,
77.86K,2352,336,
100.5K,3676,544,
115.5K,4724,624,
0,0,0,
120,4,0,
880,4,0,
7564,144,8,
19.99K,436,36,
24.98K,556,48,
30.1K,676,68,
35.09K,1000,104,
45.83K,1320,212,
58.05K,1896,252,
73.7K,2924,436,
84.62K,3524,588,
0,0,0,
12,0,0,
100,0,0,
1376,12,0,
3620,68,4,
4296,100,4,
5168,132,8,
5744,160,16,
7508,228,28,
8888,364,36,
11.2K,480,48,
12.35K,552,68,
0,0,0,
4,0,0,
44,4,0,
524,4,0,
1452,20,4,
1708,64,12,
2012,48,4,
2320,68,4,
2808,76,12,
3436,100,24,
3936,208,24,
4556,240,40,
0,0,0,
4,0,0,
12,0,0,
228,0,0,
572,8,8,
620,12,0,
632,44,4,
732,44,8,
996,36,12,
1080,56,12,
1124,68,12,
1264,108,8,
0,0,0,
724,12,0,
2676,180,20,
5052,420,120,
8288,1092,604,
9404,1696,1036,
9728,1756,1108,
10.29K,1904,1224,
10.33K,2052,1492,
10.47K,2200,1688,
10.74K,2236,1832,
11.52K,2416,2256,
11.63K,2672,2464,
784,32,0,
2564,128,16,
4756,416,140,
8188,1088,512,
9316,1660,940,
9300,1632,1188,
9852,1812,1260,
10.07K,1848,1364,
10.28K,2144,1668,
10.59K,2232,1716,
10.85K,2308,2184,
10.84K,2584,2196,
788,24,0,
2380,168,32,
4624,412,96,
7824,1024,588,
9180,1704,932,
9368,1692,1056,
9532,1872,1120,
9804,1836,1368,
10.14K,2068,1592,
10.39K,2284,1844,
10.57K,2284,2176,
10.91K,2412,2256,
992,48,4,
2836,208,52,
4828,484,232,
8496,1208,668,
9992,1668,1052,
9980,1732,1132,
10.45K,1840,1344,
10.29K,2000,1448,
10.63K,2184,1752,
10.91K,2252,1876,
10.58K,2472,2120,
10.81K,2736,2320,
508,4,0,
1824,80,12,
3416,272,52,
5368,752,352,
6056,1100,684,
6236,1284,752,
6212,1292,768,
6372,1292,1000,
6796,1412,1244,
6636,1464,1312,
6784,1560,1500,
6888,1680,1584,
236,0,0,
1084,44,0,
2232,172,44,
4140,540,160,
4872,776,348,
4924,864,432,
5116,1000,536,
5088,956,624,
5320,940,712,
5488,1212,824,
5512,1220,1036,
5856,1288,1088,
12,0,0,
196,0,0,
644,8,4,
1876,124,16,
2400,268,72,
2560,320,80,
2712,308,100,
2856,380,140,
3056,488,200,
3080,480,184,
3312,520,300,
3476,576,364,
0,0,0,
12,0,0,
100,0,0,
328,0,0,
944,52,16,
1424,116,40,
1532,140,40,
1724,152,56,
1812,184,60,
1856,196,44,
2204,280,84,
2356,300,176,
2624,296,168,
16,0,0,
88,0,0,
316,8,0,
880,44,8,
1028,124,20,
1060,120,28,
1100,140,64,
1020,168,64,
1180,192,76,
1148,224,96,
1144,208,132,
1164,224,172,
8,0,0,
72,4,0,
300,12,0,
756,52,8,
756,92,28,
768,132,36,
776,188,32,
752,168,76,
788,188,60,
848,200,96,
788,208,120,
724,216,156,
36,0,0,
224,4,0,
560,28,0,
980,100,36,
940,184,112,
996,196,132,
1004,252,112,
1008,228,124,
1028,240,184,
984,220,192,
1020,300,244,
1016,304,288,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
244,4,0,
1412,76,0,
3128,244,12,
6248,716,272,
7728,1080,632,
8304,1216,608,
8612,1212,680,
8776,1360,780,
9468,1548,888,
10.01K,1640,1140,
10.64K,1984,1328,
10.9K,2068,1460,
232,4,0,
1184,48,0,
2620,192,16,
5304,664,176,
6688,936,428,
7096,1096,532,
7520,1184,624,
8012,1256,668,
8368,1356,824,
8904,1580,872,
9204,1612,1280,
9652,1740,1100,
224,4,0,
1224,44,4,
2492,176,16,
5184,576,184,
6756,932,404,
7184,952,572,
7516,1120,596,
7844,1184,656,
8404,1348,776,
8684,1440,952,
9280,1536,1164,
9576,1720,1260,
216,0,0,
976,56,0,
1796,136,44,
3572,444,232,
4252,672,340,
4496,696,412,
4504,768,488,
4544,864,520,
4804,924,588,
5172,1000,764,
5280,1140,752,
5480,1088,896,
76,0,0,
508,12,0,
1148,76,8,
2564,248,56,
3244,436,156,
3600,508,192,
3636,524,220,
3960,580,308,
4252,644,380,
4396,732,412,
4612,848,532,
4756,896,604,
24,0,0,
196,8,0,
716,8,0,
1632,164,28,
2152,268,84,
2324,332,104,
2452,332,116,
2508,392,132,
2728,408,192,
2936,444,312,
3272,632,300,
3372,560,380,
12,0,0,
100,8,0,
332,4,0,
1008,88,12,
1416,144,44,
1572,200,52,
1788,180,48,
1888,168,72,
2140,232,80,
2300,276,108,
2568,316,128,
2592,332,156,
0,0,0,
492,0,0,
2172,84,16,
4204,296,44,
6140,880,356,
6948,1352,780,
6812,1376,904,
7348,1480,992,
7492,1520,1220,
8016,1644,1340,
8528,1700,1584,
8512,1804,1784,
8760,1932,2040,
156,4,0,
768,48,0,
1704,120,8,
3288,424,148,
3728,648,296,
3932,648,316,
3952,728,420,
4100,800,480,
4244,820,528,
4348,932,612,
4540,888,680,
4788,1024,796,
84,4,0,
516,16,0,
1248,88,4,
2436,256,76,
3140,416,200,
3176,500,188,
3424,548,216,
3392,612,304,
3664,652,316,
3664,696,408,
3948,708,528,
3760,860,540,
12,0,0,
56,0,0,
148,4,4,
184,24,16,
276,36,12,
444,52,16,
312,64,28,
532,56,40,
544,68,60,
628,92,56,
692,80,68,
680,76,60,
0,0,0,
68,0,0,
136,8,0,
244,28,8,
228,36,16,
276,44,20,
340,60,28,
272,28,48,
336,48,48,
304,40,32,
420,64,52,
352,64,88,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
1708,36,0,
7572,352,52,
15.79K,1160,192,
28.19K,3520,1360,
34.85K,5584,2748,
36.3K,6092,3292,
37.43K,6272,3852,
38.17K,6756,4276,
40.4K,7444,4872,
41.82K,7792,5884,
43.2K,8712,7072,
44.48K,8916,7620,
1416,40,0,
6460,224,36,
14.09K,976,144,
25.18K,3064,1252,
30.89K,4848,2292,
32.46K,5156,2756,
33.68K,5468,3196,
35.16K,6028,3696,
37.05K,6276,4256,
38.36K,7016,5152,
39.3K,7644,5980,
40.3K,7772,6752,
1320,24,4,
5980,244,20,
12.68K,980,144,
22.86K,2740,944,
28.25K,4320,2108,
29.6K,4820,2540,
30.36K,4916,2736,
31.48K,5360,3220,
33.4K,5916,3808,
34.7K,6400,4700,
36.11K,7008,5428,
37.52K,7360,6108,
608,20,0,
3616,112,12,
8600,400,64,
18.09K,1908,488,
21.6K,3404,1184,
22.52K,3268,1500,
23.94K,3840,1832,
23.53K,3896,1896,
24.75K,4400,2612,
25.84K,4764,3136,
27.17K,5340,3820,
28.12K,5456,4164,
72,4,0,
596,0,4,
1732,84,4,
4040,392,56,
5404,628,184,
5724,748,264,
6288,804,352,
6604,860,428,
7528,976,484,
7532,1208,660,
8164,1308,752,
8392,1368,720,
44,0,0,
264,20,0,
584,52,8,
1420,180,40,
2004,204,60,
2460,268,96,
2708,300,120,
2572,256,156,
2968,364,180,
3296,340,216,
3704,408,296,
3832,536,340,
0,0,0,
0,0,0,
0,0,0,
12,0,0,
48,0,0,
40,0,0,
56,0,0,
80,4,0,
80,0,0,
88,8,0,
96,0,0,
140,8,0,
0,0,0,
2376,32,8,
12.17K,464,48,
29.4K,1764,172,
61.84K,6372,1860,
79.31K,10.48K,4264,
83.46K,11.78K,5048,
86.79K,12.8K,5768,
89.61K,13.58K,6728,
95.34K,15.5K,8888,
99.36K,17.46K,10.25K,
104K,19.26K,12.93K,
107.3K,20.12K,14.37K,
1820,28,0,
8580,372,20,
20.58K,1104,240,
42.14K,4724,1496,
52.54K,7192,3104,
53.98K,8136,3648,
57.07K,8860,4236,
58.45K,9428,4976,
60.42K,10.32K,5948,
63.16K,11.69K,7056,
66.02K,12.6K,8852,
67K,13.28K,9692,
1560,56,0,
7688,324,8,
18.36K,1172,144,
37.27K,4240,1268,
47.07K,6812,2984,
49.34K,7072,3500,
50.69K,7768,3816,
52.17K,8248,4648,
54.96K,9400,5708,
57.68K,10.45K,6484,
60.26K,11.34K,7908,
61.2K,11.76K,8776,
964,16,4,
5008,228,12,
11.86K,644,148,
23.2K,2648,748,
28.24K,4436,1760,
30.64K,4860,2092,
29.9K,5064,2216,
32.46K,5272,2768,
33.74K,6112,3512,
34.58K,6488,3972,
35.43K,7628,5136,
36.42K,7812,5744,
60,4,0,
320,12,0,
1048,64,0,
2432,240,52,
3180,360,100,
3248,408,208,
3460,456,212,
3464,536,204,
3580,656,264,
3744,668,384,
3856,804,404,
3940,856,540,
16,0,0,
144,0,0,
372,4,16,
784,68,12,
952,120,24,
920,124,52,
932,192,56,
964,196,80,
980,176,88,
932,220,120,
888,204,148,
924,240,176,
0,0,0,
24,0,0,
140,4,0,
312,24,0,
304,48,12,
360,52,20,
332,52,24,
288,56,8,
312,80,20,
348,72,24,
360,96,36,
360,108,56,
0,0,0,
3093,319,233,
5246,753,467,
6767,1126,862,
8826,1859,1674,
9674,2103,2124,
10.01K,2243,2219,
10.2K,2235,2407,
10.23K,2251,2450,
10.69K,2494,2662,
10.76K,2445,2773,
11.32K,2574,2822,
11.31K,2608,3004,
3030,332,185,
5118,714,467,
6692,1142,805,
8465,1774,1537,
9323,2142,2043,
9627,2145,2210,
9675,2131,2258,
9821,2285,2320,
10.24K,2294,2579,
10.41K,2446,2749,
10.85K,2513,2874,
10.87K,2519,2989,
3036,346,204,
5107,682,431,
6666,1038,817,
8723,1728,1558,
9255,2029,2058,
9515,2137,2202,
9716,2112,2271,
9950,2254,2361,
10.3K,2292,2587,
10.36K,2362,2802,
10.85K,2417,2975,
10.88K,2640,3012,
3002,394,229,
5189,717,481,
6722,1142,904,
8159,1674,1583,
8570,2042,2155,
8450,2055,2165,
8616,2107,2272,
8708,2253,2477,
8759,2247,2570,
8669,2365,2775,
8885,2337,2968,
8904,2327,2984,
1985,249,116,
3363,477,282,
4297,735,566,
5287,1142,1152,
5344,1312,1410,
5714,1307,1494,
5568,1389,1615,
5654,1437,1636,
5684,1538,1733,
5880,1536,1785,
5892,1500,1817,
6017,1488,1911,
1396,118,80,
2500,325,189,
3513,527,347,
4406,888,782,
4676,1097,1048,
4842,1066,1055,
4870,1192,1212,
5041,1137,1242,
5011,1204,1321,
5069,1241,1490,
5082,1313,1488,
5086,1283,1590,
575,50,36,
1186,111,73,
1858,222,134,
2717,437,344,
3068,583,411,
3152,593,522,
3159,685,549,
3306,642,597,
3371,700,694,
3348,735,731,
3512,804,780,
3527,852,832,
0,0,0,
293,27,20,
603,77,38,
1117,130,84,
1760,249,184,
2097,354,256,
2223,369,295,
2338,386,311,
2338,394,358,
2581,416,383,
2622,510,401,
2730,534,452,
2806,524,490,
202,16,14,
425,52,26,
667,77,56,
905,145,134,
1046,226,192,
1054,219,172,
1059,228,202,
1105,244,225,
1106,215,248,
1177,251,306,
1169,283,300,
1158,275,329,
181,14,13,
338,37,23,
533,64,43,
668,131,100,
700,167,163,
690,160,150,
748,179,178,
741,166,165,
807,191,191,
804,196,201,
861,197,218,
878,195,235,
301,30,19,
548,75,41,
692,112,88,
779,167,162,
830,190,216,
771,214,198,
805,213,250,
784,216,264,
781,207,292,
835,215,295,
802,227,303,
833,241,296,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
2140,220,115,
4107,516,300,
6049,841,571,
8764,1499,1178,
10.07K,1955,1581,
10.37K,1993,1685,
10.52K,2118,1904,
10.73K,2197,2012,
11.2K,2383,2192,
11.29K,2476,2344,
11.51K,2495,2535,
11.69K,2623,2743,
1930,199,108,
3671,412,259,
5470,744,484,
7953,1371,1052,
9014,1786,1415,
9266,1720,1589,
9503,1925,1668,
9684,1952,1729,
10.03K,2106,2049,
10.18K,2231,2150,
10.44K,2378,2295,
10.6K,2436,2587,
1896,187,91,
3421,437,205,
5205,787,472,
7697,1334,992,
8787,1698,1361,
8976,1795,1488,
9516,1809,1615,
9386,1887,1670,
9802,2025,1894,
9834,2149,2017,
10.25K,2347,2152,
10.18K,2384,2350,
1274,167,66,
2234,322,171,
3371,534,370,
4731,856,714,
5374,1063,978,
5685,1121,1013,
5852,1170,1057,
5823,1194,1144,
6080,1234,1263,
6243,1340,1354,
6406,1398,1449,
6427,1487,1452,
879,96,47,
1721,201,109,
2682,356,236,
4081,716,519,
4672,877,699,
4922,924,752,
4960,952,873,
4968,989,867,
5346,1068,982,
5297,1127,1046,
5410,1151,1159,
5694,1252,1219,
574,60,24,
1169,143,47,
1797,240,122,
2909,480,337,
3515,581,475,
3749,620,489,
3862,705,527,
3941,716,583,
4036,781,634,
4278,788,728,
4316,816,820,
4405,882,879,
339,35,20,
757,76,41,
1290,136,88,
2231,311,204,
2804,465,317,
2889,469,315,
3006,472,370,
3080,546,398,
3194,533,442,
3255,609,498,
3432,672,570,
3459,744,587,
0,0,0,
2352,261,109,
4048,579,336,
5260,924,656,
6465,1411,1294,
7279,1549,1636,
7419,1641,1765,
7322,1699,1847,
7591,1754,1891,
7691,1802,2038,
7642,1877,2116,
7974,1928,2207,
7908,1922,2322,
1097,115,51,
2034,281,168,
2873,457,266,
3737,756,596,
4070,922,808,
4274,893,881,
4256,995,970,
4289,983,995,
4409,1028,1104,
4420,1107,1162,
4562,1124,1265,
4666,1096,1278,
828,88,42,
1590,206,111,
2292,343,246,
3215,621,442,
3395,747,637,
3620,782,685,
3626,800,709,
3598,807,776,
3832,885,870,
3894,869,927,
3908,981,954,
3879,965,988,
95,11,8,
220,27,24,
279,47,16,
277,46,41,
299,58,54,
493,88,83,
278,67,71,
499,117,98,
532,125,118,
549,101,111,
541,152,127,
502,137,130,
76,9,4,
150,19,12,
210,40,13,
297,56,47,
305,66,51,
319,66,71,
305,72,75,
279,72,64,
301,63,66,
343,66,85,
327,90,88,
342,72,94,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
10.06K,1101,581,
18.4K,2280,1394,
25.38K,3982,2671,
33.38K,6473,5510,
36.68K,7629,7400,
37.36K,7941,7706,
38.22K,8300,8121,
38.57K,8471,8679,
39.61K,8917,9322,
40.19K,9270,9847,
40.83K,9744,10.76K,
40.94K,10.15K,11.26K,
8727,1001,488,
16.56K,2053,1251,
23.11K,3540,2358,
30.91K,5937,4929,
34.51K,7080,6647,
34.96K,7271,7092,
35.26K,7749,7409,
35.91K,7886,7920,
36.7K,8480,8627,
37.18K,8547,9147,
38.11K,8949,9866,
38.38K,9128,10.36K,
7911,886,431,
14.8K,1815,1164,
20.41K,3096,2129,
27.76K,5183,4450,
30.98K,6525,5927,
31.94K,6740,6510,
32.08K,6990,6771,
32.84K,7162,7134,
33.28K,7542,7838,
33.78K,7603,8145,
34.57K,8137,8999,
35.08K,8382,9366,
5763,599,315,
10.8K,1391,739,
15.46K,2376,1466,
21.39K,3997,3189,
23.93K,4853,4616,
23.98K,5041,4790,
24.94K,5344,5128,
25.13K,5395,5356,
25.36K,5608,5795,
26.26K,5930,6032,
26.63K,6146,6575,
26.95K,6463,6948,
1367,158,72,
2798,326,203,
4308,576,361,
6764,1037,751,
7935,1389,1080,
8123,1459,1236,
8521,1532,1278,
8540,1649,1308,
8692,1742,1567,
8966,1914,1740,
9236,2027,1882,
9362,2063,2027,
591,52,33,
1252,125,64,
1974,236,142,
3338,478,317,
4117,643,474,
4224,691,526,
4340,703,562,
4486,721,610,
4641,820,708,
4728,886,737,
4948,1005,883,
5033,1052,902,
3,1,0,
19,1,0,
38,4,4,
75,10,6,
98,16,6,
91,12,10,
98,22,12,
101,14,11,
126,24,5,
114,17,12,
123,31,17,
106,17,17,
0,0,0,
19.39K,2009,1013,
37.77K,4637,2500,
54.57K,7870,5087,
76.27K,13.73K,10.68K,
85.79K,17.37K,14.98K,
87.58K,17.85K,16.02K,
89.43K,18.93K,17.34K,
90.99K,19.31K,18.34K,
93.03K,20.56K,20.05K,
95.98K,21.4K,21.66K,
97.43K,22.53K,23.76K,
99K,23.02K,24.85K,
13.02K,1428,734,
24.87K,3242,1851,
36.04K,5452,3390,
48.75K,9269,7293,
54.04K,11.13K,10.14K,
54.95K,11.84K,10.92K,
55.92K,12.32K,11.41K,
56.7K,12.75K,12.14K,
57.81K,13.4K,13.47K,
58.89K,13.59K,14.48K,
59.99K,14.46K,15.7K,
61.64K,14.69K,16.29K,
11.93K,1282,610,
22.71K,2815,1618,
32.05K,4895,3068,
44.22K,8141,6540,
48.73K,10.03K,9032,
49.67K,10.6K,9496,
50.66K,10.87K,10.31K,
51.35K,11.47K,10.93K,
52.82K,11.88K,11.95K,
53.52K,12.37K,12.87K,
54.58K,12.92K,14K,
55.52K,13.29K,14.72K,
7083,742,334,
14.04K,1801,1066,
20.11K,3006,1983,
24.72K,4909,3928,
26.75K,5927,5606,
28.77K,6463,6167,
27.3K,6310,6318,
29.77K,6859,6923,
30.09K,7283,7489,
30.72K,7580,8108,
31.12K,7723,8758,
31.05K,7843,9000,
706,70,33,
1388,166,118,
2108,299,188,
2947,560,408,
3014,629,600,
3056,688,596,
3181,725,699,
3089,764,740,
3217,794,780,
3232,835,804,
3230,841,920,
3157,804,1018,
228,21,13,
441,60,28,
680,79,67,
872,188,142,
907,229,177,
916,231,193,
867,244,228,
944,219,228,
941,243,283,
976,230,258,
984,251,266,
982,271,314,
74,10,1,
197,20,10,
277,34,20,
350,79,52,
435,76,78,
462,99,87,
421,98,73,
426,98,98,
457,99,117,
454,106,119,
513,117,120,
453,99,135,
52.13K,4594,2495,
50.99K,4382,2479,
48.99K,4319,2448,
46.35K,4028,2307,
38.87K,3347,1957,
31.45K,2714,1561,
28.84K,2455,1399,
25.89K,2253,1216,
23.49K,1939,1127,
17.99K,1601,899,
13.03K,1142,601,
4953,444,254,
0,0,0,
50.7K,4382,2435,
49.08K,4321,2408,
46.76K,4068,2244,
39.18K,3466,1997,
31.6K,2714,1574,
29.08K,2513,1406,
26.23K,2394,1269,
24.01K,2081,1215,
18.72K,1614,899,
13.55K,1240,632,
6299,549,293,
1316,125,66,
50.73K,4488,2580,
49.58K,4362,2357,
46.86K,4065,2315,
39.52K,3511,2004,
32.12K,2863,1491,
29.64K,2735,1434,
27.38K,2431,1336,
24.94K,2218,1218,
20.36K,1788,978,
15.58K,1309,779,
8306,663,393,
3465,317,162,
50.66K,4469,2417,
49.64K,4266,2443,
47.54K,4124,2307,
41.3K,3628,2084,
34.4K,3091,1696,
32.52K,2850,1600,
30.44K,2750,1446,
28.43K,2514,1380,
24.16K,2153,1157,
19.6K,1665,974,
13.18K,1152,676,
9008,795,431,
50.88K,4409,2508,
49.87K,4357,2494,
48.3K,4244,2343,
43.86K,3912,2173,
39.07K,3453,1962,
37.43K,3385,1813,
35.48K,3218,1770,
34.39K,3011,1656,
30.54K,2696,1466,
27.38K,2439,1332,
22.82K,1950,1109,
19.47K,1754,941,
51.27K,4496,2534,
50.73K,4400,2388,
49.2K,4363,2434,
45.95K,4114,2193,
41.92K,3590,2047,
40.83K,3603,1984,
39.73K,3381,1919,
38.26K,3384,1876,
36.21K,3161,1722,
33.52K,2990,1712,
29.58K,2632,1487,
27.26K,2500,1316,
51.26K,4413,2564,
50.7K,4378,2388,
50.19K,4411,2406,
48.11K,4180,2294,
46.12K,3932,2218,
44.99K,4073,2200,
44.11K,3845,2190,
43.21K,3814,2155,
41.66K,3710,1973,
40.54K,3518,1983,
37.8K,3369,1811,
36.71K,3197,1747,
13.95K,1247,703,
13.68K,1194,652,
13.33K,1177,696,
12.73K,1103,635,
10.42K,987,493,
8378,721,412,
7821,688,372,
7052,604,324,
6355,556,295,
4810,448,237,
3499,322,193,
1398,144,67,
0,0,0,
13.93K,1200,684,
13.42K,1215,648,
12.81K,1140,660,
11.24K,989,552,
9625,848,459,
9185,783,467,
8649,766,421,
8118,657,421,
7031,606,328,
6174,504,312,
4355,361,240,
3319,289,148,
13.8K,1223,661,
13.48K,1128,673,
12.91K,1139,639,
11.48K,1017,540,
9780,847,473,
9447,805,459,
8936,818,440,
8544,676,423,
7254,639,367,
6522,534,322,
4913,448,257,
3773,338,185,
13.89K,1193,682,
13.62K,1161,707,
13.06K,1065,626,
11.8K,1000,574,
10.26K,917,493,
9744,866,426,
9425,841,453,
8758,746,410,
7853,676,401,
7044,645,335,
5723,486,271,
4586,393,220,
14.08K,1207,722,
13.96K,1217,679,
13.85K,1224,707,
13.96K,1144,669,
13.85K,1233,664,
13.97K,1247,683,
14.19K,1236,726,
14.03K,1224,666,
13.82K,1278,666,
13.76K,1241,643,
13.75K,1259,660,
13.72K,1169,715,
13.99K,1263,701,
14.02K,1192,705,
13.93K,1214,738,
14.09K,1173,682,
14.07K,1255,700,
13.97K,1280,680,
13.93K,1236,670,
13.78K,1218,676,
13.89K,1211,697,
14K,1165,691,
13.78K,1250,662,
14.17K,1261,707,
14.14K,1210,649,
13.92K,1269,722,
13.85K,1227,671,
14.09K,1267,719,
14K,1299,717,
14.01K,1232,689,
13.93K,1244,661,
14.01K,1251,665,
13.85K,1196,715,
13.95K,1214,649,
13.91K,1267,666,
13.92K,1246,709,
72.53K,6427,3587,
71.55K,6161,3591,
68.99K,6109,3392,
66.33K,5696,3153,
54.48K,4781,2609,
43.74K,3887,2154,
40.09K,3514,1952,
36.61K,3190,1847,
32.65K,2887,1620,
25.42K,2249,1275,
18.23K,1525,926,
7375,626,336,
0,0,0,
71.62K,6390,3588,
69.49K,6006,3494,
65.3K,5779,3215,
55.1K,4902,2639,
44.31K,3881,2121,
40.92K,3645,2003,
37.37K,3255,1841,
34.25K,3000,1726,
26.73K,2343,1325,
19.73K,1795,946,
8943,792,446,
2086,169,87,
71.92K,6229,3432,
69.7K,6166,3376,
66.26K,5890,3231,
56.38K,4906,2715,
46.24K,4179,2285,
43.27K,3756,2213,
39.77K,3560,1886,
36.59K,3314,1805,
30.17K,2650,1481,
23.1K,2042,1110,
13.43K,1167,673,
6802,653,315,
72.24K,6458,3496,
70.48K,6234,3388,
66.95K,5891,3317,
59.7K,5195,3030,
51.83K,4541,2520,
48.76K,4313,2430,
46.48K,4082,2246,
43.99K,3770,2147,
38.61K,3479,1954,
33.29K,2925,1637,
25.21K,2184,1252,
19.81K,1759,1019,
72.01K,6491,3501,
71.35K,6186,3515,
68.85K,5925,3427,
63.56K,5560,3059,
57.38K,5002,2879,
55.56K,4879,2702,
53.61K,4913,2574,
51.11K,4547,2551,
47.88K,4106,2316,
44.06K,3846,2202,
37.45K,3242,1849,
33.77K,3072,1648,
72.85K,6408,3577,
71.7K,6225,3595,
70.53K,6272,3429,
67.16K,5990,3307,
63.11K,5624,3093,
62.91K,5487,3100,
61.26K,5397,2863,
60.96K,5268,2833,
57.96K,5102,2821,
55.94K,5025,2573,
52.55K,4523,2524,
49.88K,4538,2502,
72.3K,6203,3632,
72.29K,6229,3562,
71.45K,6372,3452,
69.87K,6142,3375,
67.84K,6046,3370,
67.15K,5831,3288,
66.6K,5922,3147,
66.01K,5846,3305,
64.74K,5736,3111,
63.68K,5513,3114,
62.24K,5442,3018,
60.4K,5398,2954,
124.2K,10.92K,6033,
121.7K,10.61K,5990,
117.8K,10.46K,5630,
111.5K,9836,5407,
92.49K,8201,4630,
74.14K,6481,3573,
68.4K,5916,3352,
62.43K,5403,3097,
55.76K,4948,2672,
43.73K,3841,2179,
31.36K,2744,1513,
12.37K,1060,614,
0,0,0,
123.1K,10.85K,6141,
120K,10.49K,5768,
115.8K,10.26K,5697,
102.4K,9071,5068,
89.2K,7967,4344,
84.66K,7444,4229,
80.09K,7163,3915,
76.15K,6603,3705,
67.33K,5975,3225,
58.24K,5021,2832,
45.31K,3985,2337,
36.14K,3233,1881,
122.5K,10.69K,6089,
121K,10.63K,6020,
117.2K,10.15K,5706,
106.7K,9294,5084,
96.86K,8582,4755,
93.5K,8174,4594,
89.09K,7941,4367,
86.35K,7665,4122,
80.21K,7084,3750,
72.2K,6327,3499,
61.96K,5397,3101,
55.61K,4713,2721,
123.3K,10.85K,6026,
122.7K,10.77K,5970,
122.2K,10.73K,5898,
117.9K,10.52K,5751,
113.4K,9970,5545,
112.9K,10.04K,5512,
111.5K,9766,5515,
110.2K,9737,5457,
108K,9561,5243,
105K,9471,5197,
102K,8979,4978,
99.87K,8766,4855,
124.3K,11.01K,6071,
123.3K,10.85K,5991,
123.3K,10.83K,5882,
122.1K,10.69K,5934,
121.6K,10.79K,5968,
120.8K,10.48K,6022,
121.5K,10.62K,5996,
120.6K,10.59K,5993,
120.3K,10.45K,5887,
119.6K,10.39K,5798,
118.5K,10.32K,5665,
117.8K,10.42K,5759,
123.7K,11.09K,6191,
123.7K,10.79K,6097,
123.7K,10.93K,6082,
124.3K,11K,6031,
124K,10.73K,5949,
123.3K,10.71K,6208,
123.5K,10.74K,6074,
123.6K,10.84K,6054,
122.8K,10.93K,6005,
123K,10.82K,6038,
123.5K,10.8K,5972,
123.7K,10.73K,6022,
123.7K,10.96K,6208,
124.7K,10.83K,6101,
124.2K,10.97K,6024,
124.2K,10.74K,5977,
124.4K,10.84K,6065,
124.2K,10.8K,5988,
124K,10.83K,6232,
124.3K,11.04K,5891,
123.6K,10.69K,6015,
123.7K,11.09K,6088,
123.6K,10.84K,6228,
123.7K,10.63K,5975,
149.5K,13.08K,7274,
146K,12.9K,7216,
142K,12.53K,6902,
134.1K,11.54K,6626,
111.7K,9963,5402,
88.96K,7773,4342,
81.62K,7273,3960,
74.51K,6515,3678,
67.04K,5990,3315,
51.93K,4634,2578,
37.34K,3316,1802,
14.85K,1248,712,
0,0,0,
146.4K,12.9K,7310,
141.9K,12.56K,6939,
134.8K,11.7K,6493,
113.4K,10.14K,5566,
92.19K,8006,4481,
85.46K,7539,4249,
78.27K,6804,3876,
71.28K,6241,3389,
57.05K,4876,2768,
43.08K,3753,2164,
22.2K,2021,1062,
7769,628,394,
145.5K,12.88K,7139,
142.3K,12.37K,7044,
136.2K,11.92K,6685,
116.7K,10.27K,5733,
97.94K,8540,4771,
91.07K,7972,4457,
84.89K,7525,4148,
78.71K,6770,3876,
65.86K,5644,3273,
52.26K,4669,2625,
33.26K,2862,1610,
20.59K,1789,993,
147K,13K,7177,
143.5K,12.43K,7043,
138.4K,12.14K,6955,
123.4K,10.84K,5973,
108.3K,9462,5204,
103.3K,9041,5073,
98.01K,8638,4758,
93.32K,8049,4507,
82.71K,7324,4021,
72.49K,6276,3562,
57.77K,5127,2909,
47.5K,4205,2329,
149.1K,13.01K,7034,
147.7K,12.87K,7277,
145.7K,13.15K,7160,
140.7K,12.46K,6912,
136K,11.64K,6608,
134.9K,11.8K,6484,
132.6K,11.65K,6553,
130.6K,11.47K,6391,
127.9K,11.33K,6259,
124.5K,10.86K,6148,
119K,10.51K,5635,
116.1K,10.33K,5612,
148.4K,13.08K,7181,
148.2K,13.06K,7264,
146K,12.98K,7103,
143.1K,12.72K,7006,
139.8K,12.31K,6848,
139K,12.12K,6749,
137.7K,11.98K,6642,
136.4K,12.07K,6586,
134.6K,11.92K,6746,
132.1K,11.73K,6294,
129K,11.34K,6273,
126.9K,10.95K,6268,
148.6K,13.01K,7357,
149.1K,12.97K,7391,
148.4K,12.8K,7267,
149.2K,12.97K,7196,
149.2K,13.2K,7232,
148.5K,13.06K,7278,
148.7K,13.15K,7516,
148.7K,12.91K,7339,
148.7K,12.99K,7322,
149K,13.06K,7320,
148.3K,13.18K,7333,
148.9K,13.04K,7341,
710.5K,62.43K,34.54K,
697.4K,61.32K,34.08K,
674.3K,59.44K,32.8K,
639.2K,55.81K,31.33K,
532.8K,46.78K,26.04K,
426.9K,37.31K,20.71K,
391.7K,34.3K,18.94K,
355K,31.25K,17.23K,
321.6K,27.86K,15.67K,
248.8K,21.65K,12.34K,
177.7K,15.53K,8780,
71.05K,6198,3478,
0,0,0,
701.5K,61.43K,34.06K,
685.7K,60.76K,33.63K,
660.9K,58.07K,32.62K,
584.7K,51.35K,28.61K,
510.1K,44.99K,24.79K,
485.9K,42.69K,23.57K,
460.9K,40.3K,22.45K,
435.1K,38K,21.35K,
385.5K,34.03K,18.85K,
334.8K,29.38K,16.35K,
258.7K,22.66K,12.75K,
209.6K,18.28K,10.31K,
702.5K,61.69K,34.31K,
689.3K,60.18K,33.64K,
665.5K,58.16K,32.44K,
598.3K,52.61K,29.55K,
528.1K,46.36K,26.03K,
505.5K,44.38K,24.71K,
483.1K,42.16K,23.78K,
460.1K,40.84K,22.85K,
414.5K,36.69K,20.17K,
368.9K,32.43K,18.05K,
300.1K,26.6K,14.6K,
255.2K,22.42K,12.38K,
705K,61.83K,34.33K,
695.7K,60.86K,34.26K,
679.6K,59.47K,33.22K,
633.4K,55.24K,30.99K,
587.2K,51.86K,28.7K,
572.5K,50.39K,28.24K,
555.9K,48.91K,27.19K,
539.9K,47.83K,26.93K,
510.5K,44.69K,24.9K,
479.2K,42.64K,23.29K,
431.5K,38.1K,21.17K,
402.9K,34.95K,19.71K,
710.5K,62.29K,34.75K,
709.1K,61.91K,34.62K,
707.3K,61.77K,34.55K,
701.7K,61.63K,34.57K,
694K,61.06K,33.99K,
692.4K,60.67K,33.36K,
690.5K,60.61K,33.88K,
688.5K,59.98K,33.46K,
684.4K,60K,33.3K,
680.1K,59.57K,33.43K,
673.7K,59.46K,32.83K,
669K,58.63K,32.98K,
710.1K,61.59K,34.88K,
711.1K,62.77K,34.16K,
710.4K,62.53K,34.57K,
708.9K,61.87K,34.45K,
704.7K,62.06K,34.56K,
703K,61.69K,34.36K,
702.3K,61.45K,34.31K,
703.7K,61.5K,34.34K,
702.3K,61.33K,34.12K,
700.5K,61.55K,34.31K,
698.1K,61.15K,34.13K,
696.7K,61.18K,33.73K,
711.6K,62.16K,34.88K,
711.2K,62.72K,34.88K,
711.7K,62.28K,34.95K,
710.7K,62.31K,34.61K,
707.8K,62.12K,34.71K,
708.8K,62.16K,34.85K,
709.1K,61.95K,34.44K,
708.8K,62.4K,35.01K,
708K,62.05K,34.49K,
707.5K,62.15K,34.68K,
708K,61.83K,34.81K,
705.2K,61.51K,34.31K,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
3,0,0,
15,0,0,
470.4,3,0,
2048,15,0,
2872,30.5,3,
3813,33.3,3,
5020,37.1,0,
7618,74.2,0,
10.92K,120.8,17,
16.62K,244.6,5,
21.72K,285.8,14.8,
0,0,0,
3,0,0,
21,0,0,
487.8,0,0,
1953,21.7,0,
2782,16,6,
3650,47.9,0,
4784,49.3,3,
7462,65.5,6,
10.45K,113.6,0,
16.31K,196.7,12,
20.8K,310.6,26.6,
0,0,0,
6,0,0,
31,0,0,
403.7,5,0,
1984,15.4,0,
2706,30,0,
3511,20.8,0,
4553,37.8,3,
7096,57.4,6,
10.46K,127.4,9,
16.05K,198.5,15.3,
20.06K,251.2,21,
0,0,0,
3,0,0,
26,0,0,
401,9,0,
1699,14,0,
2135,15,0,
2865,28.2,4,
3842,34.1,3,
5637,58.8,3,
8283,75.7,11,
12.32K,195,11.4,
15.92K,254,26.8,
0,0,0,
0,0,0,
4.8,0,0,
151.8,0,0,
828.9,3.5,0,
1165,4,0,
1529,8.9,0,
1986,6.9,0,
3281,24.5,2,
4726,49,2.8,
7358,69.5,2.8,
9444,73,0,
0,0,0,
0,0,0,
2,0,0,
117.3,0,0,
686.5,0,0,
855.6,4,0,
1093,6,0,
1519,6,0,
2331,15.6,2,
3440,29.5,0,
5091,52.7,4,
6643,99.1,2,
0,0,0,
0,0,0,
0,0,0,
83.5,0,0,
318.1,2,0,
398,2,0,
622.8,4,0,
705.3,2.8,0,
1160,4,0,
1602,22.4,2,
2136,45.8,4,
2956,49.7,4,
0,0,0,
0,0,0,
0,0,0,
15.9,0,0,
2012,0,0,
10.39K,5,0,
15.28K,22.7,0,
20.97K,185.4,8.2,
28.19K,154.4,0,
45.35K,226.4,18.1,
66.53K,494.2,0,
107.2K,997.2,35.7,
138.7K,1479,73.7,
0,0,0,
0,0,0,
22,0,0,
1790,0,0,
8037,6.7,0,
11.95K,41,0,
15.82K,113.2,0,
21.04K,136.9,0,
33.96K,287.1,0,
48.55K,494,0,
77.19K,833.7,33,
99.78K,1047,13.6,
0,0,0,
0,0,0,
30.2,0,0,
1767,9.1,0,
7975,34,0,
11.46K,11,0,
15.65K,163.5,13.6,
20.9K,179.9,0,
32.99K,191,0,
46.06K,432.7,0,
75.58K,748.8,40.9,
95.69K,1166,36.4,
0,0,0,
0,0,0,
13.6,0,0,
1352,0,0,
5963,5.8,0,
8349,21.4,0,
11.17K,50.8,0,
14.93K,93.1,0,
23.39K,199.4,0,
33.3K,453,24.6,
52.66K,603.6,0,
67.46K,871.8,43.7,
0,0,0,
0,0,0,
0,0,0,
89.1,0,0,
667,0,0,
1033,0,0,
1292,14.4,0,
1814,0,0,
3167,13.1,0,
4289,29.6,0,
7204,45.7,0,
9207,91,0,
0,0,0,
0,0,0,
0,0,0,
29.3,0,0,
180.8,5.7,0,
305.3,0,0,
542.4,0,0,
712.8,0,0,
1174,0,0,
1703,5,0,
2794,32.6,0,
3503,39.3,0,
0,0,0,
0,0,0,
0,0,0,
25.4,0,0,
96.1,0,0,
134.2,0,0,
348.5,0,0,
410.9,0,0,
471,0,0,
759.9,0,0,
1201,5,0,
1466,23.1,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
243.6,2.8,0,
2473,35.6,6.5,
10.72K,296.9,6.5,
42.49K,2092,233,
73.91K,4853,744.1,
82.41K,5717,1108,
91.54K,6726,1355,
99.74K,7645,1659,
114.7K,9853,2440,
129.3K,11.91K,3118,
147.4K,14.63K,4514,
159K,16.49K,5473,
162,0,0,
2066,46.6,0,
8722,227.8,7,
36.35K,1651,171,
62.65K,3959,644.8,
69.65K,4822,831.1,
76.99K,5657,1117,
83.52K,6399,1363,
96.5K,8098,2007,
108K,10.02K,2773,
123.7K,12.19K,3716,
132K,13.72K,4553,
157.5,0,0,
1945,23.3,0,
7930,211.3,11.1,
32.94K,1577,191.8,
56.22K,3642,547.2,
63.1K,4357,745.7,
69.5K,5204,1023,
75.86K,5950,1271,
86.32K,7515,1826,
96.66K,9080,2331,
109.5K,11.37K,3348,
117.6K,12.66K,4052,
180.4,0,0,
1784,32.8,0,
6637,189.3,10.8,
26.48K,1323,191.7,
45.01K,2841,597.5,
49.35K,3499,731.5,
55.7K,4016,848.7,
59.63K,4604,1086,
68.59K,5898,1547,
75.9K,6969,1912,
86.13K,8837,2758,
91.37K,9836,3353,
14.7,0,0,
341.1,0,0,
1906,26.9,2,
7620,346.8,25.5,
12.7K,780.5,116.2,
14.33K,969.1,131.5,
15.54K,1161,200.8,
16.77K,1369,241.6,
18.39K,1708,356.9,
20.54K,2067,528.3,
22.57K,2573,721.8,
23.96K,2822,954.9,
0,0,0,
156.4,0,0,
808.2,4.9,0,
3977,144,10,
6371,395.4,39.9,
7122,517.2,58.6,
7716,595.6,76.1,
8321,715.7,104.2,
9267,870.9,163.9,
10.02K,1091,209.4,
11.04K,1317,337,
11.62K,1348,461.4,
0,0,0,
7.6,0,0,
71.5,0,0,
435.6,16,0,
924.2,47.9,2.8,
1035,40.2,2,
1119,64.2,4,
1225,71.1,0,
1383,87.2,18.4,
1633,128.4,13.5,
1827,174.6,27.3,
1828,171.9,33.5,
0,0,0,
302.6,0,0,
5698,34.2,0,
30.25K,639.2,5.5,
142.5K,6119,468.3,
265.9K,15.08K,1770,
304.7K,18.24K,2419,
343.1K,21.66K,3213,
376.6K,25.01K,3952,
448.2K,32.84K,5886,
511.4K,40.44K,8374,
604.1K,51.07K,11.99K,
660.4K,58.54K,14.98K,
220.2,0,0,
3918,28.6,0,
19.47K,441.6,0,
91.23K,3693,250,
168.1K,9641,1312,
193.7K,11.7K,1699,
215.9K,13.93K,2191,
239K,16.16K,2452,
281.4K,20.99K,4067,
320.9K,26.07K,5632,
374.6K,33.17K,8001,
405.1K,37.19K,10.53K,
181.4,0,0,
3279,52.5,0,
16.91K,367.8,24,
77.39K,3404,279.9,
140.5K,8164,896,
159.9K,9887,1264,
178.3K,11.88K,1739,
196.6K,13.83K,2087,
230.5K,17.43K,3330,
261K,21.55K,4691,
302.1K,27.68K,6594,
327.5K,31.43K,8622,
151,0,0,
1891,28,0,
9406,194.9,5.5,
46.17K,1655,174.5,
82.64K,4446,581.2,
94.93K,5491,829.7,
105.3K,6715,947.2,
115.7K,8183,1385,
133.9K,10.59K,1918,
150.2K,12.77K,2635,
172.2K,15.98K,3795,
183.1K,18.94K,5026,
0,0,0,
167.9,0,0,
599.6,0,0,
3218,133,0,
5746,397.1,32.7,
6594,488.1,32.2,
7198,458.3,62.3,
7937,605.1,88.3,
8896,731.2,133.1,
9735,895.5,211.1,
10.77K,1069,268,
11.87K,1297,282.5,
0,0,0,
0,0,0,
140.7,0,0,
789.1,56.8,0,
1606,56.8,0,
1930,97.1,8.5,
2106,114.1,8.5,
2177,163.1,8.5,
2506,231,24.6,
2881,283.4,34,
3332,369.6,42.3,
3324,361.1,56.4,
0,0,0,
0,0,0,
14.2,0,0,
139.6,0,0,
265.5,6.5,0,
248.4,20.7,0,
338.9,20.7,0,
381.5,14.2,0,
444.8,28.4,0,
449.4,69.8,0,
477.3,46.7,0,
497.3,49.1,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
3,0,0,
70.9,0,0,
696.8,10,0,
6159,83.5,4.9,
15.96K,390.8,32.3,
19.61K,453.5,40.1,
23.4K,593.2,73,
27.51K,762.7,109.2,
35.81K,1200,149.4,
43.21K,1566,245.9,
55.52K,2239,339.7,
62.19K,2907,433.8,
7,0,0,
107.9,3,0,
598.6,6,0,
6106,98.6,11.9,
14.92K,351.1,36.9,
19.06K,471.4,46.3,
22.37K,603.1,51.9,
26.37K,765.1,74.8,
33.83K,1138,152.8,
41.67K,1518,225,
52.71K,2097,324.4,
60.16K,2682,439,
3,0,0,
81.8,0,0,
589.8,17.9,0,
5918,124,6,
15.02K,318.9,23.2,
17.91K,399.6,52,
21.41K,581.1,84.4,
25.03K,788.8,103.8,
32.92K,1056,121.4,
39.63K,1485,214.1,
50.02K,2151,322.3,
57.01K,2619,392.5,
12,0,0,
72.3,0,0,
604.4,4.8,3,
4548,65.4,11,
11.58K,288.8,26.5,
14.18K,332.2,55.2,
17.52K,399.4,69.5,
20.1K,666,77.5,
26.02K,738.4,144.3,
31.66K,1163,149.8,
40.77K,1673,268.2,
46.1K,1988,397,
0,0,0,
24.1,0,0,
281.7,1.6,0,
2807,43.5,4.5,
6965,147.2,17.9,
8481,175.1,20.5,
10.23K,248.5,2,
11.91K,315.3,35,
15.28K,523.8,63.7,
18.46K,774.9,46.8,
22.46K,1007,132.9,
24.97K,1265,171.6,
0,0,0,
25.4,0,0,
233.4,7.7,0,
1858,22.4,4.2,
4776,120.9,13.7,
5879,130.5,29.7,
6725,190.6,23.7,
7814,291.9,31.2,
9951,323,40.3,
11.77K,535.2,47.7,
14.55K,749.8,102,
16.01K,926.8,143.5,
4,0,0,
16.8,0,0,
92.8,2,0,
852.1,14,0,
1754,31.7,8.8,
2202,68.4,4,
2429,97.8,16.3,
2872,130.3,28.6,
3518,174.6,11.7,
3987,236.8,29,
4885,269.8,54.7,
5274,297.4,66.7,
0,0,0,
6.6,0,0,
411.4,0,0,
3813,27.1,0,
42.12K,688.1,20.1,
116.2K,2227,222.8,
146.1K,3415,320.5,
177.2K,3703,351.1,
207.1K,5170,385.4,
278.6K,7724,810.2,
349.7K,10.51K,1151,
457.9K,15.79K,2012,
535.8K,20.02K,2873,
6.5,0,0,
376.8,0,0,
2750,7.5,0,
30.28K,453.4,14,
81.09K,1534,213.8,
101.1K,2123,249.3,
123.6K,2871,323,
145.8K,3506,412.3,
191K,5484,609.6,
239.4K,7067,1120,
314K,11.38K,1591,
363K,14.35K,2044,
0,0,0,
228.3,0,15.9,
2870,0,0,
28.49K,372.2,52.2,
76K,1675,174.2,
95.12K,2097,246.7,
114.7K,2737,270.4,
137.2K,3377,373.7,
179.7K,5181,835.3,
225.7K,6761,931.2,
293.9K,10.69K,1509,
336.1K,13.38K,1944,
0,0,0,
342.5,8.2,0,
2282,13.6,0,
19.72K,368,29.6,
52.26K,1225,100.2,
65.6K,1398,121.9,
79.46K,1832,203.1,
93.55K,2557,272.4,
122.4K,3409,542.7,
154.7K,4893,645,
198.4K,7482,1196,
229.2K,9168,1454,
0,0,0,
20.3,0,0,
204.1,0,0,
2871,23.5,0,
7634,118.2,13.9,
8962,189.4,9,
10.62K,284.9,22,
11.94K,335.3,32.2,
15.71K,458.6,64,
18.6K,730.9,81.6,
23.42K,1037,99,
25.65K,1153,149.6,
0,0,0,
8.5,0,0,
84,5.7,0,
991.8,8.1,0,
2735,34.5,9,
3241,117.4,16.4,
3847,82,5.4,
4464,128.5,6,
5438,140.1,23.9,
6580,176.9,45.5,
7749,383,40.9,
8954,445,75.7,
0,0,0,
7.7,0,0,
15,0,0,
405.8,0,0,
1076,12.7,12.7,
1179,20.8,0,
1190,78,5,
1425,83.4,16,
1933,68.8,24.9,
2105,107.1,17.7,
2184,135,20.4,
2494,199.5,15.4,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
1956,38.3,0,
8795,457.2,53.2,
18.39K,1355,219.3,
33.41K,4079,1621,
41.27K,6466,3285,
42.93K,7006,3773,
44.58K,7300,4343,
45.32K,7883,4937,
47.92K,8734,5610,
49.68K,9160,6741,
52.17K,10.34K,8172,
53.61K,10.63K,8847,
1717,49,0,
7527,287.7,37.6,
16.16K,1151,201.6,
29.67K,3577,1401,
36.03K,5573,2642,
37.72K,6003,3255,
39.45K,6399,3766,
41.36K,6980,4232,
43.53K,7415,5011,
45.03K,8252,5724,
46.31K,8908,7073,
47.72K,9308,7567,
1639,36.5,3.5,
7204,320.6,33.5,
14.92K,1149,178.3,
27.82K,3293,1225,
34.42K,5258,2541,
36.05K,5668,3104,
37.04K,6045,3330,
38.53K,6405,3891,
40.79K,7170,4656,
42.37K,7775,5622,
44.26K,8453,6639,
45.86K,8943,7409,
1233,44.4,2,
5352,245.9,38,
11.42K,713.8,225.7,
23.24K,2645,978.5,
27.79K,4343,1866,
28.53K,4368,2210,
30.23K,4905,2661,
29.69K,5104,2824,
31.02K,5714,3621,
32.44K,6161,4300,
33.52K,6879,5022,
34.55K,7132,5519,
416.5,6.5,0,
1953,52.7,11.3,
4221,277.1,38.7,
8237,943,284.5,
10.15K,1474,658.2,
10.78K,1721,816.8,
11.27K,1816,905.5,
11.77K,1864,1175,
12.95K,2098,1409,
12.92K,2363,1623,
13.71K,2571,1884,
13.98K,2682,1939,
195.3,0,0,
1040,50.8,0,
2402,162.6,32.2,
4740,629.8,150.4,
5772,852.3,313.5,
6205,1004,421.6,
6645,1081,523,
6502,1096,598.5,
7055,1165,738.9,
7441,1319,920.4,
7950,1457,1124,
8297,1566,1222,
14.8,0,0,
185.6,6.3,0,
619.1,7.6,2.8,
1706,137.1,16.9,
2273,246.3,76.9,
2468,326.2,84.5,
2681,303.9,89.7,
2846,331.3,128.1,
3081,432.3,169.1,
3168,471.6,182.1,
3505,497.1,260,
3646,541,312.9,
0,0,0,
5921,55,10.6,
30.91K,1145,128.5,
75.16K,4372,443,
158K,16.34K,4702,
204K,26.5K,10.79K,
215.7K,29.84K,12.65K,
225.6K,32.49K,14.82K,
233.9K,34.51K,17.28K,
251.9K,39.51K,22.7K,
264.9K,44.68K,26.42K,
278.6K,49.43K,33.4K,
289K,52.13K,36.97K,
3872,70.3,0,
19.32K,824.3,35.1,
46.8K,2491,439.9,
97.44K,10.8K,3327,
120.8K,16.69K,6896,
124.8K,18.68K,8223,
131.5K,20.44K,9691,
135.2K,21.81K,11.28K,
140.7K,23.91K,13.56K,
146.7K,26.91K,16.04K,
154.2K,28.88K,19.92K,
157.1K,30.62K,22.23K,
3212,111.3,0,
16.62K,664.7,13.7,
40.94K,2539,270.5,
84.32K,9363,2641,
106.8K,15.17K,6412,
112.3K,15.89K,7515,
115.2K,17.55K,8124,
118.6K,18.76K,10.13K,
125.3K,21.31K,12.38K,
131.9K,23.82K,14.39K,
138.1K,25.45K,17.54K,
139.6K,26.44K,19.29K,
2054,37.1,6.2,
10.71K,454,24.2,
26.33K,1341,288,
51.41K,5792,1536,
62.21K,9774,3689,
66.97K,10.76K,4575,
65.93K,11.35K,4815,
70.67K,11.81K,5853,
72.82K,13.64K,7734,
74.11K,14.36K,8694,
75.27K,16.8K,11.41K,
77.06K,17.27K,12.72K,
112,8.5,0,
738.5,24.2,0,
2220,142.3,0,
4779,501.7,117.4,
5981,730.4,222.1,
6170,839.2,434.3,
6574,950,460.8,
6468,1033,460.5,
6706,1281,588.6,
6925,1285,785,
7278,1569,879.9,
7292,1637,1174,
32,0,0,
279.4,0,0,
705.4,8.5,30,
1411,132,21.3,
1674,225.2,49,
1638,238.5,99.3,
1646,362,104.6,
1729,355.9,154,
1741,317.3,176.4,
1625,401.1,237.3,
1554,368,273,
1635,433.4,329,
0,0,0,
41.4,0,0,
250.3,6.5,0,
549.2,40.2,0,
542.2,86.4,21.9,
636,92.9,36.1,
589.9,93.1,41.4,
512.4,98.2,13,
548.8,140.8,33.7,
613.7,129,41.4,
620,170.6,59.7,
627.2,192.3,95.8,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
34.05K,4237,2582,
55.61K,8200,5607,
71.32K,12.47K,9777,
89.38K,18.89K,17.92K,
96.06K,21.53K,22.34K,
97.53K,22.17K,23.22K,
99.16K,22.81K,24.51K,
99.53K,23.11K,25.86K,
101.8K,24.34K,27.2K,
102.6K,25.23K,28.66K,
104.6K,25.74K,30.2K,
104.3K,26.63K,31.72K,
30.27K,3907,2183,
50.45K,7280,5164,
64.93K,11.32K,8630,
81.38K,16.95K,15.84K,
88.17K,19.93K,20.27K,
89.36K,20.15K,21.18K,
90.3K,20.94K,22.11K,
90.85K,21.42K,23.11K,
92.53K,22.39K,25K,
93.26K,23.01K,26.36K,
95.26K,23.65K,27.85K,
96.35K,24.18K,29.13K,
28.61K,3657,2048,
46.5K,6771,4717,
60.39K,10.5K,8408,
76.68K,15.71K,14.95K,
83K,18.68K,18.95K,
84.48K,19.4K,20.43K,
85.48K,19.61K,21.19K,
86.38K,20.21K,21.9K,
87.75K,21.05K,23.42K,
88.47K,21.32K,24.64K,
90.18K,22.29K,26.27K,
90.57K,22.89K,27.15K,
22.25K,2834,1640,
35.64K,5469,3517,
46.61K,8352,6485,
58.25K,12.53K,11.87K,
62.43K,14.24K,15.31K,
63.01K,14.6K,15.62K,
64.22K,15.15K,16.51K,
64.74K,15.46K,17.22K,
65.61K,15.93K,18.16K,
66.49K,16.46K,18.87K,
67.31K,16.93K,20.1K,
67.52K,17.26K,20.8K,
8588,1119,605,
14.22K,2081,1407,
19.14K,3172,2503,
24.95K,4896,4547,
26.81K,5862,5860,
27.28K,6051,6313,
27.81K,6265,6538,
27.78K,6413,6718,
28.23K,6708,7331,
28.77K,7105,7708,
29.02K,7160,8169,
29.57K,7403,8693,
5158,539.3,347.9,
8625,1212,694.7,
11.55K,1863,1317,
15.6K,3032,2754,
17.46K,3555,3645,
17.62K,3762,3642,
17.97K,3966,3972,
18.25K,3870,4164,
18.68K,4185,4415,
18.84K,4326,4760,
19.15K,4449,5154,
19.12K,4669,5309,
1819,191.1,126.2,
3367,398,261.9,
4992,707.2,479.2,
7166,1260,1050,
8077,1624,1359,
8211,1624,1421,
8365,1684,1572,
8542,1781,1723,
8848,1861,1864,
9035,2033,1976,
9073,2077,2232,
9196,2263,2268,
0,0,0,
151.2K,18.11K,9553,
262.8K,37.48K,22.87K,
354K,58.41K,43.44K,
465.4K,91.8K,80.3K,
513.9K,110.1K,106.1K,
523.5K,113.3K,112.4K,
531.5K,116.9K,119.2K,
539.8K,120.8K,124.9K,
550.7K,126.6K,133.5K,
563.8K,131.1K,142.7K,
572.2K,136.5K,153.4K,
582K,140K,159.4K,
89.89K,11.25K,6218,
151.7K,22.96K,14.8K,
201.5K,35.27K,25.22K,
254.5K,53.04K,47.87K,
274.5K,61.67K,62.8K,
279.2K,64.26K,66.52K,
282.5K,66.32K,68.34K,
284.6K,67.46K,72.03K,
289.5K,69.78K,77.53K,
293.6K,71.9K,82.9K,
297K,74.46K,88.34K,
304.3K,76.34K,90.52K,
79.82K,9965,4852,
135K,19.38K,12.82K,
177.7K,30.32K,22.51K,
227K,45.8K,42.2K,
244K,54.85K,54.64K,
247.3K,56.47K,57.06K,
252.6K,57.71K,61K,
253.7K,60.45K,63.36K,
260.1K,62.48K,68.29K,
262.5K,63.38K,72.3K,
266.2K,66.31K,77.59K,
269.5K,67.31K,79.67K,
45.81K,5512,2809,
78.71K,11.76K,7954,
100.6K,18.25K,13.64K,
112.8K,25.37K,24.29K,
118.3K,28.78K,31.78K,
125.4K,31.05K,34.46K,
119.2K,30.03K,34.84K,
128.7K,32.41K,37.54K,
129K,33.71K,39.55K,
130.4K,34.22K,41.96K,
131.3K,34.66K,43.95K,
131.2K,34.9K,44.69K,
4133,479.9,279.8,
7249,1078,780.7,
9625,1640,1208,
11.65K,2599,2398,
11.76K,2736,3121,
11.58K,2996,3037,
11.8K,3094,3378,
11.6K,3138,3469,
11.9K,3178,3677,
11.95K,3222,3937,
11.96K,3356,4209,
11.76K,3250,4378,
1221,149.2,97.7,
2045,321.4,191.7,
2782,423.9,410.9,
3052,786.1,698.2,
3194,854.3,837.1,
3240,842.6,923,
3058,873.6,1033,
3282,824.6,1056,
3239,866.3,1141,
3338,835.2,1090,
3495,884.8,1063,
3530,978.9,1167,
388.4,65.8,6.5,
829,103.9,56.8,
1057,188.8,118,
1162,293.5,247.7,
1410,322.5,326.4,
1498,354.1,402.5,
1405,313.1,331,
1445,342.5,409,
1491,339.3,432.4,
1501,381,442.8,
1621,395.2,473.6,
1444,352.4,502.8,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
739.8K,73.14K,43.48K,
726.4K,71.59K,43.08K,
705.8K,69.81K,41.43K,
674K,65.09K,39.27K,
570.8K,56.38K,32.68K,
467.6K,45.32K,26.44K,
433K,42.05K,24.16K,
397.7K,38.36K,22.4K,
361.6K,34.76K,20.13K,
286.9K,27.58K,15.8K,
212.5K,19.6K,11.13K,
88.94K,7759,4364,
0,0,0,
726.7K,71.65K,43.23K,
707.1K,70.03K,41.61K,
674.7K,65.82K,38.9K,
578.1K,57.46K,33.37K,
479K,46.28K,27.16K,
446.6K,43.55K,25.36K,
412.2K,39.83K,23.22K,
379.5K,36.26K,21.09K,
308.3K,28.87K,16.8K,
235.7K,22.42K,12.68K,
120.5K,11.39K,6255,
35.24K,3249,2073,
725.9K,71.7K,42.7K,
709.2K,69.6K,41.7K,
679.6K,66.92K,39.6K,
590.6K,58.06K,34.03K,
500.2K,49.06K,28.06K,
468.5K,45.73K,26.68K,
438.2K,42.92K,24.6K,
407.1K,39.33K,22.93K,
344.6K,32.57K,19.02K,
273K,25.93K,15.01K,
166.8K,15.14K,8941,
87.79K,8689,4841,
729.7K,72.74K,42.46K,
714.4K,69.96K,41.67K,
688.6K,67.84K,41.18K,
619.6K,60.99K,36.23K,
547.1K,53.56K,31K,
520.9K,50.86K,30.13K,
496.4K,48.78K,27.98K,
471.9K,44.97K,26.48K,
418.4K,40.85K,23.55K,
363.6K,34.44K,20.43K,
277.3K,26.7K,16.07K,
212.5K,21.07K,12.47K,
735.4K,72.65K,42.4K,
728.2K,71.11K,43.3K,
716.2K,71.3K,42.09K,
682.4K,67.66K,39.73K,
647.2K,62.64K,37.82K,
636.4K,62.58K,36.54K,
622.6K,62.11K,36.14K,
608K,59.95K,35.15K,
585.1K,57.32K,33.61K,
559.5K,54.53K,32.45K,
514.1K,49.98K,28.9K,
483.3K,48.41K,27.75K,
736.6K,72.92K,43.04K,
732.4K,72.15K,43.29K,
720.8K,72.13K,42.24K,
701.6K,70.05K,40.91K,
676.3K,66.82K,39.39K,
673K,66.11K,39.15K,
663.2K,65.19K,37.72K,
657.4K,64.8K,37.48K,
642K,63.43K,37.52K,
624.1K,62.36K,35.27K,
597.5K,58.7K,34.43K,
577.2K,57.11K,34.11K,
735.6K,72.12K,43.99K,
735.3K,71.62K,43.37K,
732K,71.75K,42.56K,
726.8K,71.43K,42.08K,
719.6K,71.15K,42.06K,
714.7K,70.73K,41.85K,
711.7K,70.81K,42.3K,
708.4K,69.81K,42.06K,
702.9K,69.52K,41.04K,
699.3K,68.36K,40.97K,
688.3K,68.48K,40.51K,
681.8K,67.26K,40.04K,
8.483M,819.5K,475.6K,
8.343M,804.7K,469.3K,
8.084M,786.3K,450.4K,
7.709M,739.7K,432.3K,
6.525M,623.8K,361.7K,
5.329M,501.8K,286.7K,
4.93M,462.4K,263.8K,
4.505M,425.6K,240.6K,
4.111M,380.8K,218.6K,
3.246M,299.5K,172.2K,
2.368M,216.8K,122.7K,
980.4K,87.75K,48.74K,
0,0,0,
8.4M,807.6K,470.9K,
8.239M,799.9K,462.5K,
7.999M,774.6K,449.4K,
7.251M,695.5K,403.2K,
6.497M,621.8K,356.3K,
6.255M,597.2K,341.1K,
5.987M,568.8K,326K,
5.717M,537.2K,313.2K,
5.188M,491.4K,280K,
4.619M,433.8K,249.5K,
3.723M,353.3K,205.5K,
3.107M,296.7K,173K,
8.415M,810.3K,473.7K,
8.299M,797.7K,466.2K,
8.068M,775.1K,451.6K,
7.449M,715.6K,417.1K,
6.791M,648.7K,377.7K,
6.574M,625.4K,362.3K,
6.351M,600.1K,350.2K,
6.12M,585.9K,336.9K,
5.673M,540.9K,305.6K,
5.186M,491.8K,281.6K,
4.419M,422K,240.6K,
3.9M,368.1K,212.8K,
8.431M,809K,472.5K,
8.374M,804.7K,471.5K,
8.249M,793.6K,460.3K,
7.874M,756.4K,436.5K,
7.493M,720.7K,413.2K,
7.375M,710.9K,410.5K,
7.239M,692.9K,398.9K,
7.096M,682K,399.1K,
6.839M,650.5K,375.2K,
6.55M,633.1K,358.6K,
6.088M,580.3K,337.7K,
5.787M,546.6K,319.6K,
8.498M,817.7K,477.5K,
8.474M,813.2K,475K,
8.472M,812K,474.5K,
8.426M,814.1K,477.9K,
8.377M,812.8K,469.5K,
8.386M,807K,465.4K,
8.372M,807.5K,473K,
8.349M,801.9K,468.4K,
8.327M,802.3K,465K,
8.303M,799K,469.1K,
8.253M,799.1K,459.9K,
8.213M,791.2K,465.2K,
8.479M,812.2K,479.5K,
8.496M,823.5K,471.1K,
8.493M,820.2K,477.9K,
8.488M,816.7K,474.7K,
8.46M,817.6K,474.8K,
8.434M,814.1K,476.8K,
8.439M,809.7K,472.6K,
8.458M,812.1K,475.9K,
8.435M,813.3K,472.1K,
8.432M,814.3K,473.1K,
8.416M,810.5K,471.6K,
8.415M,812.4K,468.2K,
8.495M,817.8K,480.2K,
8.489M,822.5K,479.9K,
8.503M,817.1K,477.7K,
8.494M,817.3K,474.8K,
8.465M,814.6K,477.7K,
8.483M,816.4K,478.1K,
8.478M,815K,476.3K,
8.488M,823.3K,479.8K,
8.469M,815.7K,476K,
8.46M,820K,477.5K,
8.477M,813.2K,481.5K,
8.448M,808.4K,472.2K,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
234,0,0,
288,0,0,
502,0,0,
758,0,0,
1072,0,0,
1132,0,0,
1074,0,0,
1282,0,0,
1470,0,0,
1576,0,0,
1800,0,0,
2122,0,0,
190,0,0,
204,0,0,
368,0,0,
616,0,0,
820,0,0,
867,0,0,
1070,0,0,
1312,0,0,
1325,0,0,
1428,0,0,
1547,0,0,
1768,0,0,
159,0,0,
288,0,0,
339,0,0,
572,0,0,
948,0,0,
799,0,0,
954,0,0,
1008,0,0,
1168,0,0,
1338,0,0,
1399,0,0,
1707,0,0,
153,0,0,
219,0,0,
330,0,0,
548,0,0,
750,0,0,
855,0,0,
805,0,0,
970,0,0,
1095,0,0,
1228,0,0,
1269,0,0,
1382,0,0,
116,0,0,
154,0,0,
164,0,0,
245,0,0,
316,0,0,
358,0,0,
406,0,0,
403,0,0,
402,0,0,
427,0,0,
517,0,0,
491,0,0,
85,0,0,
105,0,0,
151,0,0,
197,0,0,
236,0,0,
263,0,0,
284,0,0,
260,0,0,
330,0,0,
329,0,0,
346,0,0,
384,0,0,
61,0,0,
105,0,0,
149,0,0,
163,0,0,
185,0,0,
149,0,0,
199,0,0,
187,0,0,
218,0,0,
222,0,0,
240,0,0,
225,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
438,0,0,
728,0,0,
897,0,0,
1283,0,0,
1736,0,0,
2176,0,0,
2194,0,0,
2414,0,0,
2607,0,0,
2932,0,0,
3386,0,0,
3770,0,0,
379,0,0,
566,0,0,
797,0,0,
1027,0,0,
1334,0,0,
1638,0,0,
1722,0,0,
1891,0,0,
2119,0,0,
2401,0,0,
2752,0,0,
2911,0,0,
305,0,0,
491,0,0,
616,0,0,
906,0,0,
1279,0,0,
1338,0,0,
1463,0,0,
1594,0,0,
1826,0,0,
2061,0,0,
2518,0,0,
2587,0,0,
171,0,0,
214,0,0,
331,0,0,
533,0,0,
699,0,0,
856,0,0,
947,0,0,
839,0,0,
1124,0,0,
1236,0,0,
1316,0,0,
1403,0,0,
166,0,0,
204,0,0,
255,0,0,
319,0,0,
450,0,0,
417,0,0,
460,0,0,
486,0,0,
613,0,0,
585,0,0,
597,0,0,
681,0,0,
108,0,0,
148,0,0,
173,0,0,
200,0,0,
252,0,0,
297,0,0,
321,0,0,
287,0,0,
344,0,0,
367,0,0,
381,0,0,
407,0,0,
75,0,0,
96,0,0,
124,0,0,
149,0,0,
219,0,0,
240,0,0,
210,0,0,
197,0,0,
226,0,0,
268,0,0,
268,0,0,
295,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
2817,0,0,
3757,0,0,
5171,0,0,
7626,0,0,
10.1K,0,0,
10.78K,0,0,
11.52K,0,0,
12.15K,0,0,
13.85K,0,0,
15.47K,0,0,
17.23K,0,0,
19.33K,0,0,
1907,0,0,
2821,0,0,
3582,0,0,
5272,0,0,
7189,0,0,
7729,0,0,
8262,0,0,
8951,0,0,
10.14K,0,0,
11.23K,0,0,
12.96K,0,0,
14.28K,0,0,
1813,0,0,
2598,0,0,
2995,0,0,
4713,0,0,
6739,0,0,
7033,0,0,
7631,0,0,
8108,0,0,
9597,0,0,
10.17K,0,0,
11.54K,0,0,
12.96K,0,0,
1235,0,0,
1875,0,0,
2299,0,0,
3441,0,0,
4490,0,0,
4878,0,0,
5326,0,0,
5880,0,0,
6649,0,0,
7343,0,0,
8165,0,0,
9051,0,0,
280,0,0,
384,0,0,
411,0,0,
606,0,0,
734,0,0,
751,0,0,
861,0,0,
845,0,0,
914,0,0,
1123,0,0,
1178,0,0,
1287,0,0,
159,0,0,
197,0,0,
226,0,0,
328,0,0,
423,0,0,
419,0,0,
430,0,0,
510,0,0,
458,0,0,
526,0,0,
603,0,0,
629,0,0,
21,0,0,
23,0,0,
39,0,0,
47,0,0,
74,0,0,
70,0,0,
40,0,0,
65,0,0,
87,0,0,
62,0,0,
91,0,0,
115,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
7164,0,0,
7125,0,0,
6798,0,0,
6238,0,0,
5196,0,0,
4345,0,0,
4013,0,0,
3806,0,0,
3434,0,0,
2927,0,0,
2015,0,0,
1033,0,0,
0,0,0,
6818,0,0,
7271,0,0,
6219,0,0,
5921,0,0,
4843,0,0,
4332,0,0,
4428,0,0,
3894,0,0,
3154,0,0,
2586,0,0,
1710,0,0,
883,0,0,
7313,0,0,
7435,0,0,
6767,0,0,
5637,0,0,
5374,0,0,
4686,0,0,
4502,0,0,
4134,0,0,
3707,0,0,
2906,0,0,
1998,0,0,
1509,0,0,
7173,0,0,
6896,0,0,
6312,0,0,
5879,0,0,
5690,0,0,
5205,0,0,
5195,0,0,
4989,0,0,
4409,0,0,
3745,0,0,
3172,0,0,
2595,0,0,
7346,0,0,
6998,0,0,
7313,0,0,
6720,0,0,
6464,0,0,
6009,0,0,
6425,0,0,
6342,0,0,
6447,0,0,
6462,0,0,
6386,0,0,
6294,0,0,
6910,0,0,
7455,0,0,
7141,0,0,
7016,0,0,
6878,0,0,
6912,0,0,
6926,0,0,
6918,0,0,
6952,0,0,
6688,0,0,
6422,0,0,
6633,0,0,
7145,0,0,
7493,0,0,
6671,0,0,
6910,0,0,
6721,0,0,
6745,0,0,
6862,0,0,
6453,0,0,
6854,0,0,
6760,0,0,
6687,0,0,
6686,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
14.49K,0,0,
14K,0,0,
14.2K,0,0,
13.06K,0,0,
11.1K,0,0,
8616,0,0,
8881,0,0,
8188,0,0,
7404,0,0,
5851,0,0,
4643,0,0,
2018,0,0,
0,0,0,
14.35K,0,0,
14.11K,0,0,
13.45K,0,0,
11.98K,0,0,
10.56K,0,0,
9933,0,0,
9298,0,0,
8855,0,0,
8079,0,0,
6518,0,0,
5108,0,0,
3319,0,0,
14.66K,0,0,
13.48K,0,0,
13.73K,0,0,
12.41K,0,0,
10.8K,0,0,
10.73K,0,0,
10.37K,0,0,
10.22K,0,0,
8948,0,0,
7776,0,0,
6619,0,0,
4793,0,0,
14.33K,0,0,
15.35K,0,0,
14.39K,0,0,
13.63K,0,0,
12.77K,0,0,
12.84K,0,0,
11.46K,0,0,
11.26K,0,0,
10.65K,0,0,
9805,0,0,
9572,0,0,
8647,0,0,
14.25K,0,0,
14.41K,0,0,
14.1K,0,0,
14.51K,0,0,
14.43K,0,0,
13.91K,0,0,
14.1K,0,0,
13.82K,0,0,
13.83K,0,0,
13.43K,0,0,
12.73K,0,0,
12.91K,0,0,
15K,0,0,
14.64K,0,0,
14.69K,0,0,
14.06K,0,0,
13.94K,0,0,
14.3K,0,0,
14.22K,0,0,
14K,0,0,
13.51K,0,0,
14.06K,0,0,
14.09K,0,0,
14K,0,0,
14.41K,0,0,
14.37K,0,0,
14.54K,0,0,
14.64K,0,0,
14.49K,0,0,
14.05K,0,0,
14.36K,0,0,
14.5K,0,0,
14.61K,0,0,
15.01K,0,0,
14.66K,0,0,
14.31K,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
70.26K,0,0,
70.3K,0,0,
67.97K,0,0,
65.47K,0,0,
55.96K,0,0,
47.17K,0,0,
42.82K,0,0,
39.98K,0,0,
37.37K,0,0,
29.66K,0,0,
22.95K,0,0,
11.14K,0,0,
0,0,0,
70.03K,0,0,
68.89K,0,0,
67.62K,0,0,
59.91K,0,0,
51.55K,0,0,
49.85K,0,0,
48.31K,0,0,
44.46K,0,0,
40.84K,0,0,
34.7K,0,0,
26.13K,0,0,
19.86K,0,0,
69.93K,0,0,
68.83K,0,0,
68.28K,0,0,
62.16K,0,0,
54.47K,0,0,
52.67K,0,0,
50.63K,0,0,
47.63K,0,0,
43.07K,0,0,
37.21K,0,0,
31.03K,0,0,
24.96K,0,0,
71.41K,0,0,
69.39K,0,0,
68.08K,0,0,
63.12K,0,0,
58.98K,0,0,
57.79K,0,0,
56.45K,0,0,
54.35K,0,0,
52.53K,0,0,
47.71K,0,0,
42K,0,0,
37.76K,0,0,
71.12K,0,0,
70.92K,0,0,
71.84K,0,0,
69.63K,0,0,
69.15K,0,0,
71.38K,0,0,
70.11K,0,0,
68.56K,0,0,
70.2K,0,0,
69.12K,0,0,
70.24K,0,0,
67.68K,0,0,
70.19K,0,0,
71.69K,0,0,
70.61K,0,0,
70.4K,0,0,
71.72K,0,0,
69.58K,0,0,
70.33K,0,0,
70.68K,0,0,
70.33K,0,0,
69.96K,0,0,
69.8K,0,0,
69.55K,0,0,
71.02K,0,0,
72.37K,0,0,
71.23K,0,0,
71.85K,0,0,
71.71K,0,0,
70.58K,0,0,
70.65K,0,0,
70.58K,0,0,
71.36K,0,0,
70.31K,0,0,
71.55K,0,0,
70.1K,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
2,0,0,
6.9,0,0,
10.93,0,0,
14.07,0,0,
20.7,0,0,
28.6,0,0,
42.47,0,0,
69.87,0,0,
90.47,0,0,
0,0,0,
0,0,0,
0,0,0,
2.167,0,0,
7.1,0,0,
11.13,0,0,
15.13,0,0,
21.67,0,0,
31.37,0,0,
43.17,0,0,
68.5,0,0,
90.73,0,0,
0,0,0,
0,0,0,
0.03333,0,0,
1.367,0,0,
8.333,0,0,
12.47,0,0,
14.17,0,0,
19.33,0,0,
31.8,0,0,
42.7,0,0,
75.77,0,0,
91.97,0,0,
0,0,0,
0,0,0,
0,0,0,
2.1,0,0,
7.167,0,0,
10.3,0,0,
11.87,0,0,
17.97,0,0,
26.5,0,0,
39.93,0,0,
61.93,0,0,
76.23,0,0,
0,0,0,
0,0,0,
0,0,0,
0.1667,0,0,
0.8667,0,0,
2,0,0,
1.5,0,0,
3.467,0,0,
4.1,0,0,
6.667,0,0,
9.233,0,0,
12.33,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0.7667,0,0,
0.9667,0,0,
1.167,0,0,
1.067,0,0,
3.2,0,0,
4.5,0,0,
7.6,0,0,
9.2,0,0,
0,0,0,
0,0,0,
0,0,0,
0.06667,0,0,
0.2667,0,0,
0.3,0,0,
0.2333,0,0,
0.3333,0,0,
0.5,0,0,
0.5667,0,0,
1,0,0,
1.033,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0.4667,0,0,
6.467,0,0,
30.43,0,0,
115.6,0,0,
200.7,0,0,
225.5,0,0,
261.6,0,0,
275.3,0,0,
322.6,0,0,
365.1,0,0,
418.6,0,0,
457.4,0,0,
0.1667,0,0,
4.267,0,0,
23.5,0,0,
102.7,0,0,
178,0,0,
197.2,0,0,
210.9,0,0,
226.1,0,0,
265.6,0,0,
303,0,0,
341.8,0,0,
365.5,0,0,
0.2333,0,0,
3.8,0,0,
20.4,0,0,
92,0,0,
151.2,0,0,
171,0,0,
182.2,0,0,
199.8,0,0,
229.8,0,0,
250.5,0,0,
282.8,0,0,
305.5,0,0,
0.2,0,0,
3.533,0,0,
15.63,0,0,
64.7,0,0,
107.4,0,0,
119.7,0,0,
136.2,0,0,
144.1,0,0,
160.5,0,0,
171.3,0,0,
197.1,0,0,
201.4,0,0,
0,0,0,
0.3,0,0,
2.433,0,0,
6.467,0,0,
9,0,0,
9.1,0,0,
10.8,0,0,
10.97,0,0,
12.4,0,0,
13.37,0,0,
14.27,0,0,
15.33,0,0,
0,0,0,
0.1333,0,0,
1.167,0,0,
4.8,0,0,
7.533,0,0,
7.8,0,0,
8.8,0,0,
8.233,0,0,
9,0,0,
10.17,0,0,
10.97,0,0,
11.87,0,0,
0,0,0,
0,0,0,
0.03333,0,0,
0.2667,0,0,
0.2,0,0,
0.2667,0,0,
0.3,0,0,
0.2667,0,0,
0.2333,0,0,
0.4,0,0,
0.3333,0,0,
0.4,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0.3333,0,0,
2.933,0,0,
27.03,0,0,
80.3,0,0,
101.7,0,0,
114.8,0,0,
132.4,0,0,
181,0,0,
237.1,0,0,
297.9,0,0,
357.4,0,0,
0,0,0,
0.3333,0,0,
2.033,0,0,
25.33,0,0,
69.07,0,0,
96.03,0,0,
116.8,0,0,
131.9,0,0,
177.7,0,0,
215.2,0,0,
279.4,0,0,
330.1,0,0,
0,0,0,
0.1667,0,0,
2.4,0,0,
27.47,0,0,
74.13,0,0,
92.23,0,0,
107.6,0,0,
133.4,0,0,
178,0,0,
221.8,0,0,
276.5,0,0,
314.5,0,0,
0,0,0,
0.3,0,0,
2.8,0,0,
24.43,0,0,
62.47,0,0,
83.6,0,0,
93.53,0,0,
111,0,0,
143.9,0,0,
181.1,0,0,
230.5,0,0,
269.9,0,0,
0,0,0,
0,0,0,
0.2,0,0,
4.333,0,0,
10.13,0,0,
11.17,0,0,
14.1,0,0,
16.07,0,0,
18.3,0,0,
21.57,0,0,
27.3,0,0,
28.87,0,0,
0,0,0,
0,0,0,
0.1333,0,0,
3.667,0,0,
7,0,0,
8.733,0,0,
8.933,0,0,
10.77,0,0,
15.77,0,0,
16.63,0,0,
20.57,0,0,
22.27,0,0,
0,0,0,
0,0,0,
0.06667,0,0,
0.4,0,0,
0.6333,0,0,
1.067,0,0,
0.8667,0,0,
1.133,0,0,
1.2,0,0,
1.667,0,0,
1.733,0,0,
1.667,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
4.567,0,0,
23.97,0,0,
50.57,0,0,
79.4,0,0,
95.47,0,0,
101.9,0,0,
100.7,0,0,
104.3,0,0,
107.3,0,0,
108.8,0,0,
109.9,0,0,
118.5,0,0,
3.9,0,0,
24.43,0,0,
42.13,0,0,
68.1,0,0,
73.5,0,0,
78.6,0,0,
82.5,0,0,
83.63,0,0,
86.8,0,0,
82.57,0,0,
88,0,0,
86.63,0,0,
4.667,0,0,
21.03,0,0,
39.9,0,0,
62.63,0,0,
72.13,0,0,
77.03,0,0,
78.23,0,0,
81.7,0,0,
81.03,0,0,
84.87,0,0,
91.67,0,0,
86.63,0,0,
2.567,0,0,
14.83,0,0,
32,0,0,
49.27,0,0,
52.83,0,0,
58.8,0,0,
53.43,0,0,
52.93,0,0,
57.27,0,0,
61.03,0,0,
58.17,0,0,
59.4,0,0,
0.5333,0,0,
1.933,0,0,
2.867,0,0,
4.133,0,0,
5.2,0,0,
5.567,0,0,
5.2,0,0,
5,0,0,
4.833,0,0,
5.467,0,0,
5.667,0,0,
5.667,0,0,
0.3333,0,0,
1.6,0,0,
2.4,0,0,
3.233,0,0,
3.933,0,0,
3.5,0,0,
4.4,0,0,
4.1,0,0,
3.567,0,0,
4.3,0,0,
4.167,0,0,
3.967,0,0,
0,0,0,
0.06667,0,0,
0.2,0,0,
0.2333,0,0,
0.4667,0,0,
0.5333,0,0,
0.6667,0,0,
0.6,0,0,
0.8,0,0,
0.3667,0,0,
0.5333,0,0,
0.6333,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
74.77,0,0,
120,0,0,
146.2,0,0,
175.4,0,0,
186.1,0,0,
186.2,0,0,
189,0,0,
189.6,0,0,
192.4,0,0,
195.6,0,0,
193.5,0,0,
193.4,0,0,
69.93,0,0,
101,0,0,
120.1,0,0,
137.1,0,0,
143.2,0,0,
144.9,0,0,
142.9,0,0,
145.8,0,0,
145.6,0,0,
146.5,0,0,
147.5,0,0,
149.4,0,0,
61.2,0,0,
95.27,0,0,
115.2,0,0,
128.8,0,0,
136.6,0,0,
131.7,0,0,
137.6,0,0,
139.7,0,0,
141.1,0,0,
140.9,0,0,
141.7,0,0,
142.8,0,0,
45.2,0,0,
73.47,0,0,
80.5,0,0,
80.3,0,0,
80.17,0,0,
87.53,0,0,
81.93,0,0,
87.37,0,0,
87.27,0,0,
87.67,0,0,
87.83,0,0,
88.07,0,0,
4.167,0,0,
6.6,0,0,
7.1,0,0,
7.967,0,0,
8.333,0,0,
7.667,0,0,
8,0,0,
7.733,0,0,
8.1,0,0,
7.633,0,0,
7.633,0,0,
7.1,0,0,
3.033,0,0,
5.133,0,0,
5.5,0,0,
5.667,0,0,
5.5,0,0,
5.733,0,0,
5.533,0,0,
6.433,0,0,
5.967,0,0,
5.6,0,0,
5.8,0,0,
5.7,0,0,
0.3,0,0,
0.5,0,0,
0.7667,0,0,
0.8333,0,0,
1.033,0,0,
1.033,0,0,
0.8333,0,0,
0.9667,0,0,
1.1,0,0,
1.233,0,0,
1.3,0,0,
1.2,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
5149,0,0,
5009,0,0,
4840,0,0,
4606,0,0,
3946,0,0,
3209,0,0,
2977,0,0,
2762,0,0,
2485,0,0,
1993,0,0,
1433,0,0,
603.6,0,0,
0,0,0,
5072,0,0,
4933,0,0,
4744,0,0,
4110,0,0,
3500,0,0,
3330,0,0,
3083,0,0,
2834,0,0,
2428,0,0,
1954,0,0,
1234,0,0,
731.8,0,0,
5057,0,0,
4924,0,0,
4766,0,0,
4200,0,0,
3660,0,0,
3441,0,0,
3232,0,0,
3072,0,0,
2654,0,0,
2231,0,0,
1540,0,0,
1079,0,0,
5076,0,0,
4991,0,0,
4860,0,0,
4443,0,0,
4062,0,0,
3918,0,0,
3779,0,0,
3645,0,0,
3352,0,0,
3063,0,0,
2615,0,0,
2242,0,0,
5125,0,0,
5074,0,0,
5108,0,0,
5037,0,0,
4999,0,0,
4992,0,0,
5010,0,0,
4988,0,0,
4915,0,0,
4937,0,0,
4839,0,0,
4808,0,0,
5114,0,0,
5101,0,0,
5097,0,0,
5078,0,0,
5013,0,0,
5013,0,0,
5015,0,0,
5049,0,0,
4995,0,0,
4977,0,0,
4941,0,0,
4939,0,0,
5123,0,0,
5092,0,0,
5117,0,0,
5081,0,0,
5094,0,0,
5069,0,0,
5091,0,0,
5125,0,0,
5064,0,0,
5088,0,0,
5070,0,0,
5062,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
40,0,0,
287,0,0,
939,0,0,
2823,0,0,
4504,0,0,
4950,0,0,
5380,0,0,
5890,0,0,
6763,0,0,
7667,0,0,
8990,0,0,
9855,0,0,
34,0,0,
246,0,0,
701,0,0,
2101,0,0,
3285,0,0,
3698,0,0,
4009,0,0,
4368,0,0,
5127,0,0,
5643,0,0,
6698,0,0,
7229,0,0,
30,0,0,
234,0,0,
651,0,0,
1845,0,0,
2893,0,0,
3232,0,0,
3517,0,0,
3770,0,0,
4332,0,0,
5040,0,0,
5703,0,0,
6378,0,0,
26,0,0,
161,0,0,
467,0,0,
1374,0,0,
2052,0,0,
2196,0,0,
2518,0,0,
2589,0,0,
3015,0,0,
3418,0,0,
3929,0,0,
4252,0,0,
2,0,0,
32,0,0,
112,0,0,
306,0,0,
435,0,0,
476,0,0,
497,0,0,
588,0,0,
673,0,0,
718,0,0,
810,0,0,
982,0,0,
0,0,0,
19,0,0,
54,0,0,
160,0,0,
238,0,0,
250,0,0,
279,0,0,
317,0,0,
354,0,0,
406,0,0,
484,0,0,
525,0,0,
0,0,0,
1,0,0,
8,0,0,
45,0,0,
85,0,0,
80,0,0,
104,0,0,
95,0,0,
132,0,0,
147,0,0,
201,0,0,
209,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
2219,0,0,
3181,0,0,
3944,0,0,
4785,0,0,
5992,0,0,
6266,0,0,
6317,0,0,
6837,0,0,
7558,0,0,
8213,0,0,
9005,0,0,
9853,0,0,
1582,0,0,
2348,0,0,
2847,0,0,
3413,0,0,
4064,0,0,
4407,0,0,
4733,0,0,
5057,0,0,
5658,0,0,
5835,0,0,
6613,0,0,
7337,0,0,
1525,0,0,
2189,0,0,
2428,0,0,
3108,0,0,
3916,0,0,
4045,0,0,
4307,0,0,
4664,0,0,
5168,0,0,
5416,0,0,
6247,0,0,
6785,0,0,
1046,0,0,
1465,0,0,
1773,0,0,
2118,0,0,
2553,0,0,
2863,0,0,
2916,0,0,
3215,0,0,
3681,0,0,
3824,0,0,
4303,0,0,
4516,0,0,
350,0,0,
452,0,0,
540,0,0,
712,0,0,
844,0,0,
877,0,0,
966,0,0,
979,0,0,
1056,0,0,
1177,0,0,
1247,0,0,
1250,0,0,
211,0,0,
289,0,0,
339,0,0,
427,0,0,
531,0,0,
586,0,0,
646,0,0,
574,0,0,
709,0,0,
680,0,0,
744,0,0,
742,0,0,
91,0,0,
144,0,0,
181,0,0,
254,0,0,
335,0,0,
284,0,0,
301,0,0,
270,0,0,
310,0,0,
354,0,0,
398,0,0,
345,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
67.99K,0,0,
67.59K,0,0,
66.1K,0,0,
62.57K,0,0,
53.1K,0,0,
43.92K,0,0,
41K,0,0,
37.56K,0,0,
34.89K,0,0,
27.99K,0,0,
21.1K,0,0,
9869,0,0,
0,0,0,
67.3K,0,0,
66.39K,0,0,
64.16K,0,0,
57.06K,0,0,
49.99K,0,0,
48.16K,0,0,
46.22K,0,0,
43.28K,0,0,
38.64K,0,0,
33.62K,0,0,
25.57K,0,0,
19.04K,0,0,
67.81K,0,0,
66.56K,0,0,
65.18K,0,0,
58.72K,0,0,
52.36K,0,0,
50.89K,0,0,
48.54K,0,0,
46.44K,0,0,
42.42K,0,0,
37.07K,0,0,
30.84K,0,0,
24.73K,0,0,
67.84K,0,0,
67.02K,0,0,
65.36K,0,0,
61.68K,0,0,
57.81K,0,0,
56.7K,0,0,
55.21K,0,0,
53.38K,0,0,
50.93K,0,0,
47.52K,0,0,
42.38K,0,0,
38.75K,0,0,
67.84K,0,0,
67.86K,0,0,
68.02K,0,0,
67K,0,0,
66.07K,0,0,
66.74K,0,0,
66.17K,0,0,
65.26K,0,0,
65.74K,0,0,
65.01K,0,0,
64.73K,0,0,
63K,0,0,
68.69K,0,0,
68.79K,0,0,
68.22K,0,0,
67.46K,0,0,
67.86K,0,0,
66.99K,0,0,
67.28K,0,0,
67.08K,0,0,
66.54K,0,0,
66.72K,0,0,
66.04K,0,0,
65.67K,0,0,
68.13K,0,0,
69.06K,0,0,
67.82K,0,0,
68.29K,0,0,
68.37K,0,0,
67.7K,0,0,
67.86K,0,0,
67.56K,0,0,
68.05K,0,0,
67.96K,0,0,
67.86K,0,0,
66.81K,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
'NAN','NAN','NAN',
5.822,5.974,6,
5.361,5.821,5.981,
4.766,5.601,5.936,
3.84,4.988,5.683,
3.381,4.495,5.422,
3.295,4.382,5.356,
3.207,4.29,5.274,
3.147,4.152,5.203,
3.041,4,5.097,
2.952,3.84,4.951,
2.859,3.668,4.753,
2.813,3.578,4.65,
5.834,5.973,6,
5.393,5.892,5.99,
4.821,5.631,5.937,
3.909,5.03,5.7,
3.458,4.537,5.48,
3.371,4.46,5.394,
3.286,4.36,5.318,
3.214,4.248,5.238,
3.104,4.109,5.11,
3.023,3.92,4.969,
2.937,3.765,4.825,
2.896,3.67,4.729,
5.808,5.98,6,
5.379,5.884,5.985,
4.847,5.6,5.947,
3.938,5.041,5.711,
3.516,4.57,5.48,
3.412,4.463,5.386,
3.335,4.368,5.36,
3.266,4.271,5.269,
3.171,4.112,5.129,
3.082,3.961,5.001,
2.993,3.809,4.839,
2.942,3.699,4.734,
5.788,5.963,6,
5.345,5.86,5.985,
4.794,5.619,5.875,
3.833,5.014,5.661,
3.427,4.517,5.465,
3.341,4.413,5.401,
3.253,4.333,5.293,
3.208,4.208,5.232,
3.116,4.025,5.085,
3.039,3.887,4.959,
2.972,3.703,4.822,
2.937,3.629,4.679,
5.856,6,6,
5.512,5.931,5.988,
4.999,5.725,5.949,
4.189,5.179,5.803,
3.833,4.792,5.572,
3.748,4.695,5.542,
3.674,4.605,5.462,
3.621,4.524,5.378,
3.526,4.382,5.245,
3.457,4.219,5.151,
3.386,4.061,5.026,
3.341,4.008,4.902,
5.935,6,6,
5.618,5.937,6,
5.21,5.791,5.954,
4.404,5.336,5.849,
4.062,4.949,5.762,
3.983,4.869,5.643,
3.912,4.734,5.578,
3.855,4.698,5.544,
3.766,4.662,5.448,
3.68,4.425,5.273,
3.592,4.317,5.21,
3.521,4.263,5.025,
5.977,6,6,
5.879,5.963,6,
5.611,5.98,6,
4.86,5.66,5.973,
4.443,5.511,5.91,
4.321,5.309,5.887,
4.23,5.229,5.863,
4.154,5.214,5.725,
4.011,4.96,5.779,
3.902,4.933,5.672,
3.769,4.786,5.543,
3.68,4.688,5.48,
'NAN','NAN','NAN',
5.885,6,6,
5.547,5.926,5.988,
5.064,5.742,5.98,
4.221,5.234,5.815,
3.816,4.811,5.629,
3.738,4.717,5.56,
3.673,4.601,5.518,
3.628,4.519,5.443,
3.538,4.368,5.33,
3.483,4.211,5.212,
3.422,4.072,5.073,
3.396,3.977,4.969,
5.873,5.991,6,
5.522,5.9,5.993,
5.029,5.747,5.963,
4.161,5.191,5.777,
3.78,4.771,5.605,
3.712,4.636,5.546,
3.651,4.554,5.498,
3.606,4.447,5.428,
3.537,4.321,5.313,
3.497,4.186,5.207,
3.451,4.034,5.059,
3.437,3.953,4.934,
5.895,5.97,6,
5.551,5.879,5.996,
5.034,5.694,5.978,
4.187,5.189,5.791,
3.836,4.755,5.608,
3.755,4.668,5.552,
3.71,4.573,5.509,
3.669,4.484,5.408,
3.595,4.35,5.283,
3.562,4.196,5.196,
3.517,4.079,5.054,
3.504,3.974,4.955,
5.881,5.991,5.983,
5.535,5.891,6,
5.015,5.751,5.968,
4.067,5.192,5.794,
3.718,4.685,5.61,
3.708,4.635,5.546,
3.628,4.501,5.526,
3.632,4.473,5.425,
3.599,4.244,5.287,
3.578,4.158,5.213,
3.564,3.993,5.021,
3.573,3.907,4.947,
5.939,5.913,6,
5.674,6,6,
5.226,5.835,6,
4.415,5.394,5.898,
4.081,5.016,5.825,
4.079,4.824,5.639,
4.001,4.719,5.601,
4.024,4.764,5.608,
3.991,4.476,5.461,
3.95,4.452,5.334,
3.944,4.204,5.249,
3.889,4.147,5.067,
5.965,6,6,
5.835,6,6,
5.239,6,6,
4.412,5.439,6,
4.176,5.112,5.904,
4.131,4.984,5.878,
4.18,4.64,5.741,
4.164,4.522,5.69,
4.097,4.631,5.567,
4.117,4.315,5.364,
4.15,4.354,5.559,
4.114,4.231,5.299,
6,6,6,
5.776,6,6,
5.483,5.793,6,
4.63,5.769,6,
4.417,5,5.786,
4.236,5.221,5.824,
4.213,5.299,5.789,
4.193,4.815,6,
4.061,4.854,5.76,
4.099,4.343,5.544,
3.982,4.474,5.442,
3.987,4.341,5.563,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
'NAN','NAN','NAN',
11.64,11.95,12,
10.72,11.64,11.96,
9.531,11.2,11.87,
7.679,9.977,11.37,
6.761,8.99,10.84,
6.59,8.764,10.71,
6.414,8.579,10.55,
6.293,8.303,10.41,
6.083,8,10.19,
5.903,7.681,9.902,
5.719,7.336,9.506,
5.627,7.157,9.3,
11.67,11.95,12,
10.79,11.78,11.98,
9.641,11.26,11.87,
7.817,10.06,11.4,
6.917,9.074,10.96,
6.742,8.921,10.79,
6.572,8.72,10.64,
6.429,8.497,10.48,
6.209,8.218,10.22,
6.047,7.84,9.938,
5.874,7.531,9.65,
5.792,7.34,9.458,
11.62,11.96,12,
10.76,11.77,11.97,
9.695,11.2,11.89,
7.876,10.08,11.42,
7.032,9.141,10.96,
6.825,8.925,10.77,
6.67,8.737,10.72,
6.532,8.542,10.54,
6.341,8.223,10.26,
6.165,7.922,10,
5.986,7.619,9.678,
5.884,7.399,9.468,
11.58,11.93,12,
10.69,11.72,11.97,
9.589,11.24,11.75,
7.666,10.03,11.32,
6.855,9.035,10.93,
6.682,8.826,10.8,
6.506,8.667,10.59,
6.416,8.417,10.46,
6.232,8.051,10.17,
6.079,7.773,9.917,
5.945,7.406,9.644,
5.874,7.258,9.359,
11.71,12,12,
11.02,11.86,11.98,
9.998,11.45,11.9,
8.378,10.36,11.61,
7.666,9.585,11.14,
7.496,9.39,11.08,
7.348,9.21,10.92,
7.241,9.047,10.76,
7.051,8.763,10.49,
6.913,8.438,10.3,
6.772,8.122,10.05,
6.683,8.015,9.803,
11.87,12,12,
11.24,11.87,12,
10.42,11.58,11.91,
8.809,10.67,11.7,
8.124,9.899,11.52,
7.966,9.738,11.29,
7.824,9.468,11.16,
7.709,9.395,11.09,
7.531,9.325,10.9,
7.36,8.849,10.55,
7.184,8.633,10.42,
7.042,8.525,10.05,
11.95,12,12,
11.76,11.93,12,
11.22,11.96,12,
9.72,11.32,11.95,
8.885,11.02,11.82,
8.643,10.62,11.77,
8.46,10.46,11.73,
8.307,10.43,11.45,
8.021,9.921,11.56,
7.805,9.866,11.34,
7.538,9.573,11.09,
7.361,9.375,10.96,
'NAN','NAN','NAN',
11.77,12,12,
11.09,11.85,11.98,
10.13,11.48,11.96,
8.441,10.47,11.63,
7.633,9.621,11.26,
7.476,9.435,11.12,
7.346,9.202,11.04,
7.256,9.038,10.89,
7.075,8.736,10.66,
6.966,8.421,10.42,
6.845,8.144,10.15,
6.793,7.954,9.939,
11.75,11.98,12,
11.04,11.8,11.99,
10.06,11.49,11.93,
8.323,10.38,11.55,
7.56,9.541,11.21,
7.423,9.271,11.09,
7.301,9.109,11,
7.212,8.894,10.86,
7.074,8.642,10.63,
6.994,8.371,10.41,
6.901,8.067,10.12,
6.874,7.906,9.867,
11.79,11.94,12,
11.1,11.76,11.99,
10.07,11.39,11.96,
8.374,10.38,11.58,
7.673,9.511,11.22,
7.51,9.337,11.1,
7.42,9.145,11.02,
7.337,8.967,10.82,
7.19,8.701,10.57,
7.123,8.391,10.39,
7.033,8.158,10.11,
7.008,7.948,9.91,
11.76,11.98,11.97,
11.07,11.78,12,
10.03,11.5,11.94,
8.135,10.38,11.59,
7.436,9.37,11.22,
7.417,9.271,11.09,
7.256,9.002,11.05,
7.265,8.946,10.85,
7.199,8.488,10.57,
7.156,8.315,10.43,
7.128,7.987,10.04,
7.147,7.814,9.895,
11.88,11.83,12,
11.35,12,12,
10.45,11.67,12,
8.83,10.79,11.8,
8.162,10.03,11.65,
8.158,9.647,11.28,
8.002,9.438,11.2,
8.047,9.528,11.22,
7.982,8.952,10.92,
7.9,8.904,10.67,
7.888,8.409,10.5,
7.778,8.294,10.13,
11.93,12,12,
11.67,12,12,
10.48,12,12,
8.823,10.88,12,
8.352,10.22,11.81,
8.263,9.967,11.76,
8.361,9.281,11.48,
8.328,9.043,11.38,
8.195,9.261,11.13,
8.235,8.631,10.73,
8.299,8.708,11.12,
8.228,8.463,10.6,
12,12,12,
11.55,12,12,
10.97,11.59,12,
9.261,11.54,12,
8.835,10,11.57,
8.471,10.44,11.65,
8.425,10.6,11.58,
8.386,9.63,12,
8.123,9.708,11.52,
8.197,8.686,11.09,
7.964,8.947,10.88,
7.974,8.683,11.13,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
'NAN','NAN','NAN',
5.822,5.974,6,
5.361,5.821,5.981,
4.766,5.601,5.936,
3.84,4.988,5.683,
3.381,4.495,5.422,
3.295,4.382,5.356,
3.207,4.29,5.274,
3.147,4.152,5.203,
3.041,4,5.097,
2.952,3.84,4.951,
2.859,3.668,4.753,
2.813,3.578,4.65,
5.834,5.973,6,
5.393,5.892,5.99,
4.821,5.631,5.937,
3.909,5.03,5.7,
3.458,4.537,5.48,
3.371,4.46,5.394,
3.286,4.36,5.318,
3.214,4.248,5.238,
3.104,4.109,5.11,
3.023,3.92,4.969,
2.937,3.765,4.825,
2.896,3.67,4.729,
5.808,5.98,6,
5.379,5.884,5.985,
4.847,5.6,5.947,
3.938,5.041,5.711,
3.516,4.57,5.48,
3.412,4.463,5.386,
3.335,4.368,5.36,
3.266,4.271,5.269,
3.171,4.112,5.129,
3.082,3.961,5.001,
2.993,3.809,4.839,
2.942,3.699,4.734,
5.788,5.963,6,
5.345,5.86,5.985,
4.794,5.619,5.875,
3.833,5.014,5.661,
3.427,4.517,5.465,
3.341,4.413,5.401,
3.253,4.333,5.293,
3.208,4.208,5.232,
3.116,4.025,5.085,
3.039,3.887,4.959,
2.972,3.703,4.822,
2.937,3.629,4.679,
5.856,6,6,
5.512,5.931,5.988,
4.999,5.725,5.949,
4.189,5.179,5.803,
3.833,4.792,5.572,
3.748,4.695,5.542,
3.674,4.605,5.462,
3.621,4.524,5.378,
3.526,4.382,5.245,
3.457,4.219,5.151,
3.386,4.061,5.026,
3.341,4.008,4.902,
5.935,6,6,
5.618,5.937,6,
5.21,5.791,5.954,
4.404,5.336,5.849,
4.062,4.949,5.762,
3.983,4.869,5.643,
3.912,4.734,5.578,
3.855,4.698,5.544,
3.766,4.662,5.448,
3.68,4.425,5.273,
3.592,4.317,5.21,
3.521,4.263,5.025,
5.977,6,6,
5.879,5.963,6,
5.611,5.98,6,
4.86,5.66,5.973,
4.443,5.511,5.91,
4.321,5.309,5.887,
4.23,5.229,5.863,
4.154,5.214,5.725,
4.011,4.96,5.779,
3.902,4.933,5.672,
3.769,4.786,5.543,
3.68,4.688,5.48,
'NAN','NAN','NAN',
5.885,6,6,
5.547,5.926,5.988,
5.064,5.742,5.98,
4.221,5.234,5.815,
3.816,4.811,5.629,
3.738,4.717,5.56,
3.673,4.601,5.518,
3.628,4.519,5.443,
3.538,4.368,5.33,
3.483,4.211,5.212,
3.422,4.072,5.073,
3.396,3.977,4.969,
5.873,5.991,6,
5.522,5.9,5.993,
5.029,5.747,5.963,
4.161,5.191,5.777,
3.78,4.771,5.605,
3.712,4.636,5.546,
3.651,4.554,5.498,
3.606,4.447,5.428,
3.537,4.321,5.313,
3.497,4.186,5.207,
3.451,4.034,5.059,
3.437,3.953,4.934,
5.895,5.97,6,
5.551,5.879,5.996,
5.034,5.694,5.978,
4.187,5.189,5.791,
3.836,4.755,5.608,
3.755,4.668,5.552,
3.71,4.573,5.509,
3.669,4.484,5.408,
3.595,4.35,5.283,
3.562,4.196,5.196,
3.517,4.079,5.054,
3.504,3.974,4.955,
5.881,5.991,5.983,
5.535,5.891,6,
5.015,5.751,5.968,
4.067,5.192,5.794,
3.718,4.685,5.61,
3.708,4.635,5.546,
3.628,4.501,5.526,
3.632,4.473,5.425,
3.599,4.244,5.287,
3.578,4.158,5.213,
3.564,3.993,5.021,
3.573,3.907,4.947,
5.939,5.913,6,
5.674,6,6,
5.226,5.835,6,
4.415,5.394,5.898,
4.081,5.016,5.825,
4.079,4.824,5.639,
4.001,4.719,5.601,
4.024,4.764,5.608,
3.991,4.476,5.461,
3.95,4.452,5.334,
3.944,4.204,5.249,
3.889,4.147,5.067,
5.965,6,6,
5.835,6,6,
5.239,6,6,
4.412,5.439,6,
4.176,5.112,5.904,
4.131,4.984,5.878,
4.18,4.64,5.741,
4.164,4.522,5.69,
4.097,4.631,5.567,
4.117,4.315,5.364,
4.15,4.354,5.559,
4.114,4.231,5.299,
6,6,6,
5.776,6,6,
5.483,5.793,6,
4.63,5.769,6,
4.417,5,5.786,
4.236,5.221,5.824,
4.213,5.299,5.789,
4.193,4.815,6,
4.061,4.854,5.76,
4.099,4.343,5.544,
3.982,4.474,5.442,
3.987,4.341,5.563,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
'NAN','NAN','NAN',
11.64,11.95,12,
10.72,11.64,11.96,
9.531,11.2,11.87,
7.679,9.977,11.37,
6.761,8.99,10.84,
6.59,8.764,10.71,
6.414,8.579,10.55,
6.293,8.303,10.41,
6.083,8,10.19,
5.903,7.681,9.902,
5.719,7.336,9.506,
5.627,7.157,9.3,
11.67,11.95,12,
10.79,11.78,11.98,
9.641,11.26,11.87,
7.817,10.06,11.4,
6.917,9.074,10.96,
6.742,8.921,10.79,
6.572,8.72,10.64,
6.429,8.497,10.48,
6.209,8.218,10.22,
6.047,7.84,9.938,
5.874,7.531,9.65,
5.792,7.34,9.458,
11.62,11.96,12,
10.76,11.77,11.97,
9.695,11.2,11.89,
7.876,10.08,11.42,
7.032,9.141,10.96,
6.825,8.925,10.77,
6.67,8.737,10.72,
6.532,8.542,10.54,
6.341,8.223,10.26,
6.165,7.922,10,
5.986,7.619,9.678,
5.884,7.399,9.468,
11.58,11.93,12,
10.69,11.72,11.97,
9.589,11.24,11.75,
7.666,10.03,11.32,
6.855,9.035,10.93,
6.682,8.826,10.8,
6.506,8.667,10.59,
6.416,8.417,10.46,
6.232,8.051,10.17,
6.079,7.773,9.917,
5.945,7.406,9.644,
5.874,7.258,9.359,
11.71,12,12,
11.02,11.86,11.98,
9.998,11.45,11.9,
8.378,10.36,11.61,
7.666,9.585,11.14,
7.496,9.39,11.08,
7.348,9.21,10.92,
7.241,9.047,10.76,
7.051,8.763,10.49,
6.913,8.438,10.3,
6.772,8.122,10.05,
6.683,8.015,9.803,
11.87,12,12,
11.24,11.87,12,
10.42,11.58,11.91,
8.809,10.67,11.7,
8.124,9.899,11.52,
7.966,9.738,11.29,
7.824,9.468,11.16,
7.709,9.395,11.09,
7.531,9.325,10.9,
7.36,8.849,10.55,
7.184,8.633,10.42,
7.042,8.525,10.05,
11.95,12,12,
11.76,11.93,12,
11.22,11.96,12,
9.72,11.32,11.95,
8.885,11.02,11.82,
8.643,10.62,11.77,
8.46,10.46,11.73,
8.307,10.43,11.45,
8.021,9.921,11.56,
7.805,9.866,11.34,
7.538,9.573,11.09,
7.361,9.375,10.96,
'NAN','NAN','NAN',
11.77,12,12,
11.09,11.85,11.98,
10.13,11.48,11.96,
8.441,10.47,11.63,
7.633,9.621,11.26,
7.476,9.435,11.12,
7.346,9.202,11.04,
7.256,9.038,10.89,
7.075,8.736,10.66,
6.966,8.421,10.42,
6.845,8.144,10.15,
6.793,7.954,9.939,
11.75,11.98,12,
11.04,11.8,11.99,
10.06,11.49,11.93,
8.323,10.38,11.55,
7.56,9.541,11.21,
7.423,9.271,11.09,
7.301,9.109,11,
7.212,8.894,10.86,
7.074,8.642,10.63,
6.994,8.371,10.41,
6.901,8.067,10.12,
6.874,7.906,9.867,
11.79,11.94,12,
11.1,11.76,11.99,
10.07,11.39,11.96,
8.374,10.38,11.58,
7.673,9.511,11.22,
7.51,9.337,11.1,
7.42,9.145,11.02,
7.337,8.967,10.82,
7.19,8.701,10.57,
7.123,8.391,10.39,
7.033,8.158,10.11,
7.008,7.948,9.91,
11.76,11.98,11.97,
11.07,11.78,12,
10.03,11.5,11.94,
8.135,10.38,11.59,
7.436,9.37,11.22,
7.417,9.271,11.09,
7.256,9.002,11.05,
7.265,8.946,10.85,
7.199,8.488,10.57,
7.156,8.315,10.43,
7.128,7.987,10.04,
7.147,7.814,9.895,
11.88,11.83,12,
11.35,12,12,
10.45,11.67,12,
8.83,10.79,11.8,
8.162,10.03,11.65,
8.158,9.647,11.28,
8.002,9.438,11.2,
8.047,9.528,11.22,
7.982,8.952,10.92,
7.9,8.904,10.67,
7.888,8.409,10.5,
7.778,8.294,10.13,
11.93,12,12,
11.67,12,12,
10.48,12,12,
8.823,10.88,12,
8.352,10.22,11.81,
8.263,9.967,11.76,
8.361,9.281,11.48,
8.328,9.043,11.38,
8.195,9.261,11.13,
8.235,8.631,10.73,
8.299,8.708,11.12,
8.228,8.463,10.6,
12,12,12,
11.55,12,12,
10.97,11.59,12,
9.261,11.54,12,
8.835,10,11.57,
8.471,10.44,11.65,
8.425,10.6,11.58,
8.386,9.63,12,
8.123,9.708,11.52,
8.197,8.686,11.09,
7.964,8.947,10.88,
7.974,8.683,11.13,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
'NAN','NAN','NAN',
11.64,11.95,12,
10.72,11.64,11.96,
9.531,11.2,11.87,
7.679,9.977,11.37,
6.761,8.99,10.84,
6.59,8.764,10.71,
6.414,8.579,10.55,
6.293,8.303,10.41,
6.083,8,10.19,
5.903,7.681,9.902,
5.719,7.336,9.506,
5.627,7.157,9.3,
11.67,11.95,12,
10.79,11.78,11.98,
9.641,11.26,11.87,
7.817,10.06,11.4,
6.917,9.074,10.96,
6.742,8.921,10.79,
6.572,8.72,10.64,
6.429,8.497,10.48,
6.209,8.218,10.22,
6.047,7.84,9.938,
5.874,7.531,9.65,
5.792,7.34,9.458,
11.62,11.96,12,
10.76,11.77,11.97,
9.695,11.2,11.89,
7.876,10.08,11.42,
7.032,9.141,10.96,
6.825,8.925,10.77,
6.67,8.737,10.72,
6.532,8.542,10.54,
6.341,8.223,10.26,
6.165,7.922,10,
5.986,7.619,9.678,
5.884,7.399,9.468,
11.58,11.93,12,
10.69,11.72,11.97,
9.589,11.24,11.75,
7.666,10.03,11.32,
6.855,9.035,10.93,
6.682,8.826,10.8,
6.506,8.667,10.59,
6.416,8.417,10.46,
6.232,8.051,10.17,
6.079,7.773,9.917,
5.945,7.406,9.644,
5.874,7.258,9.359,
11.71,12,12,
11.02,11.86,11.98,
9.998,11.45,11.9,
8.378,10.36,11.61,
7.666,9.585,11.14,
7.496,9.39,11.08,
7.348,9.21,10.92,
7.241,9.047,10.76,
7.051,8.763,10.49,
6.913,8.438,10.3,
6.772,8.122,10.05,
6.683,8.015,9.803,
11.87,12,12,
11.24,11.87,12,
10.42,11.58,11.91,
8.809,10.67,11.7,
8.124,9.899,11.52,
7.966,9.738,11.29,
7.824,9.468,11.16,
7.709,9.395,11.09,
7.531,9.325,10.9,
7.36,8.849,10.55,
7.184,8.633,10.42,
7.042,8.525,10.05,
11.95,12,12,
11.76,11.93,12,
11.22,11.96,12,
9.72,11.32,11.95,
8.885,11.02,11.82,
8.643,10.62,11.77,
8.46,10.46,11.73,
8.307,10.43,11.45,
8.021,9.921,11.56,
7.805,9.866,11.34,
7.538,9.573,11.09,
7.361,9.375,10.96,
'NAN','NAN','NAN',
11.77,12,12,
11.09,11.85,11.98,
10.13,11.48,11.96,
8.441,10.47,11.63,
7.633,9.621,11.26,
7.476,9.435,11.12,
7.346,9.202,11.04,
7.256,9.038,10.89,
7.075,8.736,10.66,
6.966,8.421,10.42,
6.845,8.144,10.15,
6.793,7.954,9.939,
11.75,11.98,12,
11.04,11.8,11.99,
10.06,11.49,11.93,
8.323,10.38,11.55,
7.56,9.541,11.21,
7.423,9.271,11.09,
7.301,9.109,11,
7.212,8.894,10.86,
7.074,8.642,10.63,
6.994,8.371,10.41,
6.901,8.067,10.12,
6.874,7.906,9.867,
11.79,11.94,12,
11.1,11.76,11.99,
10.07,11.39,11.96,
8.374,10.38,11.58,
7.673,9.511,11.22,
7.51,9.337,11.1,
7.42,9.145,11.02,
7.337,8.967,10.82,
7.19,8.701,10.57,
7.123,8.391,10.39,
7.033,8.158,10.11,
7.008,7.948,9.91,
11.76,11.98,11.97,
11.07,11.78,12,
10.03,11.5,11.94,
8.135,10.38,11.59,
7.436,9.37,11.22,
7.417,9.271,11.09,
7.256,9.002,11.05,
7.265,8.946,10.85,
7.199,8.488,10.57,
7.156,8.315,10.43,
7.128,7.987,10.04,
7.147,7.814,9.895,
11.88,11.83,12,
11.35,12,12,
10.45,11.67,12,
8.83,10.79,11.8,
8.162,10.03,11.65,
8.158,9.647,11.28,
8.002,9.438,11.2,
8.047,9.528,11.22,
7.982,8.952,10.92,
7.9,8.904,10.67,
7.888,8.409,10.5,
7.778,8.294,10.13,
11.93,12,12,
11.67,12,12,
10.48,12,12,
8.823,10.88,12,
8.352,10.22,11.81,
8.263,9.967,11.76,
8.361,9.281,11.48,
8.328,9.043,11.38,
8.195,9.261,11.13,
8.235,8.631,10.73,
8.299,8.708,11.12,
8.228,8.463,10.6,
12,12,12,
11.55,12,12,
10.97,11.59,12,
9.261,11.54,12,
8.835,10,11.57,
8.471,10.44,11.65,
8.425,10.6,11.58,
8.386,9.63,12,
8.123,9.708,11.52,
8.197,8.686,11.09,
7.964,8.947,10.88,
7.974,8.683,11.13,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0,
0,0,0
)
288,232,1
48,24
2,248,258,664,303,0,MIDM
[Scenario1_0,Period]
Scenario1.0
Index for a list of scenarios to be modelled.
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85]
288,192,1
48,12
Scenarios1.0
A table of different scenarios to be studied. Each row contains the values for the input variables used for the scenario.
Table(Input_var,Scenario1_0)(
0,0.02,0.05,0.1,0.25,0.4,0.45,0.5,0.55,0.65,0.75,0.9,1,0.02,0.05,0.1,0.25,0.4,0.45,0.5,0.55,0.65,0.75,0.9,1,0.02,0.05,0.1,0.25,0.4,0.45,0.5,0.55,0.65,0.75,0.9,1,0.02,0.05,0.1,0.25,0.4,0.45,0.5,0.55,0.65,0.75,0.9,1,0.02,0.05,0.1,0.25,0.4,0.45,0.5,0.55,0.65,0.75,0.9,1,0.02,0.05,0.1,0.25,0.4,0.45,0.5,0.55,0.65,0.75,0.9,1,0.02,0.05,0.1,0.25,0.4,0.45,0.5,0.55,0.65,0.75,0.9,1,
7,7,7,7,7,7,7,7,7,7,7,7,7,6,6,6,6,6,6,6,6,6,6,6,6,5,5,5,5,5,5,5,5,5,5,5,5,4,4,4,4,4,4,4,4,4,4,4,4,3,3,3,3,3,3,3,3,3,3,3,3,2,2,2,2,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
)
['Composite fraction','Guarantee level','Lim']
288,160,1
48,24
2,394,67,698,560,0,MIDM
2,45,69,598,554,0,MIDM
52425,39321,65535
[Input_var,Scenario]
[Input_var,Scenario]
Trips1.0
Table(Time_stat,Scenario1_0,Vehicle)(
0,0,0,0,0,13.16K,
0,0,0,0,565,12.69K,
0,0,0,20,1335,12.21K,
0,0,0,220,2435,12.14K,
0,360,0,1360,4975,10.25K,
0,1320,100,2740,5885,8115,
0,1720,40,3160,6125,7280,
0,2320,120,3840,6770,6990,
0,3120,80,4240,7070,5980,
0,4600,60,5000,7750,4585,
0,5400,200,5440,7840,3365,
0,8800,440,6040,8410,1250,
40,9360,480,6580,8735,0,
0,0,0,0,470,13.03K,
0,0,0,20,910,12.6K,
0,0,0,160,1660,12K,
0,240,0,1300,3465,11.08K,
0,1320,20,2100,4500,8985,
0,1200,20,2380,4750,8290,
0,2000,100,2540,4945,8090,
0,2120,100,3080,5360,7800,
0,3280,120,3460,5685,6890,
0,4560,220,4480,6105,5830,
0,6200,280,4680,6410,4035,
0,7880,460,5180,6625,3215,
0,0,0,0,275,13.07K,
0,0,0,40,775,12.95K,
0,0,0,60,1635,11.94K,
0,320,40,1060,3035,11.42K,
0,920,40,1880,4040,9870,
0,1080,40,2360,4455,8975,
0,1520,80,2580,4480,8920,
0,1880,60,2760,4755,8345,
0,3440,120,3500,5125,7220,
0,3600,220,3740,5685,6590,
0,5680,200,4100,5790,4605,
0,6280,420,5040,6210,4155,
0,0,0,0,110,13.06K,
0,0,0,20,550,12.8K,
0,0,0,280,1180,12.82K,
0,280,0,640,2105,11.37K,
0,720,0,1080,2925,10.75K,
0,800,20,1420,2985,10.4K,
0,960,20,1600,3150,9820,
0,1840,100,1560,3345,10.07K,
0,2240,100,2720,3390,9660,
0,2640,60,2660,3785,8170,
0,3960,280,3060,3795,7490,
40,4320,400,3680,3970,6865,
0,0,0,0,70,13.26K,
0,0,0,20,215,13.11K,
0,0,0,20,390,13.39K,
0,40,0,180,660,12.83K,
0,160,0,240,870,12.65K,
0,240,0,400,805,12.41K,
0,400,0,480,930,12.67K,
0,320,20,680,1035,12.51K,
0,440,40,720,1110,12.33K,
0,600,100,580,1140,12.31K,
0,1120,40,800,1110,11.48K,
0,1080,60,960,1190,11.74K,
0,0,0,0,35,12.87K,
0,0,0,0,90,13.11K,
0,0,0,40,175,12.95K,
0,0,0,120,360,12.88K,
0,40,0,240,485,12.79K,
0,120,0,180,565,12.95K,
0,120,0,160,575,12.57K,
0,120,0,300,565,12.61K,
0,400,0,260,565,12.82K,
0,120,40,500,670,12.52K,
0,320,60,440,655,12.72K,
0,320,60,660,705,12.23K,
0,0,0,0,5,13.68K,
0,0,0,0,10,13.21K,
0,0,0,0,75,13.22K,
0,0,0,0,90,13.69K,
0,0,0,100,160,13.05K,
0,0,0,140,165,12.81K,
0,0,0,120,230,13.06K,
0,0,0,80,270,13.33K,
0,0,20,60,270,13K,
0,0,20,100,250,12.48K,
0,80,40,100,300,13.02K,
0,0,40,160,345,13.11K,
0,0,0,0,0,12.04K,
0,0,0,0,510,12.1K,
0,0,0,40,1205,11.74K,
0,0,0,280,2220,10.84K,
0,320,0,1180,4785,9000,
0,1480,40,2480,5950,7180,
0,2080,60,2820,6125,6905,
0,2080,40,3460,6770,6180,
0,3000,40,3900,6645,5440,
0,3800,160,4980,7680,4230,
0,5240,200,4940,7745,3140,
0,7520,240,6180,8420,1195,
0,8840,520,6680,8725,0,
0,0,0,0,380,12.27K,
0,0,0,20,880,12.34K,
0,40,0,140,1585,11.49K,
0,240,20,1100,3405,10.13K,
0,840,40,2240,4540,8435,
0,1080,40,2380,4920,8230,
0,1480,20,2580,4835,7445,
0,1960,100,3080,5120,7115,
0,3120,100,3280,5765,5955,
0,4160,140,4060,6345,5280,
0,5560,140,4700,6155,3810,
0,7120,260,4860,6810,2815,
0,0,0,0,320,12.61K,
0,0,0,0,760,11.8K,
0,0,0,60,1565,11.41K,
0,280,0,980,3020,10.19K,
0,880,20,1820,4010,8720,
0,920,40,2240,4425,8555,
0,1640,60,2360,4415,8035,
0,1760,100,2920,4620,7755,
0,2600,120,3080,5165,6530,
40,3400,160,3300,5565,5890,
0,4920,240,4240,5460,4520,
40,6120,360,4460,6135,3655,
0,0,0,0,160,11.87K,
0,0,0,20,565,11.85K,
0,0,0,200,1180,11.69K,
0,240,40,540,2100,10.4K,
0,760,20,1100,2805,9860,
0,840,60,1560,2770,9490,
0,1000,0,1600,3155,9130,
40,1440,40,1700,3470,9070,
0,1760,60,2720,3480,8565,
0,2440,100,2500,3865,8155,
0,3440,240,2920,3950,6865,
40,4480,340,3220,4005,6250,
0,0,0,0,55,12.32K,
0,0,0,0,230,12.06K,
0,0,0,20,350,12.19K,
0,80,0,120,615,12.72K,
0,120,0,400,830,11.58K,
0,120,20,460,810,11.71K,
0,280,0,460,900,11.57K,
0,360,20,460,1030,11.5K,
0,280,20,800,1015,11.44K,
0,600,0,660,1080,10.86K,
0,1080,140,720,1135,10.67K,
0,1000,100,880,1190,10.81K,
0,0,0,0,45,12.77K,
0,0,0,0,90,12.37K,
0,0,0,60,115,12.82K,
0,0,0,20,375,12.05K,
0,80,0,160,475,12K,
0,0,20,220,560,12.29K,
0,80,0,220,560,11.56K,
0,80,0,280,620,12.11K,
0,240,0,380,575,11.42K,
0,120,0,520,645,11.46K,
0,200,80,520,695,11.17K,
0,400,20,480,680,11.16K,
0,0,0,0,0,12.45K,
0,0,0,0,25,12.19K,
0,0,0,0,40,11.89K,
0,0,0,0,155,11.8K,
0,0,20,60,185,12.07K,
0,0,40,40,145,12.04K,
0,0,0,20,260,11.97K,
0,0,20,60,320,12.04K,
0,40,0,40,245,11.74K,
0,40,0,80,285,11.93K,
0,40,20,160,330,11.85K,
0,0,0,140,340,11.99K,
0,0,0,0,0,11.13K,
0,0,0,20,515,10.85K,
0,0,0,40,1020,10.66K,
0,0,0,120,2135,10.09K,
0,400,0,1120,4200,8150,
0,840,60,2560,5895,6900,
0,1800,20,3020,5995,6145,
0,1680,80,3220,6275,5705,
0,2560,40,3460,6560,5155,
0,3400,80,4280,7235,4435,
0,4880,160,5060,7380,2620,
0,5880,140,5920,8400,1115,
0,8000,460,6460,8470,0,
0,0,0,0,380,11.27K,
0,0,0,0,925,10.65K,
0,0,0,100,1655,10.02K,
0,240,0,1020,3280,8830,
0,880,60,1660,4310,8130,
0,1040,0,1960,4605,7450,
0,1320,40,2400,4625,7035,
0,1880,20,2800,4860,6655,
0,2840,100,3060,5420,5665,
0,3680,100,3980,5610,4930,
0,4760,140,4320,6335,3420,
40,6320,140,4640,6295,2715,
0,0,0,0,285,11.22K,
0,0,0,0,715,10.78K,
0,0,0,80,1555,10.56K,
0,280,0,1000,2935,9095,
0,600,40,1740,3890,8370,
0,1120,0,1920,4180,7600,
0,1400,40,2280,4535,7200,
0,1720,40,2420,4775,6710,
0,2400,40,2800,4930,6310,
40,3160,160,3140,5595,5250,
0,4520,240,3700,5355,4170,
0,5320,240,4360,5745,3490,
0,0,0,0,240,11.55K,
0,0,0,20,635,10.96K,
0,0,0,160,1000,10.65K,
0,160,0,620,1915,9890,
0,520,0,1200,2685,9090,
0,920,0,1100,2880,8850,
0,1040,60,1700,2860,8570,
0,1280,40,1940,3085,8495,
0,2120,100,1960,3635,8145,
40,2160,100,2420,3735,7215,
0,3320,120,2760,3810,6415,
0,4000,160,2940,3740,5920,
0,0,0,0,35,11.75K,
0,0,0,0,185,11.25K,
0,0,0,20,320,11.1K,
0,0,0,120,655,11.12K,
0,80,0,280,850,10.84K,
0,120,0,320,830,10.92K,
0,280,0,380,860,10.67K,
0,240,40,560,870,10.41K,
0,480,20,460,1020,9610,
0,640,20,600,1095,10.1K,
0,720,40,840,1055,9805,
0,920,40,800,1095,9695,
0,0,0,0,45,11.44K,
0,0,0,0,95,10.69K,
0,0,0,0,120,11.14K,
0,0,0,40,280,11.68K,
0,0,0,160,355,11.01K,
0,80,20,120,495,10.7K,
0,40,0,300,470,10.95K,
0,0,0,340,580,10.82K,
0,200,0,200,585,10.62K,
0,320,0,220,570,10.74K,
0,240,40,520,565,10.43K,
0,440,80,520,720,10.01K,
0,0,0,0,10,11.65K,
0,0,0,0,25,11.42K,
0,0,0,0,40,11.01K,
0,0,0,0,200,10.6K,
0,0,0,20,170,11.08K,
0,0,0,40,130,10.87K,
0,0,0,40,220,10.76K,
0,0,20,100,245,11.63K,
0,0,20,80,275,11K,
0,0,0,120,310,11.27K,
0,0,20,120,310,11.21K,
0,40,20,160,360,11.02K,
0,0,0,0,0,10.17K,
0,0,0,0,460,10.02K,
0,0,0,0,945,9530,
0,0,0,120,2135,9360,
0,200,0,1100,4020,7530,
0,760,0,2000,5605,6445,
0,1680,0,2580,5885,5275,
0,1640,40,2640,5925,5385,
0,2000,40,3340,6340,4560,
0,3320,20,3900,6830,3625,
0,4000,60,4240,7435,2630,
0,5760,100,5120,8065,945,
40,7280,240,5880,7825,0,
0,0,0,0,325,10.34K,
0,0,0,0,950,9780,
0,0,0,140,1470,9600,
0,200,0,820,2965,8670,
0,600,40,1680,4100,6965,
0,720,20,1980,4355,6440,
0,1000,20,2020,4560,6280,
0,1400,60,2360,5105,5900,
0,2120,100,3160,5335,4815,
0,3040,100,3360,5925,4280,
0,4320,140,3880,6410,3315,
0,5160,180,4260,6465,2585,
0,0,0,0,265,9785,
0,0,0,0,750,10.44K,
0,0,0,200,1335,9450,
0,160,0,760,2860,8830,
0,720,0,1440,3805,7330,
0,760,60,2020,3795,7315,
0,1400,20,1640,4225,6650,
0,1280,40,2420,4495,6625,
0,1880,20,2760,4715,5565,
0,2600,140,3280,5170,5120,
0,3520,100,3560,5325,4020,
0,4600,160,4140,5780,3210,
0,0,0,0,185,10.37K,
0,0,0,0,590,9855,
0,0,0,100,910,9835,
0,120,20,460,1890,8840,
0,880,0,900,2430,8345,
0,760,0,1300,2875,7825,
0,920,20,1160,2970,7950,
0,960,60,1400,3275,7570,
0,1600,80,1900,3450,7215,
0,2000,60,2300,3530,6665,
0,2440,160,2680,3780,5830,
0,3320,140,2840,3655,5205,
0,0,0,0,55,10.16K,
0,0,0,0,160,10.16K,
0,0,0,0,330,10.12K,
0,0,0,160,610,10.22K,
0,0,20,280,700,9985,
0,0,20,240,850,9665,
0,80,0,440,885,10.16K,
0,120,0,440,1025,9475,
0,280,0,380,990,9170,
0,480,0,560,1025,8985,
0,560,40,720,1010,8770,
0,720,40,680,1105,9025,
0,0,0,0,20,10.64K,
0,0,0,0,85,10.21K,
0,0,0,0,140,9825,
0,40,0,40,320,10.22K,
0,0,0,40,405,10.37K,
0,0,0,220,420,10.35K,
0,40,0,200,550,10.15K,
0,120,0,280,450,9785,
0,120,0,200,580,9775,
0,120,20,260,605,9755,
0,360,0,400,605,9515,
0,320,40,460,735,9180,
0,0,0,0,15,10.08K,
0,0,0,0,40,10.01K,
0,0,0,0,50,10.38K,
0,0,0,0,180,10.4K,
0,0,0,20,120,10.62K,
0,0,0,20,155,10.6K,
0,0,20,40,175,10.27K,
0,0,0,80,195,10.13K,
0,0,0,40,265,10.11K,
0,0,20,60,285,10.84K,
0,0,20,120,305,10.24K,
0,0,20,160,315,10.36K,
0,0,0,0,0,9545,
0,0,0,0,445,9415,
0,0,0,0,840,8985,
0,0,0,120,1840,8360,
0,40,0,960,3590,7085,
0,560,0,2060,5050,5870,
0,960,0,2240,5670,5140,
0,1120,40,2800,5795,4500,
0,1560,80,3080,6240,4320,
0,2440,60,3320,6900,3205,
0,3480,40,3940,7075,2350,
0,5000,60,4940,7505,1005,
0,5840,140,5820,7775,0,
0,0,0,0,250,9250,
0,0,0,0,835,8975,
0,0,0,100,1270,8545,
0,80,20,760,2845,7475,
0,400,0,1360,3995,6530,
0,680,20,1840,4095,5990,
0,920,0,1800,4285,5540,
0,1040,0,2200,4865,5460,
0,1720,20,2480,5345,4685,
0,2640,40,3000,5520,3905,
0,3720,140,3800,6090,2925,
0,4360,220,3940,6185,2210,
0,0,0,0,265,9390,
0,0,0,0,725,9430,
0,0,0,80,1200,9240,
0,160,0,680,2590,7845,
0,280,0,1420,3610,6890,
0,760,20,1440,3905,6490,
0,920,20,1560,4225,6290,
0,1320,0,2020,4125,5735,
0,1520,40,2580,4795,4800,
0,2400,80,2920,4660,4590,
0,2720,100,3600,5420,3615,
0,3920,240,4020,5470,2925,
0,0,0,0,140,9535,
0,0,0,0,535,9090,
0,0,0,80,875,8895,
0,200,0,320,1855,8345,
0,480,40,980,2540,7660,
0,680,0,1080,2570,7490,
0,560,20,1140,2875,7450,
0,720,20,1720,2950,7015,
0,1440,40,1460,3205,6385,
0,1800,60,1980,3445,5715,
40,2320,60,2320,3560,5280,
0,2880,140,2440,3555,5145,
0,0,0,0,50,9245,
0,0,0,0,145,9345,
0,0,0,20,280,9310,
0,0,0,100,550,8960,
0,80,0,100,760,9265,
0,80,0,180,790,8505,
0,200,0,340,750,8425,
0,160,0,320,855,8715,
0,240,0,420,900,8910,
0,240,0,540,1000,8625,
0,640,20,460,1030,8380,
0,560,20,600,1170,8300,
0,0,0,0,15,9665,
0,0,0,0,45,9105,
0,0,0,0,160,9140,
0,0,0,20,310,9180,
0,0,0,80,355,9270,
0,0,0,60,450,8920,
0,40,20,220,385,9120,
0,40,20,260,475,9110,
0,80,0,260,530,9015,
0,120,0,300,625,9025,
0,240,20,420,575,8490,
0,320,20,380,675,8440,
0,0,0,0,25,9570,
0,0,0,0,30,9380,
0,0,0,0,45,9320,
0,0,0,0,120,9460,
0,0,0,20,125,9135,
0,0,0,20,145,9480,
0,0,0,20,210,9395,
0,0,40,40,185,9340,
0,0,0,80,250,9410,
0,0,0,60,255,9180,
0,0,0,100,245,9415,
0,0,0,60,320,9085,
0,0,0,0,0,8590,
0,0,0,0,325,8560,
0,0,0,0,865,8280,
0,0,0,40,1670,8040,
0,0,0,900,3450,6490,
0,560,0,1500,4935,4835,
0,840,0,1860,5175,4555,
0,920,0,2220,5525,4335,
0,1200,20,2680,6145,3905,
0,2040,60,2900,6360,3135,
0,2880,20,3580,7055,2190,
0,3840,40,4440,7335,930,
0,5120,200,4920,7805,0,
0,0,0,0,275,8520,
0,0,0,40,795,8155,
0,0,0,80,1280,8050,
0,80,0,560,2660,6900,
0,400,0,1440,3560,5975,
0,440,0,1800,3910,5760,
0,600,40,1600,4385,5215,
0,1040,20,2240,4395,5185,
0,1200,40,2340,5085,4250,
0,2640,80,2580,5140,3660,
0,3320,60,3360,5235,2620,
0,3440,60,3760,6070,2080,
0,0,0,0,225,8955,
0,0,0,20,605,8215,
0,0,0,60,1155,7830,
0,160,0,360,2505,7185,
0,440,0,1200,3180,5980,
0,400,0,1320,3535,5775,
0,480,0,1500,3800,5510,
0,840,20,1760,4020,5365,
0,1160,60,2120,4535,4835,
0,2200,40,2380,4915,4285,
0,2440,60,3240,5220,3285,
0,3240,200,3460,5350,2510,
0,0,0,0,190,8125,
0,0,0,0,470,8190,
0,0,0,60,790,8245,
0,120,0,480,1525,7520,
0,360,0,780,2460,6915,
0,440,0,1120,2245,6845,
0,520,0,1000,2775,6650,
0,800,0,1280,2865,6200,
0,880,20,1440,2965,5960,
40,1520,20,1740,3140,5530,
0,1800,40,2140,3470,4840,
40,2560,100,2640,3555,4650,
0,0,0,0,45,8305,
0,0,0,0,150,8775,
0,0,0,0,220,8735,
0,40,0,60,425,8200,
0,0,0,220,785,7960,
0,120,0,240,695,8015,
0,80,0,260,735,8205,
0,80,0,340,795,7940,
0,120,0,460,920,7605,
0,120,0,620,835,7630,
0,360,20,540,1020,7295,
0,440,0,700,1010,7545,
0,0,0,0,35,8450,
0,0,0,0,45,8815,
0,0,0,0,140,8195,
0,0,0,20,260,8245,
0,0,0,80,350,8125,
0,0,0,120,370,7835,
0,0,0,200,430,8280,
0,0,20,160,505,8205,
0,40,0,200,540,7885,
0,120,0,260,565,8160,
0,80,0,280,670,7875,
0,320,0,260,675,8120,
0,0,0,0,15,8565,
0,0,0,0,30,8830,
0,0,0,0,40,8835,
0,0,0,0,110,8565,
0,0,0,0,155,8410,
0,0,0,0,135,8490,
0,0,0,20,165,8465,
0,0,0,40,190,8525,
0,0,0,60,250,8490,
0,0,0,100,195,8480,
0,0,0,120,215,8515,
0,0,40,120,235,8635,
0,0,0,0,0,7385,
0,0,0,0,305,7610,
0,0,0,0,725,7430,
0,0,0,40,1535,6905,
0,80,0,460,3450,5665,
0,440,40,1460,4540,4805,
0,560,0,1500,4900,4295,
0,800,20,1920,5180,4035,
0,1160,0,2100,5760,3540,
0,1280,40,3020,6065,2635,
0,2160,80,3400,6560,2030,
0,3440,80,3760,7505,780,
0,3960,80,4900,7435,0,
0,0,0,0,240,7965,
0,0,0,0,700,7540,
0,0,0,60,1065,7415,
0,40,0,480,2410,6605,
0,240,0,880,3555,5355,
0,320,0,1240,3810,5035,
0,640,20,1480,3975,4880,
0,520,0,1940,4045,4375,
0,1160,20,2300,4620,3655,
0,1440,40,2540,4995,3350,
0,2360,0,3160,5285,2420,
0,3560,140,3300,5285,1730,
0,0,0,0,205,7710,
0,0,0,0,560,7355,
0,0,0,60,1050,7490,
0,40,20,320,2325,6270,
0,360,0,1060,2985,5665,
0,400,0,1160,3335,5535,
0,520,0,1280,3350,5090,
0,600,0,1600,3790,5075,
0,920,20,2120,4190,4225,
0,1600,40,2440,4605,3630,
0,2520,140,2880,4965,2845,
0,2920,140,3140,5085,2445,
0,0,0,0,200,7560,
0,0,0,20,330,7725,
0,0,0,60,795,7595,
0,120,0,340,1545,7195,
0,240,0,680,2215,6320,
0,360,0,720,2455,6190,
0,440,0,840,2540,6055,
0,480,0,1060,2685,5925,
0,840,40,1440,2750,5450,
0,1240,40,1440,3425,5380,
0,1680,20,1840,3345,4585,
0,2480,60,2220,3655,4015,
0,0,0,0,50,7805,
0,0,0,0,100,7985,
0,0,0,0,205,7780,
0,0,0,40,500,7740,
0,0,0,180,675,7515,
0,80,0,260,680,7075,
0,80,0,220,805,7275,
0,80,0,360,735,7045,
0,120,0,380,845,7220,
0,240,0,360,895,7010,
0,400,40,420,1055,6625,
0,360,0,380,1130,6705,
0,0,0,0,25,7820,
0,0,0,0,65,7650,
0,0,0,0,125,7900,
0,0,0,0,295,7790,
0,0,0,80,340,7310,
0,0,0,120,315,7560,
0,0,0,180,340,7530,
0,0,0,200,445,7400,
0,40,0,240,490,7355,
0,40,0,200,565,7300,
0,0,0,240,640,7745,
0,120,0,380,645,7135,
0,0,0,0,5,7655,
0,0,0,0,30,7735,
0,0,0,0,35,7985,
0,0,0,0,120,7940,
0,0,0,40,135,7990,
0,0,0,40,130,7435,
0,0,0,0,210,7905,
0,0,0,20,185,7825,
0,0,0,20,185,7360,
0,0,20,0,240,7970,
0,0,0,60,235,7665,
0,0,0,80,295,7390,
0,0,0,0,0,6950,
0,0,0,0,325,7080,
0,0,0,0,625,6785,
0,0,0,20,1440,6635,
0,120,0,460,3125,5495,
0,320,0,1140,4485,4095,
0,320,20,1420,4570,3665,
0,520,0,2040,4775,3615,
0,680,0,2020,5530,3160,
0,1480,40,2620,5730,2700,
0,1920,60,2540,6445,1705,
0,2440,60,4000,6915,750,
0,3720,80,4320,7195,0,
0,0,0,0,260,6965,
0,0,0,0,600,7030,
0,0,0,40,1030,6825,
0,80,0,360,2240,6090,
0,400,40,820,3155,5065,
0,320,0,900,3430,4725,
0,440,20,1400,3895,4440,
0,640,0,1300,3885,4135,
0,880,0,1940,4425,3635,
0,1400,20,2240,4620,2995,
0,1840,40,3060,5135,2255,
0,2560,80,2780,5420,1610,
0,0,0,0,225,6735,
0,0,0,0,550,7020,
0,0,0,20,1035,6400,
0,40,0,260,2185,5935,
0,160,0,820,2895,5010,
0,160,0,1140,3010,5025,
0,440,0,1080,3500,4645,
0,560,20,1360,3865,4645,
0,840,0,1740,4130,4020,
0,840,20,2220,4270,3440,
0,1960,40,2820,4805,2790,
0,2240,40,2900,4910,2200,
0,0,0,0,165,7015,
0,0,0,0,315,7200,
0,0,0,100,805,6925,
0,120,0,320,1510,6325,
0,200,0,460,2245,5950,
0,320,0,680,2395,5510,
0,320,0,860,2365,5530,
0,360,20,920,2585,5185,
0,680,20,1140,2830,4815,
0,960,40,1380,3000,4170,
0,1160,20,1800,3595,4105,
0,1960,80,2020,3420,3695,
0,0,0,0,30,6810,
0,0,0,0,70,7260,
0,0,0,0,215,7070,
0,0,0,40,505,6430,
0,40,0,80,520,6720,
0,0,0,200,710,6605,
0,80,0,160,860,6695,
0,80,20,300,605,6645,
0,40,0,460,750,6670,
0,200,0,380,760,6640,
0,320,0,440,945,6280,
0,400,40,480,1000,6520,
0,0,0,0,15,7405,
0,0,0,0,70,6860,
0,0,0,0,70,6995,
0,0,0,60,260,6770,
0,0,0,60,305,7020,
0,40,0,80,300,7100,
0,0,0,100,370,6690,
0,40,0,140,390,6885,
0,40,0,100,450,6915,
0,40,0,200,480,6645,
0,80,0,300,480,6560,
0,120,0,280,545,6640,
0,0,0,0,5,7240,
0,0,0,0,10,7215,
0,0,0,0,20,7045,
0,0,0,0,90,7055,
0,0,0,0,85,7130,
0,0,0,0,140,6900,
0,0,0,40,165,7045,
0,0,0,40,135,7210,
0,0,0,0,185,7190,
0,0,0,20,215,6950,
0,0,20,40,205,6970,
0,0,0,80,220,7055,
0,0,0,0,0,6700,
0,0,0,0,275,6390,
0,0,0,0,605,6195,
0,0,0,0,1340,5875,
0,0,0,380,2985,4950,
0,360,0,940,4095,4080,
0,480,0,1360,4325,3420,
0,440,0,1540,4680,3430,
0,800,0,2080,4940,3060,
0,1120,40,2260,5680,2295,
0,1280,40,2660,5870,1540,
0,2120,80,3580,6560,600,
0,3080,0,3920,6885,0,
0,0,0,0,175,6570,
0,0,0,0,535,6935,
0,0,0,60,900,5960,
0,40,0,300,2255,5315,
0,160,0,780,3145,4505,
0,200,0,1020,3370,4505,
0,360,20,1180,3770,4155,
0,320,0,1460,3845,3705,
0,640,0,1800,4215,3240,
0,1240,40,2040,4520,2795,
0,1920,80,2620,5070,2005,
0,2320,0,2920,5000,1580,
0,0,0,0,225,6245,
0,0,0,0,435,6320,
0,0,0,60,1020,6440,
0,80,0,280,1945,5595,
0,120,0,800,2810,5075,
0,200,20,840,2995,4605,
0,320,0,960,3140,4525,
0,480,0,1420,3335,4110,
0,560,20,1800,3815,3560,
0,920,0,1900,3985,3405,
0,1720,60,2300,4460,2685,
0,1800,40,2780,4920,2065,
0,0,0,0,125,6520,
0,0,0,0,390,6510,
0,0,0,40,735,6090,
0,0,0,240,1405,5425,
0,240,0,700,1960,5365,
0,440,0,460,2315,5445,
0,280,0,840,2405,5155,
0,440,20,720,2410,4900,
0,560,0,1000,2895,4450,
0,880,20,1140,2970,4050,
0,960,20,1600,3240,3875,
0,1400,100,1900,3375,3435,
0,0,0,0,40,6725,
0,0,0,0,70,6575,
0,0,0,20,200,6630,
0,0,0,100,375,6730,
0,0,0,140,525,6165,
0,80,0,200,620,6140,
0,40,0,160,700,6245,
0,0,0,180,635,6290,
0,80,0,280,745,5935,
0,120,0,380,830,6020,
0,200,0,460,885,5890,
0,280,0,440,1005,5730,
0,0,0,0,5,6710,
0,0,0,0,50,6150,
0,0,0,0,75,6685,
0,0,0,20,250,6750,
0,0,0,40,375,6450,
0,0,0,80,335,6350,
0,0,0,20,470,6575,
0,80,0,40,395,6235,
0,0,0,140,380,6320,
0,40,0,260,405,6155,
0,40,0,160,505,6215,
0,80,0,220,510,6155,
0,0,0,0,0,6945,
0,0,0,0,20,6840,
0,0,0,0,45,6920,
0,0,0,0,95,6780,
0,0,0,20,120,6060,
0,0,0,0,135,6585,
0,0,0,0,130,6430,
0,0,20,0,180,6620,
0,0,0,40,205,6500,
0,0,0,20,180,6525,
0,0,0,40,250,6265,
0,0,0,80,190,6245,
0,0,0,0,0,6050,
0,0,0,0,200,6435,
0,0,0,0,640,6105,
0,0,0,20,1250,5705,
0,0,0,400,2850,4995,
0,120,0,820,4000,3815,
0,240,0,1340,4075,3800,
0,320,0,1380,4630,3055,
0,560,0,1740,5055,2960,
0,960,40,2260,5185,2225,
0,1040,20,2920,5805,1470,
0,1960,60,3020,6265,625,
0,2480,80,3640,6785,0,
0,0,0,0,195,6065,
0,0,0,0,425,5820,
0,0,0,40,915,5895,
0,40,0,300,2215,4840,
0,280,0,700,2915,4045,
0,240,0,780,3315,3940,
0,360,0,1160,3390,3800,
0,400,0,1140,3695,3710,
0,560,20,1840,4300,3145,
0,1000,40,1760,4445,2595,
40,1400,20,2560,4715,2005,
0,1800,100,2820,5040,1590,
0,0,0,0,230,6405,
0,0,0,0,400,5940,
0,0,0,100,915,5975,
0,0,0,320,1915,5225,
0,160,0,740,2575,4350,
0,200,0,720,2820,4355,
0,280,0,820,3180,4100,
0,360,0,1040,3360,3950,
0,640,0,1440,3645,3370,
0,960,40,1500,4000,2885,
0,1360,100,2060,4295,2400,
0,1600,40,2580,4770,1965,
0,0,0,0,120,6430,
0,0,0,0,250,6480,
0,0,0,20,640,6130,
0,80,0,200,1360,5630,
0,120,0,420,2025,4840,
0,160,0,720,2035,4945,
0,320,20,840,2195,4805,
0,360,20,760,2420,4995,
0,440,0,1080,2585,4445,
0,720,0,1260,2680,3990,
0,1000,40,1600,2890,3435,
0,1240,60,1940,3105,3405,
0,0,0,0,40,6195,
0,0,0,0,75,6130,
0,0,0,0,160,6110,
0,0,0,20,345,6020,
0,0,0,180,490,6100,
0,40,0,200,575,6150,
0,0,0,220,615,5850,
0,40,0,260,615,6050,
0,0,0,400,665,5965,
0,120,0,300,800,5805,
0,120,0,520,805,5530,
0,240,20,460,870,5485,
0,0,0,0,5,6355,
0,0,0,0,40,6120,
0,0,0,0,70,6280,
0,0,0,20,205,6285,
0,0,0,40,360,6120,
0,0,0,60,325,5955,
0,0,0,100,365,6015,
0,0,0,80,405,6170,
0,0,0,120,475,6180,
0,80,0,120,430,6030,
0,0,0,80,495,5655,
0,0,0,240,545,5885,
0,0,0,0,5,6345,
0,0,0,0,10,6290,
0,0,0,0,65,6070,
0,0,0,0,70,6045,
0,0,0,40,110,6525,
0,0,0,0,170,6620,
0,0,0,0,125,6280,
0,0,0,20,100,6210,
0,0,0,40,200,5965,
0,0,0,20,165,6050,
0,0,0,40,165,6195,
0,0,20,60,185,6255,
0,0,0,0,0,6155,
0,0,0,0,250,5795,
0,0,0,20,560,5930,
0,0,0,0,1295,5415,
0,40,0,260,2735,4680,
0,360,0,820,3840,3710,
0,200,20,1040,4500,3445,
0,280,0,1300,4610,3170,
0,320,0,1580,4660,2660,
0,800,20,2020,5110,2200,
0,1080,20,2600,5695,1630,
0,1440,20,2920,6625,590,
0,2000,40,3800,6540,0,
0,0,0,0,220,5935,
0,0,0,0,455,5875,
0,0,0,20,905,5950,
0,0,0,380,2100,5140,
0,200,0,760,3055,4525,
0,280,0,640,3305,4055,
0,440,0,1040,3265,3985,
0,520,20,1140,3665,3645,
0,560,20,1900,3815,2930,
0,840,20,1860,4330,2495,
0,1240,0,2000,4950,1870,
0,1680,60,2720,5150,1395,
0,0,0,0,185,5870,
0,0,0,0,405,6170,
0,0,0,40,930,5575,
0,0,0,300,1740,5245,
0,120,0,680,2740,4300,
0,280,0,600,2795,4300,
0,240,0,880,3285,4080,
0,240,0,1280,3025,3915,
0,360,0,1380,3585,3335,
0,760,20,1520,3985,3030,
0,1000,20,2220,4535,2390,
0,2080,60,2540,4315,1860,
0,0,0,0,115,5955,
0,0,0,0,260,6005,
0,0,0,20,515,6310,
0,40,0,180,1290,5635,
0,160,0,300,1990,5100,
0,280,0,580,2085,5050,
0,320,0,560,2110,4695,
0,440,0,700,2335,4665,
0,560,0,860,2595,4280,
0,680,20,1180,2685,3970,
0,800,80,1500,3030,3440,
0,1160,40,2000,2945,3045,
0,0,0,0,30,6155,
0,0,0,0,70,6310,
0,0,0,0,160,5960,
0,0,0,20,340,5880,
0,0,0,20,555,5885,
0,0,0,140,620,5680,
0,0,0,100,615,5580,
0,40,0,260,565,5935,
0,160,0,200,755,5810,
0,80,0,280,830,5580,
0,120,0,340,855,5545,
0,160,0,480,920,5370,
0,0,0,0,10,5875,
0,0,0,0,20,6230,
0,0,0,0,50,6305,
0,0,0,20,145,5655,
0,0,0,60,285,6160,
0,0,0,100,275,5790,
0,0,0,120,345,5705,
0,0,0,60,385,6005,
0,0,0,100,415,5690,
0,0,0,100,545,6020,
0,40,20,100,545,6000,
0,160,0,140,495,5805,
0,0,0,0,10,6305,
0,0,0,0,10,6605,
0,0,0,0,40,6155,
0,0,0,0,65,5925,
0,0,0,0,125,6345,
0,0,0,20,95,6270,
0,0,0,0,105,6335,
0,0,0,20,90,6290,
0,0,0,20,215,6075,
0,0,0,20,195,5995,
0,0,20,20,220,6300,
0,0,0,60,195,6030,
0,0,0,0,0,6165,
0,0,0,0,275,6490,
0,0,0,0,710,5860,
0,0,0,20,1280,5730,
0,40,0,380,2610,4720,
0,200,0,1100,3890,3940,
0,120,0,1000,4260,3620,
0,440,0,1360,4565,3090,
0,520,0,1200,4825,3085,
0,800,20,1960,5210,2280,
0,1520,40,2240,5455,1620,
0,1560,80,3120,6535,650,
0,2200,60,3780,6790,0,
0,0,0,0,190,6280,
0,0,0,0,500,6045,
0,0,0,60,770,5850,
0,0,0,380,2140,5070,
0,200,0,620,3215,4500,
0,120,0,880,3185,4135,
0,200,0,1160,3330,4005,
0,400,0,1220,3730,3740,
0,520,0,1620,4140,3060,
0,720,0,1840,4515,2665,
0,1400,20,2040,4875,1990,
0,1840,100,2820,5075,1635,
0,0,0,0,150,6410,
0,0,0,0,385,6200,
0,0,0,0,820,5620,
0,0,0,220,1945,5430,
0,240,0,680,2650,4950,
0,160,20,700,2930,4470,
0,280,0,940,3005,4490,
0,280,20,1040,3380,3910,
0,600,0,1400,3415,3495,
0,680,40,1880,3905,3145,
0,1360,20,2180,4315,2560,
0,1520,40,2400,4705,1985,
0,0,0,0,110,6005,
0,0,0,0,280,6275,
0,0,0,20,530,6225,
0,40,0,240,1275,5985,
0,120,0,420,1935,5310,
0,240,0,560,2165,5210,
0,240,0,640,2005,4840,
0,320,0,600,2610,4560,
0,320,80,920,2770,4385,
0,640,20,960,2780,4030,
0,1040,60,1240,3040,3695,
0,1280,0,1440,3110,3135,
0,0,0,0,25,6400,
0,0,0,0,65,6585,
0,0,0,0,175,6180,
0,40,0,40,375,6320,
0,0,0,80,465,6060,
0,0,0,120,590,5765,
0,80,0,140,625,5865,
0,80,0,140,675,6095,
0,80,0,320,635,5655,
0,120,0,320,875,5785,
0,120,0,460,820,5690,
0,240,0,480,890,5210,
0,0,0,0,25,6720,
0,0,0,0,45,6315,
0,0,0,0,85,6390,
0,0,0,20,165,5915,
0,0,0,20,295,5995,
0,0,0,40,270,6135,
0,0,0,40,440,6285,
0,0,0,120,395,6160,
0,40,0,80,420,6115,
0,40,0,140,515,5905,
0,80,0,200,470,5825,
0,40,0,200,585,5835,
0,0,0,0,10,6165,
0,0,0,0,15,6285,
0,0,0,0,25,6180,
0,0,0,0,75,6230,
0,0,0,20,95,6380,
0,0,0,0,135,6305,
0,0,0,0,100,6590,
0,0,0,0,145,6220,
0,0,0,40,210,6165,
0,0,0,40,195,6490,
0,0,0,60,195,6110,
0,0,0,40,200,5995,
0,0,0,0,0,6665,
0,0,0,0,220,6385,
0,0,0,20,655,6540,
0,0,0,20,1225,5945,
0,0,0,380,2755,5040,
0,120,0,1020,3925,4100,
0,360,0,1220,4255,3595,
0,400,0,1280,4835,3210,
0,560,0,1740,4900,2980,
0,720,20,2180,5305,2320,
0,1000,40,2700,5870,1685,
0,1680,40,3840,6050,700,
0,2160,120,3540,6985,0,
0,0,0,0,185,6405,
0,0,0,0,505,6475,
0,0,0,40,940,6050,
0,0,0,360,2185,5365,
0,120,20,660,2965,4330,
0,320,20,980,3300,4400,
0,320,0,1220,3510,4065,
0,400,20,1340,3390,3565,
0,680,20,1500,4080,3300,
0,1120,20,1860,4535,2865,
0,1800,60,2040,4940,2150,
0,1880,0,2720,5295,1535,
0,0,0,0,165,6460,
0,0,0,0,495,6305,
0,0,0,40,770,6200,
0,40,0,220,2030,5615,
0,120,0,760,2795,5180,
0,160,0,780,2840,4545,
0,360,20,900,2955,4485,
0,360,20,1140,3160,4255,
0,560,20,1400,3715,3855,
0,840,40,1980,4085,3200,
0,1040,40,2180,4540,2635,
0,1840,40,2360,4645,1995,
0,0,0,0,130,6785,
0,0,0,20,310,6745,
0,0,0,40,670,6530,
0,80,0,200,1440,5790,
0,200,0,440,1955,5130,
0,240,20,520,2055,5165,
0,240,0,440,2150,4730,
0,560,0,700,2435,5250,
0,520,40,1100,2420,4640,
0,480,20,1220,2715,4505,
0,1160,60,1360,3030,3700,
0,1520,40,1320,3395,3620,
0,0,0,0,30,6550,
0,0,0,0,45,6725,
0,0,0,0,170,6485,
0,0,0,40,435,6735,
0,40,0,80,475,6145,
0,40,0,80,640,6405,
0,120,0,160,580,6395,
0,40,0,140,785,6055,
0,80,0,280,735,6070,
0,200,0,300,935,6115,
0,200,0,480,920,6005,
0,160,20,480,875,5420,
0,0,0,0,30,6330,
0,0,0,0,40,6550,
0,0,0,0,90,6755,
0,0,0,0,245,6595,
0,0,0,40,315,6420,
0,0,0,0,345,6330,
0,0,0,120,290,6575,
0,0,0,100,445,6455,
0,0,0,140,410,6500,
0,120,0,240,455,6115,
0,40,20,160,525,6075,
0,80,0,200,590,6195,
0,0,0,0,5,6815,
0,0,0,0,5,6600,
0,0,0,0,30,6575,
0,0,0,0,80,6665,
0,0,0,0,105,6820,
0,0,0,20,190,6145,
0,0,0,20,160,6490,
0,0,20,20,180,6590,
0,0,0,20,205,6405,
0,0,0,40,170,6375,
0,0,0,40,195,6445,
0,0,0,80,235,6750,
0,0,0,0,0,7150,
0,0,0,0,270,6925,
0,0,0,20,710,6610,
0,0,0,0,1375,6140,
0,80,0,480,2565,5155,
0,240,0,1060,4095,4100,
0,400,20,1180,4430,3865,
0,560,0,1320,4900,3340,
0,600,0,1500,5285,3225,
0,920,20,2180,5750,2685,
0,1480,60,2760,5990,1870,
0,2280,60,3540,6305,720,
0,2760,80,3820,6975,0,
0,0,0,0,195,6625,
0,0,0,0,540,6765,
0,0,0,60,1005,6655,
0,40,0,300,2325,5575,
0,200,20,660,3175,5125,
0,160,0,1020,3420,4700,
0,480,20,1220,3360,4365,
0,520,0,1180,3860,4125,
0,760,0,1500,4170,3445,
0,1280,20,1800,4580,2770,
0,1640,20,2600,4985,2245,
0,1880,20,2660,5320,1640,
0,0,0,0,150,6845,
0,0,0,0,510,6520,
0,0,0,20,775,6945,
0,80,0,340,1880,5610,
0,280,0,740,2795,5025,
0,200,0,740,2975,4755,
0,320,0,860,3265,4635,
0,320,0,1160,3450,4290,
0,440,20,1560,3650,3975,
0,880,40,1900,4045,3205,
0,1440,20,1920,4615,2485,
0,1800,100,2600,4625,2170,
0,0,0,0,170,6495,
0,0,0,0,375,6885,
0,0,0,20,695,6495,
0,40,0,220,1310,6305,
0,160,0,360,2175,5355,
0,200,0,560,2300,5570,
0,400,20,440,2165,5220,
0,480,0,940,2455,5075,
0,640,20,1100,2540,4710,
0,600,20,960,3025,4500,
0,1360,60,1580,2980,3735,
0,1480,0,1600,3555,3610,
0,0,0,0,40,6860,
0,0,0,0,40,6805,
0,0,0,0,135,7005,
0,0,0,80,405,6740,
0,40,20,80,725,6505,
0,0,0,140,690,6340,
0,80,0,100,675,6575,
0,40,0,320,695,6310,
0,80,0,340,825,6620,
0,120,0,500,845,6575,
0,200,0,440,890,5900,
0,240,0,440,935,6115,
0,0,0,0,25,7140,
0,0,0,0,35,6640,
0,0,0,0,110,7115,
0,0,0,20,235,6880,
0,0,0,40,320,6895,
0,0,0,60,310,6725,
0,0,0,60,330,6575,
0,0,0,100,375,6750,
0,40,0,80,465,6635,
0,80,0,180,470,6610,
0,40,0,240,505,6905,
0,40,0,220,650,6665,
0,0,0,0,5,6975,
0,0,0,0,25,6990,
0,0,0,0,25,7050,
0,0,0,0,70,6885,
0,0,0,0,100,6795,
0,0,0,20,155,6935,
0,0,0,0,130,6875,
0,0,0,20,195,6765,
0,0,0,20,230,6820,
0,0,0,0,155,7005,
0,0,0,40,190,6810,
0,0,20,100,185,6880,
0,0,0,0,0,7085,
0,0,0,0,245,6870,
0,0,0,0,610,6395,
0,0,0,60,1305,6165,
0,40,0,420,3050,5435,
0,240,0,1200,3975,4235,
0,360,20,1180,4505,3965,
0,680,0,1180,4785,3715,
0,480,0,1900,5295,3175,
0,1000,40,2300,5615,2495,
0,1360,0,2600,6100,1825,
0,2120,60,3980,6765,725,
0,2840,20,3660,7065,0,
0,0,0,0,230,7105,
0,0,0,0,550,6880,
0,0,0,20,1145,6555,
0,40,0,260,2460,5785,
0,320,0,740,3160,5080,
0,280,0,1120,3460,4825,
0,240,0,1220,3570,4365,
0,360,0,1600,3970,4170,
0,720,20,1820,4240,3605,
0,960,20,2320,4550,3150,
0,2080,40,2560,4915,2335,
0,2080,40,2820,5360,1620,
0,0,0,0,120,7075,
0,0,0,20,485,6685,
0,0,0,0,800,6755,
0,40,0,260,2080,5670,
0,160,0,660,2805,5185,
0,240,0,780,3115,4890,
0,240,0,1100,3205,4360,
0,560,0,1240,3495,4475,
0,680,0,1380,3790,3875,
0,760,0,2080,4015,3215,
0,1280,60,2440,4525,2690,
0,1520,60,3100,4765,2145,
0,0,0,0,170,7210,
0,0,0,0,370,6990,
0,0,0,40,560,7100,
0,80,0,160,1380,6385,
0,160,0,600,1870,5710,
0,240,0,700,2255,5635,
0,280,0,600,2580,5495,
0,720,0,620,2480,5150,
0,480,20,1240,2655,4705,
0,760,60,1380,2805,4555,
0,1160,20,1900,3130,4180,
0,1480,80,2060,3245,3800,
0,0,0,0,40,7095,
0,0,0,0,75,6805,
0,0,0,0,140,7245,
0,0,0,40,415,7070,
0,0,0,200,600,6660,
0,80,0,140,580,6690,
0,40,0,180,720,6715,
0,80,0,340,755,6410,
0,160,20,260,755,6535,
0,160,0,440,890,6590,
0,200,0,460,960,6230,
0,280,40,520,910,6120,
0,0,0,0,0,7320,
0,0,0,0,45,7215,
0,0,0,0,110,6690,
0,0,0,60,230,6920,
0,0,0,0,280,6740,
0,0,0,80,320,7120,
0,0,0,100,390,7115,
0,0,0,80,430,6605,
0,40,40,100,510,7020,
0,40,20,120,515,6475,
0,80,0,220,600,6810,
0,120,0,220,585,6730,
0,0,0,0,0,7080,
0,0,0,0,35,7225,
0,0,0,0,35,7205,
0,0,0,0,75,7180,
0,0,0,0,130,6785,
0,0,0,20,130,7165,
0,0,0,0,110,7145,
0,0,0,20,160,7265,
0,0,0,80,180,7675,
0,0,0,0,180,6990,
0,0,0,40,230,7085,
0,0,0,40,245,7035,
0,0,0,0,0,7055,
0,0,0,0,395,7130,
0,0,0,40,680,6670,
0,0,0,40,1280,6570,
0,80,0,240,3135,5190,
0,160,0,1060,4300,4320,
0,400,0,1480,4165,3790,
0,680,0,1320,4870,3565,
0,440,0,1660,5205,3070,
0,1040,0,2440,5525,2350,
0,1280,40,2880,6175,1670,
0,1880,40,3580,6625,745,
0,3080,20,3960,6955,0,
0,0,0,0,215,6805,
0,0,0,0,555,6775,
0,0,0,0,1035,6715,
0,0,0,220,2275,5580,
0,160,20,760,3280,4870,
0,280,0,920,3535,4580,
0,680,0,960,3525,4365,
0,440,20,1540,3920,4525,
0,840,40,1320,4360,3560,
0,1240,40,1980,4935,2995,
0,1600,60,2440,5300,2110,
0,2360,120,2740,5305,1645,
0,0,0,0,160,6760,
0,0,0,20,515,6995,
0,0,0,0,930,6575,
0,40,0,280,2055,5595,
0,120,20,720,2770,5075,
0,240,0,1020,3270,4560,
0,280,0,1040,3535,4920,
0,440,0,1340,3665,4640,
0,600,0,1760,3880,3715,
0,1000,20,1980,4220,3475,
40,1440,40,2520,4520,2645,
40,2040,40,2340,4670,2130,
0,0,0,0,140,6965,
0,0,0,0,320,7170,
0,0,0,0,720,6625,
0,40,0,180,1405,6385,
0,160,0,580,1915,5730,
0,160,0,660,2290,5550,
0,440,40,680,2305,5190,
0,360,0,760,2655,5250,
0,440,0,1000,2785,4795,
0,680,0,1300,2980,4630,
0,1120,20,1620,3220,4350,
0,1200,40,2120,3155,3940,
0,0,0,0,50,7125,
0,0,0,0,90,7305,
0,0,0,20,165,7080,
0,0,0,80,410,6855,
0,0,0,180,485,7120,
0,40,0,120,635,6905,
0,40,0,200,695,6725,
0,80,0,360,575,6210,
0,80,0,280,710,6265,
0,200,20,320,885,6235,
0,200,20,420,885,5985,
0,160,0,540,1005,6240,
0,0,0,0,5,7295,
0,0,0,0,55,6950,
0,0,0,0,85,6755,
0,0,0,20,245,6800,
0,0,0,60,215,6985,
0,0,0,40,405,6655,
0,0,20,120,415,6395,
0,0,0,120,360,6665,
0,40,0,200,425,6700,
0,40,0,140,470,6685,
0,80,20,300,475,6625,
0,120,20,300,555,6780,
0,0,0,0,5,7405,
0,0,0,0,15,6875,
0,0,0,0,20,6930,
0,0,0,0,60,6855,
0,0,0,40,125,6825,
0,0,0,0,130,7310,
0,0,0,20,155,7030,
0,0,0,0,185,7065,
0,0,0,20,190,6490,
0,0,0,20,225,6875,
0,40,0,40,250,6860,
0,0,0,80,215,6875,
0,0,0,0,0,6385,
0,0,0,0,320,6785,
0,0,0,0,655,6045,
0,0,0,40,1205,6115,
0,0,0,640,2990,4905,
0,200,0,1260,4100,4025,
0,400,20,1160,4455,3675,
0,360,0,1720,4745,3360,
0,720,0,1520,5095,2855,
0,1000,0,2300,5265,2225,
0,1040,40,2880,5725,1745,
0,1760,80,3660,6235,585,
0,2480,60,3480,7015,0,
0,0,0,0,225,6205,
0,0,0,0,500,6580,
0,0,0,20,900,6135,
0,80,0,300,2130,5365,
0,120,0,700,3240,4560,
0,280,0,720,3490,4125,
0,320,0,880,3625,4000,
0,560,0,1040,3935,3700,
0,640,0,1460,4430,3510,
0,920,40,1880,4560,2815,
0,1800,20,2560,4920,1970,
0,2320,60,2760,5095,1530,
0,0,0,0,160,6665,
0,0,0,0,435,6175,
0,0,0,0,935,6115,
0,80,0,260,1980,5580,
0,320,0,800,2770,5100,
0,160,0,800,3285,4730,
0,360,20,920,3555,4235,
0,280,0,1280,3290,4060,
0,520,60,1520,3965,3680,
0,840,40,2080,4030,3015,
0,1280,20,2420,4490,2610,
0,1840,0,2180,4820,1870,
0,0,0,0,120,6765,
0,0,0,0,280,6715,
0,0,0,20,760,6540,
0,80,0,220,1290,5875,
0,200,20,420,1985,5215,
0,200,0,640,2150,5105,
0,240,0,700,2080,5000,
0,360,20,740,2425,4950,
0,440,0,1160,2520,4595,
0,600,40,1460,2770,4345,
0,1280,20,1480,2945,3800,
0,1360,80,1820,3110,3555,
0,0,0,0,35,6620,
0,0,0,0,85,6550,
0,0,0,0,190,6360,
0,0,0,80,375,6245,
0,0,0,100,520,6160,
0,0,0,140,600,6255,
0,80,0,160,675,5925,
0,80,0,160,690,6040,
0,40,0,300,780,6110,
0,80,0,340,915,6355,
0,120,0,400,930,5855,
0,280,20,640,995,5965,
0,0,0,0,5,6440,
0,0,0,0,45,6590,
0,0,0,0,100,6730,
0,0,0,40,210,6425,
0,0,0,0,400,6080,
0,0,20,80,340,6425,
0,0,0,140,355,6280,
0,0,0,80,400,6510,
0,0,0,180,430,6170,
0,0,0,200,510,6370,
0,80,0,220,510,6370,
0,80,0,320,430,6330,
0,0,0,0,15,6880,
0,0,0,0,10,6735,
0,0,0,0,45,6815,
0,0,0,0,80,6540,
0,0,0,0,155,6685,
0,0,0,0,130,6470,
0,0,0,20,150,6650,
0,0,0,0,145,6355,
0,0,0,20,175,6450,
0,0,0,40,240,6455,
0,0,0,80,220,6875,
0,0,0,40,260,6235,
0,0,0,0,0,6120,
0,0,0,0,205,5885,
0,0,0,0,695,5455,
0,0,0,0,1230,5390,
0,40,0,340,2805,4325,
0,200,0,1200,3930,3555,
0,240,0,1060,4090,3385,
0,400,0,1260,4510,3075,
0,720,20,1380,4765,2495,
0,600,20,2340,5210,2170,
0,920,0,2620,5685,1460,
0,1640,0,3140,5885,610,
0,2320,20,3520,6415,0,
0,0,0,0,230,5865,
0,0,0,0,425,5590,
0,0,0,40,875,5665,
0,40,0,260,2140,5090,
0,160,0,640,2970,4075,
0,200,20,920,2930,3825,
0,280,0,1020,3420,3945,
0,280,20,1300,3575,3470,
0,600,0,1480,4065,3085,
0,760,40,1720,4265,2635,
0,1760,0,2400,4795,1870,
0,1760,40,2220,5040,1365,
0,0,0,0,125,5670,
0,0,0,0,440,5905,
0,0,0,0,835,5935,
0,0,0,180,1840,4965,
0,120,0,620,2820,4210,
0,240,0,520,2730,4155,
0,360,0,880,3110,4170,
0,240,20,1140,3365,3535,
0,480,0,1480,3430,3160,
0,720,20,1800,3905,2790,
0,1040,60,2140,4245,2160,
0,1600,100,2220,4335,1995,
0,0,0,0,125,5810,
0,0,0,0,310,5710,
0,0,0,20,640,6065,
0,0,0,200,1375,5315,
0,160,0,500,1845,4505,
0,200,0,360,2010,4835,
0,200,0,580,2175,4425,
0,360,20,660,2230,4385,
0,560,0,1020,2290,3790,
0,600,40,1000,2725,3795,
0,1080,40,1480,2900,3375,
0,1080,20,1620,3160,3155,
0,0,0,0,25,5895,
0,0,0,0,80,6145,
0,0,0,0,135,5975,
0,0,0,20,350,5950,
0,0,0,80,535,5805,
0,0,0,120,570,5355,
0,40,0,120,770,5890,
0,40,0,260,660,5560,
0,40,0,280,805,5515,
0,120,0,280,750,5205,
0,80,20,420,865,5225,
0,280,0,560,920,5375,
0,0,0,0,15,6080,
0,0,0,0,45,6145,
0,0,0,0,80,5810,
0,0,0,40,245,5855,
0,0,0,100,340,6025,
0,0,0,60,345,5900,
0,0,0,80,290,5845,
0,0,20,80,335,5590,
0,40,0,120,370,5995,
0,40,0,120,510,5710,
0,80,0,220,510,5580,
0,120,20,240,515,5550,
0,0,0,0,5,6240,
0,0,0,0,25,5760,
0,0,0,0,35,5970,
0,0,0,0,125,6010,
0,0,0,20,80,5930,
0,0,0,0,95,5895,
0,0,0,0,135,6005,
0,0,0,0,185,5835,
0,0,0,60,105,5485,
0,0,0,40,205,6150,
0,0,0,20,240,5845,
0,0,0,80,225,5485,
0,0,0,0,0,5330,
0,0,0,0,205,5505,
0,0,0,0,545,4870,
0,0,0,60,1070,4805,
0,80,0,380,2355,3890,
0,160,0,740,3615,3000,
0,200,0,1000,3915,2935,
0,160,0,1040,4150,2515,
0,320,20,1400,4415,2400,
0,440,0,1500,4905,1805,
0,720,20,1980,5385,1415,
0,1320,40,2500,6365,535,
0,1720,20,3020,6315,0,
0,0,0,0,200,5215,
0,0,0,0,500,5015,
0,0,0,20,940,5035,
0,40,0,220,1875,4215,
0,40,0,620,2590,3460,
0,120,0,720,2890,3555,
0,200,0,840,3350,3275,
0,240,0,1060,3570,3385,
0,560,0,1100,3900,2775,
0,680,20,1380,4025,2220,
0,1120,20,2160,4475,1455,
0,1560,20,2180,4680,1175,
0,0,0,0,145,5330,
0,0,0,0,390,5360,
0,0,0,0,835,5050,
0,0,0,240,1775,4555,
0,80,0,560,2665,4265,
0,240,0,580,2545,3775,
0,120,0,740,2915,3640,
0,280,0,1040,3030,3390,
0,280,0,1260,3295,2860,
0,600,0,1560,3775,2605,
0,800,0,1840,4215,1865,
0,1560,0,1860,4560,1520,
0,0,0,0,105,5155,
0,0,0,0,260,5030,
0,0,0,0,560,5270,
0,0,0,240,1175,4735,
0,80,20,340,1780,4045,
0,80,0,620,1845,4235,
0,160,0,420,2070,4235,
0,280,0,560,2130,3740,
0,480,0,780,2435,3820,
0,400,0,1020,2495,3440,
0,680,20,1300,2950,2910,
0,920,40,1320,3145,2905,
0,0,0,0,10,5215,
0,0,0,0,75,5560,
0,0,0,20,120,5195,
0,0,0,20,270,5005,
0,0,0,80,450,4890,
0,0,0,120,615,5005,
0,0,0,180,525,5465,
0,40,0,100,670,4845,
0,40,0,220,695,4960,
0,160,0,220,705,4760,
0,80,0,320,880,4610,
0,280,20,280,800,4655,
0,0,0,0,15,5030,
0,0,0,0,20,5390,
0,0,0,0,90,5460,
0,0,0,0,220,5525,
0,0,0,40,280,5275,
0,0,0,80,265,4975,
0,0,0,20,295,5015,
0,0,0,80,265,5085,
0,40,0,140,480,5130,
0,0,20,60,520,4950,
0,80,0,260,475,5185,
0,160,0,180,510,4975,
0,0,0,0,10,5275,
0,0,0,0,5,5270,
0,0,0,0,35,5455,
0,0,0,0,95,5155,
0,0,0,0,105,5265,
0,0,0,0,130,4960,
0,0,0,0,95,5160,
0,0,0,0,150,4985,
0,0,0,20,155,4900,
0,0,0,40,205,5040,
0,0,0,0,200,5085,
0,0,0,40,180,5000,
0,0,0,0,0,4810,
0,0,0,0,185,4910,
0,0,0,0,435,4425,
0,0,0,20,910,4455,
0,0,0,300,2235,3805,
0,0,0,480,3460,2985,
0,80,0,760,3475,2535,
0,160,20,780,4040,2560,
0,360,0,940,4200,2220,
0,400,0,1200,4740,1810,
0,640,20,1860,5085,1275,
0,1040,0,2640,5445,435,
0,1280,0,2680,5995,0,
0,0,0,0,175,4740,
0,0,0,20,365,4495,
0,0,0,20,815,4675,
0,40,0,120,1775,3980,
0,80,0,340,2420,3250,
0,80,0,460,2975,3115,
0,200,0,740,2950,2850,
0,240,0,740,3190,2745,
0,360,0,1040,3470,2460,
0,480,20,1200,3950,2120,
0,800,20,1960,4195,1430,
0,1080,40,1900,4695,1120,
0,0,0,0,190,4790,
0,0,0,0,275,4810,
0,0,0,20,770,4580,
0,40,0,140,1555,4175,
0,80,0,360,2495,3560,
0,120,0,540,2300,3435,
0,160,20,500,2755,3110,
0,120,0,740,2765,2905,
0,400,0,1060,3225,2930,
0,320,0,1200,3510,2220,
0,680,0,1740,4160,1670,
0,920,20,2020,4090,1480,
0,0,0,0,100,4685,
0,0,0,0,280,4560,
0,0,0,20,510,4780,
0,0,0,100,1000,4405,
0,120,0,280,1595,3935,
0,120,0,440,1700,3760,
0,80,0,420,1885,3595,
0,200,20,380,1980,3595,
0,320,0,780,2175,3255,
0,480,0,800,2360,3125,
0,640,20,1000,2760,2735,
0,720,20,1160,2915,2485,
0,0,0,0,15,4790,
0,0,0,0,60,4830,
0,0,0,0,120,4625,
0,0,0,20,370,4820,
0,0,0,80,435,4565,
0,0,0,100,490,4545,
0,0,0,100,525,4480,
0,0,0,120,555,4770,
0,40,0,220,565,4210,
0,80,20,300,715,4500,
0,80,0,340,810,4185,
0,80,0,260,860,4355,
0,0,0,0,0,5010,
0,0,0,0,25,4740,
0,0,0,0,70,4795,
0,0,0,20,145,4570,
0,0,0,40,255,4665,
0,0,0,20,245,4800,
0,0,0,20,330,4545,
0,0,0,20,325,4460,
0,0,0,80,380,4610,
0,0,0,140,415,4530,
0,40,0,120,495,4395,
0,80,0,220,455,4570,
0,0,0,0,10,5085,
0,0,0,0,10,4820,
0,0,0,0,30,4890,
0,0,0,0,75,4570,
0,0,0,0,160,4490,
0,0,0,0,130,4890,
0,0,0,0,110,4935,
0,0,0,20,110,4745,
0,0,0,0,135,4560,
0,0,0,0,180,4880,
0,40,0,0,175,4610,
0,0,0,20,165,4915,
0,0,0,0,0,4620,
0,0,0,0,225,4840,
0,0,0,0,465,4420,
0,0,0,20,900,4240,
0,40,0,160,2285,3795,
0,80,0,520,3170,2960,
0,40,0,560,3745,2340,
0,40,0,920,3690,2355,
0,240,0,820,4060,2310,
0,320,0,1420,4485,1760,
0,640,0,1380,4880,1230,
0,1280,20,2340,5455,480,
0,1080,40,2440,6010,0,
0,0,0,0,150,4895,
0,0,0,0,355,4365,
0,0,0,20,825,4435,
0,0,0,240,1615,3865,
0,120,0,280,2470,3140,
0,80,0,580,2795,3005,
0,200,0,700,2945,3085,
0,80,0,780,2920,2795,
0,320,0,900,3440,2290,
0,320,0,1500,3755,2075,
0,680,20,1820,4200,1560,
0,960,20,2140,4365,1135,
0,0,0,0,170,4650,
0,0,0,0,340,4580,
0,0,0,20,720,4145,
0,0,0,120,1490,3990,
0,120,0,420,2185,3375,
0,160,0,500,2265,3360,
0,160,0,420,2440,3060,
0,200,0,680,2740,2980,
0,400,40,740,3120,2370,
0,360,0,1240,3205,2270,
0,880,20,1460,3910,1740,
0,840,20,1820,4010,1250,
0,0,0,0,115,4475,
0,0,0,0,220,4875,
0,0,0,40,500,4640,
0,0,0,40,1145,4210,
0,40,0,160,1775,4005,
0,40,0,320,1700,3815,
0,80,0,300,1660,3720,
0,200,0,420,1745,3685,
0,280,0,720,2140,3025,
0,200,0,900,2340,3165,
0,360,20,1160,2575,2755,
0,640,0,1340,2705,2595,
0,0,0,0,20,4670,
0,0,0,0,70,4870,
0,0,0,0,110,4630,
0,0,0,40,320,4575,
0,0,0,20,455,4505,
0,0,0,20,500,4330,
0,0,0,40,540,4300,
0,0,0,160,490,4265,
0,0,0,180,585,4245,
0,40,0,240,735,4540,
0,120,0,240,735,4140,
0,200,0,200,780,3980,
0,0,0,0,5,4520,
0,0,0,0,25,4650,
0,0,0,0,30,4640,
0,0,0,0,135,4615,
0,0,0,20,285,4810,
0,0,0,20,260,4630,
0,0,0,60,270,4670,
0,0,0,80,270,4455,
0,0,0,80,280,4815,
0,0,0,80,415,4410,
0,0,0,160,440,4545,
0,0,0,200,455,4450,
0,0,0,0,10,4740,
0,0,0,0,10,4875,
0,0,0,0,40,4850,
0,0,0,0,60,4765,
0,0,0,0,135,4830,
0,0,0,0,95,4785,
0,0,0,0,135,4450,
0,0,0,0,95,4925,
0,0,0,20,130,4715,
0,0,0,40,165,4545,
0,0,20,20,195,4395,
0,0,0,20,190,4620,
0,0,0,0,0,5045,
0,0,0,0,205,5520,
0,0,0,0,490,4755,
0,0,0,20,935,4775,
0,0,0,200,2400,3905,
0,0,0,460,3350,3135,
0,80,0,640,3645,2675,
0,120,0,800,3855,2635,
0,160,40,900,4250,2130,
0,400,0,1280,4665,1955,
0,760,0,1600,4865,1300,
0,1120,20,2500,5865,510,
0,880,20,2780,6290,0,
0,0,0,0,125,5565,
0,0,0,20,395,5025,
0,0,0,20,780,4870,
0,0,0,100,1730,4085,
0,40,0,480,2325,3740,
0,160,0,360,2915,3415,
0,40,0,700,3020,3470,
0,200,0,820,2825,3205,
0,320,20,1180,3450,2520,
0,560,0,1420,3865,2100,
0,560,60,1860,4270,1610,
0,960,60,2020,4580,1235,
0,0,0,0,170,5300,
0,0,0,0,435,4980,
0,0,0,40,590,4735,
0,0,0,120,1510,4290,
0,120,0,240,2440,3895,
0,80,20,480,2630,3670,
0,80,0,580,2635,3245,
0,240,0,720,2860,3115,
0,200,0,960,3275,3070,
0,320,40,1020,3400,2485,
0,800,0,1580,3975,1855,
0,960,20,1720,4190,1435,
0,0,0,0,85,5225,
0,0,0,0,245,4985,
0,0,0,0,550,4865,
0,40,0,80,1080,4705,
0,40,0,360,1705,4175,
0,120,0,240,1680,4265,
0,80,20,440,1705,3955,
0,200,0,560,2000,3845,
0,320,0,580,2170,3670,
0,320,0,840,2405,3455,
0,600,0,920,2670,2975,
0,480,40,1260,3025,2745,
0,0,0,0,30,5060,
0,0,0,0,75,5090,
0,0,0,0,100,5005,
0,0,0,0,310,4780,
0,40,0,100,360,5095,
0,0,0,80,395,4640,
0,0,0,80,575,4750,
0,0,0,120,570,4770,
0,0,20,220,610,4810,
0,0,0,260,650,4585,
0,80,0,220,840,4555,
0,160,0,340,820,4645,
0,0,0,0,0,5275,
0,0,0,0,20,5200,
0,0,0,0,45,5265,
0,0,0,0,140,5450,
0,0,0,40,270,4970,
0,0,0,40,265,5490,
0,0,0,60,285,5040,
0,0,0,80,325,4840,
0,40,0,20,375,4655,
0,0,0,100,410,4960,
0,0,0,240,425,4825,
0,0,20,260,485,4705,
0,0,0,0,0,5180,
0,0,0,0,25,4800,
0,0,0,0,25,4990,
0,0,0,0,55,5065,
0,0,0,20,75,5165,
0,0,0,0,100,5115,
0,0,0,20,105,5285,
0,0,0,0,120,5370,
0,0,0,40,130,5220,
0,0,0,0,110,5320,
0,0,0,0,230,5130,
0,0,0,60,175,5060,
0,0,0,0,0,6085,
0,0,0,0,260,5620,
0,0,0,20,585,5755,
0,0,0,20,1150,5350,
0,40,0,280,2495,4745,
0,120,0,720,3330,3750,
0,200,0,900,3815,3230,
0,200,0,900,4135,3020,
0,440,0,1340,4430,2595,
0,520,0,1580,5060,2025,
0,760,60,2060,5410,1505,
0,1040,20,2860,5875,650,
0,1520,20,3340,6470,0,
0,0,0,0,150,6020,
0,0,0,0,445,5555,
0,0,0,20,830,5780,
0,0,20,220,1775,4900,
0,200,0,580,2740,4160,
0,240,0,820,3010,4015,
0,200,0,760,3105,3715,
0,240,0,880,3335,3705,
0,560,0,1060,3955,2995,
0,680,20,1620,3985,2520,
0,1080,80,2180,4330,1805,
0,1600,20,2260,4580,1565,
0,0,0,0,195,5990,
0,0,0,20,460,6100,
0,0,0,0,730,5840,
0,0,0,180,1710,4830,
0,80,0,360,2480,4345,
0,160,0,600,2690,4050,
0,240,0,720,2805,3850,
0,240,20,820,3230,4095,
0,320,60,1180,3395,3370,
0,560,20,1260,3635,2760,
0,880,20,1880,4185,2030,
0,1360,20,2060,4125,1770,
0,0,0,0,60,6220,
0,0,0,0,265,6075,
0,0,0,20,525,5870,
0,0,0,140,1175,5240,
0,160,0,360,1650,5010,
0,80,0,440,1950,5150,
0,200,0,500,2055,4500,
0,280,20,500,2175,4625,
0,200,0,1060,2340,3875,
0,440,0,1060,2540,3510,
0,800,0,1120,3000,3500,
0,1000,0,1360,2950,2820,
0,0,0,0,20,6230,
0,0,0,0,80,5985,
0,0,0,0,95,5930,
0,0,0,20,400,5790,
0,0,0,100,395,5815,
0,0,0,80,515,5810,
0,40,0,100,610,5815,
0,0,0,160,555,5645,
0,0,0,220,695,5705,
0,120,0,340,680,5405,
0,120,0,360,825,5080,
0,200,0,400,955,5370,
0,0,0,0,15,6020,
0,0,0,0,30,6430,
0,0,0,0,80,6160,
0,0,0,0,130,6035,
0,0,0,80,315,5845,
0,0,0,60,240,5865,
0,0,0,40,360,5825,
0,0,0,80,415,5915,
0,0,0,120,375,5755,
0,0,0,160,380,5765,
0,40,0,200,485,5545,
0,80,20,220,525,5720,
0,0,0,0,0,6020,
0,0,0,0,30,6060,
0,0,0,0,15,6225,
0,0,0,0,70,5865,
0,0,0,0,80,5805,
0,0,0,0,125,6215,
0,0,0,0,155,6225,
0,0,0,0,150,5610,
0,0,0,40,165,5710,
0,0,0,0,150,5825,
0,0,0,80,200,6050,
0,40,0,40,250,5790,
0,0,0,0,0,7175,
0,0,0,0,285,7390,
0,0,0,0,675,6995,
0,0,0,40,1280,6825,
0,40,0,400,2875,5720,
0,160,20,760,3875,4145,
0,400,0,1140,4295,4285,
0,360,0,1360,4755,3345,
0,640,40,1620,5105,3215,
0,920,20,1840,5605,2435,
0,1200,60,2640,6050,1985,
0,2000,40,3080,6385,675,
0,2600,120,3560,6855,0,
0,0,0,0,220,7175,
0,0,0,0,510,7125,
0,0,0,20,975,7145,
0,40,0,340,2100,5710,
0,80,0,600,3055,5155,
0,560,0,880,3390,5130,
0,320,0,980,3385,4660,
0,360,20,1280,3790,4155,
0,760,0,1500,4155,3680,
0,920,60,1660,4670,3110,
0,1600,20,2360,4870,2435,
0,1600,100,2800,5515,1735,
0,0,0,0,165,7035,
0,0,0,0,395,7125,
0,40,0,0,860,6800,
0,0,0,280,2035,6100,
0,160,0,600,2680,5445,
0,280,0,960,2980,5125,
0,280,0,940,3365,4970,
0,360,0,1280,3490,4655,
0,680,0,1460,3815,4080,
0,840,40,1760,4030,3510,
0,1160,100,2260,4475,2775,
0,1680,100,2700,4480,2290,
0,0,0,0,80,7545,
0,0,0,0,290,7160,
0,0,0,40,535,7070,
0,80,0,80,1390,6580,
0,200,0,440,1915,6255,
0,320,0,640,2040,5830,
0,280,0,860,2100,5615,
0,360,0,580,2395,5595,
0,560,20,1040,2730,5110,
0,560,0,1360,2930,4810,
0,1040,80,1580,3350,4295,
0,1400,40,1760,3420,3700,
0,0,0,0,40,7110,
0,0,0,0,90,7465,
0,0,0,0,185,7415,
0,0,0,60,440,6850,
0,0,0,80,560,6885,
0,40,0,160,570,6770,
0,40,0,180,665,6960,
0,0,0,200,680,6780,
0,120,20,220,775,6510,
0,80,20,420,810,6695,
0,200,0,420,885,6340,
0,200,20,500,990,6310,
0,0,0,0,30,7455,
0,0,0,0,40,7780,
0,0,0,0,115,7220,
0,0,0,20,265,6920,
0,0,0,40,365,7295,
0,0,0,80,305,7325,
0,0,0,120,320,7280,
0,0,0,160,390,7140,
0,40,0,120,475,6975,
0,40,0,220,510,7055,
0,120,20,120,660,6490,
0,160,0,220,545,6660,
0,0,0,0,0,7400,
0,0,0,0,20,7670,
0,0,0,0,5,7155,
0,0,0,0,65,7265,
0,0,0,0,140,7105,
0,0,0,60,115,7545,
0,0,0,20,170,7450,
0,0,0,20,150,7215,
0,0,0,40,170,7195,
0,0,0,0,185,7155,
0,0,0,80,215,7305,
0,0,40,80,275,7095,
0,0,0,0,0,9060,
0,0,0,0,250,9015,
0,0,0,0,810,8900,
0,0,0,100,1565,8125,
0,120,0,500,3290,6670,
0,400,0,1060,4640,5495,
0,360,0,1500,4920,4765,
0,840,40,1860,5025,4425,
0,840,0,2160,5730,4170,
0,1480,80,3040,5925,3225,
0,2240,180,3040,6785,2435,
0,2960,60,3840,6880,865,
0,3440,80,4540,7250,0,
0,0,0,0,240,9120,
0,0,0,0,680,8710,
0,0,0,20,1190,8250,
0,40,0,480,2500,7015,
0,400,0,800,3265,6065,
0,400,0,1240,3670,5745,
0,720,0,1640,3805,5230,
0,600,40,1700,4480,5240,
0,1080,40,1920,4590,4715,
0,1400,20,2420,4845,3775,
0,2160,140,3100,5335,2875,
0,2720,100,3500,5715,2175,
0,0,0,0,170,8515,
0,0,0,0,570,8580,
0,0,0,40,1160,8400,
0,0,0,360,2310,7335,
0,320,0,800,3210,6390,
0,520,20,1140,3380,6435,
0,440,0,1040,3630,5940,
0,600,20,1220,4095,5425,
0,960,40,1740,4330,5085,
0,1280,40,2240,4495,4195,
0,1840,80,2620,4815,3470,
40,2600,100,2900,5320,2625,
0,0,0,0,155,8975,
0,0,0,0,355,8420,
0,0,0,40,725,8320,
0,40,0,280,1655,7770,
0,320,0,560,2245,7145,
0,400,0,700,2385,7020,
0,560,40,800,2520,6915,
0,360,20,1120,2605,6620,
0,840,60,1080,3070,6185,
0,1240,60,1420,2985,5815,
0,1240,60,2280,3250,4920,
0,1920,140,2240,3390,4725,
0,0,0,0,70,9010,
0,0,0,0,95,8850,
0,0,0,0,240,8630,
0,0,0,40,475,8435,
0,0,0,220,610,8555,
0,40,0,240,700,8315,
0,40,0,260,710,8415,
0,80,0,200,810,8095,
0,160,20,420,870,8045,
0,200,40,340,935,7865,
0,280,0,480,1160,8100,
0,440,20,540,1165,7835,
0,0,0,0,35,8755,
0,0,0,0,40,9020,
0,0,0,0,100,8555,
0,0,0,0,305,8820,
0,40,0,60,315,8495,
0,0,0,140,360,8685,
0,0,0,80,430,8570,
0,40,20,80,440,8535,
0,80,0,180,495,8515,
0,80,0,320,450,8350,
0,40,60,240,650,8235,
0,160,40,320,605,7945,
0,0,0,0,0,8870,
0,0,0,0,5,9160,
0,0,0,0,20,8930,
0,0,0,0,65,9020,
0,0,0,0,150,8830,
0,0,0,0,210,8625,
0,0,0,20,140,8655,
0,0,20,60,155,8945,
0,0,0,40,165,8810,
0,0,0,0,185,8920,
0,0,20,60,270,9320,
0,40,0,120,240,8495,
0,0,0,0,0,10.61K,
0,0,0,0,325,10.63K,
0,0,0,20,880,10.05K,
0,0,0,80,1775,9655,
0,200,0,740,3590,7640,
0,560,0,1780,5110,6090,
0,960,40,1840,5305,5950,
0,1120,0,2420,6010,5070,
0,1360,40,2800,5955,5180,
0,2440,40,3260,6630,3810,
40,2800,80,3860,7215,2770,
0,3840,160,4940,7700,1015,
0,5240,260,5340,7880,0,
0,0,0,0,325,10.62K,
0,0,0,0,760,10.89K,
0,0,0,80,1375,9860,
0,120,0,760,2685,8455,
0,520,0,1200,3870,7475,
0,600,20,1440,4180,7120,
0,1000,40,2040,4435,6510,
0,1040,20,2280,4545,6130,
0,1720,120,2240,4935,5545,
0,2480,200,2600,5440,4610,
0,2920,140,3760,5840,3420,
0,4120,240,4180,5650,2425,
0,0,0,0,260,10.74K,
0,0,0,0,630,10.44K,
0,0,0,80,1280,9480,
0,200,20,440,2550,8825,
0,240,0,1280,3535,7425,
0,480,20,1540,3925,7390,
0,600,20,1780,4000,7025,
0,1040,40,2060,4080,6495,
0,1560,120,2160,4705,5810,
0,2000,140,2780,4925,5260,
0,2640,80,3400,5195,4025,
40,3520,160,3680,5630,3345,
0,0,0,0,190,10.48K,
0,0,0,20,585,10.51K,
0,0,0,100,890,10.03K,
0,200,0,320,1755,9545,
0,440,20,820,2495,8270,
0,440,0,920,2505,8215,
0,640,20,1360,2875,8025,
0,800,40,1340,2875,7740,
0,1160,100,1820,3230,7390,
0,1360,200,2020,3330,6865,
0,2520,100,2080,3600,6120,
40,2840,180,2120,3900,5395,
0,0,0,0,60,10.5K,
0,0,0,0,120,10.67K,
0,0,0,0,260,10.65K,
0,0,0,60,515,10.69K,
0,80,0,180,760,10.28K,
0,40,0,280,805,10.05K,
0,80,0,360,890,10.02K,
0,200,20,380,835,9865,
0,400,0,420,955,9705,
0,400,60,600,805,9535,
0,520,80,720,1000,9500,
0,520,40,800,1230,8815,
0,0,0,0,45,10.79K,
0,0,0,0,30,10.33K,
0,0,0,0,110,10.2K,
0,0,0,60,290,10.95K,
0,0,0,40,355,10.05K,
0,0,0,220,420,10.12K,
0,80,0,120,420,10.15K,
0,80,20,180,490,10.05K,
0,80,0,220,530,9765,
0,160,20,180,580,10.31K,
0,200,0,380,585,9805,
0,240,20,440,660,10.12K,
0,0,0,0,20,10.75K,
0,0,0,0,30,10.91K,
0,0,0,0,45,10.43K,
0,0,0,0,100,10.46K,
0,0,20,0,155,10.6K,
0,0,0,20,170,10.29K,
0,0,0,20,190,10.4K,
0,0,0,20,175,10.75K,
0,0,0,40,245,10.63K,
0,0,0,60,240,10.73K,
0,40,40,60,245,10.35K,
0,40,0,60,295,10.38K,
0,0,0,0,0,12.81K,
0,0,0,0,455,12.64K,
0,0,0,40,1120,12.37K,
0,0,0,120,2270,11K,
0,240,0,920,4150,9370,
0,1080,40,2300,5600,7550,
0,1280,20,2760,6060,6450,
0,1640,60,2900,6495,6170,
0,2000,0,3540,6595,5855,
0,3000,60,4060,7275,4600,
0,4360,180,4620,7875,2815,
0,5800,320,5720,8065,1160,
0,6920,320,6360,8400,0,
0,0,0,0,285,12.4K,
0,0,0,0,910,11.9K,
0,0,0,160,1545,11.7K,
0,160,0,920,3190,10.38K,
0,1040,20,1600,4290,8760,
0,1000,0,2040,4490,8560,
0,1320,40,2540,4935,7925,
0,1560,80,2880,4910,7275,
0,2560,20,3060,5595,6175,
0,3040,140,3700,5935,5300,
0,4440,300,4020,6305,4225,
0,5760,340,4700,6530,3050,
0,0,0,0,345,12.76K,
0,0,0,0,740,12.45K,
0,0,0,120,1440,11.82K,
0,240,0,960,2800,10.17K,
0,520,20,1800,3720,8910,
0,880,40,1920,4380,8710,
0,1080,60,2100,4415,7835,
0,1520,80,2580,4540,7630,
0,2120,80,3060,5255,7205,
0,3080,140,3360,5305,6085,
40,4360,300,3640,5475,4775,
0,4840,220,4240,5680,4035,
0,0,0,0,240,12.42K,
0,0,0,0,640,12.22K,
0,0,0,40,950,11.91K,
0,240,20,440,2020,10.78K,
0,640,20,900,2760,10.32K,
0,760,60,1040,2835,10.06K,
0,1080,80,1260,3070,9930,
0,1080,0,1540,3230,9505,
0,1480,80,1960,3390,8865,
0,2080,80,2580,3520,8020,
0,2960,200,2940,3615,7535,
0,3760,220,2760,3950,6405,
0,0,0,0,50,12.76K,
0,0,0,0,155,12.34K,
0,0,0,0,290,12.36K,
0,0,0,160,555,12.57K,
0,160,20,180,900,11.85K,
0,120,0,380,810,11.66K,
0,160,20,500,950,12.17K,
0,200,20,400,995,11.52K,
0,320,40,560,1180,11.88K,
0,400,0,780,990,11.69K,
0,640,60,680,1220,11.17K,
0,840,40,820,1245,11.09K,
0,0,0,0,50,12.41K,
0,0,0,0,65,12.5K,
0,0,0,0,160,12.3K,
0,0,0,120,240,11.87K,
0,40,20,100,535,11.85K,
0,40,20,120,515,11.87K,
0,120,0,200,525,12.1K,
0,160,0,200,515,11.78K,
0,40,0,320,655,11.64K,
0,200,0,420,590,11.48K,
0,400,60,380,610,11.48K,
0,520,20,400,760,11.72K,
0,0,0,0,10,12.45K,
0,0,0,0,25,12.76K,
0,0,0,0,40,12.55K,
0,0,0,0,100,12.57K,
0,0,0,80,130,12.92K,
0,0,0,40,230,13.04K,
0,0,20,40,190,12.8K,
0,0,0,40,215,12.3K,
0,40,20,100,245,12.65K,
0,0,0,120,295,12.4K,
0,0,20,100,320,12.59K,
0,80,20,100,285,12.28K,
0,0,0,0,0,15.81K,
0,0,0,0,495,14.86K,
0,0,0,60,1350,14.62K,
0,0,0,140,2680,13.8K,
0,520,0,1520,4740,11.52K,
0,1680,60,3100,6215,9030,
0,1880,80,3760,6610,8625,
0,3240,0,3620,6960,8000,
0,3240,140,4020,7235,6935,
0,4400,240,4840,7710,5430,
40,6240,400,5900,8240,3915,
0,8640,480,6640,8730,1615,
0,10.16K,760,6880,9080,0,
0,0,0,0,355,15.2K,
0,0,0,60,990,15.35K,
0,0,0,260,1835,14.45K,
0,280,40,1300,3770,12.14K,
0,1080,0,2400,4830,10.59K,
0,1680,60,2500,5045,10.1K,
0,1920,40,2860,5370,9515,
0,2560,120,3060,5370,8835,
0,3960,220,4000,5740,7560,
0,5360,200,4040,6135,6535,
0,6000,380,4980,6365,4860,
80,8440,540,5140,6720,3690,
0,0,0,0,405,15.31K,
0,0,0,40,920,14.5K,
0,40,0,80,1705,14.17K,
0,240,0,1040,3500,13.15K,
0,760,120,2100,4380,10.86K,
0,1440,80,2640,4405,10.24K,
0,1680,80,2880,4740,10.2K,
0,2320,140,2620,4985,9770,
0,3360,240,3340,5285,8375,
0,4200,320,3820,5460,7485,
40,5680,480,4180,6150,5910,
0,6400,600,4420,6305,4940,
0,0,0,0,280,15.34K,
0,0,0,60,630,15.33K,
0,40,0,200,1170,14.73K,
0,240,0,760,2240,13.85K,
0,880,20,1760,2915,12.68K,
0,1080,60,1600,3190,11.85K,
0,1280,100,1820,3350,11.6K,
0,1480,60,2260,3500,11.49K,
0,2040,220,2360,3670,10.6K,
0,2960,160,2560,3860,9825,
40,4000,240,3120,4295,8475,
0,5360,400,3320,4115,7865,
0,0,0,0,65,15.79K,
0,0,0,20,230,14.81K,
0,0,0,20,350,15.46K,
0,40,0,220,645,14.85K,
0,240,20,420,830,14.56K,
0,240,40,420,955,14.22K,
0,280,20,500,1005,14.64K,
0,280,20,520,1120,14.26K,
0,560,60,600,1150,13.83K,
0,520,20,840,1210,14.05K,
0,1120,60,680,1125,13.56K,
0,1360,140,860,1330,13.09K,
0,0,0,0,65,15.15K,
0,0,0,0,90,15.48K,
0,0,0,80,195,15.59K,
0,0,0,60,415,14.79K,
0,0,20,260,480,15.06K,
0,80,20,220,435,14.76K,
0,80,20,240,640,14.18K,
0,80,0,280,670,15.11K,
0,160,40,380,600,14.65K,
0,320,60,420,645,14.63K,
0,480,40,500,780,14.24K,
0,480,200,640,735,13.94K,
0,0,0,0,10,15.33K,
0,0,0,0,10,15.66K,
0,0,0,0,65,15.51K,
0,0,0,60,85,15.9K,
0,0,0,40,205,15.41K,
0,0,0,40,215,15.22K,
0,0,20,80,225,15.39K,
0,0,0,80,260,15.57K,
0,0,0,60,335,15.5K,
0,0,60,140,400,14.9K,
0,40,40,160,300,14.98K,
0,80,20,240,350,14.67K,
0,0,0,0,0,20.26K,
0,0,0,0,575,19.13K,
0,0,0,200,1675,19.06K,
0,0,0,400,3130,17.95K,
0,960,20,2360,5645,15.06K,
0,2640,60,3880,7160,11.61K,
0,3480,160,4480,7135,11.39K,
40,4760,160,4580,7670,10.02K,
0,5160,220,5560,7665,8490,
0,6760,460,5520,8620,7225,
40,8520,620,6920,8700,5130,
0,12.12K,1140,7500,9500,2075,
0,14.24K,1200,7800,9785,0,
0,0,0,0,430,19.82K,
0,0,0,80,1160,19.38K,
0,40,0,320,2425,18.5K,
0,480,0,1620,4340,16.38K,
0,1960,120,3180,5435,13.73K,
40,2880,300,3440,5525,13.01K,
0,3480,240,3600,5820,12.18K,
40,3880,300,3800,5915,11.4K,
40,5920,400,4600,6465,10.17K,
0,7440,740,4740,6745,8460,
40,8960,1000,5860,7000,6540,
40,11.92K,1180,5880,7390,4245,
0,0,0,20,435,20.28K,
0,0,0,40,1195,18.92K,
0,40,0,300,2025,18.42K,
0,680,0,1380,3860,16.97K,
0,1520,20,2680,4840,14.75K,
0,2200,180,3180,5100,13.47K,
0,3080,200,3420,5110,13.19K,
0,3520,240,3740,5320,12.63K,
40,5080,460,3900,5925,10.69K,
0,6160,560,4880,5900,9510,
80,8240,940,5160,6335,7625,
40,9360,1140,5140,6515,6205,
0,0,0,0,285,19.96K,
0,0,0,80,800,19.52K,
0,40,20,260,1535,18.82K,
0,480,20,1200,2520,17.81K,
0,1480,140,1780,3485,15.77K,
0,1760,100,2180,3590,15.67K,
0,1920,160,2540,3365,15K,
0,2400,160,2600,3805,15.17K,
0,3680,260,2560,4070,13.44K,
120,4320,360,3400,4035,12.53K,
0,5960,620,3920,4450,11.64K,
80,7440,1040,3860,4295,10.61K,
0,0,0,0,110,19.67K,
0,0,0,20,300,19.7K,
0,40,0,60,440,19.45K,
0,80,0,220,785,19.47K,
0,320,0,480,1065,18.82K,
0,360,20,660,1005,18K,
0,360,0,640,1100,18.23K,
0,560,40,840,1040,18.52K,
0,680,180,820,1330,17.98K,
0,1200,60,880,1285,17.7K,
0,1160,260,960,1350,17.11K,
0,1720,340,980,1450,16.89K,
0,0,0,0,70,20.24K,
0,0,0,0,110,19.63K,
0,0,0,100,220,20.38K,
0,80,20,160,375,19.77K,
0,120,40,200,575,19.45K,
0,240,60,260,600,19.35K,
0,160,0,300,645,19.23K,
0,360,80,360,595,19.02K,
0,360,60,400,740,18.9K,
0,400,100,520,770,18.92K,
40,680,120,700,775,18.55K,
0,880,220,440,945,17.96K,
0,0,0,0,35,20.05K,
0,0,0,0,10,19.85K,
0,0,0,20,95,20.33K,
0,0,0,40,185,19.39K,
0,0,40,40,195,19.56K,
0,0,0,80,265,19.79K,
0,40,20,160,270,19.02K,
0,0,40,120,295,19.27K,
0,40,20,160,270,19.5K,
40,40,40,180,390,19.36K,
40,0,20,240,410,19.38K,
40,80,100,260,395,19.2K,
0,0,0,0,0,27.08K,
0,0,0,20,785,26.58K,
0,80,0,140,2065,25.72K,
0,120,0,520,3795,24.92K,
0,1800,60,3120,6460,20.5K,
0,4680,280,5280,7845,15.9K,
40,6240,420,5040,8045,14.88K,
40,7240,600,5880,8710,13.08K,
0,8080,540,6560,8700,12.37K,
40,11K,880,6800,9225,9670,
120,14K,1300,8020,9310,6755,
200,18.96K,2140,8380,9995,2770,
440,21.72K,2660,9200,10.64K,0,
0,0,0,0,605,26.87K,
0,0,0,100,1455,25.85K,
0,40,0,600,2855,24.59K,
0,1280,20,2180,4855,22.15K,
0,3800,240,4120,6120,18.29K,
40,5080,340,4380,6260,17.85K,
0,6120,380,4720,6205,16.48K,
0,6720,440,5000,6595,15.19K,
40,8600,860,5640,7185,13.67K,
0,11.24K,1400,5940,7140,11.36K,
200,13.68K,1820,6700,7815,8050,
240,16.32K,2400,6920,7885,6375,
0,0,0,0,570,26.51K,
0,0,20,120,1465,26.5K,
0,200,0,440,2500,25.22K,
0,1360,60,2000,4450,22.44K,
0,3120,200,3500,5315,19.51K,
0,3720,380,4280,5660,19.06K,
40,5120,400,3880,5705,17.38K,
40,5840,620,4520,6060,16.97K,
40,8040,920,4620,6545,14.72K,
40,10K,1020,5260,6550,13.39K,
160,12.24K,1820,6340,6695,10.32K,
240,14.76K,1820,6300,7185,8090,
0,0,0,40,445,26.16K,
0,0,0,120,905,27.22K,
0,160,0,420,1685,24.54K,
0,1040,40,1500,2955,23.75K,
0,2200,120,2620,3845,22.04K,
0,3280,260,2540,3825,21.43K,
40,3360,200,3160,3965,20.23K,
0,3960,380,3340,4155,19.83K,
40,5520,660,3540,4455,18.18K,
40,7000,720,3740,4515,17.05K,
80,9160,1440,4400,4675,15.42K,
280,10.12K,1720,5040,4530,14.12K,
0,0,0,0,125,26.89K,
0,0,0,20,320,26.85K,
0,0,0,100,570,26.32K,
0,120,20,420,955,26K,
0,640,80,840,1015,25.41K,
0,560,60,940,1095,25.4K,
0,800,40,680,1210,24.85K,
0,960,160,860,1155,25.08K,
40,1320,140,980,1270,24.17K,
40,1840,200,1020,1395,24.05K,
40,1720,340,1440,1325,23.25K,
0,2480,580,1180,1505,23.89K,
0,0,0,0,60,27.35K,
0,0,0,0,140,26.17K,
0,0,0,60,275,26.75K,
0,80,20,180,595,26.18K,
0,320,40,360,585,26.46K,
0,320,80,440,660,26.46K,
0,440,140,400,755,25.6K,
0,480,60,540,660,25.41K,
40,520,160,700,730,26.01K,
0,680,180,660,830,25.06K,
40,1080,280,580,880,25.4K,
40,1160,420,660,905,25.13K,
0,0,0,0,40,27.26K,
0,0,0,0,70,27.19K,
0,0,0,0,105,27K,
0,0,0,40,215,26.24K,
0,40,40,60,250,26.98K,
0,40,0,140,375,26.68K,
0,40,80,140,300,26.48K,
0,0,100,180,355,26.92K,
0,160,80,200,305,26.43K,
0,120,120,220,350,26.1K,
40,200,240,280,375,26.49K,
40,160,200,220,490,25.25K,
0,0,0,0,0,36.99K,
0,0,0,60,1170,35.92K,
0,0,0,380,2645,35.81K,
0,400,0,1220,4700,33.18K,
0,3240,180,4560,7465,27.84K,
0,8200,600,6340,9140,22.41K,
80,9760,1080,7140,9185,20.17K,
40,12.24K,980,7580,9505,18.21K,
160,13.76K,1440,7780,9815,16.78K,
80,17.96K,2020,8280,10.34K,13.19K,
280,21.12K,2940,9680,10.52K,9215,
600,28.32K,4360,9660,10.6K,3725,
760,32.36K,5260,9840,11.11K,0,
0,0,0,40,800,36.62K,
0,0,0,260,1945,35.98K,
0,440,0,960,3380,34.39K,
0,2600,140,3160,5590,29.73K,
0,6640,520,5080,6955,25.56K,
0,8400,720,5200,7040,24.39K,
40,9360,980,6440,7020,22.46K,
120,11.44K,1140,6080,7445,21.38K,
80,14K,1640,6500,7680,19.01K,
200,16.96K,2460,7000,7950,15.38K,
440,20.56K,4060,7660,8125,11.65K,
920,23.44K,4180,7920,8015,8840,
0,0,0,20,835,36.77K,
0,0,0,200,1865,36.14K,
0,120,0,940,3210,34.81K,
0,2320,200,3000,5025,30.61K,
0,6160,500,4060,6215,27.09K,
40,7440,700,4200,6420,25.35K,
0,7880,860,5320,6555,24.45K,
40,9960,840,5100,6895,23.59K,
160,12.48K,1540,6060,6890,20.33K,
280,15.28K,2440,6180,7200,18.16K,
880,17.92K,3120,7360,7510,14.33K,
760,20.76K,4020,7480,7305,11.3K,
0,0,0,60,570,36.51K,
0,0,0,200,1345,36.14K,
0,320,0,660,2310,35.45K,
0,1560,80,1960,3540,33.03K,
40,4440,500,3160,4090,29.51K,
40,5360,420,3620,3985,29.74K,
0,6080,700,3940,4275,28.28K,
80,6720,900,4220,4535,27.08K,
120,8840,1440,4260,4470,25.32K,
200,10.52K,1740,4680,4645,24.2K,
320,13.4K,2360,4380,5055,21.01K,
520,14.76K,3260,5440,4905,19.65K,
0,0,0,20,150,37.06K,
0,0,0,40,380,37.61K,
0,40,20,160,605,36.48K,
0,440,40,500,1040,36.09K,
0,1080,120,860,1260,35.64K,
0,1200,260,1080,1190,34.81K,
0,1600,240,1080,1105,34.98K,
0,1560,300,1120,1420,35.04K,
80,2120,460,960,1500,33.92K,
120,2640,760,1160,1540,33.24K,
120,3000,920,1400,1515,32.96K,
360,3600,940,1260,1555,32.27K,
0,0,0,0,80,36.84K,
0,0,0,0,180,37.19K,
0,40,0,20,395,37.12K,
0,240,60,260,660,36.83K,
0,640,40,360,755,36.02K,
40,680,180,540,825,35.98K,
0,640,140,500,815,35.54K,
0,800,280,420,845,36.17K,
0,1120,260,560,830,34.99K,
0,1160,520,640,985,34.62K,
80,1360,660,700,950,33.92K,
200,1440,620,740,1005,34.41K,
0,0,0,0,60,37.07K,
0,0,0,0,105,37.08K,
0,0,0,60,130,37.63K,
0,0,20,80,300,36.91K,
0,40,20,200,350,37.27K,
0,80,120,240,385,35.65K,
0,80,80,240,360,36.66K,
0,120,140,180,405,36.45K,
0,40,120,320,395,36.67K,
40,280,220,200,385,36.22K,
80,160,220,360,510,36.35K,
80,200,320,420,470,35.55K,
0,0,0,0,0,51.32K,
0,0,0,80,1520,51.08K,
0,40,0,660,3545,48.71K,
0,1000,0,2080,5600,46.29K,
0,6480,400,5580,8335,37.8K,
40,13.84K,1420,8060,9635,30.57K,
80,16.28K,1880,8360,10.29K,28.11K,
280,18.72K,2520,9000,9940,25.88K,
320,21.96K,3120,9460,10.89K,22.79K,
640,26.92K,4200,10.02K,10.86K,17.12K,
1080,31.76K,6000,10.84K,11.18K,12.83K,
2200,38.52K,8080,11.04K,11.94K,5235,
2320,43.4K,9760,12K,12.25K,0,
0,0,0,80,1095,50.47K,
0,40,0,480,2650,48.53K,
0,720,40,1820,3995,47.09K,
0,5360,320,4320,6225,40.98K,
120,11.84K,1020,5600,7545,36.01K,
200,14K,1440,5740,7500,33.63K,
240,15.92K,1880,6300,7825,31.7K,
200,16.8K,2020,7320,7760,29.73K,
600,21.16K,3880,7160,8150,25.5K,
920,24.96K,4400,8280,8075,21.76K,
1560,29.28K,6880,8200,8510,15.64K,
2040,32.6K,7920,8280,8820,11.98K,
0,0,0,40,1150,51.16K,
0,40,0,420,2420,48.65K,
0,560,20,1260,3700,47.61K,
0,4120,340,4140,5855,41.65K,
80,9800,1460,5260,6760,36.81K,
120,11.64K,1680,5560,6925,35.81K,
120,13.48K,1740,6060,7060,33.72K,
240,14.8K,2280,6040,7115,31.44K,
520,19K,3700,6640,7000,28.66K,
920,21.68K,4760,7000,7650,24.32K,
1760,26.48K,6320,7220,7905,19.3K,
2120,28.68K,8460,8080,7795,15.25K,
0,0,0,40,765,51.11K,
0,40,0,380,1675,50.03K,
0,640,40,920,2865,48.89K,
0,3160,240,2560,3830,45.11K,
200,7320,920,3980,4230,41.74K,
80,9280,1080,4040,4370,40.32K,
240,10.04K,1440,3900,4755,38.2K,
280,11.16K,2000,4220,4860,37.9K,
400,13.36K,2640,4720,4845,35.26K,
560,15.68K,3420,5040,4985,32.75K,
1320,17.88K,4380,5600,5155,28.99K,
1760,20.76K,5560,5380,5140,26.95K,
0,0,0,20,275,50.53K,
0,0,20,160,480,51.17K,
0,160,0,180,720,50.46K,
0,720,100,680,1085,49.01K,
0,1640,340,900,1500,48.08K,
0,1960,420,1200,1400,47.36K,
40,2360,540,940,1480,46.95K,
120,2640,580,1440,1630,47.1K,
80,2920,860,1360,1675,46.73K,
240,3640,1160,1400,1550,46.54K,
480,4080,1620,1380,1740,45.54K,
560,4880,2120,1460,1775,43.26K,
0,0,0,0,75,50.66K,
0,0,0,20,245,50.83K,
0,40,0,100,505,51.95K,
0,440,80,380,740,51.05K,
40,720,260,580,895,50.22K,
0,1040,360,480,895,49.16K,
80,1000,300,600,930,49.34K,
120,1320,380,660,900,49.77K,
200,1520,440,620,1065,47.46K,
400,1640,720,1000,970,48.04K,
320,1960,1040,820,975,47.81K,
280,2240,900,780,985,47.52K,
0,0,0,0,35,51.85K,
0,0,0,40,85,51.79K,
0,0,0,20,215,51.06K,
0,0,60,120,345,50.42K,
0,80,100,200,390,50.05K,
0,240,120,280,335,50.57K,
40,240,80,320,420,49.74K,
40,120,200,260,520,50.48K,
40,240,200,260,435,50.4K,
120,280,400,400,445,50.11K,
160,320,320,320,535,49.8K,
240,240,380,520,555,49.25K,
0,0,0,0,0,67.06K,
0,40,0,260,2040,67.72K,
0,200,0,1200,4530,64.97K,
0,1880,100,3160,6530,61.52K,
0,10.8K,860,6840,9465,49.7K,
320,21.68K,3000,9440,10.53K,40.51K,
360,25.32K,3380,9540,10.96K,36.88K,
600,28.2K,4360,10.26K,10.62K,34.18K,
1160,31K,5400,10.12K,11.37K,30.54K,
1560,37.68K,7180,11.62K,11.31K,24.11K,
2480,43.24K,9100,11.84K,11.97K,16.88K,
3800,51.32K,13.58K,12.66K,12.08K,6640,
6240,57.16K,15.88K,12.82K,12.17K,0,
0,0,0,200,1530,66.26K,
0,320,0,760,3320,64.99K,
0,1600,40,2340,4875,61.55K,
40,8360,660,5440,7020,54.44K,
200,16.72K,2280,7060,7835,46.43K,
320,20.2K,3120,6540,7935,43.97K,
720,22.76K,3560,7440,8250,41.17K,
720,24.68K,4280,7520,8330,39.34K,
1440,29.32K,5860,8120,8745,34.02K,
2560,33.68K,7620,8880,9045,28.41K,
3600,38.84K,10.38K,9280,8625,20.89K,
5600,42.8K,12.32K,9300,8940,15.78K,
0,0,0,120,1475,65.87K,
0,200,0,820,3050,65.99K,
0,1200,60,2180,4195,62.44K,
80,7440,860,5060,6350,55.72K,
280,14.68K,2220,6300,7005,48.77K,
560,17.32K,3000,6660,7190,47.08K,
520,20.32K,3340,6700,7210,44.24K,
760,21.52K,4560,7120,7290,41.97K,
1240,26.4K,5160,7440,8090,36.63K,
1680,29.4K,7320,7960,7820,32.6K,
3480,33.92K,10.34K,7900,8215,25.53K,
4680,37.24K,11.68K,8500,8095,20.37K,
0,0,0,100,1100,67K,
0,200,0,560,2170,66.75K,
0,1240,100,1520,3130,64.93K,
80,5480,520,3560,3960,59.55K,
320,10.56K,1820,4280,4580,54.69K,
280,12.48K,2120,4940,4930,52.32K,
600,14.2K,2700,4700,4750,51.45K,
680,15.6K,2800,4480,5030,49.93K,
840,18.56K,4100,5400,5025,46.17K,
1720,20.76K,5260,5240,5235,43.44K,
2600,24.12K,7020,5200,5345,37.49K,
3080,26.36K,8880,5600,5225,34.63K,
0,0,0,20,330,66.16K,
0,0,0,200,595,66.15K,
0,200,20,460,830,66.13K,
0,1520,180,740,1375,64.49K,
80,2120,620,1380,1400,63.76K,
120,2960,660,1160,1705,63.61K,
240,2840,1120,1300,1685,62.94K,
80,3480,1340,1560,1550,61.66K,
320,4080,1560,1500,1730,61.63K,
480,4280,2120,1660,1785,61.02K,
840,4800,2860,1580,1665,59.93K,
1400,5840,2820,1680,1640,58.72K,
0,0,0,0,120,67.91K,
0,0,0,40,385,67.26K,
0,0,0,280,480,66.54K,
0,480,160,520,855,66.93K,
40,1240,380,500,805,66.14K,
80,1480,500,520,955,64.72K,
40,1680,440,600,905,65.17K,
40,1640,640,740,1015,65.28K,
240,1920,1000,900,1100,64.1K,
360,2240,1020,800,1050,63.83K,
480,2680,1600,700,1150,63.74K,
1000,2600,1600,940,1155,62.35K,
0,0,0,0,45,67.02K,
0,0,0,60,110,67.53K,
0,0,0,20,245,67.49K,
0,80,80,120,310,66.88K,
0,120,160,320,415,66.59K,
80,280,160,240,440,66.33K,
40,200,280,360,475,66.23K,
0,360,260,220,540,66.21K,
80,240,400,400,565,66.3K,
160,400,540,380,525,65.44K,
360,520,500,440,490,66.21K,
400,400,620,520,460,66.35K,
0,0,0,0,0,84.33K,
0,40,0,240,2735,83.05K,
0,600,0,1800,5095,79.71K,
0,3120,120,3840,7405,76.58K,
200,15.68K,1600,8040,10.25K,63.19K,
680,28.88K,4580,10.38K,11.01K,50.42K,
1240,34.48K,5780,10.18K,11.32K,46.76K,
1240,37.6K,7440,11.04K,11.74K,42.22K,
1920,42.28K,7880,11.94K,11.81K,38.02K,
2920,48.2K,10.96K,12.58K,12.12K,30.03K,
5320,55.12K,12.76K,12.9K,12.13K,21.31K,
7640,64.64K,18.78K,13.66K,12.47K,8450,
11.16K,71.48K,20.8K,13.44K,12.23K,0,
0,0,0,200,1925,83.75K,
0,480,20,1400,3880,82.64K,
0,2560,140,3080,5365,78.61K,
0,12K,1460,6580,7595,67.83K,
680,22.76K,3800,7920,7945,59.24K,
1160,26.52K,4400,8120,8320,56.34K,
1320,29.12K,5700,8020,8620,53.25K,
1600,31.4K,7360,8400,8835,49.51K,
2760,37.4K,8780,8560,8795,42.41K,
4240,43.84K,10.84K,9260,8650,36.74K,
6680,48.96K,14.7K,9000,9155,26.42K,
8200,52.6K,16.8K,9940,8960,19.52K,
0,40,0,100,1875,83.93K,
0,360,20,1120,3470,82.34K,
0,1960,140,2800,4890,79.62K,
40,10.92K,1140,5760,6890,71.06K,
920,20.64K,3500,6560,7515,61.18K,
1080,21.92K,4080,7700,7735,58.02K,
1200,24.8K,5440,7900,7980,54.29K,
1400,28.2K,6200,7500,7600,52.27K,
2320,32.12K,8680,8800,7865,46.32K,
4000,36.8K,10.38K,8580,8240,41.03K,
6440,42.12K,14.88K,8360,8305,32.02K,
7840,45.64K,16.9K,8620,8810,26.36K,
0,80,0,180,1280,84.24K,
0,280,0,1020,2495,83.13K,
40,2040,80,1920,3605,80.21K,
120,7360,940,4280,4385,75.53K,
760,13.44K,2740,4900,4760,68.55K,
640,16K,3880,5320,4830,66.4K,
1040,17.8K,4400,5060,4945,65.52K,
1360,19.6K,4980,5240,5380,62.77K,
2000,23.28K,5900,5500,5185,58.02K,
3040,24.92K,8020,5880,5530,54.56K,
4840,29.32K,10.42K,5680,5395,48K,
6520,30.48K,12.78K,6560,5475,44.41K,
0,0,0,0,385,84.46K,
0,40,0,240,685,85.54K,
0,400,20,540,990,83.34K,
40,1680,340,1340,1480,82.05K,
160,2960,1020,1280,1580,81.8K,
280,3560,1260,1340,1675,79.98K,
240,3880,1180,1460,1755,79.7K,
600,4120,1680,1460,1685,78.28K,
1000,5080,2300,1600,1740,76.64K,
1280,5120,2580,1660,1825,76.92K,
1840,5080,3300,2060,1855,74.07K,
2000,6320,3600,1720,1890,72.95K,
0,0,0,20,210,85.88K,
0,80,20,80,390,85.33K,
0,40,0,300,635,84.94K,
0,1000,200,380,895,84.22K,
40,1360,600,760,915,81.73K,
80,1760,620,840,1030,82.46K,
280,1840,760,820,990,80.75K,
360,2000,1080,880,1090,81.65K,
400,2040,1360,1140,1200,80.45K,
560,2480,1780,1060,1145,80.52K,
1520,2760,1860,980,1175,79.22K,
1200,2920,1880,1180,1125,79.95K,
0,0,0,0,80,84.9K,
0,0,0,40,180,84.79K,
0,0,0,40,260,84.97K,
0,80,100,220,465,84.25K,
0,200,200,300,535,84.43K,
80,320,340,340,450,83.71K,
160,440,220,380,440,83.83K,
280,520,280,380,435,83.35K,
280,520,440,380,425,84.1K,
400,560,600,440,485,83.82K,
480,600,580,480,510,82.36K,
880,400,680,520,525,82.21K,
0,0,0,0,0,100.5K,
0,40,0,560,3095,99.43K,
0,880,0,2280,5615,96.06K,
0,4800,140,5040,7865,91.22K,
240,21.4K,2420,8860,10.07K,76.11K,
1240,36.8K,6640,11.16K,11.68K,60.79K,
1640,41.72K,7960,12.14K,11.91K,56.19K,
2240,46.68K,10K,12.2K,11.74K,50.55K,
3480,50.44K,11.46K,12.52K,11.59K,45.34K,
5200,58.64K,14.66K,12.38K,12.18K,35.89K,
7880,65.2K,17.74K,13.6K,12.36K,25.59K,
12.84K,76K,22.88K,14.04K,12.7K,10.04K,
16.24K,81.32K,26.44K,14.6K,13.06K,0,
0,80,20,420,2220,102.2K,
0,880,20,1780,4470,98.29K,
0,3840,180,3820,6090,94.58K,
160,16.28K,1960,6840,8005,81.85K,
960,28.92K,4760,8500,8425,70.27K,
1640,32.92K,6300,8140,8755,67.23K,
2160,35.36K,7500,9040,8910,62.99K,
2720,39.28K,9080,8840,8635,58.87K,
4600,44.36K,11.94K,9260,8860,51.39K,
6600,50.48K,14.56K,9800,8635,42.25K,
10.56K,56.68K,18.58K,10.34K,9035,30.98K,
13.28K,60.96K,20.86K,10.32K,9335,23.36K,
0,80,0,340,2020,100.2K,
0,520,40,1560,3970,98.45K,
0,3600,180,3400,5095,93.93K,
160,14.76K,1820,6540,6975,83.28K,
1120,24.84K,4880,7860,7565,73.19K,
1760,28K,5520,8140,7550,70K,
1760,30.8K,7760,7860,7965,66.73K,
2600,33.88K,8240,8160,8135,61.37K,
4520,38.96K,10.76K,8280,8320,56K,
6880,43.52K,13.66K,9080,7705,48.64K,
10.72K,48.4K,16.74K,9140,8365,38.34K,
13.12K,52K,19.98K,9700,8615,31.24K,
0,40,0,240,1500,100.1K,
0,560,40,1200,2770,98.97K,
40,2400,100,2680,3830,96.94K,
40,10.16K,1580,4200,4520,89.48K,
880,17.8K,3560,5180,4655,81.21K,
1080,19.64K,4420,5460,5145,81.46K,
1560,21.72K,5880,5740,5270,77.54K,
2200,23.76K,6280,5380,5160,75.13K,
3360,27.12K,8940,5220,5385,69.44K,
4640,29.8K,10.74K,5900,5320,64.52K,
7600,33.72K,12.68K,6440,5480,57.69K,
9640,35.4K,14.78K,6020,5425,53.1K,
0,0,0,60,435,101.3K,
0,120,20,340,750,101.2K,
0,680,80,580,1070,99.62K,
0,2600,680,1020,1480,98.18K,
280,3680,1480,1420,1655,96.1K,
360,4440,1780,1260,1560,95.25K,
520,5000,1860,1320,1740,96.22K,
640,5120,2320,1660,1555,94.48K,
960,5720,3160,1920,1685,93.21K,
1760,5920,3760,1740,1785,90.84K,
2560,6080,3980,1840,1755,89.06K,
3760,6400,4400,2060,1875,88.07K,
0,0,0,60,235,101.4K,
0,40,0,140,410,101.3K,
0,280,40,260,670,100.4K,
40,1200,380,620,935,100.6K,
320,1840,840,740,1005,98.32K,
160,2040,1120,940,940,96.07K,
440,2000,1160,840,1015,98.61K,
480,2320,1200,880,1170,96.8K,
920,2360,1580,1100,1155,96.36K,
1120,2560,2020,1120,1170,96.02K,
1760,3080,2320,820,1130,94.41K,
2240,3200,2440,1200,1245,94.17K,
0,0,0,0,65,101K,
0,0,0,20,165,102.8K,
0,0,20,120,265,101.7K,
80,160,200,360,330,100.1K,
0,400,300,420,475,100.8K,
80,160,380,500,510,100.9K,
200,400,580,500,550,100.2K,
280,320,560,600,550,99.68K,
360,200,600,660,450,100.1K,
560,720,720,360,555,99.7K,
920,440,840,580,600,99.17K,
1280,640,820,460,545,98.65K,
0,0,0,0,0,115.8K,
0,80,0,760,3365,113.2K,
0,1440,20,3000,6320,110K,
0,6120,300,6000,8335,103.2K,
280,26.24K,3040,9700,10.95K,87.53K,
1800,43.6K,8120,12.3K,11.49K,68.91K,
2920,49.68K,9840,11.58K,12.13K,64.03K,
3680,54.12K,11.98K,11.7K,12.56K,58.7K,
5000,58.6K,13.62K,12.9K,12.49K,52.17K,
7560,67K,17.8K,13.54K,12.29K,40.91K,
10.48K,76.28K,21.86K,12.94K,12.77K,28.82K,
17.04K,86.08K,27.2K,14.6K,13.13K,11.3K,
22.4K,91.44K,30.6K,13.9K,12.76K,0,
0,40,0,580,2550,114.4K,
0,1040,0,2340,4550,111.1K,
40,4840,280,4300,6345,106.4K,
400,19.56K,2720,7720,8115,94.72K,
1880,33.48K,6660,8460,8685,80.88K,
2240,37K,8220,8880,8680,76.4K,
3280,41.36K,9520,9100,8865,71.77K,
3720,44.04K,11.18K,9520,8650,68.19K,
5840,51.28K,14.08K,9480,9280,57.69K,
9160,57.6K,18.4K,9780,8955,48.77K,
14.76K,64.68K,22.16K,10.22K,9130,35.88K,
19.48K,66.52K,25.76K,10.28K,9500,26.65K,
0,80,0,560,2355,114.5K,
0,1160,0,2020,4180,112.9K,
0,4760,320,3860,5925,108.1K,
520,18.08K,2840,6400,7425,95.75K,
1960,28.6K,6040,7940,7815,84.02K,
1960,33.08K,7840,8020,8245,79.23K,
2720,35.52K,9080,7980,8205,75.27K,
4680,38.2K,11.08K,8980,8255,70.98K,
5760,44K,13.94K,8860,8605,63.58K,
8920,48K,16.84K,9420,8290,56.79K,
14.36K,53.72K,20.5K,9760,8290,43.76K,
17.68K,56.48K,22.96K,9680,8625,36.1K,
0,120,0,200,1690,114.5K,
0,760,20,1540,2735,112.1K,
0,3440,220,2580,3900,109.6K,
360,12.92K,1740,4560,4540,102.6K,
1200,21.2K,4640,5520,4815,93.5K,
1600,22.64K,5540,5660,5190,90.73K,
2080,25.32K,6880,5340,4885,87.21K,
2880,26.64K,7720,5740,5260,86.53K,
5040,30.08K,10.22K,5700,5325,80.97K,
6440,33.16K,12.32K,6400,5440,73.83K,
9360,36.32K,15.86K,6420,5330,65.08K,
13.12K,37.52K,17.02K,6240,5435,60.37K,
0,40,0,140,420,116.5K,
0,120,0,440,795,114.1K,
0,880,100,640,1270,116K,
40,2920,640,1200,1620,111.9K,
600,4600,1640,1440,1645,109.6K,
360,5320,2220,1460,1660,108.7K,
720,5320,2220,1640,1805,107.6K,
1000,5560,2960,1580,1830,107.5K,
1800,5960,3200,1880,1815,105.9K,
2320,6680,4160,1720,1910,104.2K,
3960,6640,4740,1960,1915,102.3K,
4960,7400,5140,1740,1750,101K,
0,0,0,40,280,116.7K,
0,40,0,140,485,116.7K,
0,360,0,360,625,116K,
40,1360,440,660,1035,113.8K,
480,2120,960,940,1025,112.1K,
200,2120,1200,940,1090,111.2K,
520,2120,1680,920,1030,111.7K,
520,2680,1340,980,1000,111.2K,
1080,2800,2000,940,1085,110.7K,
1480,2800,2240,1000,1110,109.6K,
2520,3120,2640,1120,1075,108.6K,
2920,3080,2820,1200,1205,107.3K,
0,0,0,0,125,116.5K,
0,0,0,0,210,116.2K,
0,0,0,120,380,115.9K,
40,240,200,360,315,115.5K,
240,400,400,300,545,114.3K,
200,440,500,300,545,114.2K,
280,440,780,420,600,114.6K,
400,640,480,420,530,113.5K,
520,640,600,340,570,114K,
720,480,680,540,515,112.4K,
880,640,780,480,560,113.3K,
1520,440,1040,520,670,113K,
0,0,0,0,0,128.4K,
0,160,0,660,3840,125.7K,
0,1680,40,3300,6720,119.9K,
40,7800,400,6300,8660,113.9K,
560,29.96K,3560,10.24K,11.02K,95.59K,
2520,48K,9480,12.56K,12.16K,77.47K,
3440,55.28K,11.56K,12.76K,11.82K,69.82K,
4640,60.32K,13.78K,13K,12.07K,63.74K,
6120,64.28K,15.28K,13.32K,12.21K,58.22K,
10K,74K,20.08K,13.2K,12.69K,44.87K,
14.12K,81.72K,24.42K,14.36K,13.08K,31.16K,
21.2K,93.08K,30.48K,14.1K,13.28K,13.14K,
26.64K,98.68K,34.48K,14.9K,13.04K,0,
0,120,0,540,2930,124.5K,
0,1360,20,2340,4935,123K,
0,5320,360,4860,6555,118.3K,
360,22.48K,3400,7500,8225,101.3K,
1800,36.4K,7840,9000,8820,88.05K,
2760,41.68K,9080,8520,8960,81.84K,
4160,45.64K,10.72K,9280,8730,77.44K,
5240,48.84K,12.96K,9100,9030,73.27K,
7760,56.64K,17.36K,9020,8970,62.8K,
11.72K,60.52K,19.2K,10.24K,9170,53.39K,
17.68K,68.36K,25.08K,10.32K,9205,39.22K,
21.96K,72.36K,27.58K,10K,9995,28.32K,
0,80,0,640,2830,124.3K,
0,1360,20,2300,4830,122.7K,
40,5720,260,4040,5930,118K,
240,21.16K,3380,6780,7250,106K,
2200,31.04K,7480,8680,8020,91.81K,
2760,35.8K,8700,8480,8180,88K,
3880,38.36K,10.7K,8820,8435,84.55K,
4880,42.4K,12.04K,8420,8225,78.67K,
8520,46.08K,15.88K,9440,8315,69.58K,
11.68K,51.2K,18.64K,8920,8565,60.95K,
17.88K,58.04K,22.18K,9520,8400,47.05K,
22.12K,59.6K,25.46K,9780,8605,39.28K,
0,40,0,360,1755,125.3K,
0,1040,60,1720,2940,124.1K,
0,4120,340,3060,3980,121K,
520,14.36K,2080,4720,4790,110.6K,
1440,23.04K,5520,5040,5035,102.8K,
2240,25.24K,7080,5220,5415,97.95K,
2480,27.48K,8320,5740,5075,95.33K,
3840,28.6K,9060,5840,5085,93.6K,
5360,32.28K,10.78K,6100,5530,88.14K,
8440,35.8K,13.74K,6140,5370,81.36K,
12.6K,38.4K,16.68K,6280,5610,72.12K,
15.76K,40.12K,18.98K,6180,5340,66.68K,
0,0,0,160,555,127.1K,
0,200,20,460,805,125.9K,
0,960,180,960,1160,126.3K,
200,3240,780,1480,1555,123.7K,
560,4920,2240,1400,1570,120.6K,
680,5440,2540,1720,1825,119K,
800,6080,2740,1400,1585,118.6K,
1240,6000,2960,1620,1735,117.2K,
2280,6360,3700,1900,1790,115.3K,
3080,6800,4540,1780,1790,115.1K,
4720,7160,5180,1740,1745,111.3K,
5360,7760,5640,1860,1730,109.8K,
0,0,0,80,310,125.6K,
0,40,20,180,595,127.3K,
0,240,100,460,835,125.8K,
120,1680,400,720,985,125.6K,
400,2440,1020,860,1090,124.6K,
400,2440,1480,860,1185,121.1K,
880,2560,1400,1160,920,120.9K,
640,2960,1900,1020,1105,122.9K,
1440,2880,1860,980,1065,120.3K,
2080,3080,2280,980,1115,120.4K,
2280,3480,2900,1140,1150,118.6K,
3400,3520,2880,980,1150,117.6K,
0,0,0,0,105,125.3K,
0,0,0,40,210,125.2K,
0,0,20,200,345,126.1K,
0,200,220,420,480,127.1K,
160,320,340,380,510,125.9K,
320,280,600,440,505,124.3K,
400,600,540,400,490,124.9K,
480,400,660,500,560,125.2K,
600,640,720,480,535,125K,
880,720,760,540,480,124.5K,
1440,600,980,540,585,123.9K,
1640,480,900,580,665,124K,
0,0,0,0,0,133.7K,
0,200,0,840,4040,131.1K,
0,2400,80,3840,6545,126.2K,
40,9520,520,6720,9000,120.2K,
680,33.88K,4520,10.22K,11.06K,99.92K,
2680,53.04K,10.6K,12.14K,11.92K,79.56K,
4400,59.68K,12.54K,13.04K,12.37K,73.73K,
5400,64.04K,15.14K,13.04K,12.47K,66.79K,
6280,69.44K,17.4K,12.92K,12.53K,59.72K,
11.28K,78.08K,21.9K,13.92K,13.21K,46.46K,
15.88K,86.8K,25.72K,14.24K,12.76K,33.27K,
22.96K,98.2K,32.68K,14.68K,12.9K,13.39K,
29.44K,103.7K,35.94K,15.12K,13.13K,0,
0,160,0,720,2875,132.7K,
0,1480,140,2840,5095,127.9K,
40,6520,400,5500,6420,122.7K,
440,24.68K,3620,7820,8240,108.1K,
2840,40.2K,8340,8860,8785,92.81K,
3640,44.12K,11.1K,9160,8955,88.21K,
4920,48.68K,12.66K,9480,8850,82.98K,
6200,51.12K,14.46K,9780,8980,77.73K,
8840,58.12K,18.18K,10.1K,9570,67.53K,
12.12K,65.12K,20.32K,9300,9040,56.09K,
20.32K,70.72K,25.36K,10.26K,9320,40.82K,
24.92K,75.28K,29.22K,10.18K,9520,31.91K,
0,160,0,600,2890,130.4K,
0,1760,0,2520,4520,128.8K,
40,6400,260,4380,5900,125K,
440,21.64K,3740,7020,8030,110.2K,
2240,34.56K,8060,8420,7925,96.5K,
3400,38.28K,9180,8960,7920,92.12K,
4400,41.52K,12.02K,8420,7940,86.76K,
6120,44.28K,13.48K,8660,8305,82.01K,
8960,49K,16.28K,9220,8560,73.69K,
12.56K,52.88K,19.76K,10.36K,8255,63.85K,
18.96K,58.68K,24.5K,9660,8465,50.01K,
24.56K,62.56K,26.88K,9580,8420,41.61K,
0,120,20,380,1950,132.9K,
0,1080,40,1680,3205,128.6K,
0,4600,300,3300,4185,129.1K,
400,15.24K,2740,4920,4720,117.1K,
2160,24.84K,5700,5100,5040,108.1K,
2440,26.76K,7260,5660,5355,104.2K,
3200,29K,8820,5740,5045,101.1K,
4000,30.08K,9920,6040,5315,99.06K,
6840,34.88K,12.44K,5940,5335,92.02K,
9280,35.6K,15K,6700,5305,84.73K,
14.4K,38.96K,17.76K,6660,5540,75.82K,
18.56K,39.4K,20.24K,6600,5615,70.25K,
0,0,0,120,540,133.3K,
0,280,0,420,935,133.4K,
0,1200,120,800,1370,132K,
160,3560,940,1480,1545,130.8K,
480,4840,2320,1460,1695,127.4K,
1160,5000,2540,1680,1910,125.1K,
1160,5800,3040,1780,1730,125.1K,
1720,6200,3080,2040,1695,123.1K,
2320,6840,3920,1900,1605,121.8K,
3720,6800,4380,1660,1830,120K,
5280,7320,4840,1920,1830,116.7K,
6520,7960,5440,1820,1910,115.7K,
0,0,0,80,290,134.9K,
0,80,0,280,455,132.3K,
0,640,40,480,620,131.7K,
160,1840,500,820,885,131.9K,
320,2520,1140,840,1175,130.9K,
600,2400,1220,1200,1160,128.7K,
680,2640,1580,960,1220,129K,
920,2920,1920,980,1175,127.8K,
1560,3040,2320,1040,1105,126.5K,
1880,2880,2480,1120,1260,126.1K,
3480,3520,2580,1080,1145,123.9K,
3800,3760,2960,1200,1070,123.5K,
0,0,0,0,50,133.8K,
0,0,0,80,230,134.7K,
0,120,40,140,395,133.4K,
40,240,400,340,470,133.6K,
240,360,660,400,445,131.3K,
520,400,420,480,520,132.5K,
440,640,520,320,530,132.2K,
400,440,840,480,580,130.8K,
840,640,760,360,575,132K,
1040,640,740,600,580,129.7K,
1280,600,980,620,565,130.3K,
1800,840,1000,420,600,129.6K,
0,0,0,0,0,135.2K,
0,360,0,1060,4010,133.3K,
0,2120,20,3720,7360,130.7K,
0,10.32K,340,6700,9185,121.6K,
400,34.64K,4800,10.56K,11.08K,101.8K,
2800,54.76K,10.18K,12.48K,12.01K,81.08K,
4520,59.92K,13.14K,13.14K,12.44K,73.84K,
5840,66.48K,15.9K,12.7K,12.22K,67.84K,
7520,70.32K,17.18K,14.1K,12.47K,62.02K,
11.76K,80.4K,22.56K,13.72K,12.7K,48.32K,
16.12K,88.68K,26.54K,15.12K,13.05K,33.88K,
23.44K,100.8K,33K,15.06K,12.96K,13.59K,
31.4K,104.2K,36.4K,15.34K,13.48K,0,
0,240,0,720,2875,132.1K,
0,1840,120,2500,5115,131.2K,
40,7600,480,5360,6540,125.7K,
720,25.88K,3520,7940,8245,108.9K,
3000,41.6K,8800,8920,9085,93.02K,
3480,44.96K,11.12K,9300,8640,88.51K,
4800,49.56K,12.36K,9640,8920,84.89K,
5680,52.32K,15K,10.22K,9180,79.68K,
10.16K,60.6K,17.14K,9940,9245,67.63K,
12.84K,65.32K,21.56K,10.6K,9415,56.84K,
19.96K,73.48K,26.94K,10.06K,9405,42.26K,
26.56K,76.92K,29.08K,10.6K,9895,31.99K,
0,160,0,600,2700,133.2K,
0,1760,20,2500,4610,130.8K,
0,6680,480,4700,6095,127K,
800,21.8K,3640,7300,7765,111.4K,
2680,36.28K,8460,7940,7985,98.08K,
3480,38.96K,9460,8760,8270,94.19K,
4440,42K,11.8K,8560,8200,88.75K,
6200,45.6K,13.76K,8700,8070,83.56K,
9560,50.84K,17.44K,9560,8340,74.45K,
13K,54.44K,20.4K,9480,8610,65.27K,
20.32K,59.76K,24K,9960,8525,50.66K,
25.52K,62.64K,26.76K,10.42K,8900,41.77K,
0,160,0,460,1805,134.8K,
0,1120,80,1620,3240,133.2K,
0,4680,400,3760,4120,129.4K,
480,16.4K,2720,4900,4825,119.5K,
2120,25.48K,6100,5380,5035,109.9K,
2320,27.04K,7620,5560,5595,107.4K,
3680,29.64K,9160,5440,5280,102.7K,
4720,31.08K,9880,5820,5415,100K,
6600,33.92K,12.92K,6280,5455,93.35K,
10.08K,36.2K,14.9K,6040,5435,86.81K,
12.96K,40K,19.3K,6500,5600,77.11K,
17.48K,41K,20.42K,6940,5455,69.24K,
0,0,0,160,540,134.8K,
0,360,20,360,935,135.9K,
40,1120,120,960,1300,133.6K,
120,3560,940,1480,1655,131.4K,
640,5000,2040,1760,1545,128K,
1400,4960,2180,1700,1755,127.8K,
1520,6080,2960,1740,1800,127.4K,
1360,6280,3560,1680,1710,125.9K,
2840,6880,3900,1700,1715,124.3K,
3680,7120,4480,1760,1700,122.5K,
5200,7200,5120,2180,1740,119K,
6960,7800,5380,1780,2000,117.5K,
0,0,0,20,370,136.4K,
0,40,40,260,575,135.1K,
0,520,60,580,675,132.8K,
80,1800,520,760,1000,132.3K,
400,2440,1260,980,975,131.2K,
600,2480,1480,920,1140,132.4K,
760,2560,1600,980,1165,129K,
1160,3040,1740,980,1110,129.5K,
1560,3120,2360,1020,1055,128.9K,
2560,3000,2420,1180,1200,128.3K,
3040,3280,2940,1120,1165,126.4K,
4040,3920,3100,900,1155,126.2K,
0,0,40,0,50,134.9K,
0,0,0,80,250,135.3K,
0,0,40,180,360,136.2K,
40,240,300,400,455,134.7K,
280,360,520,440,565,133.8K,
320,480,580,400,580,133.9K,
560,440,520,380,660,133.6K,
480,480,760,360,560,132K,
960,480,800,480,525,133.9K,
1160,680,880,440,545,134.2K,
1360,600,1060,560,575,130.9K,
2000,520,1020,620,535,132K,
0,0,0,0,0,134.7K,
0,160,20,920,3955,129.4K,
0,2400,40,3520,6835,126K,
0,9920,500,6460,9255,120.8K,
680,33.72K,4540,10.64K,11.04K,99.35K,
2720,54K,10.64K,12.26K,12.42K,80.56K,
4240,60.96K,12.3K,12.52K,12.03K,72.48K,
5680,66.44K,14.08K,13.68K,12.54K,66.52K,
7240,71.48K,15.98K,13.92K,12.54K,59.38K,
11.28K,80.88K,20.72K,14.34K,12.7K,46.18K,
15.28K,89.28K,26.02K,14.18K,13.35K,33.09K,
24.32K,100.5K,32.32K,14.62K,13.41K,13.36K,
30.28K,106.1K,36.4K,14.56K,13.24K,0,
0,240,0,720,2990,131.7K,
0,2600,60,2480,5155,127.6K,
0,7440,380,5060,6820,123.9K,
400,26.52K,3820,7760,7990,107K,
2520,41.2K,8800,9060,8690,92.46K,
3800,45.52K,10.06K,9320,8920,86.43K,
4520,49.84K,11.96K,9600,8975,82K,
5680,54K,14.18K,9580,9245,75.46K,
9400,59.68K,17.34K,9780,9170,67.22K,
12.6K,66.68K,21.12K,9440,9085,56.59K,
19.88K,73.32K,25.68K,10.18K,9170,41.48K,
24.56K,77.08K,28.68K,10.54K,9580,31.44K,
0,160,0,740,2950,130.4K,
0,1560,60,2260,4610,126.9K,
40,7080,260,4500,5990,124K,
560,21.8K,3460,7500,7430,110.3K,
2680,35.96K,8220,8560,7665,95.84K,
3600,38.36K,9720,8860,8330,90.6K,
4800,42.6K,11.16K,8720,8070,86.41K,
5480,45.04K,13.3K,9320,8385,82.52K,
8440,50.96K,16.06K,9380,8470,73.61K,
12.44K,54.88K,19.24K,9740,8545,64.09K,
19.56K,60.84K,23.92K,9920,8860,50.9K,
23.88K,63.44K,26.38K,10.06K,8810,41.22K,
0,200,0,440,1865,131.1K,
0,1480,60,1740,3065,130.1K,
40,4160,400,3620,4225,126K,
440,16.08K,2200,4980,5075,117K,
1880,25.6K,5740,5400,4955,107.5K,
2520,27.48K,7660,5500,5320,104.6K,
3480,29K,8560,5800,5225,101.3K,
4160,30.84K,9980,6080,5320,97.62K,
7000,34.2K,11.84K,5520,5380,91.76K,
9840,36K,14.8K,6320,5550,84.6K,
13.64K,40.28K,17.78K,6200,5605,75.2K,
17.44K,41.6K,20.44K,6440,5630,69.23K,
0,40,0,120,525,132.7K,
0,280,0,340,1010,130.5K,
0,1000,120,1040,1320,130.7K,
200,3800,700,1340,1610,127.8K,
600,5080,2220,1560,1745,126K,
640,5400,2660,1700,1700,124.4K,
1000,5960,2900,1840,1735,123.9K,
1440,6000,3080,1720,1615,122.5K,
2160,6360,3960,2080,1720,121.6K,
3080,7640,4420,1800,1740,119.5K,
5000,7360,5460,1900,1810,117.8K,
6240,7440,5780,1880,1850,114K,
0,0,0,60,340,133.5K,
0,120,0,240,485,131.2K,
0,520,140,460,765,131.3K,
80,1640,560,840,995,131.2K,
600,2280,1120,1020,970,129.7K,
520,2560,1260,900,1165,129.1K,
680,2760,1720,1100,1075,128.3K,
960,2800,1880,1000,1180,127.8K,
1240,3000,2040,1120,1165,126.7K,
1960,2960,2480,1200,1065,125.2K,
3000,3440,2740,1120,1065,124.8K,
3840,3440,3080,1260,1165,123.1K,
0,0,0,0,115,133.5K,
0,0,0,20,220,132K,
0,0,0,100,400,132.9K,
160,280,200,420,450,131.3K,
160,400,580,540,595,131.2K,
320,520,560,360,560,131.7K,
400,600,540,420,525,132.2K,
600,400,680,420,625,131.8K,
600,480,840,480,550,130.3K,
1120,560,800,480,610,129.8K,
1160,680,1180,520,595,128.9K,
2280,560,960,540,560,129.2K,
0,0,0,0,0,126.1K,
0,120,0,880,3810,122K,
0,2240,60,3560,6735,120.4K,
0,9520,340,6940,8510,111.9K,
640,33.2K,3560,10.42K,11.02K,93.86K,
2480,52.4K,9860,12.38K,12.15K,75.84K,
3240,58.48K,12.28K,12.38K,11.93K,69.92K,
4120,66.6K,13.1K,13.2K,12.24K,62.32K,
6480,69.88K,15.64K,13.04K,12.52K,56.58K,
8720,79.84K,20.46K,13.12K,13.01K,44.17K,
12.36K,89.2K,24.6K,14.08K,12.67K,31.63K,
20.6K,97.72K,29.18K,14.1K,13.65K,12.49K,
25.16K,105.5K,34.66K,15.8K,12.97K,0,
0,120,0,720,3035,124.8K,
0,1520,20,2800,5330,119.6K,
0,6640,280,4900,6530,116K,
560,24.84K,2800,7640,8345,101.9K,
2000,40.4K,7240,8640,8905,87.07K,
3480,44.96K,10K,8720,8910,81.34K,
3680,47.28K,10.7K,9960,9085,76.52K,
5360,50.88K,12.16K,10K,9245,70.98K,
8400,58.08K,16K,9700,9170,62.31K,
11.88K,64.44K,19.5K,10.18K,9325,53.4K,
17.32K,71.2K,24.02K,10.02K,9620,38.28K,
21.28K,74.04K,26.62K,11.08K,9870,28.98K,
0,200,0,620,2895,124.5K,
0,1400,20,2360,4490,119.3K,
80,6200,320,4260,6055,116.2K,
480,21.84K,2700,7460,7100,102.5K,
2200,34.52K,7320,8260,7970,91.45K,
2880,38.8K,8540,8320,8255,87.79K,
3240,39.84K,9920,9000,8515,81.69K,
4960,44.64K,12.6K,9020,8360,77.12K,
7880,49.72K,14.96K,9160,8460,68.35K,
11.4K,53.48K,18.72K,9300,8790,60.36K,
17.48K,59.24K,22.74K,10.4K,8615,46.53K,
21.68K,62.4K,24.04K,9680,8625,38.14K,
0,160,0,420,1800,124.4K,
0,1160,60,1440,3410,122.3K,
0,4560,280,3420,4125,120.2K,
360,16.24K,2520,4440,4740,109.4K,
1440,24.4K,5100,5900,4855,100.5K,
1880,26.6K,6640,5920,5265,98.26K,
2680,29.24K,7560,5480,4755,94.59K,
4080,30.36K,8820,5780,5495,91.95K,
5840,32.68K,11.32K,6380,5600,86.28K,
7680,35.84K,13.7K,6160,5510,80K,
12.28K,39.48K,16.6K,6660,5590,71.28K,
15.16K,39.92K,18.92K,6600,5690,64.33K,
0,0,0,80,565,125.1K,
0,80,20,600,925,125.1K,
0,1320,140,820,1185,124.8K,
120,3480,800,1240,1675,122.4K,
560,5280,2180,1420,1595,119.2K,
840,5360,2220,1800,1755,118.5K,
1040,5600,2760,1720,1655,117.8K,
1120,5920,3240,1680,1850,116.2K,
2080,6360,3460,2020,1910,113.9K,
2920,7160,4520,1820,1850,113.3K,
4520,7520,5280,1700,1740,110K,
5840,7520,4980,1840,1890,107.8K,
0,0,0,60,275,125.6K,
0,40,0,280,555,124K,
40,600,80,480,725,125.4K,
40,1400,600,760,995,123.3K,
440,2360,1100,960,1000,121.5K,
480,2480,1420,980,1100,121.6K,
560,2800,1760,900,1115,120.5K,
720,2560,1780,960,1100,121K,
1320,2880,1960,1140,1150,119.7K,
1840,2840,2180,1120,1120,117.7K,
2600,3440,2820,1080,1250,116.3K,
3480,3360,3120,1160,1125,115.5K,
0,0,0,0,165,126.5K,
0,0,0,0,215,125.2K,
0,40,40,160,240,125K,
80,400,200,280,430,123.6K,
280,400,420,380,535,123.8K,
240,280,720,520,550,121.5K,
400,440,560,540,520,122.8K,
440,320,620,560,595,123.8K,
720,400,760,460,600,122.1K,
960,360,860,440,630,121.9K,
1480,640,940,540,535,121.3K,
1760,560,980,500,520,122.1K,
0,0,0,0,0,112.8K,
0,240,0,740,3310,110.5K,
0,2200,100,3180,6250,106K,
0,7920,340,6460,8380,101.1K,
400,28.84K,2940,10.04K,11.18K,84.86K,
1600,48.76K,8140,12.8K,11.88K,66.81K,
2280,55.28K,10.32K,11.98K,11.94K,61.01K,
3360,62.24K,10.76K,12.84K,11.98K,56.68K,
4560,64.96K,12.88K,13.02K,12.22K,50.33K,
7200,73.84K,16.82K,13.4K,12.84K,39.14K,
10.36K,84.36K,20.52K,14.08K,12.6K,27.99K,
16.36K,92.72K,25.32K,14.12K,12.84K,11.52K,
20.72K,101.2K,29.94K,14.42K,12.62K,0,
0,120,0,500,2910,112.2K,
0,1320,0,2460,4825,109K,
0,5960,180,4820,6415,105.3K,
320,23.04K,2540,7560,7985,91.17K,
1440,38K,6380,8620,8580,76.71K,
2040,42.16K,7560,9160,8360,73.54K,
2880,45.76K,9620,8920,8560,70.42K,
3920,47.68K,10.86K,9200,9150,64.66K,
6320,55.16K,13.66K,9580,9080,56.27K,
7640,60.96K,17K,10.06K,9340,47.74K,
13.72K,66.48K,21.42K,10.52K,9335,34.49K,
16.88K,72.36K,24.92K,10.48K,9405,25.97K,
0,200,0,560,2575,109.2K,
0,1240,20,2620,4290,109.5K,
80,5280,180,4280,5785,105.4K,
400,20.44K,2540,6760,7575,93.96K,
1360,32.28K,6220,8260,7625,81.15K,
2040,36.52K,7540,8620,7770,77.31K,
3120,38.56K,8500,8580,7915,72.79K,
3400,42.12K,9940,8700,8275,69.44K,
6000,46.92K,13.4K,9120,8355,61.51K,
8560,50.56K,16.76K,9820,8365,54.26K,
14.44K,56.64K,18.74K,10.36K,8570,41.17K,
16.36K,60K,22.9K,9240,8745,34.46K,
0,120,0,360,1730,113.1K,
0,1000,20,1480,3240,109.6K,
0,3880,240,3480,4140,105.5K,
400,13.92K,1820,5140,4735,99.02K,
1040,22.64K,4580,5300,4885,90.66K,
1640,24.72K,5540,5700,5245,88.09K,
1760,27.32K,7000,5620,5100,85.26K,
2640,29K,7160,5780,5505,82.2K,
3760,32K,9920,6140,5350,77.09K,
6440,34.44K,11.68K,6160,5815,72.21K,
9320,39.64K,13.86K,6040,5255,63.42K,
12.8K,39.36K,16.7K,6160,5650,57.71K,
0,0,0,80,440,111.8K,
0,280,0,400,855,111.4K,
0,1000,60,560,1265,112.1K,
80,3240,560,1200,1625,108.3K,
320,4600,1760,1660,1830,106.7K,
720,4880,1920,1920,1650,106.7K,
480,5440,2420,1660,1645,104.9K,
1120,5640,3020,1600,1645,104.2K,
1400,6320,3100,1740,1770,102.8K,
2360,6920,3360,1800,1700,100.4K,
3200,7160,4640,1880,1835,98.21K,
4440,7840,4660,1960,1585,96.95K,
0,0,0,80,240,113K,
0,80,0,220,540,111.3K,
0,480,20,400,675,110.6K,
0,1400,460,620,1040,109.4K,
80,2120,1040,960,1090,107.6K,
320,2440,1100,840,1040,109.1K,
320,2680,1080,900,1125,110.3K,
520,2280,1520,1020,1145,108.6K,
1040,2840,1920,980,1075,108.5K,
1200,2920,2300,1180,1130,106.7K,
2000,3000,2760,1360,1195,104.9K,
3120,3240,2540,1280,1150,104.1K,
0,0,0,0,85,112.6K,
0,0,0,0,180,112.9K,
0,0,40,80,370,111.6K,
40,200,180,360,425,110.5K,
200,320,400,520,430,109.9K,
240,320,460,360,535,110.3K,
320,360,460,500,555,111.3K,
400,400,500,460,630,109.2K,
560,400,720,520,535,110.7K,
760,520,740,460,545,109.3K,
1120,600,700,580,585,109.7K,
1280,520,1000,500,595,107.2K,
0,0,0,0,0,97.52K,
0,120,0,580,3170,94.08K,
0,1600,20,2760,6065,90.77K,
0,6920,200,5600,8135,86.64K,
200,24.88K,1880,9960,10.69K,72.04K,
1040,45K,5780,11.06K,11.69K,56.72K,
1680,49.08K,7540,11.92K,12.1K,53.37K,
2040,55.88K,8480,11.96K,12.18K,47.89K,
3000,58.72K,10.64K,12.08K,12.12K,42.9K,
4520,68.36K,12.48K,13.24K,12.57K,33.92K,
6600,76.24K,16.1K,13.56K,12.56K,24.21K,
10.24K,86.08K,21.08K,13.86K,12.53K,9550,
13.76K,92.56K,24.38K,14.52K,12.8K,0,
0,40,0,400,2445,94.7K,
0,1120,20,2100,4555,94.67K,
0,4640,200,4060,6485,88.98K,
240,20.16K,1660,7640,7725,76.51K,
840,33.48K,4320,8480,8505,66.89K,
1120,36.04K,6120,9320,8645,63.89K,
1960,40.48K,6960,9220,8195,58.7K,
2680,43.56K,8380,9120,8765,55.21K,
3960,49.08K,10.72K,9760,9205,48.12K,
5560,55.88K,13.98K,9400,8930,41.4K,
9280,63.2K,16.82K,9880,9100,29.84K,
12.28K,66.8K,20.54K,10.14K,9435,22.38K,
0,80,0,500,2320,95.62K,
0,880,20,1900,4225,91.79K,
0,4520,140,3760,5630,90.17K,
160,17.56K,1800,6340,7290,79.62K,
680,28.56K,4980,8220,7810,69.51K,
1480,32.88K,5480,8160,7860,66.31K,
1920,34.92K,6740,8200,7945,62.31K,
2680,38.32K,8400,8620,7645,59.87K,
3840,42.6K,10.08K,9000,8285,52.61K,
5400,47.92K,12.82K,9020,8185,45.56K,
8200,52.36K,16.66K,9420,8665,36.22K,
11.8K,54.92K,18.66K,10.14K,8270,29.38K,
0,0,0,360,1550,95.53K,
0,920,0,1380,2810,93.97K,
0,3400,100,2600,3935,91.4K,
80,12.2K,1140,4760,4690,83.75K,
880,20.36K,3340,4980,4995,77.69K,
1080,21.84K,4540,5540,5000,75.36K,
1200,24.92K,5360,5440,4940,73.25K,
1800,27.28K,5660,5540,5120,70.68K,
2880,30K,7760,5780,5275,66.52K,
4920,31.68K,9460,6220,5355,61.9K,
7200,36.44K,11.6K,6180,5440,55.26K,
8480,36.28K,14.24K,6580,5490,49.39K,
0,0,0,60,435,95.72K,
0,0,0,460,775,96.83K,
0,640,20,800,1110,94.2K,
0,2760,600,1120,1540,93.06K,
240,4280,1340,1480,1675,90.49K,
360,4800,1300,1540,1675,89.01K,
160,5000,1760,1640,1815,89.94K,
880,5280,2080,1620,1625,88.95K,
1200,5520,2720,1920,1780,87.57K,
1640,6280,2880,1920,1700,86.6K,
2760,6840,3860,1760,1820,83.92K,
3280,7200,3980,2000,1595,83.02K,
0,0,0,60,200,95.89K,
0,80,0,280,395,95.54K,
0,280,20,360,715,95.23K,
40,1160,320,680,975,93.46K,
160,2000,820,840,1055,93K,
160,2080,880,1020,1115,92.21K,
240,2560,800,1000,1040,92.54K,
360,2280,1120,960,1150,92.44K,
560,2560,1920,920,1070,90.46K,
840,3120,1980,1000,1175,89.8K,
1480,3200,2260,900,1170,89.78K,
1640,3200,2220,1240,1035,89.17K,
0,0,0,0,110,95.75K,
0,0,0,0,185,95.87K,
0,80,20,140,265,95.49K,
80,320,100,240,425,94.77K,
80,360,260,340,490,96.19K,
160,280,400,480,475,95.95K,
240,320,400,420,500,95.38K,
280,400,480,460,535,94.98K,
520,320,580,480,535,93.43K,
320,680,780,400,515,94.05K,
600,600,980,520,625,93.79K,
880,760,840,440,505,94.34K,
0,0,0,0,0,78.81K,
0,40,0,380,2975,76.61K,
0,960,20,2100,5460,74.92K,
0,4760,100,5100,7640,70.18K,
120,21.48K,1300,8660,10.2K,59.91K,
560,36.92K,4060,10.72K,11.24K,47.16K,
960,41K,5220,11.46K,11.69K,44.02K,
1160,47.76K,5780,11.14K,11.88K,40.3K,
1560,51.08K,6820,11.9K,11.68K,36.43K,
2240,59.4K,9800,12.5K,12.24K,27.47K,
4200,66.36K,12.66K,13.1K,12.35K,20.08K,
6080,75.92K,16.16K,14.12K,12.55K,7940,
8360,83.28K,18.36K,13.68K,12.9K,0,
0,40,0,260,2270,77.86K,
0,680,20,1920,4130,75.57K,
0,3640,40,3440,5755,72.7K,
120,16.08K,1080,6980,7150,63.42K,
640,28.08K,2940,8000,8070,54.51K,
640,31.8K,4220,8240,8945,51.9K,
1160,34.88K,5500,8580,8415,48.04K,
1680,37.56K,6100,9060,8650,45.24K,
2360,43.56K,8400,9360,8680,39.65K,
3480,49.76K,9740,9280,9075,32.94K,
5320,56.64K,13.58K,9640,9495,24.29K,
7760,59.56K,15.2K,10.32K,9150,18.21K,
0,0,0,360,2120,77.92K,
0,720,20,1420,3690,77.2K,
40,3560,80,3220,5145,74.73K,
80,14.04K,860,6260,7030,65.31K,
320,25.84K,2800,7020,7755,56.9K,
680,27.64K,4080,7900,7590,53.84K,
840,30.56K,4540,8000,8090,50.64K,
1480,32K,6060,8420,8175,49.83K,
2680,36.88K,8180,8760,8255,43.83K,
2640,42.08K,10.02K,9080,8175,37.67K,
5680,47.8K,12.98K,9380,8080,29.57K,
6440,51.8K,14.58K,9420,8395,24.27K,
0,80,0,140,1395,78.28K,
0,600,0,1120,2525,78.46K,
40,2160,20,2120,3700,75.74K,
200,10.32K,740,4100,4465,69.2K,
280,16.76K,2460,4900,4970,63.35K,
760,19K,2640,5400,5050,62.3K,
920,22.36K,3300,5440,4725,59.79K,
1280,23.12K,4240,5380,5190,58.04K,
1960,26.56K,5260,5540,5255,53.85K,
2560,28.68K,7100,5860,5295,50.27K,
4120,33.68K,8820,5680,5235,45.3K,
4840,34.44K,10.82K,5640,5505,41.25K,
0,0,0,100,365,79.63K,
0,120,0,280,675,78.15K,
0,840,0,600,1060,77.99K,
0,2280,280,1100,1365,76.27K,
40,3640,740,1420,1630,74.96K,
200,4200,1060,1340,1780,74.29K,
200,4640,1180,1760,1640,74.41K,
320,4760,1460,1640,1605,74.31K,
480,5320,2020,1420,1870,72.86K,
800,5680,2580,1800,1925,71.56K,
1400,6360,3120,1700,1730,70.59K,
1840,6760,3320,1840,1715,68.01K,
0,0,0,0,165,79.85K,
0,40,0,200,390,79.72K,
0,80,20,440,605,77.76K,
0,960,120,580,860,77.26K,
120,1920,580,760,980,76.9K,
120,2000,620,840,1000,76.38K,
160,2240,740,880,1130,75.62K,
160,2320,960,720,1155,75.64K,
280,2400,1320,740,1110,75.3K,
680,2760,1440,1000,1090,75.34K,
1000,2960,1760,1000,1230,73.47K,
1520,3280,1980,1100,1065,73.6K,
0,0,0,0,100,79.13K,
0,0,0,20,170,78K,
0,0,0,140,200,78.78K,
40,80,60,360,415,78.96K,
80,160,300,340,435,79.19K,
80,320,320,320,455,78.03K,
120,280,300,380,415,77.48K,
160,320,360,360,545,78.19K,
240,360,500,360,535,77.44K,
200,480,560,460,575,77.12K,
440,440,580,480,580,77.48K,
520,600,700,400,600,75.91K,
0,0,0,0,0,64.21K,
0,80,0,180,2485,62.49K,
0,520,20,1580,4955,59.77K,
0,3240,100,4020,6875,55.88K,
120,15.52K,620,8300,9495,47.48K,
160,29.44K,2540,10.08K,10.68K,37.48K,
360,32.68K,3340,11K,11.24K,35.34K,
640,38.48K,3800,11.28K,11.08K,31.88K,
1000,41.92K,4000,10.98K,11.65K,28.46K,
1360,49.8K,6780,12.16K,11.32K,22.62K,
1440,55.8K,8680,12.34K,11.84K,15.44K,
3240,66.2K,11.64K,13.28K,12.33K,6250,
4360,71.96K,14.6K,12.98K,12.39K,0,
0,0,0,300,1965,63.17K,
0,520,0,1540,3670,60.69K,
0,1920,60,3140,5010,59.02K,
40,12K,680,5740,7390,51.11K,
80,22.24K,2120,7240,8295,43.47K,
360,25.44K,2780,7800,8320,41.69K,
440,28.52K,2960,8380,8035,39.84K,
640,30.84K,3880,8580,8310,36.97K,
1080,36.68K,5580,8500,8530,31.65K,
1840,41.36K,7280,9300,8580,26.26K,
3160,48.84K,9640,9300,8890,19.49K,
3960,53.16K,11.32K,9240,9115,14.74K,
0,0,0,180,1755,63.36K,
0,360,0,1060,3580,61.89K,
0,2080,80,2820,4845,58.89K,
40,10.76K,720,5840,6260,52.45K,
280,19.64K,1860,7140,7445,45.65K,
400,22.32K,2500,7440,7625,43.52K,
360,24.8K,2980,7020,7785,42.17K,
680,27.2K,3560,7720,7540,39.17K,
1000,32.92K,5220,7720,7990,34.76K,
1360,35.72K,7040,8220,8350,30.23K,
3040,41.6K,8920,8380,8140,24.09K,
3880,46.12K,10.92K,8600,8130,19.43K,
0,0,0,220,1260,62.86K,
0,440,0,840,2155,62.49K,
0,2040,20,1600,3280,60.66K,
80,7680,560,4280,4145,55.01K,
240,13K,1540,4620,4825,51.06K,
160,15.08K,2020,5000,5060,49.17K,
400,18.24K,2380,4720,4700,48.3K,
320,18.56K,3100,5240,5285,45.88K,
920,22.16K,3660,5440,5045,43.31K,
1280,24.72K,4840,5660,5370,40.42K,
2040,29.2K,7400,5420,5385,36.56K,
2800,31.2K,7720,5960,5140,33.92K,
0,0,0,40,340,63.24K,
0,80,0,180,605,62.96K,
0,280,0,560,1025,62.49K,
0,1880,100,900,1400,60.81K,
40,3120,380,1140,1670,59.7K,
80,3360,780,1380,1585,59.38K,
40,3880,1040,1620,1490,59.39K,
120,4080,1200,1420,1695,59.21K,
200,4680,1360,1500,1655,57.47K,
200,5440,1660,1740,1685,57.42K,
520,6080,2280,1600,1675,54.78K,
640,6240,2680,1720,1750,54.69K,
0,0,0,0,160,62.37K,
0,0,0,80,310,64.57K,
0,80,0,240,620,62.5K,
0,760,160,520,950,62.93K,
0,1480,280,700,1030,62.59K,
40,1480,320,760,900,61.05K,
120,1760,460,880,1060,61.43K,
40,1840,660,840,1120,61.33K,
200,2040,980,860,1075,60.49K,
280,2480,940,940,1030,60.14K,
560,2480,1360,1120,1095,59.7K,
640,2680,1620,1120,1045,58.43K,
0,0,0,0,60,63.98K,
0,0,0,20,175,62.48K,
0,0,20,40,250,63.48K,
0,80,100,140,425,62.43K,
40,160,100,220,490,62.7K,
0,280,220,280,495,62.64K,
40,200,200,400,450,63.06K,
80,360,240,260,460,63.12K,
160,280,400,440,480,62.28K,
200,400,440,460,505,62.62K,
200,520,520,300,585,61.88K,
280,640,660,360,505,61.61K,
0,0,0,0,0,50.77K,
0,0,0,100,2210,51.2K,
0,160,20,1140,4435,49.02K,
0,2280,20,2740,6530,46.89K,
40,11.48K,380,7120,9055,38.92K,
80,23.36K,1680,9700,9865,31.54K,
160,25.96K,1760,9640,10.62K,28.84K,
240,31.08K,2700,10.34K,10.34K,24.98K,
400,33.36K,3000,10.76K,11.31K,23.14K,
760,40.8K,4400,10.92K,11.07K,17.67K,
840,45.52K,6140,11.86K,11.87K,12.88K,
2360,55.36K,8140,12K,11.98K,5280,
2440,60.32K,9940,12.18K,12.18K,0,
0,0,20,120,1605,50.43K,
0,320,0,920,3280,48.59K,
0,1600,40,2400,4640,47.07K,
0,8960,320,5400,6440,41.82K,
40,16.88K,1500,6960,7670,35.86K,
120,20.44K,1660,6960,7945,34.35K,
160,22.8K,2200,6880,7980,31.36K,
480,24.92K,2120,8000,8165,29.18K,
760,29.76K,3420,7880,8605,26.45K,
1040,34.16K,4480,8920,8400,21.98K,
1960,41.4K,6800,8960,8650,15.97K,
2080,45.56K,8420,8680,8770,11.35K,
0,0,0,100,1330,50.05K,
0,200,0,800,2940,49.26K,
0,1280,40,2240,4305,47.63K,
0,8000,360,4280,6380,42.07K,
160,15K,1140,6540,7155,37.96K,
160,17.64K,1240,6740,7240,35.45K,
240,19.48K,1640,7100,7400,33.96K,
240,21.72K,2860,6980,7415,31.91K,
560,25.76K,3800,7560,7840,28.5K,
1000,29.28K,4680,8200,7920,24.7K,
1560,35.2K,6520,8300,8105,19.1K,
2040,38.96K,7900,8320,8250,15.19K,
0,0,0,200,925,51.44K,
0,240,20,440,2210,50.86K,
0,1120,60,1620,2760,49.07K,
0,5680,280,3660,4035,45.18K,
40,10.52K,1080,4380,4485,41.71K,
40,11.92K,1320,4460,4760,40.74K,
200,13.72K,1300,5320,4495,39.66K,
200,15.56K,1940,4760,5145,37.42K,
360,18.16K,2620,5280,4935,35.81K,
560,21.04K,3240,5120,5095,33.2K,
1440,24.6K,4240,5240,5310,29.08K,
1800,26.64K,5200,5380,5460,27.23K,
0,0,0,0,270,50.91K,
0,0,0,100,545,51.04K,
0,200,0,320,905,50.45K,
0,1240,60,960,1250,48.98K,
0,2240,400,1260,1460,48.85K,
40,2600,440,1240,1590,49.63K,
40,2840,500,1200,1605,48.04K,
40,3520,480,1460,1510,48.48K,
0,3800,960,1520,1720,47.66K,
240,4360,1340,1560,1570,45.63K,
520,5320,1660,1520,1730,45.27K,
520,5600,2120,1580,1635,44.27K,
0,0,0,20,120,51.76K,
0,0,0,100,320,51.46K,
0,40,0,200,470,51.2K,
0,440,0,620,755,50.89K,
0,1280,260,620,775,50.16K,
0,1480,220,580,800,48.69K,
40,1400,240,780,915,48.46K,
160,1600,380,720,960,49.15K,
80,1960,620,720,1080,49.13K,
160,2080,720,840,1105,48.58K,
240,2280,1020,940,1080,48.95K,
440,2360,1280,840,1180,48.76K,
0,0,0,0,30,51.64K,
0,0,0,0,110,51.29K,
0,40,0,20,180,51.54K,
0,40,20,140,355,51.53K,
40,160,80,240,420,51.26K,
40,200,140,300,450,51.38K,
40,160,100,380,415,51.07K,
40,320,180,320,435,51.23K,
40,200,220,400,555,50.74K,
120,320,300,380,470,51.66K,
120,400,360,440,460,50K,
200,520,560,360,480,50.01K,
0,0,0,0,0,44.8K,
0,0,0,60,1695,43.63K,
0,200,0,1100,3750,42.73K,
0,1000,0,2940,5845,39.71K,
0,8480,320,6620,8290,33.77K,
40,17.72K,1100,8760,9690,27.31K,
80,21.08K,1380,8720,10.12K,24.76K,
280,24.12K,1600,9780,10.46K,21.94K,
240,26.92K,2500,9440,11.02K,20.57K,
400,33.64K,3480,10.02K,11.3K,15.43K,
920,37.96K,4540,10.6K,11.3K,10.48K,
1040,46.48K,6860,11.6K,11.74K,4695,
1880,51.48K,7880,11.76K,11.42K,0,
0,0,0,40,1410,44K,
0,120,0,680,3030,42.09K,
0,880,0,1900,4170,40.8K,
0,6400,360,4740,6380,36.39K,
40,13.16K,760,6820,7755,30.66K,
160,16.6K,1180,6300,7500,29.4K,
160,17.28K,1600,7320,8110,27.49K,
160,20.92K,2180,7440,8050,25.63K,
440,24.6K,2880,8300,7800,22.93K,
480,28.84K,3960,8580,8405,19.04K,
1280,33.8K,5520,8700,8860,13.49K,
1360,38.44K,6380,8600,8750,10.61K,
0,0,0,40,1295,44.06K,
0,160,0,560,2625,43.12K,
0,960,20,1840,3910,41.24K,
40,5800,380,4380,5810,37.22K,
40,12.08K,660,5540,6945,31.84K,
40,13.44K,1040,6440,6960,30.85K,
160,16.52K,1340,6360,7340,29.51K,
240,17.64K,1940,6860,7105,27.91K,
520,21.96K,2500,7000,7110,23.9K,
640,26.2K,3400,6920,7410,22.26K,
1200,30.2K,5140,7920,7530,16.66K,
1480,34.52K,5660,8080,7945,13.81K,
0,0,0,80,870,43.65K,
0,120,0,460,1905,44.08K,
0,720,0,1040,2730,42.06K,
0,4200,220,3120,3860,39.19K,
40,8200,620,4000,4460,36.13K,
40,10.08K,780,4240,4675,35.27K,
80,11.04K,1080,4460,4880,33.79K,
80,12.28K,1300,4940,4845,33.36K,
200,15.08K,2040,4720,4815,30.66K,
400,18.08K,2460,5040,5100,29.11K,
1200,21.68K,3640,4840,5035,25.03K,
1120,24.24K,4420,5280,5110,22.87K,
0,0,0,20,250,45K,
0,40,0,40,460,44.94K,
0,40,0,400,745,44.15K,
0,800,80,860,1210,42.57K,
0,1880,260,980,1325,42.14K,
0,2280,300,1060,1470,41.9K,
40,2320,400,1080,1625,41.48K,
0,3040,660,1300,1420,40.99K,
0,3280,700,1360,1565,41.07K,
40,3840,720,1680,1450,39.79K,
440,4400,1320,1520,1725,40.04K,
360,4720,1460,1740,1735,38.03K,
0,0,0,0,100,44.69K,
0,0,0,60,275,44.33K,
0,0,0,180,405,44.78K,
0,400,40,460,690,43.28K,
40,800,200,560,835,43.88K,
40,1080,180,700,830,43.13K,
0,1320,280,660,900,43K,
0,1480,320,720,970,43.19K,
120,1480,440,660,985,42.22K,
160,1720,580,800,1075,42.18K,
240,2000,840,800,940,40.82K,
120,2280,1000,940,980,41.46K,
0,0,0,0,55,44.93K,
0,0,0,0,105,44.54K,
0,0,0,20,185,43.88K,
0,40,0,200,335,44.97K,
0,40,100,260,430,44.5K,
0,120,120,280,425,44.06K,
40,160,40,280,475,43.5K,
40,160,180,280,370,44.25K,
0,240,220,240,510,43.42K,
80,240,200,280,480,43.55K,
80,440,340,360,515,44.25K,
120,240,400,420,580,43.66K,
0,0,0,0,0,42.2K,
0,0,0,60,1590,42.1K,
0,120,0,840,3575,40.89K,
0,1200,20,2140,5485,38.21K,
0,7720,260,5760,8000,31.28K,
40,15.88K,860,7460,9710,25.17K,
0,18.32K,1380,8200,9750,23.61K,
80,21.08K,1500,8620,10.05K,21.56K,
160,23.56K,2080,8960,10.68K,19.29K,
280,29.76K,2820,9640,11.1K,14.65K,
800,33.56K,3760,10.72K,11.41K,10.36K,
720,41.68K,5500,11.52K,11.63K,4055,
1560,46.28K,7220,10.94K,12.11K,0,
0,40,0,80,1340,41.08K,
0,120,0,580,2565,41.63K,
0,600,0,1600,4250,38.33K,
40,5440,180,4240,6410,34.88K,
40,11.68K,740,6060,7035,29.86K,
80,13.64K,1140,6480,7550,27.99K,
80,15.04K,1380,6600,7770,26.09K,
160,17.88K,1860,6880,7825,24.76K,
280,20.76K,2640,7720,8010,22.41K,
480,25.76K,3360,8120,8180,18.17K,
840,31.16K,4620,8240,8350,12.88K,
1360,34.08K,5180,8360,8885,9695,
0,0,0,40,1195,41.75K,
0,80,0,480,2410,41.36K,
0,880,0,1540,3595,39.58K,
0,5040,200,3620,5700,35.12K,
40,10.56K,880,5380,6785,31.71K,
160,12.8K,1100,5540,6655,29.1K,
120,13.96K,1480,6060,7090,27.68K,
80,15.8K,1760,6340,7175,25.92K,
160,19.28K,2400,6940,7095,23.59K,
320,23.36K,3240,7120,7200,20.31K,
880,27.76K,4880,7800,7750,16.22K,
1280,30.64K,5780,8180,8180,12.86K,
0,0,0,0,805,43.3K,
0,120,0,280,1870,40.92K,
0,720,20,900,2520,40.4K,
0,3480,120,3060,3820,37.22K,
0,7160,520,3920,4240,33.58K,
80,8680,580,4020,4640,33.71K,
160,9800,1240,4120,4410,32.14K,
80,11.44K,1200,4320,4995,31.93K,
280,13.16K,1780,4880,5215,28.97K,
480,16.56K,1780,4900,5040,26.78K,
800,18.2K,3100,5520,5070,24.58K,
680,21.84K,3760,5480,5230,22.5K,
0,0,0,0,250,42.67K,
0,0,0,60,435,41.54K,
0,40,0,260,755,41.62K,
0,840,40,860,1025,41.68K,
0,1640,180,1160,1255,40.16K,
0,2000,340,1080,1350,40.48K,
0,1920,260,1380,1300,39.59K,
0,2480,440,1240,1505,40.03K,
40,2720,680,1340,1560,39.06K,
200,3640,900,1520,1485,38.14K,
400,4120,1320,1540,1630,38.03K,
200,4280,1280,1740,1665,37.56K,
0,0,0,0,105,42.13K,
0,0,0,20,250,43.22K,
0,0,0,120,420,41.77K,
0,240,20,420,705,41.73K,
0,840,120,440,880,40.78K,
0,800,200,600,895,41.61K,
0,1080,280,700,905,40.12K,
0,1280,300,720,835,41.11K,
80,1400,360,680,995,39.55K,
80,1720,520,580,995,40.22K,
40,1680,900,760,1010,39.85K,
160,2080,860,940,1000,39.31K,
0,0,0,0,45,42.94K,
0,0,0,0,100,42.63K,
0,0,0,20,190,42.88K,
0,0,40,120,370,42.24K,
0,80,60,160,375,42.11K,
0,120,80,220,405,42.1K,
0,80,80,380,380,42.13K,
40,80,120,300,385,42.17K,
0,160,120,260,615,42.08K,
80,280,140,340,450,41.29K,
120,440,200,320,490,41.57K,
160,360,300,360,535,41.47K,
0,0,0,0,0,43.11K,
0,0,0,60,1690,41.96K,
0,200,0,560,3490,40.68K,
0,760,0,2240,5770,38.72K,
0,6880,300,5840,8190,32.63K,
80,14.88K,900,7620,9755,25.27K,
40,17.32K,1320,8200,10.02K,23.83K,
160,19.64K,1480,8720,10.12K,22.02K,
200,22.48K,2120,9060,10.62K,19.41K,
280,27.96K,3060,10.28K,10.88K,14.74K,
640,33.48K,3900,10.32K,10.96K,10.62K,
840,39.72K,5260,11.16K,11.82K,4240,
1480,44.44K,7320,11.78K,11.25K,0,
0,0,0,40,1365,42.75K,
0,0,0,420,2605,41.61K,
0,600,0,1580,4220,39.76K,
40,4880,220,4640,6230,34.55K,
80,11.04K,860,5820,7375,30.51K,
40,13.56K,1000,6060,7315,28.21K,
120,15.24K,1240,6580,7415,26.48K,
240,17.6K,1780,6820,7435,24.98K,
240,19.96K,2660,7880,7950,21.23K,
560,25.32K,3300,8240,7990,18.53K,
1040,29.96K,4660,8960,8450,12.88K,
1720,33.64K,6280,8380,8385,9660,
0,0,0,40,1290,42.32K,
0,160,0,400,2400,42.3K,
0,840,0,1300,3730,39.82K,
0,4560,180,3880,5490,35.77K,
120,10.28K,740,5360,6470,30.12K,
80,11.28K,840,5420,6845,29.55K,
40,13.16K,1240,6220,7120,28.89K,
160,14.84K,2100,6620,6985,26.55K,
440,18.76K,2020,6680,7180,23.81K,
640,21.56K,3300,7420,7565,20.07K,
840,26.88K,4760,7500,7975,16.25K,
1000,29.24K,5200,7980,8060,13.58K,
0,0,0,40,855,41.72K,
0,120,0,320,1650,41.52K,
0,520,20,980,2380,40.05K,
0,2840,100,2980,4330,38.04K,
40,7400,680,3700,4270,34.93K,
40,8880,820,3820,4420,33.5K,
40,9200,1160,4480,4630,32.28K,
160,10.76K,1140,4480,4715,31.41K,
240,13.08K,1900,5340,4910,29.13K,
480,15.52K,2200,4840,4920,27.11K,
760,19.36K,2960,4980,4895,24.5K,
1200,20.84K,4240,5280,5100,21.45K,
0,0,0,0,250,43.89K,
0,0,0,120,500,42.87K,
0,80,0,260,680,42.64K,
0,640,60,860,1110,41.77K,
0,1600,280,1000,1385,40.4K,
0,1960,280,1160,1410,40.33K,
0,2080,420,980,1570,40.05K,
0,2440,460,1180,1490,40.14K,
40,2720,720,1260,1550,39.62K,
40,3520,1020,1320,1540,38.63K,
160,3960,1260,1400,1750,38.38K,
200,4280,1780,1660,1675,37.21K,
0,0,0,0,120,42.14K,
0,0,0,40,245,42.6K,
0,0,0,120,445,42.6K,
0,280,20,440,675,42.45K,
0,880,60,460,830,42.07K,
0,600,120,540,905,41.92K,
0,1040,240,680,915,42.17K,
40,1040,320,660,855,41.14K,
0,1680,280,760,985,41.15K,
120,1640,500,780,975,40.28K,
80,1840,880,680,955,40.01K,
80,2000,960,860,1105,39.36K,
0,0,0,0,30,43.36K,
0,0,0,20,80,43.65K,
0,40,0,0,210,43.82K,
0,0,20,160,230,43.28K,
0,40,100,260,400,41.67K,
0,200,200,120,405,42.17K,
0,160,60,200,435,42.66K,
40,160,140,220,435,42.87K,
80,280,140,340,375,42.92K,
160,400,220,280,465,42.72K,
0,320,260,420,490,41.55K,
120,480,320,320,490,41.66K,
0,0,0,0,0,44.26K,
0,0,0,80,1780,45.32K,
0,80,0,560,3640,43.05K,
0,920,0,2240,5655,40.11K,
0,7000,260,5780,8635,33.39K,
120,15.8K,960,7820,9550,26.71K,
80,18.04K,1240,8320,9895,24.71K,
120,20.16K,1580,9160,10.22K,21.98K,
160,23.24K,2440,9200,10.32K,20.18K,
480,29.36K,3420,9740,10.69K,15.37K,
840,33.32K,4340,11.1K,11.36K,10.58K,
1040,40.12K,6660,11.16K,11.37K,4355,
1960,45.04K,7700,11.64K,11.84K,0,
0,0,0,60,1245,44.11K,
0,40,0,560,2685,43.08K,
0,520,0,1700,4060,41.32K,
40,4880,220,4660,6000,36.46K,
120,11.16K,880,5940,6950,30.84K,
120,13.64K,1100,6260,7430,29.16K,
160,16.16K,1560,6360,7650,26.69K,
200,17.8K,1920,7520,7450,25.81K,
360,21.56K,2820,7400,7930,22.04K,
560,26.36K,3520,7540,8195,19.71K,
960,30.64K,5400,8400,8670,14.32K,
1360,33.48K,6480,8580,8750,10.42K,
0,0,0,20,1205,44.94K,
0,80,0,380,2545,43.37K,
0,760,40,1440,3700,41.61K,
40,5000,180,4260,5500,37.26K,
0,9880,840,5800,6355,32.32K,
0,11.88K,1200,5900,6715,30.62K,
160,13.32K,1460,6600,6890,29.07K,
160,16.2K,1900,6420,7150,27.28K,
280,18.56K,2620,6980,7150,24.61K,
440,23.12K,3700,7100,7435,21.34K,
1040,27.36K,4940,7940,8005,17.06K,
1680,30.24K,6380,7600,7590,13.81K,
0,0,0,120,805,44.25K,
0,40,0,340,1650,44.27K,
0,320,0,960,2585,43.37K,
0,3680,240,2840,3865,39.5K,
120,7280,560,3940,4570,36.19K,
40,8640,820,4080,4395,35.62K,
80,9440,940,4700,4570,33.96K,
280,11K,1320,4700,4640,32.97K,
400,14K,1780,4760,5005,30.75K,
320,15.72K,2960,5040,4970,28.73K,
640,20.32K,3740,4920,5130,25.16K,
840,21K,4880,5340,5165,23.43K,
0,0,0,0,270,43.73K,
0,40,0,40,545,43.83K,
0,120,0,220,695,44.72K,
0,680,60,780,1100,42.73K,
0,1760,220,820,1420,42.18K,
0,2000,280,1260,1425,42.51K,
0,2400,440,940,1400,42.34K,
0,2880,320,1240,1425,41.49K,
80,3000,680,1480,1475,41.18K,
200,3600,860,1240,1650,39.73K,
200,4240,1320,1520,1565,39.65K,
240,4800,1600,1360,1690,38.33K,
0,0,0,0,100,44.8K,
0,0,0,40,305,44.9K,
0,0,20,120,425,43.95K,
0,400,0,520,515,43.63K,
40,720,120,520,875,44K,
0,880,180,500,790,44.04K,
0,1120,220,620,870,43.4K,
80,1160,280,620,910,42.38K,
120,1480,460,700,990,42.11K,
40,1640,540,760,940,42.93K,
40,1800,840,780,1085,40.97K,
200,1840,920,1020,1030,41.31K,
0,0,0,0,40,44.29K,
0,0,20,20,100,44.42K,
0,0,0,60,140,44.11K,
0,0,0,220,245,44.68K,
0,40,80,320,355,44.06K,
0,120,80,280,435,44.24K,
0,120,80,260,400,44.38K,
0,160,180,300,415,44.53K,
80,240,180,260,465,43.79K,
80,160,420,360,505,43.16K,
120,200,400,560,450,43.01K,
240,400,300,300,600,43.24K,
0,0,0,0,0,46.35K,
0,0,0,60,1805,46K,
0,40,0,780,3690,43.73K,
0,920,0,2100,5895,41.62K,
40,7200,300,5960,8620,35.09K,
40,15.8K,1260,8140,9985,27.24K,
120,18K,1460,8500,9915,25.74K,
120,21.84K,2040,8680,10.67K,23.14K,
280,24K,2400,9320,10.71K,20.97K,
440,30.04K,3420,10.08K,10.78K,15.93K,
520,34.64K,4900,10.92K,11.07K,11.13K,
1280,42.72K,6000,11.34K,11.71K,4485,
2360,47.56K,7800,11.9K,11.38K,0,
0,0,0,100,1325,45.59K,
0,160,0,480,2710,43.88K,
0,600,0,1840,4100,42.94K,
40,5400,240,4660,6505,37.64K,
120,11.44K,840,6020,7560,31.73K,
120,13.92K,1580,6780,7365,29.94K,
0,16.36K,1740,7100,7480,28.49K,
80,18.4K,1960,7040,7910,26.51K,
280,22.32K,2960,7700,8145,23.02K,
800,26.52K,3580,8380,8225,20.18K,
760,32.08K,5680,8760,8510,14.09K,
2080,35.04K,6580,8360,8660,10.6K,
0,0,0,60,1220,45.85K,
0,160,0,480,2540,45.02K,
0,640,40,1640,3950,42.66K,
0,5120,260,4020,5865,38.15K,
0,10.4K,860,5440,6555,33.61K,
200,12.76K,1320,5600,6730,32.19K,
160,14.4K,1380,6040,7110,30.01K,
120,16.12K,2080,6720,7425,29.12K,
560,19.8K,3040,6860,7340,25.78K,
680,23K,3960,7440,7875,21.81K,
720,28.16K,5380,7800,7910,17.28K,
1520,30.08K,6280,7680,7895,14.29K,
0,0,0,40,765,46.05K,
0,200,0,280,1810,44.85K,
0,640,0,1040,2505,44.55K,
0,4080,180,2960,3735,41.33K,
40,7400,660,4300,4515,37.51K,
80,8680,780,4320,4480,36.41K,
120,10.12K,1220,4720,4445,35.3K,
160,11.28K,1100,4560,4635,33.57K,
480,14.4K,2000,4860,4725,32.09K,
440,16.68K,2440,4500,5055,29.82K,
760,20.2K,4320,4960,5095,26.13K,
1120,22.08K,4640,5160,4945,24.32K,
0,0,0,20,225,46.76K,
0,0,0,60,580,45.78K,
0,80,0,320,785,46.12K,
0,560,20,900,1200,45.53K,
0,1680,140,1120,1360,43.56K,
120,2360,340,960,1360,43.2K,
0,2480,520,1300,1435,43.03K,
0,2840,600,1380,1485,43.11K,
120,3240,700,1320,1600,42.2K,
120,3560,940,1380,1700,41.66K,
280,4360,1540,1560,1620,40.92K,
360,4720,1600,1640,1720,39.89K,
0,0,0,0,130,45.94K,
0,0,0,20,290,45.81K,
0,0,0,160,450,45.52K,
0,400,60,420,640,45.48K,
0,840,180,500,855,45.87K,
0,1000,220,540,945,43.98K,
80,1120,140,540,875,43.82K,
0,1320,260,680,820,43.97K,
40,1360,480,720,940,44.77K,
40,1680,500,560,1180,44.19K,
240,2120,880,760,1040,42.67K,
280,2120,1020,960,855,43.16K,
0,0,0,0,30,46.8K,
0,0,20,0,115,45.89K,
0,0,0,20,175,45.75K,
0,80,40,180,300,45.93K,
0,80,100,220,360,44.52K,
0,160,20,300,400,45.67K,
40,80,180,260,435,45.02K,
40,120,100,360,490,45.05K,
80,200,220,320,455,46.13K,
120,240,240,360,450,44.62K,
120,280,380,480,495,45.75K,
160,320,340,460,445,44.31K,
0,0,0,0,0,46.06K,
0,0,0,100,1670,44.8K,
0,120,0,920,3490,43.52K,
0,880,0,2540,5590,41.08K,
0,7400,260,5900,8585,34.17K,
0,16.08K,1140,8280,9800,27.45K,
40,17.8K,1840,9220,10.05K,25.98K,
80,21.76K,1740,9280,10.27K,23.17K,
440,24.08K,2700,9820,10.56K,20.55K,
400,30.44K,3500,9720,11.64K,16.35K,
800,34.4K,4860,10.72K,11.56K,11.4K,
1240,42.52K,6740,11.66K,11.39K,4775,
2360,48.04K,7940,11.6K,12.3K,0,
0,0,0,80,1440,45.12K,
0,120,0,540,2585,45.83K,
0,840,20,1820,4375,42.29K,
0,6080,240,4340,6480,37.33K,
40,12.12K,1040,6540,7445,32.48K,
120,13.2K,1220,6700,7715,30.61K,
80,16.76K,1740,6660,7595,27.87K,
120,18.64K,2180,6800,7945,26.21K,
240,22K,3120,7900,8065,23.47K,
640,26.04K,3720,8440,8475,19.54K,
1200,32.84K,5660,8220,8545,14.24K,
1640,35.56K,6900,8680,8790,11.07K,
0,0,0,80,1060,45.06K,
0,200,20,380,2740,44.21K,
0,880,0,1760,3765,42.57K,
0,5080,100,4260,5940,38.55K,
0,10.52K,700,5840,6685,33.37K,
40,12.44K,1040,5920,6905,31.61K,
200,14.72K,1340,6280,6920,29.57K,
360,17.12K,1600,6600,6860,28.58K,
280,20.24K,2180,7080,7400,25.43K,
1080,23.08K,3540,7380,7505,21.6K,
1080,28.56K,5400,7780,7715,17.25K,
1720,30.52K,6000,7840,7750,14.66K,
0,0,0,20,830,46.39K,
0,40,20,300,1770,44.18K,
0,440,0,1200,2715,43.87K,
40,3560,200,3220,3925,40.4K,
40,7880,780,4060,4170,36.83K,
40,9160,780,4120,4520,35.78K,
160,10.04K,1120,4820,4610,35.17K,
160,11.84K,1300,4520,4875,33.86K,
320,14.12K,1880,5060,4970,32.66K,
600,16.64K,2720,5040,4675,29.26K,
680,19.52K,4000,5180,5090,26.06K,
1200,21.88K,4820,5540,5180,23.42K,
0,0,0,20,245,45.96K,
0,0,0,100,470,45.17K,
0,80,0,360,790,45.31K,
0,880,100,560,1155,44.55K,
0,1880,320,1080,1310,42.78K,
40,2160,240,940,1475,43.59K,
0,2360,380,1180,1570,43.36K,
0,2560,480,1400,1510,43.04K,
80,3160,760,1280,1730,42.24K,
120,3400,1360,1540,1760,42.34K,
160,4440,1360,1400,1600,40.76K,
400,4880,1720,1680,1615,40.26K,
0,0,0,20,155,46.25K,
0,0,0,40,245,46K,
0,40,20,80,545,45.92K,
0,280,60,440,670,44.58K,
0,760,200,540,810,44.34K,
0,1040,180,440,935,43.92K,
0,1120,340,560,955,43.87K,
160,1080,320,660,945,44.39K,
0,1400,420,780,970,44.22K,
0,1720,640,760,1100,43.97K,
160,2160,900,860,945,43.43K,
280,2280,960,860,1070,43.2K,
0,0,0,0,50,46.01K,
0,0,0,0,50,46.14K,
0,0,0,20,230,46.6K,
0,40,0,80,305,46.67K,
0,120,60,140,425,44.72K,
0,120,100,280,450,44.76K,
0,160,100,300,440,46.05K,
40,120,120,420,460,44.94K,
80,120,260,460,450,45.37K,
40,280,320,220,455,45.39K,
80,440,360,320,510,45.58K,
160,280,440,460,480,44.44K,
0,0,0,0,0,45.23K,
0,0,0,80,1775,43.86K,
0,160,0,660,3735,42.62K,
0,1000,0,2260,5685,40.14K,
40,6880,340,5700,8540,33.28K,
0,16.4K,1140,7720,9655,26.2K,
40,18.84K,1420,8460,10.16K,24.79K,
120,21.84K,2080,8600,10.32K,22.42K,
160,24.84K,2360,8840,10.6K,20.77K,
280,28.8K,3380,10.34K,11.05K,15.82K,
600,33.92K,4200,10.96K,11.26K,11.11K,
880,41.72K,6500,12.06K,11.88K,4455,
1800,46.76K,7400,12.28K,11.6K,0,
0,0,0,100,1380,44.72K,
0,40,0,440,2885,42.82K,
0,800,0,2100,4155,41.35K,
0,5960,340,4740,6355,36K,
120,12.36K,680,6080,7465,30.99K,
80,14.08K,1200,6280,7460,28.86K,
120,16.16K,1460,6540,7620,27.53K,
120,18.56K,2160,7300,7715,26.24K,
320,22.44K,2700,7680,7805,22.91K,
680,25.4K,3460,8320,8245,19.02K,
800,32.04K,5380,8420,8510,13.8K,
1480,35.28K,6180,8600,8470,10.62K,
0,0,0,40,1145,44.65K,
0,80,0,520,2580,44.26K,
0,720,20,1520,3885,42.05K,
40,5680,280,3940,5665,36.84K,
0,10.76K,900,5600,6435,32.17K,
200,12.32K,1360,5240,6975,30.95K,
80,14.56K,1520,6460,7210,29.61K,
320,16.2K,1600,6220,7450,27.39K,
320,20.08K,2520,6500,7550,24.21K,
640,24.04K,3380,7420,7240,21.18K,
920,28.52K,4820,7580,8160,17.35K,
1400,29.6K,6280,8220,8450,13.92K,
0,0,0,80,800,44.32K,
0,40,0,340,1570,44.51K,
0,680,0,940,2435,42.63K,
40,3640,260,2880,3725,39.95K,
0,8120,600,4180,4255,36.49K,
80,9640,580,3700,4585,35.59K,
120,10.32K,1120,4580,4425,34.13K,
80,11.52K,1340,4620,4885,33.33K,
240,13.84K,1980,4640,4845,30.8K,
280,16.08K,2380,5280,4965,28.02K,
800,19.16K,3920,5180,5130,25.11K,
1120,20.72K,4820,5380,5170,23.14K,
0,0,0,0,230,44.61K,
0,0,0,120,450,44.82K,
0,80,0,280,750,44.14K,
0,800,80,640,1180,44.88K,
0,2000,320,880,1375,42.62K,
40,2200,460,1020,1445,42.69K,
40,2160,380,1260,1405,41.76K,
160,2560,560,1260,1500,41.21K,
80,3120,840,1480,1505,41.49K,
0,3600,1200,1320,1545,41.39K,
120,4280,1180,1420,1475,39.89K,
360,4760,1580,1400,1740,38.06K,
0,0,0,0,175,44.73K,
0,0,0,40,270,44.23K,
0,0,0,160,405,44.34K,
0,240,40,560,630,43.53K,
0,680,60,520,935,44.09K,
0,880,200,620,850,43.23K,
0,1320,300,420,955,43.3K,
80,1000,380,720,820,42.9K,
120,1440,360,720,990,41.81K,
240,1840,300,640,1025,42.88K,
200,2160,740,680,1100,41.93K,
120,2120,980,880,1240,42.63K,
0,0,0,0,70,44.58K,
0,0,0,0,70,44.84K,
0,0,0,40,180,45.21K,
0,0,0,160,320,44.86K,
0,80,40,260,335,44.07K,
0,120,60,400,350,44.33K,
0,120,100,300,365,43.68K,
0,160,180,340,495,44.58K,
40,240,80,300,490,43.19K,
0,320,280,300,460,43.31K,
80,360,300,380,530,43.39K,
160,400,240,400,500,43.8K,
0,0,0,0,0,42.7K,
0,0,0,100,1660,41.61K,
0,160,0,600,3680,40.46K,
0,1160,20,1860,5550,39.19K,
0,6520,240,5880,8285,32.73K,
40,15.32K,800,8260,9645,25K,
0,17.92K,1220,8320,9955,23.61K,
80,20.56K,1700,8620,10.54K,21.6K,
200,23.28K,2140,9720,10.19K,19.57K,
520,29.08K,2800,10.12K,10.55K,14.75K,
880,33.76K,3980,10.18K,11.35K,10.74K,
1320,39.88K,5820,11.46K,11.73K,3875,
1400,45.92K,7120,11.56K,11.55K,0,
0,0,0,80,1240,43.07K,
0,40,20,500,2780,41.68K,
0,680,0,1700,4370,39.64K,
0,5520,100,4400,6390,35.21K,
0,11.2K,720,6140,7345,29.8K,
120,13.08K,940,6600,7750,27.76K,
40,15.36K,1460,6680,7385,26.63K,
200,16.52K,1820,7380,7640,25.02K,
320,22.04K,2620,7420,7880,21.98K,
560,24.44K,3200,8060,8380,18.15K,
760,31.68K,5040,7860,8550,13.34K,
1440,34.4K,5740,8920,8385,10.1K,
0,0,0,60,1100,42.41K,
0,160,0,460,2500,41.96K,
0,600,0,1520,3825,39.7K,
0,4800,120,4040,5660,35.8K,
0,9640,700,5840,6575,31.25K,
40,11.84K,920,5600,6765,28.89K,
200,14.24K,1300,5960,7030,27.92K,
200,15.6K,1740,6600,7095,27.08K,
280,19.36K,2700,6640,7335,23.47K,
800,22.16K,2920,7640,7720,20.56K,
1040,27.96K,4720,7520,7995,16.63K,
1160,30.68K,5580,7700,7670,13.25K,
0,0,0,80,725,43.27K,
0,120,0,380,1590,41.74K,
0,520,40,1000,2465,41.33K,
0,3520,100,2880,3710,37.73K,
120,7640,360,3960,4285,35.12K,
40,8240,760,4280,4450,33.4K,
120,9160,1000,4660,4610,32.82K,
160,11.04K,1220,4540,4660,31.12K,
400,13.32K,1640,4440,5025,28.89K,
320,16.08K,2680,4960,4930,27.19K,
720,18.84K,3440,5240,4840,24.09K,
1040,20.36K,3680,5380,5075,22.49K,
0,0,0,20,245,42.94K,
0,0,0,120,505,42.56K,
0,40,0,260,720,42.27K,
0,880,40,760,1120,41.64K,
0,1800,180,1040,1320,40.47K,
0,2080,320,1180,1360,40.52K,
0,2080,480,1240,1435,39.99K,
0,2400,480,1100,1540,39.51K,
80,2960,580,1480,1480,38.88K,
200,3320,860,1400,1635,38.52K,
120,3680,1200,1680,1790,37.14K,
240,4520,1480,1400,1730,37.23K,
0,0,0,0,130,42.87K,
0,0,0,60,210,43.37K,
0,0,20,140,420,42.97K,
0,400,40,480,610,42.46K,
0,680,120,560,790,41.78K,
40,1000,220,480,965,42.2K,
0,1080,300,540,755,40.9K,
0,1080,200,600,985,41.34K,
0,1400,380,620,915,41.04K,
120,1760,600,740,1025,40.73K,
200,1800,720,800,1065,39.94K,
200,2160,760,920,1020,39.29K,
0,0,0,0,45,42.6K,
0,0,0,0,80,43.16K,
0,0,0,20,210,43.39K,
0,0,20,180,320,43.05K,
0,120,140,180,390,41.85K,
0,160,40,260,395,42.85K,
0,160,120,240,375,42.21K,
0,280,180,240,430,42.84K,
40,280,180,240,450,42.05K,
40,320,240,380,435,42.15K,
80,360,200,340,465,41.55K,
240,320,260,340,535,41.52K,
0,0,0,0,0,41K,
0,0,0,60,1750,40.05K,
0,40,0,560,3545,39.01K,
0,880,0,2020,5195,36.48K,
0,6320,200,5720,7965,30.91K,
0,14.04K,1080,7740,9810,25.35K,
120,16.92K,860,8320,9375,22.54K,
160,19.6K,1400,8860,10.17K,20.86K,
120,22.48K,1600,8800,10.56K,18.7K,
160,26.68K,3040,10.28K,11.07K,14.56K,
440,31.92K,3720,10.5K,11.11K,10.58K,
800,39.44K,4980,11.58K,11.35K,4165,
1160,44.92K,6740,10.84K,11.58K,0,
0,0,0,140,1210,41.28K,
0,120,20,460,2600,39.39K,
0,440,0,1860,4060,38.12K,
0,4440,260,4480,6260,33.84K,
40,11.04K,800,5460,7440,28.43K,
0,13.32K,940,6400,7220,26.91K,
40,14.16K,1480,7100,7310,24.8K,
120,17.4K,1320,7140,7845,23.94K,
240,20.96K,2140,7220,7735,20.87K,
360,23.4K,3140,7920,8350,17.59K,
720,30.4K,4500,8140,8425,12.99K,
1160,33.76K,4800,8840,8350,9665,
0,0,0,20,1080,40.9K,
0,40,0,380,2455,39.37K,
0,400,0,1560,3595,38.4K,
0,4320,300,3760,5775,34K,
40,8920,580,5380,6740,29.32K,
120,11.28K,1000,5820,6465,28.56K,
80,12.96K,960,6100,6955,26.81K,
200,15.08K,1880,6380,7000,25.86K,
240,17.28K,2160,6980,7735,23.15K,
440,21.24K,3040,7000,7580,19.63K,
1200,25.68K,4200,6980,7900,15.56K,
960,29.36K,5120,7900,8120,12.54K,
0,0,0,40,755,41.16K,
0,80,0,420,1525,40.48K,
0,240,0,960,2550,39.55K,
0,3240,100,2880,3945,36.53K,
40,7000,560,3980,4195,33.96K,
0,8000,580,4160,4475,32.52K,
120,9280,960,4240,4535,32.1K,
160,10.36K,1000,4560,4825,30.46K,
200,13.08K,1740,4700,4590,28.12K,
400,14.92K,2260,5300,5065,27.5K,
640,18.04K,2880,5300,5050,23.64K,
920,20.56K,3440,5260,5050,22K,
0,0,0,20,220,41.35K,
0,0,0,160,465,41.45K,
0,40,0,300,615,40.9K,
0,680,60,700,1160,39.23K,
0,1480,80,1140,1280,38.78K,
0,1760,200,1140,1330,39.13K,
0,2360,340,1100,1455,38.8K,
40,2280,460,1260,1530,38.79K,
80,2760,660,1400,1500,37.41K,
40,3280,820,1380,1515,37.41K,
160,3840,1280,1340,1750,36.1K,
240,3960,1420,1420,1845,35.07K,
0,0,0,0,100,40.69K,
0,0,0,60,220,41.13K,
0,40,0,120,425,41.02K,
0,360,100,280,660,41.23K,
0,800,100,460,790,39.86K,
0,880,160,640,860,39.61K,
0,720,220,780,850,39.97K,
40,1280,260,580,900,39.97K,
80,1400,320,620,990,39.74K,
0,1680,560,680,1000,38.43K,
200,1720,680,800,945,38.22K,
160,2120,780,760,925,38.63K,
0,0,0,0,25,41.3K,
0,0,0,0,100,40.96K,
0,0,0,20,180,41.54K,
0,40,0,180,245,41.99K,
0,80,120,220,385,41.16K,
0,120,140,240,420,41.05K,
0,0,80,260,465,40.51K,
40,160,60,140,525,40.45K,
40,120,140,320,400,40.97K,
120,240,160,400,465,40.42K,
80,320,240,280,540,41.39K,
0,280,340,320,525,39.78K,
0,0,0,0,0,41.3K,
0,0,0,40,1605,39.78K,
0,120,0,440,3395,38.98K,
0,560,0,1940,5445,36.32K,
0,6120,340,5440,7920,30.52K,
40,13.92K,740,6960,9945,24.32K,
80,15.76K,1160,8080,10.17K,22.18K,
120,19.68K,1220,8360,10.42K,20.59K,
80,20.56K,1840,9440,10.42K,18.68K,
240,26.12K,2420,9660,10.51K,14.16K,
480,31.36K,3900,9980,11.19K,10.16K,
1000,37.96K,5360,11.3K,11.27K,4055,
1400,43.12K,6480,11.46K,11.42K,0,
0,0,0,80,1170,41K,
0,40,0,520,2605,38.75K,
0,600,0,1320,4090,37.17K,
0,5360,180,3840,6185,33.22K,
0,10.76K,700,5800,7165,27.65K,
80,12.48K,880,6520,7210,27.26K,
40,14.36K,1460,6240,7415,25.47K,
200,17K,1480,6960,7600,23.95K,
320,20K,2020,7280,7835,20.23K,
280,23.28K,3280,7540,8040,17.54K,
840,29.36K,4320,8560,8350,12.32K,
920,32.48K,5120,8080,8840,8935,
0,0,0,20,1015,40.7K,
0,240,0,280,2410,39.93K,
0,440,40,1660,3490,38.63K,
0,3960,220,3620,5830,33.04K,
80,9520,660,5080,6405,29.51K,
0,11.04K,1100,5580,6415,27.84K,
40,13.12K,1440,5460,6885,26.28K,
120,14.16K,1700,6340,6765,24.4K,
240,17.88K,2240,6420,7440,22.48K,
360,21.48K,3180,7000,7245,19.19K,
680,25.28K,4060,7520,7430,15.37K,
880,28.08K,5020,7580,7920,12.44K,
0,80,0,40,835,39.87K,
0,120,0,380,1425,40.01K,
0,400,40,1040,2630,39.39K,
40,2920,140,2740,3870,35.92K,
80,6360,420,4000,4370,32.83K,
40,7600,780,4040,4475,32.05K,
120,9000,800,4360,4265,30.53K,
120,10.16K,1260,4360,4810,29.65K,
240,12.72K,1360,4860,4485,28.35K,
360,15.2K,1880,4800,4840,25.72K,
600,17.84K,2780,4940,5105,22.73K,
1040,19.32K,3600,5380,5200,20.82K,
0,0,0,0,185,41.35K,
0,0,0,80,485,40.39K,
0,160,0,180,775,40.73K,
0,640,20,640,1205,39.78K,
0,1480,200,980,1280,37.88K,
0,1720,220,980,1470,38.95K,
0,2320,360,1020,1495,38.21K,
0,2320,360,1240,1545,37.5K,
40,2760,420,1260,1525,37.35K,
40,3440,800,1300,1480,36.66K,
240,4080,1120,1240,1635,35.55K,
120,4120,1160,1620,1590,35.04K,
0,0,0,20,110,40.63K,
0,0,0,60,255,40.65K,
0,40,0,80,340,41.73K,
0,200,20,340,730,39.69K,
0,560,80,580,900,39.14K,
0,760,180,580,945,39.66K,
40,800,260,680,835,39.21K,
0,960,400,640,820,39.31K,
40,1400,460,640,840,38.2K,
80,1480,640,620,935,38.53K,
160,1800,640,820,1040,38.07K,
200,1840,820,840,1095,37.92K,
0,0,0,0,15,40.55K,
0,0,0,0,120,41.01K,
0,0,20,20,160,40.33K,
0,40,0,80,295,39.9K,
0,0,60,280,410,39.7K,
0,160,60,160,395,40K,
40,160,40,240,380,39.2K,
0,120,100,280,365,39.85K,
40,160,140,320,360,39.95K,
0,240,200,340,480,39K,
40,400,300,340,395,40.39K,
40,200,340,480,455,39.07K,
0,0,0,0,0,40.55K,
0,0,0,100,1580,40.82K,
0,80,0,620,3275,38.91K,
0,560,0,2120,5165,37.19K,
0,5800,80,5660,8065,31.11K,
0,13.88K,700,7180,9320,24.54K,
0,15.8K,980,8220,9800,22.56K,
160,19.08K,1440,8580,10.23K,20.85K,
160,20.48K,1760,9240,10.45K,18.69K,
320,26.36K,2920,10.04K,9950,14.3K,
360,30.52K,4140,9900,11.06K,10.5K,
840,37.72K,5100,11.32K,11.24K,4290,
1640,42.28K,6280,11.96K,11.94K,0,
0,0,0,40,1090,40.81K,
0,160,0,480,2545,39.57K,
0,440,20,1380,4090,37.28K,
0,5120,220,3860,6040,33.77K,
0,10.24K,580,5860,7310,29.29K,
80,12.48K,820,6080,7210,27.38K,
120,13.4K,1380,7160,7435,25.77K,
160,15.92K,1540,6540,7985,23.49K,
240,20.24K,2160,6980,7800,20.25K,
200,23.28K,3100,7600,8085,17.48K,
1040,29.4K,4200,8620,8340,12.77K,
1040,31.4K,5620,8800,8410,9905,
0,0,0,80,895,39.64K,
0,40,0,400,2375,39.82K,
0,640,40,1560,3555,38.7K,
0,4080,200,4140,5560,35.05K,
0,9520,820,5320,6630,29.25K,
120,10.96K,860,5480,6970,27.95K,
160,12.08K,1360,5660,6950,27.23K,
120,13.76K,1540,6200,6790,25.27K,
400,17.4K,2220,6580,7390,23.23K,
400,20.16K,2880,7060,7700,20.27K,
680,25.52K,4160,7640,7690,14.88K,
1120,27.52K,5180,8140,7865,12.45K,
0,0,0,60,815,41.43K,
0,160,0,280,1640,39.95K,
0,480,20,860,2615,39.64K,
0,3240,60,2800,3510,36.8K,
0,6880,500,3760,4345,33.77K,
40,7960,680,3780,4650,32.6K,
120,8920,820,4440,4260,30.65K,
200,10.56K,1080,4200,4625,30.08K,
200,12.76K,1540,4600,4690,28.22K,
600,15.16K,2000,4920,4980,26.24K,
560,17.96K,3220,4920,5085,23.44K,
800,19K,3840,5320,5200,21.17K,
0,0,0,0,195,41.23K,
0,40,0,40,470,41.8K,
0,0,0,260,840,40.53K,
0,640,80,700,1180,39.97K,
0,1400,380,800,1315,38.8K,
40,1880,280,1080,1220,38.74K,
80,2160,220,1120,1365,38.49K,
0,2520,460,1060,1435,38.69K,
40,2680,460,1180,1565,37.21K,
80,3160,940,1500,1605,36.62K,
160,3960,940,1660,1540,36.22K,
280,4160,1580,1500,1615,35.54K,
0,0,0,0,140,41.24K,
0,0,0,40,265,41.8K,
0,0,0,100,330,40.48K,
0,360,20,420,595,39.89K,
0,560,160,560,865,40.14K,
0,720,220,600,940,40.73K,
0,840,260,640,805,39.95K,
0,880,280,660,850,39.66K,
0,1240,500,720,980,38.48K,
80,1520,600,540,925,39.69K,
120,1720,560,1020,1055,38.72K,
200,2080,780,680,1015,38.14K,
0,0,0,0,45,40.7K,
0,0,0,0,120,41.45K,
0,0,20,0,145,40.6K,
0,40,0,100,335,41.43K,
0,120,100,240,385,40.96K,
0,80,100,240,410,40.54K,
40,120,20,260,445,40.62K,
0,240,120,200,365,40.27K,
40,120,160,380,400,40.92K,
40,240,140,340,455,41.51K,
80,400,260,360,475,40.12K,
80,360,340,320,500,40.37K,
0,0,0,0,0,43.25K,
0,0,0,80,1695,42.19K,
0,160,0,560,3300,40.67K,
0,760,60,1920,5425,39.47K,
0,6120,260,5640,7830,32.25K,
40,14.4K,960,7480,9330,26.15K,
0,16.76K,1020,8340,9930,24.24K,
120,20.08K,1660,8860,9770,21.76K,
240,21.52K,1960,8700,10.25K,19.2K,
240,26.84K,3560,9840,11.13K,15.18K,
640,31.04K,4320,9680,11.24K,10.92K,
1200,38.88K,6320,11.28K,11.52K,4195,
1480,44.2K,7420,11.44K,11.37K,0,
0,0,0,40,1040,43.18K,
0,0,0,500,2650,40.83K,
0,680,0,1460,4085,40.14K,
0,5080,100,4400,5910,35.03K,
40,10.52K,720,5680,7165,30.43K,
40,13.2K,1040,6040,7435,27.69K,
120,14.32K,1240,6900,7915,26.74K,
160,16.36K,1800,6800,7495,24.78K,
80,20.92K,2700,7080,8045,21.9K,
440,23.4K,3140,8200,8250,18.21K,
1160,30.04K,4840,8340,8120,13.35K,
1160,32.4K,5420,9180,8430,10.1K,
0,0,0,20,1020,42.78K,
0,80,0,360,2450,41.1K,
0,520,20,1380,3865,41.11K,
0,4480,280,3880,5440,35.43K,
0,9800,780,5140,6400,31.5K,
0,11.36K,1100,5280,6495,29.49K,
160,12.8K,1220,5700,6710,28.21K,
200,14.4K,1500,6080,7115,26.6K,
320,18.04K,2460,6420,7285,23.43K,
440,20.44K,3420,7200,7625,20.42K,
680,26.32K,4360,7800,7450,16.19K,
1160,29K,5340,8060,7715,13.39K,
0,0,0,60,745,43.78K,
0,80,0,360,1650,42.23K,
0,320,20,880,2540,40.43K,
0,3080,160,2660,3575,37.71K,
0,6360,560,4060,4425,35.06K,
80,8360,660,3880,4595,33.68K,
40,9280,780,4260,4670,33.11K,
80,10.84K,1420,4280,4495,31.11K,
200,12.72K,1800,4660,5170,29.37K,
400,15.4K,2420,5100,4935,27.66K,
760,18.64K,3140,4680,5175,24.21K,
800,20.76K,3980,5100,5065,21.79K,
0,0,0,0,220,42.69K,
0,0,0,40,420,42.63K,
0,40,0,320,660,42.6K,
0,640,80,660,1165,41.53K,
0,1280,180,960,1380,40.54K,
40,2080,220,920,1380,40.24K,
40,2240,440,880,1595,39.86K,
40,2480,440,1240,1540,39.73K,
40,2600,720,1540,1390,39.98K,
120,3400,880,1320,1500,38.35K,
200,4040,1220,1520,1640,38.23K,
400,3760,1640,1660,1560,37.12K,
0,0,0,0,135,42.37K,
0,0,0,20,370,43.74K,
0,0,0,80,440,42.6K,
0,320,80,460,630,42.35K,
0,640,140,640,820,41.07K,
80,920,120,560,970,41.91K,
0,920,200,520,880,40.77K,
0,960,300,640,940,41.82K,
40,1480,360,700,955,41.43K,
120,1600,680,660,1050,40.12K,
120,1800,680,820,1035,40.72K,
280,1920,900,880,935,40.38K,
0,0,0,0,45,43.14K,
0,0,0,0,75,42.99K,
0,0,0,40,160,43.22K,
0,0,0,60,370,42.32K,
0,40,80,220,445,42.71K,
0,80,60,280,395,42.56K,
40,120,80,200,405,41.51K,
0,280,140,180,450,41.55K,
40,80,220,340,435,41.99K,
120,120,240,500,460,42.36K,
80,240,320,380,495,41.83K,
40,320,360,360,575,41.39K,
0,0,0,0,0,45.93K,
0,0,0,60,1605,44.3K,
0,80,0,720,3505,42.83K,
0,920,20,2100,5515,41.68K,
40,6560,280,5880,8115,33.22K,
40,15.28K,1040,8080,9245,27.56K,
120,17.84K,1460,8360,10.04K,24.93K,
160,21.04K,1880,8300,10.31K,22.72K,
360,22.72K,2300,8900,10.6K,20.7K,
280,28.28K,3560,10.3K,10.75K,15.67K,
520,32.72K,4140,10.54K,11.31K,11.41K,
1200,40.48K,6920,11.24K,11.58K,4470,
1480,45.28K,7720,11.98K,11.6K,0,
0,0,0,20,1065,44.81K,
0,80,0,540,2490,43.3K,
0,560,20,1860,4150,41.01K,
0,5160,280,4220,6380,36.8K,
40,11.12K,700,6340,7150,30.89K,
120,13.64K,1300,6220,7375,29.69K,
160,15.12K,1240,6820,7535,28.04K,
200,18.4K,1740,6740,8095,26.28K,
360,21.6K,2760,7680,8135,22.54K,
440,25.76K,3400,8040,7820,19.38K,
1440,30.92K,5060,8400,8340,14.1K,
1480,35.52K,6400,8120,8445,10.39K,
0,0,0,80,1070,44.81K,
0,80,0,540,2565,43.63K,
0,720,20,1720,3795,41.9K,
0,4680,220,4120,5385,37.89K,
80,10.08K,740,5140,6715,33.51K,
40,11.52K,1340,6060,6710,30.69K,
240,13.72K,1540,5860,7020,29.35K,
120,15.52K,2040,6660,7015,28.33K,
520,18.64K,2660,7100,7310,24.75K,
640,22.08K,3880,7020,7635,21.84K,
1040,27.24K,5320,7300,7950,17.69K,
1320,29.6K,6800,7440,8045,13.86K,
0,0,0,60,835,44.32K,
0,80,0,300,1880,44.17K,
0,360,0,1040,2630,42.63K,
0,3120,240,2880,4055,39.36K,
40,7360,540,3960,4155,35.44K,
0,8800,860,3980,4460,35.77K,
120,9800,860,4280,4725,34.55K,
120,11.28K,1340,4720,4555,32.34K,
240,13.44K,1620,4720,5010,31.01K,
320,16.04K,2660,4900,5095,28.99K,
1080,19.36K,3560,4820,5150,25.61K,
1000,20.96K,4800,5180,5095,23.73K,
0,0,0,0,230,44.69K,
0,0,0,40,460,45.02K,
0,120,0,380,680,45.25K,
0,560,80,760,1200,43.58K,
0,1680,300,900,1290,42.92K,
40,2080,240,1020,1320,42.13K,
40,2480,460,1220,1350,42.02K,
120,2520,440,1340,1440,42.22K,
40,2960,700,1380,1495,41.17K,
200,3440,720,1440,1645,40.28K,
160,4320,1220,1660,1540,39.77K,
400,4400,1620,1480,1670,39.46K,
0,0,0,0,130,45.52K,
0,0,0,40,310,45.43K,
0,0,20,120,460,44.45K,
0,400,20,360,680,44.79K,
0,920,120,620,760,42.52K,
40,920,240,680,895,43.2K,
40,960,260,700,880,43.01K,
0,1040,320,740,870,43.64K,
120,1520,300,660,1000,42.88K,
40,1800,640,680,935,42.79K,
200,2000,720,760,1070,41.31K,
120,2120,860,740,1030,42.16K,
0,0,0,0,40,45.39K,
0,0,0,0,60,45.63K,
0,0,0,20,165,44.28K,
0,0,20,120,360,44.35K,
40,40,40,220,410,45.28K,
0,80,140,180,425,44.59K,
0,160,200,240,430,44.4K,
0,160,200,280,400,43.45K,
40,200,180,340,515,43.98K,
40,320,260,300,445,44.58K,
200,160,300,420,525,44.02K,
200,400,440,400,515,43.38K,
0,0,0,0,0,46.92K,
0,0,0,140,1730,46.76K,
0,160,0,680,3665,44.14K,
0,1000,0,2060,5740,42.37K,
0,6840,380,5900,8275,35.01K,
200,15.72K,1180,8480,9865,28.47K,
120,18.64K,1380,8260,10.23K,25.75K,
40,22.32K,2220,9080,10.25K,22.95K,
400,23.68K,2360,9620,10.74K,21.33K,
320,29.64K,3380,9960,11.4K,16.61K,
600,36.44K,5140,10.96K,11.14K,11.82K,
1560,42.36K,6960,11.72K,11.65K,4690,
1920,47.56K,7900,11.82K,11.77K,0,
0,0,0,100,1130,46.04K,
0,80,0,600,2935,44.96K,
0,560,40,1700,4545,43.06K,
0,5640,420,4740,6335,37.81K,
40,11.84K,1020,6080,7095,32.46K,
80,13.48K,1320,6360,7465,30.21K,
200,16.92K,1640,6780,7165,28.91K,
160,18.44K,2140,7640,7695,26.82K,
280,23.48K,2940,7420,8090,23.95K,
720,26.68K,3900,7980,8395,20.36K,
1280,32.56K,5660,8420,8605,14.85K,
1440,36.44K,6740,8420,8850,11.01K,
0,0,0,80,1300,46.97K,
0,120,0,340,2545,45.55K,
0,640,0,1620,4015,43.58K,
0,4960,280,3720,5895,38.75K,
120,10.4K,1120,5420,6720,33.89K,
40,11.76K,1440,6020,7065,32.52K,
80,15.16K,1820,6020,6860,31.01K,
240,16.08K,1920,6440,7265,28.91K,
320,20.04K,3160,6500,7695,25.46K,
480,23.08K,3940,7760,7650,22.77K,
920,27.84K,5920,7480,7835,17.97K,
1560,30.32K,6580,7960,8165,14.27K,
0,0,0,60,825,46.89K,
0,80,0,460,1910,45.12K,
0,600,0,1000,2715,44.27K,
0,3720,240,2780,3850,40.89K,
40,7440,600,4240,4485,37.85K,
40,8520,960,4500,4580,36.93K,
40,10.16K,1220,4760,4775,35.83K,
320,12K,1540,4460,4785,35.08K,
280,14.6K,2220,4480,4580,32.02K,
480,17.4K,2920,4760,4740,30.1K,
800,19.28K,3900,5280,5165,25.76K,
1600,22.36K,4740,5180,5050,24.43K,
0,0,0,0,260,46.91K,
0,0,0,80,450,46.93K,
0,160,0,280,770,45.61K,
0,720,40,740,1120,45.37K,
0,1760,180,1180,1290,43.86K,
0,1880,400,1200,1405,44.18K,
40,2480,500,1200,1545,44.01K,
40,2640,680,1340,1395,43.69K,
120,2960,840,1540,1600,42.26K,
160,3600,980,1440,1595,42.07K,
240,4360,1440,1600,1640,40.2K,
440,4880,1940,1240,1915,40.43K,
0,0,0,0,105,46.4K,
0,0,0,20,275,46.08K,
0,40,0,140,420,46.14K,
0,480,40,440,670,46.62K,
0,840,140,560,845,45.11K,
40,1080,180,560,930,44.54K,
40,1200,260,540,895,44.95K,
0,1240,320,640,955,45.21K,
200,1360,400,720,975,44.82K,
80,1600,460,900,905,43.54K,
200,2080,800,760,1035,43.54K,
200,2000,1240,1120,1000,43.16K,
0,0,0,0,55,47.51K,
0,0,0,0,70,48.03K,
0,0,0,60,145,46.46K,
0,40,40,60,370,46.6K,
0,120,60,140,370,46.65K,
0,120,120,220,385,46.24K,
0,240,120,220,420,46.18K,
40,40,180,360,465,46.16K,
0,280,240,380,480,45.75K,
80,200,320,360,500,46.51K,
240,280,380,360,535,45.22K,
160,280,380,440,480,45.36K,
0,0,0,0,0,49.16K,
0,0,0,180,1745,46.77K,
0,200,0,680,3850,46.13K,
0,920,40,2500,5660,43.14K,
0,7520,480,5940,8305,35.66K,
120,16.36K,1080,8780,9980,29.65K,
80,19.2K,1820,8640,10.05K,25.6K,
200,23.28K,2020,8880,10.57K,24.09K,
120,25.84K,2320,9360,10.42K,21.91K,
520,30.68K,3520,10.58K,11.37K,16.64K,
760,35.68K,4920,11.82K,11.5K,11.86K,
1480,44K,7060,11.38K,11.96K,5020,
2120,49.16K,8660,12.22K,11.95K,0,
0,0,0,80,1315,46.99K,
0,80,0,540,2920,45.75K,
0,640,20,1780,4450,43.79K,
0,5880,260,4680,6385,38.66K,
160,12.36K,940,6440,7600,33.3K,
80,14.32K,1600,6380,7770,30.96K,
120,16.96K,2060,7080,7635,30.18K,
280,19.92K,2420,6800,7465,28.54K,
480,23.28K,3520,8020,8340,23.88K,
520,27.36K,4360,8220,8440,20.57K,
1080,33.92K,6000,8460,8430,14.55K,
1720,37.6K,7820,8740,8670,10.98K,
0,0,0,80,1150,47.57K,
0,80,0,680,2610,46.23K,
0,680,20,1860,3745,43.97K,
0,5680,200,4220,5975,40.08K,
80,10.92K,1060,5500,7075,34.69K,
160,13.36K,1180,6300,6980,33.17K,
240,15.12K,1680,6500,7160,30.67K,
200,17.4K,1980,6480,7135,29.39K,
400,20.72K,3020,6720,7420,26.82K,
720,24.52K,4120,7380,7685,22.68K,
1280,28.8K,6320,7720,7760,18.21K,
1600,32K,7160,7880,7950,14.95K,
0,0,0,20,875,46.61K,
0,80,0,380,1830,47.12K,
0,760,0,1060,2795,46.14K,
0,3480,320,3180,4130,42.81K,
40,7720,740,4040,4500,39.1K,
80,8880,1160,4400,4595,38.01K,
120,11.2K,1500,3980,4535,35.79K,
200,12.08K,1760,4680,4710,35.78K,
360,14.6K,2300,4860,5010,33.49K,
760,16.8K,3160,5060,5065,30.27K,
1000,20.2K,4420,5420,5080,26.83K,
1280,22.36K,5120,5580,5225,24.94K,
0,0,0,0,235,48.09K,
0,0,0,60,490,47.2K,
0,80,0,380,790,47.88K,
0,640,40,960,1185,46.5K,
0,1600,220,1420,1330,46.05K,
0,2200,300,1140,1430,45.21K,
0,2160,440,1320,1585,44.58K,
80,3000,620,1240,1530,44.6K,
80,3200,680,1300,1675,44.7K,
120,3760,860,1280,1635,43.64K,
240,4520,1480,1420,1535,41.57K,
600,4680,1660,1660,1735,41.21K,
0,0,0,0,130,48.67K,
0,0,0,40,230,49.12K,
0,160,20,100,380,46.89K,
0,520,0,520,730,46.88K,
0,720,180,660,840,47.16K,
0,1200,300,560,785,46.21K,
0,1160,360,560,960,45.27K,
40,1440,420,660,915,45.37K,
0,1600,400,720,1000,45.01K,
80,1800,420,780,995,45.29K,
200,1880,700,980,940,45.25K,
240,2240,1200,860,1120,44.48K,
0,0,0,0,35,47.72K,
0,0,0,0,95,47.95K,
0,0,0,60,155,48.3K,
0,0,60,180,290,47.97K,
0,40,100,280,360,47.63K,
0,120,100,220,435,48.19K,
0,240,120,140,475,47.85K,
40,200,180,260,500,47.51K,
120,280,140,280,425,47.26K,
120,240,280,460,455,47.19K,
80,320,380,420,440,46.97K,
320,240,340,420,495,46.56K,
0,0,0,0,0,47.94K,
0,0,0,120,1725,47.45K,
0,120,0,840,3675,46.26K,
0,1160,60,1940,5795,43.47K,
0,8000,300,5700,8715,36.24K,
120,17.32K,1380,8220,9740,28.24K,
120,19.4K,1460,8760,10.43K,26.53K,
120,22.72K,2200,9360,10.55K,24.65K,
240,25.2K,2640,9980,10.98K,21.43K,
760,31.48K,3580,10.58K,10.7K,16.65K,
1000,36.4K,5180,11.38K,11.26K,11.75K,
1520,44.72K,7400,11.28K,11.43K,4665,
1960,48.84K,9340,12.12K,11.68K,0,
0,0,0,140,1260,47.11K,
0,80,0,540,2840,46.45K,
0,560,40,1660,4605,43.82K,
40,6160,360,4620,6700,38.35K,
40,13K,1020,6420,7270,33.61K,
200,14.8K,1200,6680,7420,31.73K,
120,16.96K,1820,7340,7475,30.22K,
120,19.6K,2180,7180,7830,27.46K,
480,23.16K,3000,7780,8545,23.98K,
680,27.6K,4100,8480,8390,19.74K,
1400,35.08K,5700,8120,8700,14.51K,
1920,36.96K,7420,9000,8620,11.08K,
0,0,0,80,1260,47.52K,
0,80,0,420,2795,47.15K,
0,1000,40,1460,3975,44.23K,
0,5560,260,4040,5845,38.99K,
40,12.12K,1020,5500,6485,34.56K,
40,13.36K,1140,6380,7050,32.97K,
240,15.52K,1500,6120,7315,31.99K,
200,17.12K,2000,6260,7165,29.52K,
480,20.92K,2780,6900,7390,25.51K,
760,24.92K,3920,7260,8020,22.49K,
1320,29.48K,5820,7360,8050,18.07K,
1640,32.24K,6760,7700,7875,15.16K,
0,0,0,60,790,47.96K,
0,80,0,580,1595,46.45K,
0,640,0,940,2900,45.18K,
0,3640,160,3140,3960,42.29K,
120,7920,800,4040,4405,40.21K,
80,9320,960,4360,4490,37.64K,
80,10.84K,1400,4660,4390,36.37K,
240,12K,1780,4780,4865,35.41K,
400,15.12K,2360,4760,4970,32.97K,
720,17.24K,3080,5400,5085,31.3K,
1280,20.88K,4180,5180,5135,27.37K,
1640,22.36K,5080,5840,5300,25.24K,
0,0,0,0,225,47.78K,
0,0,0,120,430,47.95K,
0,160,0,380,635,47.65K,
0,920,80,880,1190,46.87K,
40,1800,320,1040,1440,45.34K,
40,2160,280,1220,1505,45.13K,
120,2600,240,1140,1655,44.86K,
0,2960,700,1260,1515,43.85K,
280,3280,840,1360,1615,43.94K,
80,3920,1080,1260,1635,43.45K,
200,4480,1460,1540,1625,42K,
760,4440,1760,1620,1780,41.87K,
0,0,0,0,125,47.64K,
0,0,0,20,250,47.75K,
0,40,0,160,445,48K,
0,400,80,480,790,47.86K,
0,760,280,520,835,47.1K,
0,960,220,700,895,47.32K,
0,1240,220,560,850,46.22K,
0,1480,260,640,895,46.85K,
40,1880,500,640,965,45.9K,
40,1720,680,780,970,44.99K,
120,2000,1020,920,1115,44.92K,
200,2280,1040,900,965,44.18K,
0,0,0,0,40,48.29K,
0,0,0,0,70,47.72K,
0,0,0,20,185,48.11K,
0,40,0,100,360,47.84K,
0,120,120,240,410,47.31K,
0,120,60,280,465,47.53K,
40,80,120,360,415,47.36K,
0,200,120,320,455,46.98K,
80,160,260,260,555,46.66K,
80,360,300,280,515,47.11K,
160,320,320,400,495,46.16K,
200,240,400,420,555,46.27K,
0,0,0,0,0,46.62K,
0,0,0,120,1715,46.17K,
0,120,0,680,3710,45.23K,
0,1120,0,2400,5820,43.04K,
40,7680,280,5700,8815,36.25K,
80,17.08K,1160,8260,10K,28.63K,
40,20.48K,1800,8840,10.09K,25.77K,
80,22.68K,2360,9320,10.44K,23.61K,
240,25.6K,3080,10.02K,10.45K,21.02K,
280,31.76K,3760,10.3K,11.23K,16.55K,
880,37.24K,4840,10.78K,11.33K,12.05K,
1160,44.6K,7020,11.72K,11.34K,4660,
2040,47.6K,8260,11.82K,12.45K,0,
0,0,0,140,1375,46.42K,
0,160,20,560,2615,45.6K,
0,880,0,1980,4355,43.43K,
0,6680,140,4380,6290,38.64K,
80,13.16K,940,6140,7325,33.06K,
160,14.44K,1240,6820,7550,30.57K,
200,17K,1640,7200,7555,27.92K,
320,20.2K,1980,7180,7805,27.46K,
400,23.6K,2820,7760,8150,23.36K,
400,27.52K,4360,8220,8335,19.86K,
1200,34.76K,5360,8260,8660,14.37K,
1800,36.52K,6840,8400,9015,11.14K,
0,0,0,100,1245,46.37K,
0,200,0,540,2570,46.64K,
0,680,40,1660,3920,44.4K,
40,5280,360,3920,5970,38.82K,
80,11.72K,1140,5520,6630,34.16K,
40,13.28K,1320,6180,7005,33.33K,
320,15.04K,1420,6400,6915,30.81K,
120,16.88K,2080,6800,7150,30.13K,
440,20.2K,2720,7200,7650,25.84K,
680,24.4K,4140,7380,7700,22.73K,
1200,28.44K,5800,8120,7845,17.81K,
1640,31.52K,6820,8440,8265,14.61K,
0,0,0,60,755,46.97K,
0,80,0,400,1745,46.26K,
0,720,20,800,2735,44.7K,
0,3400,220,3040,3880,41.91K,
40,7760,600,4100,4480,38.18K,
80,8920,1100,4480,4450,36.88K,
240,11.2K,1160,4540,4330,35.81K,
240,11.96K,1240,4740,5035,34K,
400,14.08K,2240,5260,4655,33.19K,
640,17.48K,2720,5220,4940,29.67K,
920,21.04K,4220,5300,4895,26.43K,
1160,23.28K,5080,5500,5150,24.67K,
0,0,0,20,215,46.94K,
0,40,0,100,455,48.11K,
0,120,0,240,840,46.78K,
0,1000,100,840,1150,45.91K,
0,1960,260,1060,1405,45.14K,
0,2120,320,1240,1350,44.94K,
0,2400,600,1420,1555,44.3K,
0,3120,580,1140,1440,43.62K,
120,3320,840,1500,1395,42.57K,
40,3680,1220,1340,1815,43.11K,
240,4320,1720,1740,1635,41.67K,
400,4760,1660,1720,1580,40.44K,
0,0,0,0,95,46.54K,
0,0,0,20,260,47.55K,
0,40,0,80,465,47.13K,
0,160,60,580,655,46.57K,
0,760,200,540,860,45.36K,
40,1000,180,600,910,46K,
0,1120,260,640,940,46.03K,
40,1320,260,760,915,45.94K,
40,1480,440,760,1015,45.08K,
160,1760,600,820,900,44.85K,
200,2200,920,840,1080,44.09K,
320,2080,1100,800,1170,43.63K,
0,0,0,0,115,48.41K,
0,0,0,0,75,47.54K,
0,0,0,40,145,46.79K,
0,0,20,120,355,47.19K,
40,120,80,220,370,46.97K,
0,200,200,220,385,46.92K,
40,200,180,260,450,47.06K,
0,240,160,240,375,46.59K,
0,200,280,360,400,45.55K,
40,200,380,400,490,46.91K,
160,240,400,420,570,46.08K,
120,440,400,440,425,46.8K,
0,0,0,0,0,46.71K,
0,0,0,100,1870,45.74K,
0,80,0,680,3740,44.05K,
0,1000,40,2640,5690,41.82K,
0,7480,240,5940,8555,34.96K,
40,16.96K,940,8420,9530,27.64K,
40,20.2K,1520,8560,10.06K,25.91K,
200,22.44K,1880,8920,10.58K,22.93K,
320,24.24K,2680,9660,10.92K,20.96K,
320,31.36K,3680,10.14K,10.78K,16.28K,
1000,35.96K,4360,11.66K,11.18K,11.88K,
1160,44.32K,6860,11.18K,11.58K,4565,
1640,47.32K,8360,12.16K,12.03K,0,
0,0,0,40,1330,46.23K,
0,120,20,560,2730,44.59K,
0,1040,0,1740,4505,43.03K,
0,6400,260,4600,6480,37.69K,
120,12.6K,800,6640,7220,32.52K,
40,14.48K,1400,6360,7900,29.78K,
120,17.04K,1560,7480,7475,28.54K,
240,19.4K,2000,7960,7715,26.68K,
400,23.08K,3180,8080,7995,23.43K,
480,28.12K,4100,8200,7855,19.98K,
1120,33K,5600,8840,8605,14.35K,
1600,37.24K,6360,8040,8740,10.7K,
0,0,0,40,1285,46.05K,
0,160,0,640,2610,44.51K,
0,680,0,1640,3895,43.43K,
40,5440,340,4000,5835,38.31K,
0,11.28K,840,5180,6570,33.01K,
120,12.84K,1180,5620,6945,31.65K,
200,14.68K,1520,6580,7205,30.33K,
120,16.76K,2220,6400,7145,29.06K,
480,20.04K,3080,7220,7635,25.73K,
720,23.72K,3600,7220,7630,22.52K,
1280,28.36K,5460,7840,8065,17.16K,
1800,31.84K,6340,7640,7650,14.44K,
0,0,0,100,775,46.2K,
0,120,0,280,1650,45.41K,
0,720,20,1080,2810,44.53K,
0,3560,280,3000,4160,40.85K,
80,7520,800,4100,4370,37.7K,
160,8720,840,4160,4660,36.87K,
120,11.04K,1120,4300,4695,35.24K,
160,11.64K,1600,4560,4850,34.43K,
440,13.88K,2160,4900,4905,31.8K,
560,16.64K,2440,5240,5235,29.83K,
1040,20.88K,4060,5040,4805,26.18K,
1120,22.64K,4820,5420,5325,24.39K,
0,0,0,0,190,46.16K,
0,0,0,60,460,45.94K,
0,120,0,380,800,46.11K,
0,800,100,620,1230,44.97K,
0,1840,320,1100,1405,44.12K,
0,2120,300,1160,1395,43.65K,
40,2320,440,1360,1475,43.12K,
40,2760,560,1160,1650,42.48K,
80,3040,700,1540,1610,41.51K,
40,3640,1180,1400,1685,41.9K,
320,4480,1140,1580,1605,40.42K,
600,5000,1760,1380,1725,40.21K,
0,0,0,20,140,46.75K,
0,0,0,80,270,46.44K,
0,0,0,160,455,45.98K,
0,440,60,360,745,45.93K,
40,920,160,560,770,44.73K,
0,960,180,760,800,44.32K,
0,1120,220,720,945,44.52K,
80,1280,400,600,980,44.45K,
0,1600,360,680,930,44.66K,
40,1720,680,680,1050,43.54K,
160,2160,820,760,1040,43.07K,
440,2240,920,760,1020,41.99K,
0,0,0,0,80,46.38K,
0,0,0,20,85,45.64K,
0,0,0,0,125,45.86K,
0,0,60,140,270,46.83K,
0,160,100,180,400,45.9K,
0,80,100,260,400,45.75K,
0,120,100,240,425,45.61K,
80,120,120,340,415,46.58K,
40,240,280,340,450,45.39K,
0,240,240,280,515,45.42K,
200,320,320,420,430,45.12K,
120,360,400,480,520,45.05K,
0,0,0,0,0,47.29K,
0,40,0,80,1825,45.13K,
0,120,0,580,3660,43.6K,
0,880,0,2460,5895,41.37K,
0,7600,280,5740,8490,34.01K,
0,15.64K,940,7940,9950,27.37K,
160,18.6K,1560,8880,10.32K,24.78K,
160,22.16K,1840,8800,10.41K,23.16K,
240,24.88K,2540,9300,10.53K,20.36K,
600,30.4K,3420,10.26K,11.02K,16.17K,
400,36.16K,4780,10.7K,11.39K,11.53K,
1120,43.56K,6580,11.58K,11.23K,4680,
2040,47.56K,7880,11.72K,11.94K,0,
0,0,0,120,1210,45.15K,
0,160,0,560,2715,43.99K,
0,960,60,2040,4210,43.6K,
40,6160,260,4420,6140,37.23K,
80,11.76K,1100,6300,7310,32.09K,
160,14.44K,1240,6360,7610,30.1K,
40,16.6K,1400,6960,7880,27.9K,
240,19.24K,2240,7500,7540,26.29K,
400,24.6K,3020,7680,7705,23.32K,
880,26.84K,3900,7880,8560,19.68K,
1200,32.28K,5540,8320,8515,14.32K,
1760,35.48K,6060,8760,8595,10.37K,
0,0,0,40,1250,45.59K,
0,120,0,560,2580,44.88K,
0,680,20,1640,3610,42.71K,
0,5120,220,3960,6095,38.14K,
0,10.52K,1000,5960,6695,33.54K,
80,12.88K,1460,5940,6840,31.44K,
240,14.8K,1300,5840,7140,29.92K,
160,16.52K,1760,6760,7215,28.51K,
360,20.2K,2960,6780,7510,25.14K,
560,23.08K,3620,7660,7285,21.57K,
1240,27.92K,5460,7940,7630,17.1K,
1440,30.84K,6360,8620,8140,14.08K,
0,0,0,60,800,45.96K,
0,120,20,320,1740,45K,
0,600,40,1080,2875,43.59K,
0,3480,240,3440,4005,39.78K,
80,7200,800,3980,4620,36.87K,
80,8520,720,4340,4695,36.05K,
120,10.16K,1160,4800,4725,34.91K,
160,11.84K,1260,4580,4755,33.65K,
320,14.28K,2060,4820,5010,31.17K,
520,17.52K,2700,4900,4880,28.92K,
760,19.8K,3580,5600,5025,26.47K,
1120,21.8K,4740,5760,5235,24.18K,
0,0,0,0,185,44.99K,
0,0,0,100,390,45.97K,
0,200,20,240,850,45.36K,
40,680,40,700,1200,43.82K,
40,1920,220,900,1295,43.57K,
0,2240,280,960,1550,42.78K,
40,2200,360,1420,1490,42.38K,
40,2760,620,1140,1505,42.96K,
80,2960,720,1580,1535,41.7K,
80,3600,980,1300,1530,42.06K,
200,4520,1360,1480,1635,40K,
200,4840,1680,1600,1690,39.84K,
0,0,0,0,160,45.33K,
0,0,0,0,245,46.95K,
0,80,0,180,480,45.1K,
0,360,60,480,660,45.35K,
0,840,140,580,855,44.04K,
0,880,320,680,865,44.83K,
40,1200,320,660,940,43.76K,
0,1160,260,740,1000,43.61K,
40,1600,480,860,995,43.96K,
40,1560,620,880,975,42.69K,
160,1880,840,900,1050,43.71K,
200,2000,900,1020,1055,42.67K,
0,0,0,0,45,45.66K,
0,0,0,20,100,45.81K,
0,0,0,20,175,46.7K,
0,40,40,120,280,46.16K,
0,80,80,260,350,45.62K,
40,80,120,300,390,44.98K,
40,120,80,200,395,45.75K,
0,240,80,300,390,44.76K,
0,280,260,380,440,45.05K,
120,160,280,360,480,45.02K,
120,320,340,340,550,44.71K,
160,400,280,400,495,44.8K,
0,0,0,0,0,47.1K,
0,0,0,40,1810,45.47K,
0,200,20,640,3560,44.39K,
0,880,0,2340,5825,41.97K,
40,7360,280,6440,8685,35.07K,
120,16.88K,1100,8200,9665,28.34K,
240,18.88K,1560,8660,10.15K,25.98K,
120,22.16K,2380,8860,10.75K,23.32K,
120,25.36K,2140,9820,10.48K,20.35K,
440,29K,3300,10.64K,11.46K,16.36K,
680,36.08K,4740,10.9K,11.31K,11.62K,
1480,43.52K,6600,11.44K,11.44K,4760,
1880,48.2K,8240,11.8K,11.7K,0,
0,0,0,120,1200,45.12K,
0,120,0,640,2670,44.76K,
0,640,0,2080,4235,43.13K,
40,5640,220,4360,6340,37.33K,
80,11.84K,880,6140,7670,31.5K,
40,14.32K,1220,6660,7725,30.59K,
160,16.64K,1540,7060,7520,29.87K,
360,19.32K,2020,7040,7935,26.74K,
480,23.72K,2920,7560,8385,23.44K,
600,26.28K,3820,8460,8270,19.66K,
1160,33.04K,5600,8360,8545,14.58K,
1720,36.28K,6380,8760,8780,10.82K,
0,0,0,100,1265,45.43K,
0,120,0,400,2560,45.8K,
0,560,20,1740,3875,43.54K,
0,5520,300,3740,5960,39.37K,
80,10.56K,1080,5560,6645,33.64K,
80,13.2K,1260,5680,7055,32.09K,
240,15.08K,1680,5620,7100,30.85K,
200,16.12K,2000,6740,7350,28.75K,
320,20.64K,3100,6780,7245,25.65K,
920,23.44K,3860,7020,7505,22.32K,
1280,28.04K,5820,7940,7885,17.34K,
1400,31.84K,6940,8120,8050,14.14K,
0,0,0,100,750,45.85K,
0,40,0,400,1750,45.5K,
0,840,0,1080,2600,43.39K,
0,4120,240,2980,3885,41.44K,
0,8200,840,4100,4345,38.15K,
160,8680,920,4180,4530,36.78K,
80,10.88K,1100,4140,4625,36.52K,
240,11.48K,1360,4780,4630,34.1K,
400,14.48K,1900,5160,4930,31.98K,
520,17.04K,2580,4920,4580,30.03K,
960,20.16K,4060,5600,5065,26.35K,
1160,22.92K,4620,5360,5085,24.67K,
0,0,0,20,190,46.29K,
0,40,0,60,470,47.06K,
0,80,0,300,795,46.04K,
0,840,80,920,1145,44.79K,
0,2120,240,820,1275,43.99K,
0,2360,360,1000,1415,43.64K,
40,2520,300,1180,1550,42.89K,
40,2760,360,1360,1395,43.44K,
40,3320,680,1320,1550,42.93K,
120,3600,1000,1300,1665,41.55K,
280,4160,1400,1620,1635,40.62K,
360,4760,1540,1700,1715,40.51K,
0,0,0,0,155,46.57K,
0,0,0,20,255,46.43K,
0,0,20,180,460,47.19K,
0,360,0,420,660,45.95K,
0,800,140,640,690,45.77K,
0,1080,280,560,835,45.32K,
40,1080,200,700,810,44.79K,
160,1160,300,840,950,45.28K,
40,1560,420,680,945,44.39K,
120,1480,540,840,970,44.52K,
320,1760,960,880,1100,42.87K,
360,2360,1100,780,1075,42.55K,
0,0,0,0,50,45.92K,
0,0,0,20,125,46.27K,
0,0,0,60,185,47.58K,
0,0,20,200,315,45.75K,
0,120,60,220,410,45.97K,
0,80,180,200,380,47.02K,
0,120,100,280,415,45.59K,
0,240,200,240,465,45.89K,
40,360,160,300,410,45.32K,
160,200,280,360,485,45.72K,
120,280,260,380,585,44.65K,
240,480,400,360,525,46.04K,
0,0,0,0,0,49.7K,
0,0,0,80,1825,47.62K,
0,120,0,680,3755,46.05K,
0,1360,20,2180,5855,43.88K,
40,8120,380,5940,8775,37.2K,
40,16.88K,1280,7680,10.24K,29.41K,
80,19.48K,1760,8780,9880,26.91K,
160,22.64K,2180,8780,10.97K,25.06K,
280,25.4K,2420,9780,10.66K,21.59K,
440,31.48K,3960,10.54K,11.02K,17.12K,
440,37.08K,5520,11.08K,11.34K,12.26K,
1720,45.08K,6760,11.4K,11.9K,4765,
2440,48.96K,9380,12.18K,12.06K,0,
0,0,0,120,1410,47.79K,
0,40,0,660,2825,47.03K,
0,840,0,1880,4405,44.87K,
40,5640,400,4740,6505,39.62K,
40,13.72K,1160,5760,7500,33.89K,
120,15.16K,1180,6360,7815,32.15K,
120,16.92K,1800,7300,7840,30.18K,
120,19.88K,2240,7240,8050,28.4K,
440,24.6K,3080,7560,8225,24.86K,
760,27.36K,4560,7820,8355,20.52K,
1560,33.6K,6040,8420,8755,14.69K,
1520,37.4K,7360,8920,8770,11.42K,
0,0,0,60,1315,48.53K,
0,80,0,540,2475,47.76K,
0,960,20,1840,3970,46.08K,
0,5080,420,4020,5810,41.2K,
40,11.52K,1160,5660,6950,34.63K,
120,13.32K,1360,5960,6955,33.41K,
240,14.96K,1760,6600,7080,32.56K,
360,17.12K,2060,6600,7285,30.55K,
600,20.92K,2920,6720,7415,27.7K,
680,23.84K,4240,7760,7710,23.14K,
1480,29.08K,5900,7880,7630,17.93K,
1640,33.12K,7040,8160,8185,15.38K,
0,0,0,40,870,48.95K,
0,160,0,400,1780,47.62K,
0,640,20,1020,2795,46.35K,
40,3680,240,3120,4065,44.26K,
40,8400,840,4280,4415,39.56K,
120,8880,1040,4620,4540,38.88K,
360,10.96K,1440,4580,4580,37.69K,
120,12.2K,1560,4460,4830,35.58K,
400,15.24K,2100,5160,4950,34.41K,
640,17.4K,3280,4920,4785,31.26K,
920,21.72K,4320,5240,5310,27.57K,
1240,23.48K,5120,5100,5270,26.03K,
0,0,0,40,185,48.88K,
0,0,0,160,585,48.58K,
0,80,0,340,855,48.79K,
0,1000,60,780,1240,47.59K,
0,1960,200,1280,1310,45.34K,
40,2080,260,1320,1415,46.09K,
40,2680,340,1340,1430,44.72K,
40,3160,600,1200,1475,45.59K,
120,3280,720,1540,1640,45.49K,
80,3920,1060,1700,1495,44.2K,
520,4160,1400,1740,1650,43.17K,
520,5080,1800,1560,1620,42.58K,
0,0,0,0,170,48.34K,
0,0,0,40,345,48.54K,
0,40,0,200,485,49.06K,
0,320,0,440,740,48.59K,
0,880,180,580,820,47.9K,
0,920,300,660,910,47.69K,
0,1120,260,680,870,47.38K,
80,1240,320,700,940,47.36K,
120,1440,360,740,970,47.81K,
240,1640,700,740,1010,46.65K,
240,1880,940,780,1150,46.09K,
440,2200,960,780,1165,46.11K,
0,0,0,0,55,48.64K,
0,0,0,0,135,48.11K,
0,0,0,0,220,49.51K,
0,0,60,180,340,48.33K,
0,80,80,280,350,49.14K,
0,40,40,240,415,48.05K,
0,240,120,260,390,47.76K,
40,120,140,360,440,48.05K,
160,280,100,260,455,47.39K,
160,160,300,360,505,48.54K,
120,240,340,520,515,47.45K,
360,360,420,480,460,47.29K,
0,0,0,0,0,53.01K,
0,0,0,180,1885,51.25K,
0,280,0,900,3745,50.15K,
0,1360,40,2780,5925,47.24K,
0,9320,460,6360,8840,39.1K,
40,18.88K,1840,8260,10.09K,32.17K,
280,21.04K,1980,8800,10.38K,29.31K,
200,23.36K,2480,9340,10.73K,26.41K,
640,27.2K,3800,10.18K,10.84K,23.83K,
440,32.88K,4940,10.5K,11.37K,18.23K,
1240,38.32K,5880,11.26K,11.5K,13.06K,
1600,47.08K,8140,11.46K,11.8K,5145,
2640,53.08K,10.24K,11.98K,11.94K,0,
0,0,0,160,1505,52.08K,
0,200,0,640,2835,51.04K,
0,800,20,2420,4360,49.51K,
0,6160,340,5000,6810,42.36K,
80,14.8K,1180,6580,7165,36.79K,
200,16.52K,1640,6160,7810,34.83K,
240,18.76K,2200,6900,8155,33.14K,
480,20.12K,2520,7600,8150,29.99K,
560,25.92K,4180,7420,8315,26.46K,
880,28.84K,5200,8820,8470,22.48K,
1600,35.12K,6820,9180,8805,15.71K,
2440,38.88K,8240,8960,8795,12.04K,
0,0,0,60,1315,52.28K,
0,280,0,540,2590,50.04K,
0,840,0,2060,4200,48.76K,
0,6040,220,4340,6075,42.8K,
80,11.96K,1220,5580,7070,37.83K,
120,14.36K,1560,5940,6980,36.67K,
360,16.48K,2220,6380,7080,34.92K,
320,18.4K,2540,6520,7305,32.66K,
440,21.44K,3740,7360,7465,29.38K,
960,25.92K,5140,7400,7455,25.54K,
1640,30.76K,6300,8000,7730,19.73K,
2560,34.28K,8180,8140,8135,16.89K,
0,0,0,80,870,52.72K,
0,160,0,400,1870,51.05K,
0,760,20,920,2930,50.94K,
40,4960,220,3320,3610,46.13K,
200,8920,900,3900,4380,41.96K,
80,10.36K,1200,4720,4685,41.09K,
160,10.88K,1460,4600,5005,39.11K,
360,13.36K,2140,4640,4715,39.37K,
280,16.44K,2900,5060,5030,36.99K,
480,17.72K,3580,5440,5295,33.08K,
1600,21.76K,4700,5660,5245,29.99K,
1880,24.32K,5660,5420,5305,26.87K,
0,0,0,20,220,52.49K,
0,40,0,180,530,52.41K,
0,80,0,320,845,51.92K,
0,880,80,880,1230,51.17K,
0,2240,320,1240,1485,49.18K,
80,2440,420,1120,1525,49.77K,
120,2960,420,1200,1410,49.75K,
120,2880,520,1380,1495,48.72K,
160,3760,1000,1360,1470,47.27K,
360,4040,1280,1720,1480,47.77K,
600,4320,1920,1720,1720,46.37K,
640,5000,2100,1780,1660,45.44K,
0,0,0,0,160,52.29K,
0,0,0,20,260,52.44K,
0,80,0,180,470,52.77K,
0,480,100,400,720,52.12K,
0,920,260,580,830,50.57K,
40,1200,400,700,810,51.14K,
40,1360,400,680,765,50.97K,
40,1480,420,640,920,49.5K,
40,1600,620,660,915,49.7K,
240,1720,800,820,1010,49.36K,
520,1920,1120,800,1115,48.14K,
440,2320,1140,780,1140,48.52K,
0,0,0,0,55,52.89K,
0,0,0,0,100,51.59K,
0,0,20,60,195,52.22K,
0,40,40,200,340,51.96K,
0,160,80,200,470,52.28K,
80,160,100,240,415,53.49K,
0,200,100,260,400,52.05K,
40,280,200,280,400,51.54K,
80,240,360,340,485,51.7K,
120,360,420,380,405,51.63K,
200,480,300,340,500,51.83K,
200,280,520,380,565,50.95K,
0,0,0,0,0,56.46K,
0,0,0,200,1915,56.41K,
0,360,0,980,4160,53.53K,
0,1680,20,2840,6045,50.5K,
0,9720,520,6240,9280,42.52K,
240,19.92K,1700,9240,10.86K,33.4K,
320,23.12K,2780,9160,10.29K,31.08K,
160,26.32K,2940,9860,10.96K,28.18K,
640,29.4K,3900,10.16K,10.82K,25.19K,
920,36.56K,5040,10.76K,11.2K,19.82K,
1680,41.24K,6620,11.74K,11.67K,14.25K,
2800,50.36K,9240,11.56K,12.17K,5430,
2960,55.4K,11.8K,12.02K,12.19K,0,
0,0,0,140,1455,56.36K,
0,200,20,620,3135,54.71K,
0,1400,40,2080,4705,52.43K,
0,7360,520,5240,6795,45.27K,
40,15.68K,1560,6440,7540,38.84K,
240,17.76K,2160,7220,7660,37.93K,
480,20.4K,2400,7480,8190,33.84K,
480,22.56K,3240,7840,8040,32.67K,
680,26.72K,4340,8080,8220,28.5K,
1240,32.32K,6040,7880,8400,24.57K,
2120,38.12K,7820,8540,9010,16.95K,
2720,41.36K,9420,8840,9125,12.97K,
0,0,0,120,1345,56.11K,
0,160,0,700,2925,53.49K,
0,1040,40,1740,4405,52.31K,
0,6280,500,5060,5900,46.02K,
80,13.36K,1560,5880,7065,40.94K,
120,15.16K,2200,6280,7135,39.36K,
280,17.68K,2800,6980,7115,37.06K,
440,19.12K,3220,6720,7840,35.43K,
840,23.48K,3780,6900,8090,30.89K,
1280,28.76K,6000,7120,7855,27.14K,
2160,33.52K,7040,8200,7670,21.1K,
2400,35.96K,9080,8860,8370,17.04K,
0,0,0,100,1035,55.63K,
0,200,0,300,1945,55.89K,
0,760,0,1440,2915,53.41K,
40,5280,280,3300,4065,50.34K,
40,10K,840,4240,4440,45.53K,
200,11.32K,1420,4780,4480,44.57K,
320,13.16K,1580,5080,4815,43.19K,
400,14.28K,2380,4680,4880,41.73K,
640,16.96K,3040,5300,4895,38.79K,
920,19.28K,4440,5500,5110,36.04K,
1560,22.88K,5300,5700,5355,32.3K,
2240,25.92K,6280,5420,5125,30.24K,
0,0,0,0,310,56K,
0,0,0,160,495,55.9K,
0,120,0,360,785,56.08K,
0,1160,120,820,1260,54.28K,
40,2440,380,1340,1465,53.87K,
0,2600,520,1000,1510,52.9K,
80,3040,540,1340,1565,53.25K,
120,3000,720,1480,1500,52.73K,
240,3840,1240,1480,1520,51.53K,
320,4600,1440,1340,1520,51.13K,
440,4760,2020,1460,1775,49.43K,
680,5560,2180,1500,1765,48.96K,
0,0,0,20,120,55.98K,
0,0,0,40,270,56.33K,
0,120,20,120,500,56.76K,
0,520,140,460,790,55.74K,
40,1080,320,600,755,54.5K,
80,1240,340,760,865,54.73K,
0,1280,500,720,960,54.35K,
120,1400,620,720,990,54.08K,
40,1600,860,760,960,53.84K,
280,2120,940,700,1025,52.95K,
480,2160,1060,900,1070,52.84K,
400,2280,1660,1000,1120,52.3K,
0,0,0,0,55,56.47K,
0,0,0,20,95,57.76K,
0,0,0,40,240,56.11K,
0,40,40,200,400,56.97K,
40,120,100,340,400,56.94K,
0,160,160,300,435,56.42K,
40,200,340,260,440,55.81K,
40,280,240,300,510,55.11K,
80,320,260,420,440,56.09K,
40,400,360,380,450,55.7K,
120,480,540,380,500,55.91K,
240,400,640,340,545,54.39K,
0,0,0,0,0,60.58K,
0,0,0,220,2195,58.9K,
0,200,0,1160,4435,57.66K,
40,1880,40,3020,6330,54.58K,
40,11.16K,620,6540,9380,45.57K,
80,21.96K,2200,8960,10.61K,36.4K,
160,24.8K,2640,10.1K,10.5K,33.47K,
240,28.88K,3980,10.2K,10.75K,30.59K,
760,31.8K,4180,10.3K,11.48K,27.48K,
1440,38.12K,6020,11.26K,11.51K,21.2K,
1840,45.16K,7940,11.5K,12.04K,15.83K,
3400,55.12K,10.96K,11.78K,11.86K,5740,
4200,58.56K,12.96K,12.88K,12.31K,0,
0,0,0,80,1445,59.85K,
0,160,0,820,3250,58.01K,
0,1160,60,2240,5055,55.99K,
40,8160,480,5480,6720,48.38K,
160,16.52K,1740,6980,7590,41.61K,
400,19.16K,2480,7360,7990,40.01K,
320,22.92K,2980,7720,7945,37.75K,
360,24.04K,3540,8420,8190,35.21K,
840,29.88K,5100,8580,8220,30.59K,
1640,33.84K,6360,8460,8685,25.9K,
2240,39.88K,8620,9240,8745,18.81K,
3800,43.04K,10.32K,9460,8955,14.13K,
0,0,0,60,1560,59.18K,
0,280,0,700,2900,58.78K,
0,1440,80,2080,4510,56.57K,
0,7800,460,4820,6255,49.53K,
160,14.36K,1660,6520,7035,44.2K,
280,16.96K,2360,6820,7290,41.96K,
360,19.6K,2720,6200,7290,40.27K,
440,21.32K,3500,7220,7555,37.08K,
720,26.08K,4780,7040,7965,33.19K,
1480,29.88K,6080,8180,7770,28.61K,
2560,34.88K,7900,7900,8335,23K,
3240,39.52K,10.16K,8440,7800,18.48K,
0,40,0,160,1110,60.32K,
0,160,40,680,1945,59.96K,
0,1160,40,1380,3105,57.08K,
0,5600,260,3600,3890,53.27K,
120,10.96K,1080,4540,4500,49.23K,
280,12.48K,1420,4600,4755,48.23K,
280,15K,2000,4640,4745,45.83K,
360,15.36K,2860,4880,4865,44.91K,
880,18.64K,3180,5320,4830,41.87K,
1400,21.16K,4160,5200,5150,38.1K,
1800,24.28K,6440,5720,5335,34.1K,
2400,26.8K,7480,6000,5185,31.72K,
0,0,0,20,325,61.09K,
0,40,0,60,625,59.42K,
0,160,0,420,970,59.61K,
0,1160,220,960,1305,58.69K,
40,2720,360,1140,1320,57.76K,
120,2800,640,1140,1625,57.35K,
80,3320,740,1320,1565,56.29K,
120,3600,1120,1280,1530,56.57K,
160,4000,1700,1320,1555,55.13K,
520,4720,1720,1560,1440,55.22K,
440,4760,2380,1760,1670,52.24K,
720,5720,2620,1580,1770,53.26K,
0,0,0,0,170,60.26K,
0,0,0,60,295,60.64K,
0,120,0,180,520,60.31K,
0,440,80,580,740,59.82K,
0,1120,380,680,850,59.09K,
0,1120,540,740,905,58.66K,
80,1680,440,680,1060,58.22K,
120,1800,560,600,940,57.83K,
160,1880,820,740,940,57.67K,
280,2400,1100,580,1155,57.19K,
440,2440,1140,900,1120,57K,
800,2520,1540,940,975,55.96K,
0,0,0,0,45,60.24K,
0,0,0,0,120,60.53K,
0,0,40,40,260,59.55K,
0,120,60,180,385,60.17K,
0,120,180,320,440,60.36K,
0,160,220,300,500,59.6K,
80,240,280,320,455,59.63K,
40,240,260,300,465,58.95K,
160,200,300,420,540,59.24K,
280,320,460,360,510,59.92K,
120,280,660,480,565,59.07K,
200,560,540,400,555,58.11K,
0,0,0,0,0,62.93K,
0,0,0,240,2255,62.49K,
0,240,0,1340,4480,59.81K,
0,2280,40,3460,6490,57.36K,
0,11.56K,640,7580,9315,48.1K,
320,23.96K,3000,9320,10.59K,38K,
280,27.68K,3120,10.1K,10.71K,35.53K,
1000,31.04K,3820,10.64K,11.71K,31.74K,
1040,34.48K,4640,10.58K,10.94K,29.12K,
1520,41.4K,6200,11.22K,11.85K,22K,
2200,46.76K,8300,12.24K,12.17K,15.93K,
3120,56.76K,11.86K,12.64K,11.88K,6455,
4840,61.48K,14.62K,13.38K,12.25K,0,
0,0,0,140,1590,62.8K,
0,200,0,860,3325,61.8K,
0,1480,40,2400,4915,57.89K,
120,8960,460,5620,7195,51.67K,
240,17.88K,2100,7380,7655,44.86K,
320,21K,2820,7760,8200,42.09K,
440,24.24K,3060,7760,7830,39.15K,
880,26.52K,3520,7780,8170,36.88K,
1080,30.76K,5760,8820,8225,31.23K,
1880,35.72K,7100,8980,8435,26.84K,
3120,43.2K,9180,9580,8915,19.97K,
3920,45.44K,11.4K,9340,9345,14.62K,
0,0,0,180,1505,63.03K,
0,200,0,720,2940,61.86K,
0,1320,60,2020,4890,58.18K,
0,8720,480,4940,6465,53.18K,
200,16K,2160,6080,7275,46.34K,
320,18.08K,2300,7100,7460,43.94K,
440,21K,2920,6740,7485,41.92K,
720,23.76K,3740,7020,7810,38.91K,
1200,27.52K,5560,7540,7590,34.71K,
1720,32.52K,6520,7540,7855,30.11K,
2720,36.32K,9000,8460,7895,24.04K,
4200,40.52K,11.02K,8420,8215,20.16K,
0,40,0,120,995,63.01K,
0,200,0,580,2015,62.72K,
0,880,120,1600,3265,61.11K,
40,6240,500,3440,4185,56.11K,
120,11.68K,1460,4540,4650,52.15K,
360,13K,2000,4660,4650,49.71K,
400,14.8K,2420,4380,5220,48.42K,
640,16.88K,2600,4800,4665,48.01K,
840,20.2K,3460,4920,5030,44.51K,
1400,21.92K,4940,5220,5230,40.79K,
1920,25.72K,6620,5820,5350,36.1K,
3280,27.2K,8140,6360,5425,34.06K,
0,0,0,20,285,63.93K,
0,0,0,120,695,62.33K,
0,280,60,440,850,63.09K,
40,1400,100,760,1430,61.55K,
40,2440,620,1520,1525,60.77K,
160,3120,600,1140,1585,60.08K,
40,3680,860,1260,1605,59.88K,
0,3360,1140,1320,1745,58.87K,
280,4120,1680,1380,1720,58.2K,
360,4720,1920,1580,1770,58.01K,
1000,4960,2340,1700,1715,55.75K,
960,5960,2680,1700,1740,55.48K,
0,0,0,0,190,63.02K,
0,0,0,40,350,63.08K,
0,120,40,220,485,63.24K,
0,720,60,480,735,62.73K,
80,1280,440,540,875,61.2K,
80,1360,440,640,930,62.05K,
120,1800,480,780,890,61.7K,
120,1800,640,740,945,61.34K,
40,1840,840,820,1045,60.27K,
400,2360,980,880,1080,60.72K,
320,2680,1360,1060,1070,59.78K,
920,2160,1500,1100,1230,59.16K,
0,0,0,0,45,63.74K,
0,0,20,20,135,64.17K,
0,0,40,60,165,63.23K,
0,80,20,180,405,62.85K,
40,160,100,280,485,63.16K,
0,200,160,260,505,62.67K,
40,240,220,360,435,62.95K,
80,280,260,300,485,63.59K,
120,200,300,480,590,62.96K,
280,480,360,420,435,62.65K,
240,480,660,260,535,62.77K,
280,440,540,500,650,62.08K,
0,0,0,0,0,66.44K,
0,40,0,220,2340,64.91K,
0,600,0,1060,4535,62.73K,
0,2520,80,3380,6685,58.96K,
0,12.4K,940,7280,9580,49.68K,
160,24.92K,2660,9640,10.89K,40.13K,
200,29.56K,3260,10.06K,10.86K,36.67K,
760,32.64K,4060,11.12K,11.14K,33.18K,
800,36.88K,4820,10.48K,11.04K,30.08K,
1560,43.48K,7600,11.68K,11.52K,23.74K,
2160,49.96K,8920,11.9K,11.79K,16.06K,
3640,59.36K,12.92K,12.36K,12.26K,6650,
5680,64.4K,15.74K,12.48K,11.97K,0,
0,0,0,120,1925,65.07K,
40,200,0,840,3435,63.62K,
0,1920,20,2520,5240,61.44K,
0,10.08K,540,5320,7095,53.27K,
280,18.72K,2180,7420,7945,45.73K,
440,22.36K,2940,7580,8150,44.02K,
600,24.24K,3760,7780,8585,39.83K,
640,27.48K,4720,8500,8330,38.33K,
1240,32.12K,5760,8660,8725,33.05K,
2240,37.88K,7260,8680,8765,27.36K,
3760,45K,9860,9600,9030,20.33K,
4800,47.12K,12K,9400,9290,15.36K,
0,40,0,100,1485,65.36K,
0,160,0,880,3145,62.45K,
0,1280,60,2660,4790,62.11K,
0,9280,520,5060,6510,54.4K,
440,16.56K,2320,6780,7325,47.76K,
320,19.44K,2820,7020,7280,45.62K,
360,21.36K,3420,7240,7280,43.21K,
920,24.4K,4360,7360,7525,40.43K,
1080,28.44K,5680,8140,7765,36.44K,
1640,32.36K,7180,8560,7970,31.85K,
3160,37.56K,9360,8320,8045,24.54K,
4440,41.48K,10.76K,8420,8200,20.3K,
0,40,0,100,1120,65.62K,
0,320,0,540,1940,64.31K,
0,1200,60,1660,3000,63.46K,
0,6320,620,3840,4175,57.04K,
160,11.8K,1460,4580,4815,53.06K,
240,14.16K,2020,4880,4685,52K,
360,15.68K,2520,4640,4835,50.54K,
640,17.16K,2920,5140,5065,48.03K,
920,20.84K,4180,5340,5165,44.96K,
1360,22.44K,5660,5660,5565,42.1K,
2400,26.96K,7020,5440,5190,38.08K,
3080,28.96K,7840,5780,5130,35.21K,
0,0,0,0,275,66.26K,
0,40,0,160,695,65.35K,
0,160,20,460,925,64.5K,
0,1520,100,800,1315,63.95K,
40,2680,580,1180,1635,61.67K,
200,3200,780,1160,1555,63.4K,
160,3960,1020,1300,1755,61.98K,
200,3560,1180,1460,1530,61.43K,
320,4160,1640,1640,1585,60.21K,
400,5000,1960,1660,1720,58.74K,
1000,5320,2300,1580,1775,58.21K,
960,5920,2660,1740,1785,56.68K,
0,0,0,0,180,66.09K,
0,0,0,40,345,65.53K,
0,80,0,260,525,65.77K,
0,640,160,540,810,65.22K,
0,1200,340,700,860,63.08K,
120,1360,500,900,925,62.99K,
80,1480,600,740,990,63.14K,
160,1640,640,900,1080,63.72K,
200,2000,720,880,1035,62.65K,
480,2200,1320,880,1015,62.74K,
640,2880,1460,900,1010,61.8K,
960,2120,1840,1060,1155,61.24K,
0,0,0,0,45,65.14K,
0,0,0,0,160,65.56K,
0,0,0,60,190,64.83K,
0,0,80,260,415,64.85K,
40,240,180,320,405,64.64K,
0,160,300,320,450,66.06K,
80,240,340,340,395,65.61K,
80,400,260,300,415,65.14K,
160,360,340,460,490,65.08K,
200,480,420,380,515,64.56K,
360,240,440,420,575,64.37K,
360,520,560,440,535,64.78K,
0,0,0,0,0,68.05K,
0,0,0,260,2460,66.57K,
0,280,0,1460,4790,64.8K,
0,2120,20,4100,6910,62.11K,
0,13K,900,7980,9505,51.28K,
160,26K,2700,9700,10.78K,41.03K,
360,30.36K,4100,10.04K,10.74K,37.15K,
600,34.84K,4600,11.02K,11.35K,33.85K,
880,38.24K,5640,10.84K,11.89K,30.6K,
1360,45.12K,7540,11.44K,11.83K,23.73K,
2400,50.84K,10.92K,12.72K,12.08K,17.41K,
4240,59.64K,14.08K,12.98K,12.09K,6830,
5680,65.68K,15.78K,13.38K,12.12K,0,
0,40,0,180,1795,66.91K,
0,320,0,920,3550,65.88K,
0,1920,60,2560,5180,63.29K,
80,10.52K,900,5680,7320,54.18K,
240,19.92K,2240,7760,7915,47.17K,
360,24K,2920,7540,7815,43.82K,
680,25.88K,3980,8020,8240,42.57K,
640,28.64K,4500,7920,8220,39.81K,
1480,33.52K,6260,8440,8370,34.1K,
2280,38.56K,8640,9160,8960,28.92K,
3240,46.36K,11.18K,9460,8750,20.61K,
4560,48.36K,12.66K,10K,9015,15.82K,
0,0,0,180,1560,68.11K,
0,120,0,960,3140,66.71K,
0,1760,60,2760,4600,63.78K,
40,9160,760,5400,6390,55.8K,
400,17.68K,2360,6760,7060,49.52K,
400,19.92K,2720,7140,7460,47.14K,
520,22.4K,3960,7620,7615,44.77K,
800,25.6K,4320,7360,7755,42.92K,
1360,29.48K,5920,8020,7755,37.12K,
2360,34.08K,7440,8100,8215,33.23K,
3520,39.2K,10.18K,8320,8350,25.46K,
4520,42.4K,11.8K,8520,8260,20.84K,
0,0,20,160,1175,67.72K,
0,360,0,660,2050,66.45K,
0,1200,60,1820,3170,64.11K,
0,6560,560,3600,4395,59.07K,
120,11.8K,1860,4880,4970,54.98K,
520,14.6K,2060,5040,4870,52.7K,
600,16.16K,2600,5120,4995,51.51K,
640,17.88K,3060,5200,5140,49.86K,
1040,20.8K,4180,5580,5205,46.52K,
1520,23.68K,5160,6000,5105,44K,
2680,27.32K,7480,5600,5235,39.03K,
3160,29.72K,8940,5780,5575,34.97K,
0,0,0,40,300,67.17K,
0,40,0,140,645,67.12K,
0,160,20,360,1120,65.8K,
0,1400,240,1160,1380,65.88K,
0,3120,520,1160,1435,64.44K,
40,3200,900,1380,1690,64.13K,
160,3840,820,1620,1615,64.02K,
120,4240,1020,1360,1560,62.79K,
400,4600,1500,1520,1505,61.5K,
520,4960,1760,1780,1630,61.02K,
880,5640,2360,1660,1845,59.48K,
1320,6280,3060,1580,1870,58.59K,
0,0,0,20,185,67.9K,
0,0,0,40,395,67.8K,
0,120,20,180,570,67.17K,
0,520,180,620,805,67.06K,
80,1480,340,720,940,65.86K,
0,1640,340,700,975,65.62K,
120,1480,680,740,940,64.56K,
40,1760,800,740,1035,65.96K,
200,2040,1020,900,1030,65.17K,
320,2240,1160,820,1055,64.57K,
800,2320,1360,1000,1125,62.87K,
840,2520,1740,960,1200,61.99K,
0,0,0,0,40,67.43K,
0,0,0,0,150,67.61K,
0,0,0,80,225,68.49K,
0,80,60,220,385,67.3K,
0,120,180,340,565,67.27K,
80,240,160,260,480,66.4K,
120,200,220,400,510,67.53K,
80,160,280,420,520,66.25K,
160,200,520,400,600,64.61K,
240,440,320,420,595,66.19K,
360,480,620,400,485,67.25K,
480,400,720,460,410,66.56K,
0,0,0,0,0,71.1K,
0,0,0,200,2480,70.23K,
0,480,0,1340,5000,67.85K,
0,2800,120,3860,6895,63.74K,
40,14.68K,1120,7380,9975,53.27K,
280,26.84K,2900,10.6K,10.87K,42.96K,
440,31.52K,4120,10.78K,11.07K,39.31K,
800,35.2K,5100,11.46K,11.29K,35.58K,
1080,40.4K,6180,11.08K,11.24K,31.42K,
2160,46.4K,8340,11.64K,12.48K,24.78K,
2640,53.32K,10.84K,11.88K,12K,17.22K,
5560,63.44K,13.94K,12.08K,12.55K,7620,
6720,66.24K,16.8K,13.28K,12.86K,0,
0,0,0,180,1935,70.16K,
0,440,0,1060,3660,68.69K,
0,1960,100,2820,5260,65.88K,
80,11.24K,820,5980,7105,57.53K,
280,21.4K,2440,7060,7575,49.85K,
440,25.36K,3040,7620,7805,46.42K,
640,27.12K,4400,8460,8205,43.92K,
840,29.48K,4860,8280,8355,40.87K,
1680,34.08K,6980,9080,8880,35.84K,
2680,40.56K,8080,8700,8900,30.35K,
4040,48.48K,12.08K,8820,9070,22.16K,
5240,49.92K,13.66K,9740,9235,16.14K,
0,0,0,220,1550,69.22K,
0,280,40,1040,3315,68.05K,
0,1800,40,2960,4445,66.39K,
40,9440,680,5400,6225,58.09K,
240,18.8K,2360,6400,7290,51.14K,
240,20.64K,3140,7180,7445,48.68K,
680,23.72K,3740,7100,7450,47.34K,
1200,26.32K,4320,8080,7380,44.15K,
1760,30K,6100,8400,7755,38.79K,
2240,35.8K,7820,7860,7900,34.15K,
4280,39.96K,11.32K,8660,8565,27K,
5200,43.6K,12.22K,8760,8320,21.86K,
0,0,0,140,1210,70.36K,
0,320,20,700,2190,69.82K,
0,1360,60,1640,3390,68.15K,
40,6720,680,4040,4365,63.47K,
360,13.72K,1640,4620,4710,57.17K,
360,15.4K,2320,4800,4885,56.47K,
520,16.48K,2880,4980,4930,53.94K,
800,18.68K,3500,5500,4915,51.84K,
1200,21.92K,4420,5460,5020,48.98K,
1920,25K,6160,5700,5130,44.94K,
3480,27.6K,8120,5940,5480,40.25K,
4120,30.12K,9200,5600,5590,37.43K,
0,0,0,40,315,71.31K,
0,80,0,200,590,70.83K,
0,120,0,560,975,71.31K,
0,1680,160,1020,1445,68.67K,
80,3080,740,1180,1575,67.28K,
200,3680,680,1140,1610,66.58K,
160,4120,940,1320,1605,65.4K,
240,4240,1100,1480,1555,64.79K,
360,4600,1760,1580,1530,65.09K,
680,4880,1940,1740,1690,63.27K,
1040,5520,3040,1900,1790,62.61K,
1480,5920,3000,1760,1850,61.62K,
0,0,0,20,220,70.57K,
0,0,0,20,410,70.88K,
0,0,0,260,520,71.02K,
40,840,200,460,795,69.49K,
0,1560,580,640,910,68.79K,
200,1760,620,560,1160,68.1K,
120,1760,560,700,955,68.65K,
80,1800,960,880,1060,67.92K,
280,2040,1160,880,1045,67.77K,
320,2360,1280,940,1105,67.05K,
560,2480,1820,960,1125,66.01K,
960,2720,1360,960,1240,66.45K,
0,0,0,0,70,70.96K,
0,0,0,20,185,70.82K,
0,0,0,80,290,70.08K,
0,120,120,220,315,70.51K,
40,320,160,280,445,70.99K,
80,280,280,220,485,70.22K,
0,240,320,400,510,69.5K,
120,280,300,480,420,70.5K,
160,360,380,400,505,70.18K,
280,440,460,500,520,69.51K,
560,480,540,340,515,69.82K,
400,520,880,420,495,68.3K,
0,0,0,0,0,76.18K,
0,40,0,240,2610,74.43K,
0,640,40,2020,4760,72.43K,
0,2800,60,4160,7040,68.87K,
160,16.16K,1420,8080,9840,57.09K,
360,29.04K,3520,10.46K,11.11K,45.56K,
840,33.6K,4580,10.66K,11.22K,42.26K,
1120,38.08K,5520,10.84K,11.75K,37.98K,
1240,42.92K,6720,11.2K,11.44K,34.36K,
2720,48.8K,9580,11.96K,12K,26.7K,
3560,57.28K,11.28K,12.44K,12.21K,19.33K,
5720,65.4K,15.86K,13.66K,12.57K,7890,
8440,70.04K,17.98K,13.58K,12.94K,0,
0,120,0,220,2000,75.32K,
0,400,0,1200,3850,72.72K,
0,2720,60,3080,5245,70.35K,
120,12.32K,940,6160,7180,61.13K,
320,22.68K,2980,7600,8010,52.54K,
560,26.44K,4020,7840,8345,50.01K,
840,29.16K,5080,7980,8190,47.17K,
1240,32.08K,5620,8280,8350,44.66K,
1840,37.24K,7640,9200,8765,38.06K,
2640,42.36K,9680,9680,8900,31.93K,
4640,49.88K,12.66K,9820,8925,23.52K,
6800,52.36K,15.18K,9720,9435,17.63K,
0,0,0,120,1855,75.42K,
0,360,0,1040,3295,73.76K,
0,2280,60,2740,4710,71.5K,
80,10.24K,680,5500,6950,63.2K,
320,19.8K,2640,6600,7460,54.71K,
720,22.68K,3780,6880,7460,52.8K,
880,24.92K,4480,7380,7730,50.16K,
1200,27.52K,5620,7780,7790,47.42K,
2760,31.88K,7280,7680,7740,42.09K,
2600,36.16K,9160,8620,7755,37.13K,
4680,42K,11.88K,8860,8355,28.79K,
6440,45.2K,13.64K,9360,8245,23.45K,
0,40,0,80,1135,75.57K,
0,360,40,840,2425,74.73K,
0,1520,20,2080,3335,73.03K,
40,7680,820,4000,4620,66.54K,
200,14.6K,2180,5100,4535,61.51K,
760,16.24K,2620,4840,4880,60.61K,
560,18K,3300,4960,5020,58.44K,
1120,20K,4040,5260,5065,56.41K,
1640,22.88K,5200,5200,5365,52.89K,
1760,25.56K,6860,5840,5025,49.1K,
3760,28.92K,9120,5460,5655,42.35K,
4520,30.92K,10.18K,6340,5450,39.8K,
0,0,0,0,395,77.17K,
0,80,0,220,640,75.58K,
0,400,20,420,890,76.47K,
40,1800,220,960,1480,73.04K,
80,3160,440,1260,1410,71.61K,
160,3400,1120,1680,1545,70.16K,
280,4040,1180,1360,1775,71.27K,
280,4480,1280,1400,1735,70.29K,
440,4800,2080,1600,1610,69.67K,
920,5200,2240,1620,1690,68.9K,
1080,6000,3280,1620,1795,67.8K,
1360,6000,3920,1840,1710,66.83K,
0,0,0,40,220,76.97K,
0,0,0,80,455,75.73K,
0,40,0,360,515,76.49K,
0,760,200,580,785,74.65K,
40,1200,540,760,980,74.3K,
40,1760,540,700,955,73.75K,
80,1960,780,840,965,73.37K,
160,1880,820,960,960,72.86K,
520,2120,1080,1000,950,73.73K,
520,2320,1340,880,1005,72.76K,
680,2480,2060,1020,1075,71.49K,
1080,2760,2040,1000,1050,70.52K,
0,0,0,0,75,77.22K,
0,0,0,0,165,77.85K,
0,0,20,100,215,77.23K,
0,80,120,240,340,76.46K,
0,320,280,280,445,74.91K,
80,280,200,320,425,75.43K,
40,200,440,400,460,75K,
80,320,340,440,505,75.68K,
280,320,420,400,595,75.47K,
320,520,560,340,520,75.52K,
520,440,660,500,530,74.28K,
600,480,640,560,500,74.17K,
0,0,0,0,0,84.57K,
0,0,0,340,2865,83.23K,
0,800,20,1660,5480,80.32K,
0,3120,80,4740,7555,76.42K,
80,17.8K,1560,8660,10.05K,63.85K,
720,32.2K,4820,10.42K,11.12K,50.6K,
680,37.92K,5420,10.14K,11.4K,46.85K,
1200,40.24K,6720,12.16K,11.68K,42.03K,
1320,46.2K,8960,11.9K,11.4K,37.48K,
3360,53.68K,11.06K,11.58K,11.53K,29.63K,
4960,60.52K,13.5K,12.84K,12.11K,21.34K,
7680,70.64K,19.18K,12.8K,12.66K,8625,
11.04K,74.84K,21.64K,14.42K,12.79K,0,
0,0,0,260,2185,82.97K,
0,600,20,1600,3685,81.96K,
0,3040,240,3380,5715,78.06K,
40,14.04K,1400,6360,7555,68.48K,
720,24.92K,3620,7940,8545,58.89K,
880,29.08K,4400,8200,8155,54.96K,
1600,31.96K,5920,8160,8625,52.67K,
1920,34.56K,6440,8640,8585,48.87K,
2960,39.84K,8780,9100,9070,42.05K,
3800,44.92K,11.34K,9520,8970,36.24K,
6360,52.72K,14.52K,9460,9035,26.23K,
8400,55.88K,16.9K,9780,9090,19.94K,
0,40,0,240,1855,83.54K,
0,680,0,1220,3615,81.78K,
0,2320,180,3240,4970,79.77K,
80,12.28K,1020,5720,7075,70.7K,
480,21.88K,3800,7460,7330,60.98K,
840,24.92K,4800,7880,7515,59.3K,
1120,27.12K,5880,8000,7705,54.69K,
1560,29.6K,5760,8200,7690,52.4K,
3000,34K,8180,8460,8000,46.95K,
3800,38.96K,11.02K,8360,8085,41.02K,
6560,44.76K,14.16K,8800,8330,32.27K,
8120,48.76K,15.5K,8960,8540,26.28K,
0,0,0,160,1280,85.68K,
0,360,20,1020,2700,83.46K,
0,1600,120,2180,3350,80.73K,
120,9240,860,4120,4370,74.96K,
400,14.84K,2660,5160,5000,68.52K,
680,17.12K,3300,5140,4870,66.78K,
720,19.44K,3720,5500,4905,63.91K,
1320,21.44K,4780,5580,5020,61.8K,
2240,24.16K,6280,5780,5290,58.92K,
2600,27.6K,8040,5980,5180,54.88K,
4440,29.92K,10.4K,6020,5500,49.06K,
6360,32.88K,11.94K,6300,5380,43.38K,
0,0,0,40,450,84.1K,
0,120,0,160,685,84.61K,
0,280,0,620,1060,83.1K,
40,1920,440,1060,1370,82.03K,
120,3320,880,1540,1595,80.28K,
320,3840,1220,1460,1730,79.7K,
240,4520,1480,1600,1515,79.27K,
480,4720,1920,1540,1680,78.15K,
480,5160,2220,1520,1815,76.88K,
1120,5440,2920,1680,1860,75.97K,
2160,6040,3220,1920,1820,74.48K,
2280,6160,3900,2020,1765,73.13K,
0,0,0,20,250,85.16K,
0,40,0,100,435,83.35K,
0,120,20,460,565,84.07K,
0,920,300,500,905,84K,
40,1280,660,860,1075,83.07K,
160,1720,740,660,1020,81.74K,
320,1920,880,760,1155,81.42K,
200,2120,1180,840,1045,81.32K,
400,2320,1200,980,1090,80.8K,
760,2320,1780,980,1070,81.11K,
1200,2840,1800,900,980,78.4K,
1560,2840,2300,960,1215,79.25K,
0,0,0,0,80,85.09K,
0,0,0,20,175,84.75K,
0,0,0,100,210,86.27K,
0,80,140,180,395,84.48K,
40,240,280,320,535,82.94K,
80,320,420,280,565,82.64K,
120,360,440,240,580,83.47K,
280,360,440,440,485,84.08K,
240,480,540,460,575,84.06K,
360,440,640,460,490,83.36K,
560,520,760,480,555,82.23K,
760,600,720,420,515,82.63K,
0,0,0,0,0,97.33K,
0,40,0,340,3020,95.22K,
0,1000,0,2460,5710,92.76K,
0,4600,180,4820,7890,87.83K,
200,21.24K,2120,8920,10K,72.82K,
1160,37.84K,6180,10.26K,11.09K,58.66K,
1760,42.64K,7120,11.24K,11.43K,54.04K,
2360,46.76K,8780,11.5K,11.92K,49.49K,
2920,50.92K,10.74K,11.82K,12.03K,43.89K,
4360,58.64K,14.48K,12.84K,12.24K,34.16K,
7520,67K,16.68K,13.08K,12.28K,24.95K,
12.4K,76.76K,21.3K,13.38K,13.02K,9890,
14.56K,82.76K,24.32K,14.24K,12.75K,0,
0,40,0,320,2320,95.83K,
0,520,20,1840,4155,91.8K,
0,4440,180,3140,5830,90.2K,
240,16.32K,1740,6640,7850,78.47K,
1160,28.24K,4820,8280,8355,67.44K,
1160,32.12K,6200,8760,8410,63.88K,
2040,35.04K,6880,8800,8425,59.83K,
2320,38.2K,8800,9220,8360,57.1K,
3960,44.6K,11.5K,9300,8920,49.29K,
6040,49.72K,13.44K,10.08K,8780,41.56K,
8760,56.96K,18.12K,9820,9185,30.67K,
12.6K,61K,20.58K,10.02K,9265,22.94K,
0,0,0,240,2055,95.38K,
0,600,0,1720,3860,95.58K,
0,3080,160,3720,5190,91.14K,
200,13.6K,1980,6480,6820,81.25K,
960,25.24K,4700,7040,7535,70.85K,
1040,28.64K,5460,7780,7665,66.49K,
1880,30.64K,7400,7440,7975,62.8K,
2960,32.88K,8440,8040,8150,60.46K,
3040,39.08K,11K,8500,8210,54.12K,
4760,42.6K,13K,8600,8315,46.06K,
10.52K,48.32K,16.3K,8920,8240,36.21K,
12K,51.16K,18.88K,9160,8560,30.32K,
0,0,0,240,1420,96.67K,
0,600,0,1000,2915,94.86K,
0,2120,100,2140,3820,93.1K,
280,10.4K,1200,4460,4470,86.13K,
880,17.56K,3200,4920,5055,78.24K,
1080,19.76K,4260,4840,4995,76.78K,
1600,21.6K,5040,5460,4950,73.42K,
1680,23.4K,5960,5620,5240,71.87K,
2760,26.72K,8020,5900,5355,68.24K,
4160,29.84K,9680,5800,5470,61.76K,
6240,33.44K,12.4K,5800,5305,54.53K,
8560,35.2K,14.04K,6380,5460,50.61K,
0,0,0,80,445,99K,
0,80,0,260,770,96.4K,
0,440,60,660,1120,96.14K,
0,2440,360,1240,1345,94.21K,
320,3720,1020,1340,1600,91.9K,
440,4160,1560,1580,1725,92.01K,
440,4960,1920,1440,1690,91.6K,
760,5080,2320,1460,1630,89.85K,
1280,5520,2660,1660,1660,88.83K,
1520,5800,3440,1620,1950,86.51K,
2560,6800,3980,1620,1615,85.96K,
3440,6560,4700,1820,1780,84.25K,
0,0,0,20,215,97.68K,
0,0,0,120,515,96.45K,
0,280,0,300,605,96.55K,
0,1160,200,560,1010,94.96K,
160,1680,680,800,945,94.28K,
200,1800,780,920,985,93.31K,
520,2040,1180,920,1015,93.55K,
440,2480,1340,860,1025,94.01K,
600,2800,1380,780,1145,91.61K,
1000,2680,1920,940,1045,91.1K,
1760,3160,2020,860,1155,89.96K,
2000,3040,2300,1140,1035,90K,
0,0,0,0,85,97.28K,
0,0,0,20,245,96.72K,
0,40,20,60,260,97.53K,
0,40,140,300,375,98.53K,
80,360,300,300,455,97.26K,
120,320,320,340,495,96.32K,
200,360,500,380,540,97.54K,
280,360,520,360,555,96.18K,
240,400,740,420,605,94.9K,
720,560,480,360,510,96.65K,
880,480,860,460,580,95.13K,
920,480,760,620,525,93.8K,
0,0,0,0,0,112.2K,
0,160,0,440,3510,110.5K,
0,1280,0,2780,5945,106.9K,
0,6600,360,5380,8230,101.8K,
280,24.12K,3200,9640,10.58K,83.76K,
1680,43.24K,7660,11.84K,11.44K,67.41K,
2800,47.76K,9840,11.9K,11.83K,61.3K,
3880,52.2K,11.18K,12.6K,12.26K,55.81K,
4280,55.96K,13.48K,12.88K,12.07K,49.71K,
7040,66K,17.74K,12.7K,12.52K,39.19K,
10.12K,73.6K,21.76K,13.68K,12.42K,28.1K,
15.6K,84.48K,26.16K,13.86K,12.74K,10.91K,
19.6K,88.4K,30.34K,15.44K,13.01K,0,
0,80,0,320,2655,109.8K,
0,1120,40,1780,4800,108.5K,
0,4520,340,4000,6410,104K,
240,19.12K,2280,7080,8175,91.44K,
1400,31.8K,6400,8640,9125,77.22K,
1920,35.84K,7900,8800,8620,73.78K,
2880,39.48K,9520,9360,8695,68.99K,
3640,42.76K,10.9K,9740,9000,65.21K,
5760,49.6K,14.06K,9620,9025,56.09K,
8440,54.48K,16.78K,10.14K,9470,47.81K,
13.36K,61.64K,20.58K,10.72K,9065,34.76K,
17.36K,67K,23.6K,10.4K,9225,25.95K,
0,80,0,360,2250,111.6K,
0,920,40,1720,4495,107.5K,
0,4120,240,3700,5670,104.6K,
320,16.76K,2100,6540,7090,92.79K,
1200,27.8K,5860,8040,7825,81K,
2360,31.96K,7220,7560,8160,76.21K,
2640,34.56K,8960,8300,8140,73.86K,
3600,37.36K,9760,7960,8055,68.69K,
5480,42.12K,13.34K,8780,8740,61.73K,
8640,46.12K,15.92K,8940,8435,54.66K,
13.16K,52.84K,20.48K,9320,8255,42.1K,
17K,55.96K,22.6K,9260,8555,34.46K,
0,80,20,220,1545,110.7K,
0,840,0,1460,2980,109K,
40,2960,120,2720,3850,106.3K,
200,11.52K,1880,4800,4645,97.89K,
960,20.24K,4420,5380,4840,89.38K,
1400,22.12K,5600,5600,5150,87.06K,
2000,23.92K,6940,5420,5145,85.41K,
2960,27.16K,7540,5360,5305,81.73K,
3960,29.16K,9740,5760,5550,76.66K,
6600,31.48K,11.98K,6180,5485,72K,
9280,36.36K,14.14K,6260,5515,63.64K,
12.88K,37.48K,16.38K,6360,5565,58.44K,
0,0,0,120,365,111.3K,
0,120,0,400,785,112K,
0,600,60,720,1105,111K,
0,2680,840,1340,1620,107.6K,
360,4200,1480,1540,1665,105.9K,
560,4640,1600,1660,1670,105.7K,
640,5240,2140,1580,1705,102.6K,
960,5160,2520,1700,1750,103.5K,
1440,5760,3440,1840,1705,102.5K,
2120,6040,3600,1940,1715,100.7K,
3600,6400,4960,1920,1865,98.63K,
4480,6920,4780,1800,1845,97.68K,
0,0,0,20,270,111.8K,
0,0,0,220,445,112.7K,
0,240,20,420,660,111.7K,
120,1440,360,640,935,110K,
280,1920,1040,820,1085,109.1K,
320,2160,1160,1040,1020,108.6K,
440,2680,1060,880,1180,108.6K,
520,2200,1660,920,1245,106.7K,
1080,2680,1740,1000,1055,105.8K,
1680,2880,1900,980,1220,104.7K,
2080,3360,2560,1040,1080,104.2K,
3120,3120,2680,1060,1070,104.1K,
0,0,0,0,65,111.8K,
0,0,0,40,210,112K,
0,40,0,160,310,113K,
0,200,180,420,385,111.7K,
240,320,320,300,500,111.9K,
200,400,360,360,515,112K,
240,360,620,480,520,109.8K,
280,480,600,400,490,111.3K,
320,480,740,480,510,110K,
760,560,840,420,465,109.1K,
840,560,1020,460,510,109.5K,
1240,720,940,440,580,107.9K,
0,0,0,0,0,126.5K,
0,240,20,660,3510,125.1K,
0,1560,40,3240,6490,122K,
0,8360,560,5580,8525,115K,
480,29K,4060,9780,10.92K,95.24K,
2440,49K,9580,11.62K,11.9K,77.16K,
3640,53.4K,12.1K,12.56K,12.09K,69.99K,
4440,59.04K,14.62K,12.56K,12.26K,62.64K,
6200,64.28K,15.58K,12.5K,12.59K,57.18K,
9640,72.48K,20.12K,14.16K,12.38K,45K,
13K,82.2K,26.08K,13.54K,12.68K,32.44K,
21.56K,91.56K,30.4K,14.34K,12.96K,12.91K,
27.04K,99.64K,35.02K,14.04K,12.93K,0,
0,120,0,720,2800,125.9K,
0,1440,80,2300,4855,122K,
0,6000,260,4820,6345,118.9K,
560,22.4K,3460,7800,7710,103.5K,
1720,36.6K,8700,8420,8635,88.01K,
3200,40.2K,9680,8860,8975,83.21K,
3800,44.2K,11.4K,9400,9210,78.15K,
5720,47.16K,13.5K,9700,9275,73.54K,
8800,55.08K,16.22K,9980,9155,63.38K,
12.04K,60.32K,20.14K,9920,9240,54.21K,
18.12K,66.52K,24.76K,10.56K,9755,38.51K,
23.12K,70.6K,27.5K,10.86K,9445,29.79K,
0,160,0,460,2545,126K,
0,1320,60,2540,4380,123.1K,
0,5400,280,3680,5795,119.2K,
320,19.24K,3640,6920,7730,104.9K,
2080,31.36K,7440,8580,7910,91.25K,
3200,35.28K,9580,8300,7780,88.89K,
4160,38.48K,10.36K,8480,8320,82.36K,
5720,41.84K,12.08K,8460,8310,79.04K,
7960,45.92K,15.14K,9280,8670,70.13K,
11.64K,50.08K,18.88K,9900,8665,61.79K,
18.12K,56.56K,23.46K,9120,8790,48.56K,
21.12K,60.32K,26.22K,9880,8460,39.26K,
0,120,0,420,1570,125.4K,
0,1120,20,1880,3015,125.1K,
0,3400,320,3140,4115,120.4K,
160,13.16K,2280,5140,4820,112.1K,
1560,23.28K,5360,5140,5270,103.6K,
2120,24.52K,6740,5440,5285,98.62K,
3000,26.72K,7860,5620,5165,95.69K,
3840,29.52K,8620,5560,5135,94.6K,
6120,31.32K,11.98K,6380,5450,88.23K,
8240,35.04K,12.84K,5880,5455,81.25K,
12.28K,38.36K,17.66K,6660,5510,71.88K,
15.96K,39.88K,18.34K,5960,5520,65.63K,
0,0,0,100,480,128.3K,
0,200,40,380,820,128.1K,
0,1160,140,820,1085,124.4K,
120,3120,640,1200,1535,123K,
520,4600,2060,1640,1675,122.6K,
720,5080,2560,1720,1765,120.4K,
840,5840,2660,1600,1720,117.9K,
1400,5800,3020,1720,1700,117.9K,
2200,5960,3920,1760,1815,115K,
2960,6520,4200,1740,1870,115.1K,
4920,6920,4700,1860,1815,110.9K,
5880,7200,5340,1820,1850,110.7K,
0,0,0,40,280,126.4K,
0,40,20,260,395,126.2K,
0,440,20,400,755,125.5K,
120,1560,340,680,925,125K,
360,2000,1040,980,1120,123.3K,
520,2440,1620,1060,1060,122.5K,
600,2720,1420,1100,1050,123.5K,
1400,2400,1500,1040,1190,122.5K,
1840,2840,1840,1100,1045,122K,
2240,3080,2180,1060,1245,119.7K,
2760,3440,2720,1160,1135,119.2K,
3640,3280,3020,1020,1155,117.1K,
0,0,0,0,70,126.9K,
0,0,20,20,270,127.1K,
0,80,0,140,370,126.7K,
40,240,200,320,480,126.9K,
200,400,480,360,445,126.1K,
240,440,620,340,585,124.4K,
600,480,500,440,515,126.1K,
480,560,580,480,500,126.1K,
680,640,740,420,510,125.7K,
1200,440,780,560,525,123.7K,
1520,440,860,540,615,124.8K,
1680,480,940,560,695,122.6K,
0,0,0,0,0,141K,
0,160,0,1040,4040,138.9K,
40,2120,40,3640,6805,133.6K,
40,9680,680,6720,9025,126.5K,
840,33.4K,4540,10.52K,11.04K,105.1K,
3440,54K,11.58K,12.22K,12.02K,84.44K,
5080,58.44K,14.02K,13K,12.36K,77.37K,
6520,64.16K,16.1K,13.58K,12.38K,71.43K,
8320,69.92K,18.98K,13.42K,12.61K,64.57K,
12.24K,79.4K,23.42K,13.82K,12.83K,49.19K,
18.28K,88.32K,27.62K,14.36K,12.92K,35.92K,
26.08K,98.32K,34.7K,14.64K,12.89K,13.91K,
32.52K,105.5K,37.96K,15.1K,12.97K,0,
0,240,0,700,3085,139.9K,
0,1600,20,2640,5350,136.3K,
40,7400,440,4980,6965,129.8K,
760,24.84K,4200,8200,8465,114K,
3000,39.6K,9460,9520,8885,99.29K,
4080,44.84K,11.36K,8660,9110,92.24K,
5720,49.08K,13.08K,9900,8710,87.12K,
6680,51.92K,15.44K,9800,9060,81.99K,
10.48K,59.44K,18.98K,9280,9425,71.08K,
15.08K,64.56K,21.74K,10.24K,9075,59.72K,
22.36K,71.76K,27.44K,11.14K,9225,43.48K,
28.2K,76.04K,30.62K,10.58K,9335,33.11K,
0,40,0,820,2795,139.1K,
0,1760,60,2620,4655,136.4K,
40,6080,620,4680,5895,130.4K,
680,22.16K,3860,7160,7530,117.7K,
2800,34.68K,9080,8660,8120,102.2K,
3560,39.76K,10.58K,8020,8225,97.99K,
5040,42.44K,12.82K,8000,8345,91.41K,
6520,45.16K,13.9K,8720,8550,88.36K,
10.32K,50.32K,17.8K,8840,8420,77.92K,
15.08K,54.36K,21.04K,9400,8360,67.46K,
20.32K,59.08K,25.28K,10.06K,8505,53.46K,
26.52K,63.24K,28.4K,9880,8595,43.33K,
0,160,20,400,1925,140.6K,
0,1360,20,1760,3495,137K,
40,4440,340,2920,4260,134.6K,
440,16.16K,2840,5060,4675,123.4K,
2000,24.84K,6420,5620,5455,114.2K,
3040,27.2K,7660,5780,5155,109.6K,
3920,29.72K,9080,5400,5140,106.6K,
5240,30.84K,10.8K,5900,5360,103.4K,
6680,33.24K,14.08K,6540,5385,97.67K,
11.32K,36.76K,15.42K,6340,5565,89.7K,
15.64K,39.6K,18.78K,6920,5625,79.22K,
20.4K,41.8K,20.84K,6360,5500,73.75K,
0,0,0,100,565,139.2K,
0,240,20,420,1000,139.3K,
0,1200,80,1000,1330,139.6K,
120,3400,1240,1460,1695,135.9K,
680,4680,2380,1780,1700,133.8K,
880,5760,2280,1560,1860,132.4K,
1440,6040,3140,1840,1750,131.9K,
1720,6320,3280,1760,1705,129K,
2720,6200,3940,2020,1790,130.4K,
3680,6520,4880,1800,1960,127.1K,
5440,7880,5640,1800,1850,121.7K,
7240,7320,5900,2060,1805,121.9K,
0,0,0,40,290,140.4K,
0,120,20,320,505,140.2K,
0,480,60,500,795,138.4K,
120,1760,640,760,995,138.5K,
720,2400,1060,880,1175,136.9K,
600,2720,1620,940,1045,134.8K,
880,2760,1920,1000,1135,136.3K,
1160,2760,2160,980,1225,134.4K,
1800,3280,2420,1000,1065,134.4K,
2520,3040,2880,1240,1090,132.1K,
3680,3360,3020,1100,1265,132.4K,
4480,3520,2900,1080,1185,132K,
0,0,0,0,95,141.4K,
0,40,0,60,245,140.9K,
0,40,20,100,375,138.8K,
80,200,200,360,525,140.2K,
160,480,500,280,625,138.7K,
360,440,680,400,540,139.3K,
600,480,740,400,520,137K,
440,520,680,500,490,138.1K,
840,520,900,440,590,138.5K,
1080,640,1020,480,490,135.5K,
1680,640,1160,500,570,137K,
1800,560,1260,540,655,137.3K,
0,0,0,0,0,151.7K,
0,280,0,1160,4415,146.8K,
0,3080,140,3960,7025,142.4K,
0,10.96K,680,6940,9320,135.9K,
1160,36.68K,5600,11.66K,11.24K,112.2K,
4200,58.28K,13.22K,12.12K,12.45K,90.54K,
5320,64.64K,15.06K,13.06K,12.38K,83K,
7280,70.92K,17.96K,13.42K,12.09K,75.58K,
9720,75.2K,20.02K,14.16K,12.73K,68.18K,
15.08K,83.48K,25.64K,14.98K,12.65K,51.7K,
19.56K,92.24K,31.38K,14.36K,13.19K,37.35K,
30.6K,104.2K,36.58K,14.78K,13.04K,15.16K,
38.72K,111.7K,39.72K,14.86K,13.09K,0,
0,160,0,780,3420,147.3K,
0,2200,40,3140,5400,144K,
0,8160,440,5860,6795,137.7K,
840,28.36K,4780,8100,8140,121.6K,
3400,43.16K,10.22K,9240,8640,103.9K,
5560,47.84K,11.72K,9260,9135,99.2K,
5720,52.08K,14.48K,10.02K,9355,93.34K,
8320,55.32K,16.88K,9700,9335,87.67K,
12.64K,62.84K,20.44K,9800,9305,74.16K,
16.56K,68.08K,23.54K,10.4K,9100,63.85K,
25.76K,75.68K,29.44K,10.62K,9905,46.67K,
32.56K,79.32K,31.9K,10.24K,9935,33.6K,
0,240,0,800,2980,148.5K,
0,2320,80,2920,4890,145.6K,
40,7520,520,4320,6425,140.4K,
960,23.4K,4000,8160,7655,123.2K,
3280,37.6K,9880,8120,8085,108.5K,
4880,41.76K,11.54K,8860,8330,102.2K,
6000,44.48K,13.72K,8780,8420,100.3K,
8200,47.44K,15.12K,8700,8695,93.43K,
11.4K,52.32K,19.68K,9080,8855,83.11K,
16.64K,57.64K,22.58K,9400,8730,72.99K,
25.2K,62.36K,28.64K,9700,8880,56.19K,
29.88K,65.08K,31.64K,10.78K,8855,45.84K,
0,200,0,480,2015,148.3K,
0,1640,100,1740,3460,147.3K,
0,4840,480,3600,4275,143.1K,
600,18K,3260,4820,4995,132.7K,
2440,26.2K,7320,5500,5255,120K,
3720,28.96K,8100,5920,5250,119K,
4480,30.92K,10.28K,5700,5130,114.7K,
5920,32.8K,10.98K,6200,5190,111.4K,
8240,34.64K,14.38K,6600,5380,104K,
11.72K,38.56K,15.7K,6880,5405,95.9K,
18.64K,40.64K,19.56K,6520,5655,84.75K,
22.96K,42.32K,21.86K,6860,5440,78.42K,
0,40,0,180,490,152.1K,
0,280,40,520,950,149K,
0,1160,40,1000,1340,148K,
240,3840,1220,1400,1760,146.3K,
1000,5440,2360,1600,1695,141.6K,
1240,6160,3140,1440,1920,140.8K,
1480,6040,3320,1800,1705,142.6K,
2280,6440,3440,1740,1700,140.8K,
3320,6880,4480,2000,1690,137.3K,
4320,6800,4920,1960,1820,135.1K,
7080,7600,5440,2000,1930,132.4K,
8440,7680,5880,2100,1900,130K,
0,0,0,40,350,150.5K,
0,200,0,260,565,149.4K,
0,440,80,500,805,150.3K,
120,1840,640,920,1085,148.4K,
600,2280,1440,980,1200,147.6K,
880,2600,1940,960,1140,146.5K,
1080,2520,1840,1160,1265,145.3K,
1200,3120,2100,940,1155,143.9K,
1880,3360,2660,840,1165,143.4K,
2680,3320,2980,1080,1255,140.8K,
4000,3520,2840,1180,1130,141.1K,
4960,3600,3320,1080,1210,138.4K,
0,0,0,0,100,149.6K,
0,0,0,120,255,150.5K,
0,80,40,140,320,151.3K,
120,320,300,340,445,149.7K,
480,480,480,460,610,148.8K,
360,440,520,440,590,150.6K,
680,400,600,480,595,149.7K,
720,440,740,500,545,148.2K,
920,440,1080,400,590,146.8K,
1160,520,1040,560,580,147.8K,
1600,560,1080,600,590,146.7K,
2200,720,880,480,540,145.2K,
0,0,0,0,0,155K,
0,240,0,1220,4495,151.4K,
0,3200,80,4360,7275,147.4K,
0,12K,620,7280,9355,139.5K,
1200,39.24K,5560,11.58K,11.5K,117.2K,
4320,61.92K,13.5K,12.4K,12.14K,92.23K,
6160,66.52K,16.24K,13.04K,12.78K,84.64K,
8320,72.6K,18.74K,14.34K,12.41K,76.7K,
10.48K,77.96K,21.12K,13.98K,13.03K,70.32K,
15.84K,87K,27.02K,13.54K,12.95K,54.91K,
21.24K,95.76K,31.08K,13.8K,13.09K,38.73K,
33.4K,107.6K,36.82K,14.7K,13.04K,15.25K,
41.8K,113.7K,41.68K,15.26K,13.63K,0,
0,280,0,920,3315,153.4K,
0,2880,80,3240,5450,148.7K,
40,9200,700,5720,6855,144.9K,
1040,29.92K,4920,8300,8215,125.2K,
3520,45.6K,11.68K,9440,8765,106.1K,
5200,49.44K,13.3K,9720,8830,101.5K,
6720,54.84K,15.66K,9860,8845,96.12K,
8560,57.32K,16.98K,10.02K,9165,89.74K,
13.72K,64.36K,21K,10.14K,9035,77.83K,
18.2K,70.28K,25.82K,10.8K,9615,66.02K,
27.56K,77.32K,30.74K,10.14K,9785,48.24K,
33.56K,80.56K,33.74K,10.88K,9690,36.6K,
0,320,0,920,2940,151.1K,
0,2160,100,3100,4925,151.7K,
0,8400,800,4660,6385,144.2K,
720,26.12K,4700,7660,7710,128.6K,
4080,38.84K,10.7K,8780,7860,112.8K,
5000,42.32K,12.38K,9320,8365,106.9K,
7120,45.76K,14.56K,9020,8450,101K,
8480,48.64K,16.32K,8960,8360,96.27K,
13.04K,53.64K,20.34K,9660,8410,87.02K,
17.12K,58.84K,22.64K,9580,8820,73.71K,
26.76K,62.88K,27.38K,9880,8905,58.73K,
32.56K,68K,31.2K,9800,8820,47.83K,
0,280,0,640,2025,151.9K,
0,1640,20,1720,3675,152.7K,
40,5760,380,3720,4110,148.3K,
680,19.32K,3200,5280,4895,136.3K,
3040,27.28K,7640,5600,5130,124.2K,
3840,29.64K,9360,5740,5455,120.7K,
4920,31.4K,11.04K,5700,5185,116.8K,
6680,34.56K,11.96K,5840,5435,113.7K,
9680,36.52K,14.36K,6120,5240,106.2K,
13.44K,39.44K,17.52K,5940,5545,98.73K,
20.24K,42.8K,20.04K,6120,5545,89.53K,
22.92K,43.44K,22.06K,6560,5590,80.87K,
0,0,0,180,645,155.6K,
0,280,0,660,1005,153.1K,
0,1280,160,1080,1290,151.6K,
120,3880,1420,1580,1730,149.8K,
1120,5560,2840,1480,1805,146.1K,
1400,6400,3040,1480,1705,145K,
1760,6040,3680,1820,1745,145.2K,
2440,6520,3860,1880,1575,142.6K,
3440,6880,4900,2000,1580,141.3K,
5280,7160,5180,1900,1860,138.8K,
6800,7400,5820,1980,1920,136.6K,
9160,7920,5900,2180,1770,133.7K,
0,0,0,40,370,154.1K,
0,280,0,240,580,156.1K,
0,440,160,500,855,155K,
80,2080,780,960,930,152.5K,
720,2560,1600,920,1105,149.9K,
880,2800,1700,980,1125,149.6K,
1040,2720,1980,1120,1115,148.8K,
1880,3040,2000,1000,1260,148.7K,
2040,3240,2560,1040,1215,148.1K,
3400,3440,2320,1120,1230,148.1K,
4600,3560,2880,1180,1220,144.5K,
5240,3800,3360,1020,1175,144.4K,
0,0,0,20,165,156K,
0,0,40,140,265,155.9K,
0,160,40,100,355,153.4K,
120,320,300,340,455,154.1K,
360,560,560,400,530,153.9K,
400,600,560,520,500,152.1K,
720,520,620,380,565,152.5K,
640,680,820,420,555,152.3K,
1200,480,860,540,615,152.5K,
1240,640,860,460,505,150.7K,
1880,640,1060,640,525,150.4K,
2600,560,1160,640,590,150.5K,
0,0,0,0,0,153.7K,
0,320,0,1140,4510,151.5K,
0,3040,100,4180,7595,146.8K,
0,12.68K,860,7280,9205,139.6K,
840,40K,5640,11.16K,11.51K,116.2K,
4800,62.96K,13.38K,12.68K,12.39K,92.57K,
6360,67.64K,15.6K,14K,12.7K,85.62K,
8080,74.64K,18.6K,13.36K,12.88K,78.13K,
10.16K,78.36K,21.82K,13.66K,12.47K,70.85K,
16.76K,88.04K,26.4K,14.24K,13.28K,54.48K,
21.8K,97.36K,30.78K,14.24K,13.44K,39.06K,
32.6K,108.5K,38.46K,14.88K,13.08K,14.8K,
39.44K,115K,42.46K,15.36K,13.5K,0,
0,280,0,880,3215,153.8K,
0,2520,100,3480,5460,149.1K,
40,9480,480,5180,7440,141.5K,
800,30.6K,5300,8200,8515,124.4K,
3640,46.16K,10.56K,9320,8855,106.3K,
4960,50.52K,13.42K,9460,9090,101K,
6600,55.4K,15.2K,9500,9115,95.46K,
9520,58.52K,16.76K,9980,9295,88.44K,
14.08K,63.76K,20.72K,10.2K,9345,77.54K,
18.88K,70.32K,24.42K,10.64K,9805,64.67K,
27.56K,77.76K,30.56K,10.52K,9425,47.9K,
35.24K,81.08K,33.02K,10.86K,9885,36.1K,
0,240,0,860,3190,154.3K,
0,2440,20,3040,4760,150.5K,
40,8240,540,4900,6390,143.9K,
1240,26.52K,4520,7520,8050,128.7K,
3920,39.28K,10.24K,8740,8335,111.8K,
4800,44K,12.58K,8740,8260,107.6K,
6560,46.16K,14.58K,9220,8690,102.7K,
8760,49.92K,15.8K,9260,8470,95.61K,
12.92K,53.92K,20.36K,9900,8695,86.53K,
17.48K,59.96K,24.84K,9600,8260,74.4K,
26.28K,65K,28.08K,9560,8705,58.93K,
31.4K,67.84K,31.26K,10.4K,8845,47.41K,
0,200,0,660,2240,153.3K,
0,1800,120,2100,3390,149.5K,
40,6040,460,3560,4160,146.2K,
720,19.32K,3440,5160,4870,138.3K,
2560,27.48K,8180,5460,5340,123.6K,
3840,29.32K,9520,6040,5530,121.3K,
4600,32.28K,10.4K,5800,5370,117.7K,
6080,33.68K,11.96K,5880,5875,112.5K,
9120,37.28K,14.4K,6200,5420,106K,
12.4K,39.68K,17.36K,6120,5705,100.1K,
19.56K,42.8K,21.56K,6400,5410,87.71K,
23.6K,42.68K,23.44K,6620,5670,80.6K,
0,40,0,120,615,154K,
0,440,0,700,890,153.7K,
0,1320,220,800,1330,152.3K,
360,3840,1320,1500,1715,150K,
880,4920,2900,1920,1840,146K,
1320,5880,2980,1920,1705,146.2K,
2000,6200,3280,2100,1495,144.9K,
2200,6440,3720,1960,1775,142.2K,
4000,6840,4520,1880,1645,142.9K,
4840,7440,4860,1680,1805,138.4K,
6560,7880,5560,2040,1910,138.4K,
8680,8040,6140,1880,1855,136.4K,
0,0,0,180,295,155K,
0,160,20,300,615,155K,
0,720,100,460,760,153.5K,
280,1800,580,820,1100,152.4K,
560,2480,1560,1020,1125,148.9K,
1200,2960,1840,1000,1080,149K,
1040,2600,2080,1260,1055,149K,
1400,2800,2240,1080,1210,147.5K,
2240,3120,2420,1120,1225,146K,
3040,3480,2540,1280,1135,145.4K,
3920,3360,2880,1280,1175,144.4K,
5160,3640,3220,1320,1125,143.1K,
0,0,0,0,125,154.6K,
0,0,40,80,265,155.6K,
0,80,0,200,380,154K,
120,320,380,280,505,153.6K,
200,520,700,360,580,153.1K,
320,520,740,460,590,151.8K,
560,560,700,420,535,153.8K,
960,560,620,500,440,152.5K,
1040,600,900,500,655,150.6K,
1520,800,1000,420,590,149.3K,
1640,680,1120,560,665,151.7K,
2360,520,1260,640,565,150.2K,
0,0,0,0,0,150.3K,
0,440,0,1260,4535,148.4K,
0,3440,20,3880,7240,143.2K,
40,11.36K,620,7920,9055,136.8K,
1160,39.04K,5580,11.42K,11.42K,113K,
4240,62.16K,12.32K,13.24K,12.19K,91.24K,
5560,68.48K,15.74K,12.94K,12.65K,85.09K,
7400,72.56K,18.16K,13.74K,12.32K,75.5K,
10K,77.88K,21.18K,13.92K,12.99K,68.1K,
14.68K,87.08K,26.38K,14.72K,12.5K,51.51K,
19.76K,97.64K,29.6K,14.78K,12.6K,37.59K,
31.6K,107.4K,37.14K,14.92K,13.04K,15.39K,
38.72K,114.9K,41.62K,15.18K,12.77K,0,
0,160,0,800,3350,148.5K,
0,2400,20,3320,5615,145.7K,
0,9640,620,5660,7080,139.9K,
1080,29.08K,4720,8820,8600,122.7K,
3280,45.72K,11.04K,9380,9375,104.9K,
4920,49K,12.44K,9840,8915,98.35K,
6280,53.44K,13.92K,9820,9495,94.49K,
9200,57.48K,16.62K,10.52K,9280,87.06K,
12.96K,63.76K,20.48K,10.5K,9410,76.12K,
17.92K,70K,23.94K,10.7K,9540,63.25K,
25.84K,77K,28.9K,10.5K,9560,46.8K,
30.88K,81.4K,33.46K,11.04K,9100,34.48K,
0,200,0,740,3030,149.5K,
40,2320,120,2920,4795,146.1K,
40,8200,340,5020,6235,139.9K,
560,26.48K,4260,7180,7815,126K,
3480,40.48K,9400,8280,8355,109.4K,
4720,43.8K,11.64K,8480,8335,103K,
5760,46.48K,14.06K,8980,8365,98.44K,
8120,50.24K,15.2K,9340,8580,94.08K,
12.88K,54.4K,18.84K,9440,8705,83.16K,
15.8K,59.2K,22.38K,9360,8515,71.78K,
23.24K,63.8K,27.9K,10.64K,8425,56.67K,
31.12K,67.28K,30.34K,9760,8985,46.45K,
0,320,0,640,2220,151K,
0,1640,60,2040,3350,147.8K,
40,5480,440,3620,4300,142.2K,
640,18.84K,3360,4880,5190,133.5K,
2800,26.96K,6980,5780,5065,121.9K,
3720,29.8K,8540,5740,5210,116.8K,
4640,31.76K,9720,5840,5550,114.1K,
6040,33.36K,11.78K,5840,5395,110.2K,
8720,37.36K,14.16K,6020,5425,105K,
11.64K,39.96K,16.92K,6020,5420,96.81K,
19K,41.56K,19.52K,6640,5650,85.6K,
22.48K,42.96K,21.88K,6620,5425,78.21K,
0,40,0,140,575,150.3K,
0,280,0,540,1025,150.5K,
40,1320,100,820,1345,147.4K,
120,3840,1420,1560,1620,145.6K,
1320,5480,2420,1640,1765,141.9K,
1040,6040,2720,2040,1800,142.6K,
1760,5960,3820,1660,1925,141.5K,
1840,7040,3940,1460,1735,140.3K,
3360,6440,4140,2100,1780,138K,
4760,7240,4740,1920,1775,136.6K,
6520,7680,5980,2000,1920,132.6K,
8040,7720,6000,1980,1705,131K,
0,0,0,100,380,151.3K,
0,80,0,360,550,150.5K,
0,560,120,520,755,150.1K,
240,1720,560,600,1055,149K,
560,2640,1540,960,1110,147.1K,
760,2600,1760,1180,1065,145.3K,
960,2720,2060,1080,1015,144.8K,
1480,2960,2160,1180,1015,144K,
1880,3240,2600,1020,1100,143.7K,
2680,3440,2620,1320,1080,140.9K,
3960,3600,3020,1220,1150,139.8K,
4960,3600,3400,1260,1165,139.4K,
0,0,0,40,85,150.1K,
0,40,0,60,300,151.5K,
0,80,60,240,365,150.4K,
80,360,220,380,555,150.4K,
320,360,480,520,530,150K,
360,560,640,440,590,147.4K,
680,480,660,460,515,148.9K,
720,360,780,500,630,148.2K,
1000,560,860,420,605,148.1K,
1280,560,1020,480,700,147.5K,
1680,640,1180,600,660,146.6K,
2240,600,1080,560,585,147K,
0,0,0,0,0,143.9K,
0,360,0,1200,4155,140.9K,
0,3120,40,4360,7045,137.6K,
0,11.44K,640,7060,9300,129.3K,
720,38.88K,5480,10.9K,11.29K,108.1K,
4320,61.24K,12K,12.26K,12K,88K,
5120,66.08K,14.68K,13.5K,12.57K,80.08K,
7080,72.24K,16.62K,12.84K,12.65K,72.11K,
9040,76.44K,19.24K,13.34K,12.33K,66.14K,
13.08K,85.96K,25.06K,14K,12.63K,50.48K,
18.76K,94.64K,28.78K,14.76K,12.91K,36.89K,
27.16K,105.5K,35.46K,15.16K,13.2K,14.53K,
35.12K,113K,39.6K,15.08K,12.72K,0,
0,200,0,940,3220,142.4K,
0,2240,60,3000,5565,139K,
0,9000,440,5400,6865,132.9K,
640,28.6K,4220,8440,8635,115.8K,
3360,44.04K,10.02K,9200,9005,99.79K,
4880,49.12K,11.42K,9180,8635,95.33K,
5680,52.6K,13.92K,9920,8945,89.27K,
6760,57.04K,15.36K,9800,9210,83.93K,
12K,63.56K,19.54K,10.1K,9275,71.77K,
16.04K,68.88K,24.06K,10.42K,9610,62.75K,
24.12K,75.88K,27.68K,10.68K,9600,45.33K,
29.32K,80.84K,30.74K,10.08K,9335,33.32K,
0,200,0,900,2830,143.2K,
0,2080,80,2500,4880,140K,
0,7240,400,4740,6325,134.5K,
760,25K,4000,7300,8155,119.6K,
2880,39.32K,9460,8720,8025,103.3K,
4360,42.04K,11.52K,9000,8045,99.33K,
5880,44.92K,12.68K,9140,8275,94.08K,
6920,48.8K,14.92K,9260,8300,89.78K,
10.12K,54.08K,18.3K,9580,8500,79.72K,
14.92K,58.48K,22.34K,9740,8460,69.7K,
22.76K,63.92K,26.18K,10.32K,8540,54.5K,
28.56K,65.88K,29.36K,9920,9075,44.07K,
0,200,0,500,1985,143K,
0,1680,60,1860,3305,139.8K,
0,5520,640,3460,4040,137K,
640,18.04K,2540,5200,4925,126.1K,
2600,26.6K,6380,5500,5250,116.6K,
2760,28.76K,8280,6460,5305,113.5K,
4200,31.84K,8800,5940,5140,111.4K,
5520,32.28K,11.22K,6020,5550,104.4K,
8400,35.84K,12.76K,6400,5295,98.54K,
11.4K,38.64K,16.74K,5820,5650,92.54K,
16.88K,40.84K,19.34K,6420,5790,82.13K,
20K,43.04K,21.48K,6200,5580,74.38K,
0,0,0,60,660,145K,
0,320,0,400,980,143.9K,
0,1320,60,960,1375,141.9K,
80,3640,1120,1500,1695,139.1K,
840,5320,2100,1780,1695,136.7K,
880,6040,2780,1760,1760,134.9K,
1680,5800,3340,1680,1890,133.9K,
1720,6400,3740,1840,1760,133.4K,
3000,7000,3760,1660,1790,130.5K,
4120,6920,4940,2060,1900,130.5K,
6440,7640,5500,1920,1775,127.3K,
7360,7640,6220,2060,1725,124.2K,
0,0,0,100,325,145K,
0,80,20,280,610,143.8K,
0,520,60,600,670,144K,
0,1640,760,820,1035,141.5K,
400,2280,1660,1040,1145,139.9K,
800,2560,1460,980,1190,138.4K,
920,2560,2080,980,1195,139.7K,
1240,2840,2280,1000,1210,138.6K,
2120,3160,2440,1120,1100,136.3K,
2800,3360,2540,920,1130,135.6K,
3440,3720,3240,1160,1070,134.5K,
4800,3840,3380,920,1135,134.3K,
0,0,0,0,120,141.9K,
0,0,0,120,215,143.1K,
0,80,60,220,335,142.5K,
120,160,380,420,540,143.3K,
240,520,500,380,490,141.9K,
360,720,640,380,545,143.7K,
640,400,640,480,530,141.4K,
480,600,640,480,575,141.7K,
800,400,860,600,640,142.1K,
1200,520,860,560,565,141K,
1800,560,1040,640,540,140.2K,
2120,760,1000,500,590,139.8K,
0,0,0,0,0,135.6K,
0,280,0,1200,4420,134.3K,
0,3560,60,3440,6900,130.4K,
0,10.56K,520,6900,8955,121.8K,
480,36.36K,4480,11K,11.42K,101.1K,
3160,57.4K,10.92K,12.04K,11.95K,81.8K,
4400,64.88K,12.8K,12.74K,12.68K,75.8K,
6120,68.56K,15.46K,13.68K,12.47K,68K,
7480,74.12K,18.14K,13.1K,12.6K,61.27K,
11.04K,84.16K,21.7K,14.14K,12.9K,48.12K,
15.08K,92.76K,27.34K,14.26K,12.58K,35.04K,
23.92K,103.6K,33.96K,14.42K,12.95K,13.2K,
32.4K,110.4K,36.72K,15.06K,13.39K,0,
0,160,0,960,3170,133.5K,
0,2080,40,2680,5470,130.4K,
40,7960,320,5480,6695,126.3K,
680,27.08K,4220,8220,8245,110.3K,
2360,41.72K,9080,9260,8860,94.02K,
3440,46.56K,10.82K,9620,8925,89.22K,
4400,51.28K,12.74K,9400,8995,83.86K,
6600,56.08K,14.48K,9680,8780,79.01K,
9920,61.08K,17.56K,10.3K,8875,69.19K,
14.48K,67.68K,21.22K,10K,9085,57.87K,
21.2K,74.4K,26.18K,10.46K,9245,41.55K,
25.56K,78.64K,30.14K,10.68K,9630,31.09K,
0,200,0,780,3015,133.3K,
0,1960,60,2620,4750,131.7K,
0,6880,360,4300,6335,124.5K,
480,24.12K,3780,7180,7490,113.8K,
2760,37.84K,8100,7880,8105,98.09K,
3800,40.84K,9980,8680,7950,94.3K,
5040,43.96K,11.54K,8700,8125,88.17K,
6000,47.24K,14.44K,8680,8365,84.24K,
9680,51.76K,16.58K,9420,8595,75.01K,
13.48K,57.16K,20.74K,9240,8785,65.9K,
19.88K,61.8K,25.54K,9960,8820,51.27K,
23.64K,65.12K,27.38K,10.16K,8815,41.74K,
0,280,0,360,1920,135K,
0,1880,40,1740,3165,132.3K,
0,5320,360,3480,4000,130.2K,
400,17.6K,2420,4880,4620,120.3K,
2160,26.12K,6100,5380,4965,109.5K,
2600,27.44K,6820,5880,5225,107.5K,
3360,30.6K,8900,5480,5295,104.3K,
4480,31.52K,10.42K,6260,5325,100.5K,
6600,35.72K,12.8K,6060,5395,92.82K,
8880,37.56K,14.8K,6020,5665,87.25K,
14.48K,40.52K,18.56K,6020,5500,76.94K,
19.12K,42.28K,19.18K,6240,5690,71.61K,
0,0,0,140,530,135.9K,
0,320,0,440,990,134.7K,
0,1080,60,940,1265,134.7K,
120,3840,900,1480,1550,133.1K,
840,5160,2020,1820,1635,127.7K,
920,5560,2560,1840,1770,127.7K,
1560,6080,2940,1660,1730,127.6K,
1440,6360,3100,1760,1730,124.7K,
2760,6800,3880,1920,1720,124.8K,
3320,7280,4200,1740,1740,121.4K,
5040,7600,5180,1940,1875,118.7K,
6800,7560,5620,1980,1800,117.4K,
0,0,0,20,345,136.6K,
0,160,0,280,555,135.9K,
0,480,120,540,730,134.5K,
160,1720,460,780,955,134.5K,
480,2480,1400,860,1135,132.6K,
480,2520,1720,900,1125,131.8K,
640,2840,1800,1040,1095,130.7K,
960,3000,1800,880,1190,130.9K,
1440,3360,2300,900,1145,128.5K,
2160,2960,2580,1120,1140,128.6K,
3640,3320,2740,1100,1260,126K,
4320,3560,3140,1060,1235,126.4K,
0,0,0,0,145,135.7K,
0,0,0,80,205,137K,
0,40,40,220,345,135K,
80,160,260,300,475,136.9K,
320,440,500,460,520,133.8K,
160,520,720,360,620,134.3K,
480,360,580,540,575,134.1K,
400,600,700,440,535,134K,
920,400,840,520,565,133K,
1040,560,640,620,560,132.1K,
1600,720,940,500,665,131.4K,
1960,600,1060,560,630,132.1K,
0,0,0,0,0,127K,
0,240,0,740,4250,125.5K,
0,2200,40,3580,6870,120.9K,
40,9320,280,6780,8690,114.1K,
440,33.88K,3960,11.2K,11.15K,95.34K,
2880,55.44K,8940,12.3K,11.88K,76.57K,
3800,60K,11.44K,13.1K,12.05K,69.88K,
4960,65.6K,13.58K,12.74K,12.39K,64.72K,
6160,71.64K,15.6K,12.76K,12.46K,58.15K,
9280,82.12K,20.98K,13.44K,12.6K,44.79K,
14.04K,87.88K,24.96K,13.82K,13.29K,31.51K,
21.84K,98.12K,31.18K,14.64K,12.91K,12.86K,
26.2K,107K,35.28K,15.32K,13.04K,0,
0,0,0,740,3140,127.4K,
0,1960,80,2540,5075,122.5K,
40,7680,200,4780,6675,117.9K,
360,23.8K,3480,8220,8210,103.4K,
2160,40.68K,7360,8940,8645,88.43K,
2840,45.44K,9180,9440,8645,83.78K,
4040,48.68K,11.74K,9720,9075,78.74K,
5360,52.48K,13.52K,9500,9270,73.72K,
8480,59.88K,15.86K,9260,8935,63.39K,
11.4K,64.84K,20.16K,10K,8835,53.87K,
17.24K,71.84K,24.54K,10.44K,9340,39K,
22.92K,75.48K,27.52K,10.92K,9340,29.29K,
0,120,0,660,2820,126.2K,
40,1600,40,2520,4625,123.2K,
0,6480,380,4300,6125,119.2K,
560,22.32K,3300,7500,7360,105.6K,
2320,35.92K,7660,8340,7695,92.7K,
3280,38.32K,9060,8200,8190,87.59K,
4120,41.68K,10.74K,8940,8135,83.63K,
5520,45.44K,12.88K,8120,8535,78.07K,
7200,50.24K,15.76K,9240,8500,70.23K,
10.68K,55.68K,18.64K,9300,8835,61.06K,
17.32K,59.04K,23.3K,10.2K,8755,48.33K,
21.2K,63.68K,25.38K,9660,8830,39.17K,
0,160,0,340,1965,125.6K,
40,1400,40,1920,3085,124.5K,
0,4720,340,3040,4190,121.3K,
280,15.76K,2360,5080,4705,111.6K,
1760,24.68K,5380,5400,5275,103.3K,
2360,26.92K,6540,5680,5225,99.92K,
3400,29.36K,7660,5560,5200,96.88K,
3680,30.96K,9120,5840,5320,93.81K,
5960,34.44K,10.72K,5600,5485,88.2K,
8240,36.28K,13.94K,6080,5620,80.22K,
11.64K,39.72K,17.34K,6420,5480,71.2K,
15.16K,41.44K,19.02K,6720,5395,65.96K,
0,0,0,120,560,127.6K,
0,280,0,460,960,126.1K,
0,1120,120,760,1235,126.4K,
160,3440,780,1440,1750,121.5K,
720,5080,2000,1460,1730,121.1K,
640,5280,2400,1760,1840,119.9K,
960,5720,2780,1700,1835,119.4K,
1320,6240,2880,1740,1775,117.2K,
2200,6280,3840,2000,1775,116.7K,
3120,7200,4280,2000,1680,114.4K,
5280,7600,5060,1960,1575,110.8K,
5920,7400,5480,2020,1895,109.5K,
0,0,0,60,310,126.5K,
0,80,0,320,620,126K,
0,400,80,540,700,126.1K,
40,1760,320,660,1060,123.4K,
480,2400,960,880,1060,122.8K,
400,2560,1280,800,1210,122.8K,
800,2760,1420,1000,1245,120.8K,
880,2960,1680,840,1070,120.6K,
1160,2920,2520,1160,1080,121.8K,
2040,3000,2680,1060,1185,120.5K,
3080,3240,2540,1200,1160,118.2K,
3400,3440,3160,1080,1170,116.6K,
0,0,0,40,140,127.6K,
0,0,0,40,235,128.1K,
0,40,20,180,315,126.4K,
0,160,320,300,475,125.1K,
360,600,260,220,575,126.5K,
200,280,500,480,550,125.4K,
320,520,520,400,540,125.5K,
480,320,680,560,560,125.3K,
720,520,760,500,500,123.5K,
880,560,880,480,550,124.4K,
1280,840,860,500,640,124.3K,
1680,600,900,520,555,122.8K,
0,0,0,0,0,118.7K,
0,240,0,800,3870,115.9K,
0,2120,0,3300,6650,111.5K,
0,8560,300,6620,8330,107.5K,
480,31.12K,3280,10.74K,11.14K,88.28K,
2240,51.64K,8260,12.18K,11.85K,69.9K,
3600,56.84K,10.08K,12.44K,11.99K,64.45K,
3760,62.56K,12.68K,12.96K,12.04K,58.19K,
4600,66.52K,14.38K,13.14K,12.18K,53.54K,
8080,77.16K,18.34K,13.38K,12.64K,40.8K,
11.88K,85.04K,21.46K,14.48K,12.93K,30.01K,
19K,95.76K,27.38K,15.1K,12.93K,11.56K,
22.72K,102.5K,30.36K,15.28K,12.84K,0,
0,40,0,660,2915,115.3K,
0,1600,100,2400,5110,114.2K,
40,6360,240,4840,6580,110.5K,
440,23.56K,2720,8120,7915,95K,
1640,38.96K,7220,8520,8890,82.42K,
2360,43.12K,8540,9220,8790,77.34K,
3200,45.52K,10.58K,9260,8925,72.32K,
4440,49.96K,12.34K,9820,8985,68.78K,
6240,56.52K,14.96K,9960,8935,58.76K,
9600,61.92K,18.64K,9260,8990,49.76K,
15.36K,69.4K,21.84K,10.34K,9220,36.2K,
18.56K,73.68K,24.96K,10.7K,9780,27.68K,
0,40,0,620,2620,118K,
0,1360,20,2360,4590,115.2K,
0,5680,200,4820,5805,110.8K,
400,21.44K,2340,6600,7065,97.72K,
1600,33.44K,6320,7580,7985,85.33K,
2200,35.96K,8260,8940,7825,80.88K,
3160,39.96K,9720,8600,8155,76.16K,
4360,43.24K,11.38K,8700,8145,74.58K,
6120,48.6K,14.46K,9320,8490,65.15K,
9360,53.92K,16.68K,9320,8425,56.26K,
14.92K,58.24K,21.08K,9040,8845,44.91K,
18.88K,62.64K,23.34K,9300,8635,36.65K,
0,200,0,200,1810,118K,
0,1080,0,1660,3015,116K,
40,3840,240,3560,4065,112.2K,
520,15.2K,1540,4760,4870,103.1K,
1040,23.6K,4760,5240,5025,95.53K,
2160,25.48K,5880,5460,5170,92.39K,
2400,28.28K,6780,5540,4925,89.88K,
3800,29.52K,7580,5900,5210,86.84K,
4520,32.88K,10.38K,6080,5285,81.03K,
7480,35.76K,12.54K,5800,5365,75.96K,
10.96K,38.32K,15.7K,6440,5550,65.74K,
13.88K,40.28K,17.92K,6320,5390,60.61K,
0,0,0,160,565,118K,
0,200,20,540,900,116K,
0,1080,20,920,1150,116.2K,
120,2960,720,1480,1575,114.6K,
560,4440,1880,1700,1735,113K,
640,5440,1840,1540,1830,111.2K,
800,5520,2540,1920,1755,110.2K,
1120,6160,2520,1480,1795,109.8K,
1560,6400,3720,1860,1725,108.6K,
2560,7040,4140,1760,1840,105.6K,
4440,7440,4540,1700,1770,104.1K,
5120,7640,4800,2240,1895,101.9K,
0,0,0,20,295,117.6K,
0,80,0,220,635,117.4K,
0,280,60,380,825,117.7K,
0,1600,560,760,1030,117.5K,
320,2360,920,920,965,114.2K,
560,2480,1160,780,1095,114.1K,
360,2680,1500,1000,1035,112.8K,
680,2720,1720,760,1205,113.4K,
1040,2680,2000,1140,1205,113.1K,
1680,3080,2020,1140,1060,112.2K,
2640,3280,2520,1100,1205,110.6K,
3240,3440,3100,1020,1135,108.6K,
0,0,0,0,90,118.9K,
0,40,0,40,195,118.2K,
0,40,20,120,305,118.1K,
80,320,220,220,450,118.1K,
160,440,400,380,520,115.8K,
240,400,380,480,500,116.6K,
520,360,400,500,535,117.4K,
440,400,480,480,550,117.2K,
560,600,780,460,540,115.2K,
760,520,780,520,535,116.7K,
1040,760,940,400,640,113.8K,
1440,560,1020,660,595,114K,
0,0,0,0,0,110K,
0,200,0,600,3590,107.9K,
0,1680,40,2900,6320,104.5K,
0,7320,260,5860,8465,97.96K,
280,28.88K,3200,9780,11.03K,81.57K,
1280,47.24K,7300,11.78K,11.89K,65.65K,
2040,53.04K,9340,12.14K,11.42K,59.57K,
3040,58.52K,11.56K,12.54K,12.53K,54.41K,
3840,63.52K,12.4K,12.4K,12.24K,50.13K,
6640,71.2K,16.5K,14.1K,12.55K,38.91K,
9400,80.36K,20.38K,13.88K,12.91K,27.87K,
15.28K,90.88K,25.08K,13.66K,12.7K,11.01K,
17.64K,98.28K,28.64K,14.44K,13.09K,0,
0,160,0,560,2620,108.5K,
0,1240,60,2260,4635,106K,
0,5400,240,4580,6450,100.7K,
120,21.8K,2520,7840,7870,88.36K,
1400,36.04K,6120,9020,8490,75.05K,
2400,40.92K,7600,9460,8480,72.21K,
3000,42.96K,9280,9320,8785,67.04K,
3480,47.08K,10.72K,9420,8770,63.1K,
5440,52.88K,13.06K,9680,9175,54.62K,
7840,58.32K,16.3K,9900,9055,45.78K,
12.64K,65.44K,20.8K,10.34K,9155,32.9K,
15.96K,70.4K,22.7K,10.36K,9560,25.24K,
0,120,20,560,2420,107.8K,
0,1320,0,2000,4430,104.9K,
40,5080,320,4280,5310,101.6K,
240,19.12K,1920,7080,7210,89.96K,
1360,31.2K,5760,7640,7720,78.9K,
1800,33.48K,7260,8960,8035,75K,
2720,38.2K,8460,8720,7790,70.9K,
3720,39.92K,9820,8620,8400,67.52K,
5640,45.96K,12.44K,8920,8090,60.06K,
7280,50.84K,14.42K,9480,8665,52.51K,
12.6K,55.88K,19.02K,9200,8710,40.68K,
15.6K,58.88K,21.74K,9620,8665,33.59K,
0,40,0,380,1690,107.9K,
0,920,0,1240,2835,106.3K,
0,3760,100,3120,3900,103.3K,
200,14.72K,1680,4620,4540,96.17K,
1240,21.68K,4340,5260,4845,89.27K,
1520,23.64K,5400,5620,5435,86.71K,
1920,25.84K,6660,5420,5130,82.75K,
2240,27.84K,7200,5800,5215,80.77K,
4400,31.88K,9200,5640,5470,74.56K,
5520,33.2K,11.42K,6300,5535,69.62K,
8040,36.24K,14.14K,6720,5585,62.12K,
11.12K,38.36K,15.76K,6260,5485,55.76K,
0,0,0,120,520,110K,
0,80,0,380,910,109.7K,
0,1040,100,800,1090,108.3K,
120,2960,640,1320,1625,105.6K,
360,4720,1500,1280,1720,103.4K,
720,4960,1640,1900,1780,102.9K,
520,5080,1780,1840,1815,101.3K,
520,5880,2620,1520,1805,101.9K,
1440,6200,3200,1800,1895,99.42K,
1960,6800,3700,1880,1680,98.92K,
2840,7040,4460,1920,1815,96.36K,
4560,7880,4620,1900,1690,94.01K,
0,0,0,80,200,109.4K,
0,40,20,280,450,110.1K,
0,280,20,400,600,107.4K,
80,1440,400,720,930,107K,
320,2160,920,760,1065,105.9K,
280,2320,1120,980,1050,106.3K,
560,2280,1400,980,1245,104.2K,
400,2800,1540,820,1130,103.3K,
840,2720,1720,1140,1170,104.8K,
1280,3040,2220,1040,1065,103K,
2120,3440,2420,1020,1060,102K,
2280,3200,2840,1080,1100,100.2K,
0,0,0,0,75,108.5K,
0,0,0,40,215,109.7K,
0,0,80,100,320,109.7K,
40,120,140,420,455,108.4K,
120,600,260,280,430,108.4K,
120,480,420,320,485,107K,
360,320,420,480,595,106.2K,
360,440,640,340,625,107.2K,
600,360,660,540,555,106.2K,
600,640,780,400,645,108.2K,
1040,560,800,680,570,107.4K,
1000,600,1120,580,510,106.1K,
0,0,0,0,0,100.2K,
0,120,0,560,3550,98.01K,
0,1200,40,2520,6345,94.63K,
0,6360,160,5660,8375,91.49K,
280,25.6K,2540,9880,11.01K,75.46K,
1240,44.16K,5820,11.7K,11.69K,60.68K,
1840,49.72K,7460,11.76K,11.97K,55.24K,
2360,55.28K,9400,12.14K,11.9K,50.81K,
3360,58.2K,10.96K,12.8K,12.24K,46.05K,
5520,66.4K,14.82K,13.52K,12.55K,35.16K,
8120,75.84K,18.16K,13.54K,12.54K,25.3K,
11.2K,85.96K,23.52K,14.56K,12.85K,9485,
16.44K,93.4K,25.92K,14.36K,12.89K,0,
0,40,0,500,2515,99.5K,
0,1240,60,1920,4700,96.59K,
0,4760,180,3820,6480,93.82K,
280,20.08K,2080,7480,7655,80.97K,
1120,33.08K,5680,8520,8470,69.87K,
1440,37.32K,6980,9100,8710,65.59K,
2320,39.68K,7460,8420,8650,62.21K,
2880,43.96K,9400,8740,9025,58.73K,
4840,50.32K,11.5K,9480,8860,49.49K,
6400,56K,14.98K,9760,9140,42.63K,
10.88K,62.8K,17.86K,10.14K,9135,31.41K,
13.08K,68.32K,20.84K,10.18K,9665,23.5K,
0,40,0,520,2410,99.39K,
0,1120,20,2200,3955,98.12K,
0,4160,140,4140,5515,94.78K,
120,17.64K,2060,6180,7190,83.98K,
600,28.04K,5340,7900,7780,71.86K,
1440,32.68K,5680,8120,8255,69.47K,
2560,35.6K,7240,8540,7765,65.99K,
2480,37.68K,8440,8260,8200,63.51K,
4240,44.52K,11.12K,8780,8370,55.74K,
6000,47.6K,14.52K,9000,8395,48.08K,
10.04K,53.76K,17.62K,9360,8875,37.66K,
12.88K,57K,19.2K,9720,8715,31.34K,
0,40,0,320,1680,100.1K,
0,680,0,1420,2780,98.26K,
0,3160,200,3180,3645,95.03K,
240,12.44K,1420,4820,4530,89K,
760,20.2K,4000,5040,4950,81.92K,
1040,22.52K,4100,5380,4995,79.1K,
1440,23.96K,5900,5620,4830,75.98K,
2080,26.68K,6480,5940,5210,73.13K,
2920,29.52K,8160,6280,5105,69.29K,
4320,32.44K,10.66K,5580,5510,64.33K,
7080,35.24K,12.98K,5880,5665,57.29K,
9720,38.32K,14.52K,5880,5445,52.89K,
0,0,0,40,405,101.6K,
0,120,20,300,935,99.96K,
0,720,40,760,1075,100.6K,
160,2800,480,1300,1575,98.59K,
200,4640,1420,1300,1635,95.2K,
160,5040,1860,1540,1655,94.29K,
560,5200,2140,1560,1640,93.87K,
800,5600,2100,1700,1700,93.63K,
1320,6360,2820,1560,1670,91.95K,
1880,6360,3060,2020,1680,90.94K,
2480,6760,3700,2060,1720,87.77K,
3600,7120,4280,1740,1835,86.52K,
0,0,0,80,235,101.9K,
0,0,0,200,475,100.7K,
0,200,40,380,730,100.9K,
0,1440,260,640,855,99.05K,
200,2160,840,680,935,97.05K,
200,2280,1040,940,1070,96.94K,
360,2200,1140,1020,1060,96.94K,
680,2480,1320,860,1150,97.47K,
920,2840,1460,920,1085,95.39K,
880,2880,1980,1020,1150,94.84K,
1840,3240,2200,900,1150,94.52K,
2160,3160,2700,1100,1300,92.72K,
0,0,0,0,85,101.9K,
0,0,0,40,170,100K,
0,40,20,80,255,101.6K,
0,200,100,220,520,101.3K,
120,320,300,360,570,100.2K,
120,440,480,280,515,100.6K,
160,480,460,260,620,100.5K,
400,520,720,360,550,99.39K,
440,400,640,460,620,97.38K,
720,440,600,520,605,98.66K,
880,680,800,520,545,98.31K,
1120,560,880,460,550,98.13K,
0,0,0,0,0,94.7K,
0,120,0,460,3285,90.98K,
0,1120,20,2540,5890,87.49K,
0,5840,160,5360,7990,84.13K,
160,23.52K,1900,9160,10.2K,68.91K,
1120,40.04K,5360,11.56K,11.46K,55.74K,
1240,45.24K,6660,11.78K,12.15K,52.26K,
1920,50.48K,8580,12.08K,11.95K,45.86K,
2280,54.76K,10.54K,12.54K,11.77K,42.5K,
3960,64K,13.22K,12.56K,12.04K,32.99K,
6920,71.32K,16.2K,13.2K,12.52K,23.48K,
9920,81.84K,20.16K,13.76K,12.53K,9520,
12.8K,87.36K,24.64K,14.7K,12.94K,0,
0,80,0,520,2280,91.69K,
0,1080,0,1740,4325,89.69K,
0,4280,200,4360,5910,86.11K,
280,17.92K,1720,6940,7800,75.41K,
920,31K,4540,8040,8495,64.59K,
1520,34.2K,5240,8480,8875,60.64K,
1400,38.36K,6720,8560,8535,56.42K,
2200,41.56K,7720,8700,8925,54.64K,
3320,47.68K,10.74K,9940,8960,47.22K,
5240,52.04K,13.62K,10.26K,9070,39.13K,
8680,59.32K,16.56K,10.08K,9555,28.43K,
10.64K,64.64K,19.4K,10.22K,9160,21.77K,
0,0,0,420,2205,90.58K,
0,800,40,1760,3885,89.13K,
0,3480,120,3480,5510,86.38K,
120,15.8K,1780,6200,7110,76.48K,
800,26.76K,4360,7420,7670,66.51K,
1480,29.88K,5760,7900,7865,64.46K,
1640,33.12K,6180,7980,7770,61.36K,
1840,36.08K,8080,8120,8035,57.11K,
3360,41.68K,10.46K,8700,8145,52.25K,
4800,45.52K,12.24K,8720,8400,44.28K,
8280,51.2K,15.34K,9340,8390,35.1K,
11.52K,54.96K,17.9K,9320,8460,28.18K,
0,40,0,240,1500,91.94K,
0,560,60,1220,2630,90.81K,
0,2680,160,2480,3760,88.51K,
160,11.32K,1020,4660,4480,81.97K,
480,19.24K,3040,4760,4680,74.82K,
520,20.76K,3760,5360,5260,71.92K,
1360,22.92K,4720,5380,5010,69.56K,
1920,24.52K,5500,5740,4975,68.09K,
2440,27.4K,7140,5640,5360,62.99K,
4360,29.56K,9000,6360,5635,60.26K,
6320,34.68K,12.24K,6000,5355,52.48K,
7160,36.2K,13.46K,6720,5540,48.42K,
0,0,0,80,390,92.99K,
0,80,0,340,865,92.02K,
0,600,60,720,1050,92.61K,
0,2560,400,1300,1580,90.67K,
240,4240,1240,1340,1700,87.35K,
360,4640,1460,1500,1595,88.14K,
240,4840,1980,1600,1635,86.52K,
720,4760,2100,1840,1765,86.47K,
1120,5520,2660,1920,1790,86.24K,
1360,5880,3100,2060,1830,82.48K,
2560,6680,3720,2140,1585,82.04K,
3360,6960,4240,1840,1730,79.91K,
0,0,0,0,310,92.98K,
0,40,0,100,425,90.84K,
0,320,20,300,710,92.48K,
0,1320,260,660,875,91.29K,
120,1840,700,720,1110,89.91K,
240,2240,960,700,1075,89.65K,
360,2280,1120,880,1090,88.03K,
600,2320,1060,960,1145,90.12K,
680,2640,1560,940,1060,88.17K,
880,2800,1740,1140,1130,88.64K,
1240,3120,2220,1080,1145,87.13K,
1680,3000,2620,1140,1160,86.26K,
0,0,0,0,100,92.67K,
0,0,0,20,190,93.83K,
0,40,20,100,315,93.14K,
40,160,100,320,410,93.04K,
40,360,300,220,565,92.24K,
160,360,220,380,550,92.53K,
80,360,500,400,475,91.86K,
160,400,400,400,595,92.21K,
160,560,500,460,480,91.6K,
480,520,520,420,610,90.5K,
880,480,560,480,505,91.14K,
1120,520,920,540,525,90.14K,
0,0,0,0,0,87.13K,
0,80,0,440,3320,84.82K,
0,1120,20,2280,5725,82.08K,
0,4680,160,4880,7995,78.61K,
120,20.36K,1940,9800,10.21K,65.28K,
760,37.2K,4480,10.82K,11.41K,52.47K,
960,42.24K,5840,11.54K,11.7K,46.88K,
1920,46.32K,7140,11.86K,11.67K,43.34K,
2400,51.68K,8840,12.06K,11.78K,39.38K,
3720,59.76K,11.4K,12.76K,12.41K,30.28K,
4880,67.88K,14.82K,13.08K,12.49K,21.74K,
8720,77.68K,18.48K,13.46K,12.28K,8770,
10.64K,82.88K,22.14K,14.22K,12.72K,0,
0,0,0,360,2315,85.59K,
0,680,40,1760,4225,82.96K,
0,3920,100,3860,5760,79.99K,
80,15.92K,1440,6980,7695,71.23K,
400,28.48K,3700,7900,8595,59.1K,
920,32.04K,5400,8180,8630,56.58K,
1360,35.6K,5900,8540,8995,52.91K,
1880,39.24K,7160,8480,8745,50.12K,
2760,45.16K,10.08K,9420,8630,43.4K,
3960,48.68K,12.48K,9700,9095,36.87K,
6680,58.28K,15.16K,9240,9015,26.78K,
9240,61.52K,17.14K,10.24K,9230,20.31K,
0,40,0,360,2055,84.5K,
0,680,0,1160,3870,83.24K,
40,3200,120,3280,5275,80.68K,
120,14.36K,1280,6020,7290,71.53K,
640,24.08K,3920,8280,7480,62.68K,
1320,29.16K,4560,7440,7750,58.91K,
1200,31.4K,5800,7880,8100,56.4K,
1800,32.68K,6900,8320,7845,54.32K,
2440,38.56K,9280,8420,8635,47.09K,
4240,42.28K,11.24K,8640,8305,42.27K,
5840,48.28K,15.04K,9360,8850,32.95K,
9280,52.52K,16.12K,9120,8695,26.53K,
0,40,0,220,1360,84.46K,
0,480,0,1080,2520,84.14K,
0,2520,100,2320,3635,82.56K,
200,10.44K,880,4340,4520,76.97K,
520,18.16K,2500,4880,4885,69.42K,
840,20.24K,3140,5280,4925,68.05K,
1040,21.36K,4280,5380,4910,66.23K,
1640,23.36K,4260,5360,5465,63.8K,
2080,25.96K,6420,5660,5350,59.11K,
3360,28.6K,8720,5900,5410,54.8K,
5400,32.6K,10.66K,6540,5450,48.94K,
6440,34.72K,12.46K,5960,5335,45.43K,
0,0,0,60,500,85.87K,
0,40,0,240,815,86.8K,
0,480,20,700,1085,84.15K,
0,2200,300,1240,1540,83.94K,
40,3960,1020,1320,1615,82.63K,
160,4160,1280,1460,1675,81.49K,
440,4640,1320,1380,1795,79.54K,
560,4840,1480,1700,1650,80.74K,
840,5480,2520,1780,1725,78.66K,
880,6040,3380,1620,1710,77.8K,
2240,6440,3560,1700,1600,75.49K,
2280,6560,3820,1760,1785,74.93K,
0,0,0,0,210,86.35K,
0,0,0,200,350,85.68K,
0,200,0,320,610,86.34K,
0,920,220,720,915,84.05K,
40,1880,640,780,945,83.34K,
80,2040,740,740,1050,83.63K,
280,2200,860,880,1060,83.73K,
320,2320,1020,640,1115,82.78K,
480,2360,1360,1060,995,82.07K,
640,2920,1700,820,1085,80.82K,
960,3120,2300,1060,1080,81.62K,
1520,3080,2100,1120,1045,79.66K,
0,0,0,0,95,87.14K,
0,0,0,20,195,85.91K,
0,40,0,120,310,86.01K,
0,120,100,260,465,86.1K,
80,120,320,320,550,85.94K,
120,240,300,360,525,84.64K,
160,440,240,420,500,85.62K,
160,440,360,440,525,85.95K,
240,520,580,340,500,85.7K,
280,520,520,480,520,85.57K,
520,360,600,560,635,83.92K,
800,440,700,560,575,84.78K,
0,0,0,0,0,80.56K,
0,80,0,480,2790,80.08K,
0,840,60,2240,5465,77.15K,
0,4880,120,4360,7885,73.38K,
160,18.88K,1360,8520,10.29K,61.62K,
440,34.96K,3940,11.08K,10.95K,48.62K,
920,39.84K,5020,11.3K,11.4K,44.56K,
1040,44.12K,6300,11.78K,11.45K,41.1K,
1560,48.16K,8200,11.3K,12.1K,36.29K,
2880,56.36K,10.06K,12.44K,11.67K,28.62K,
3840,63.6K,12.82K,13.26K,12.37K,20.31K,
6960,72.68K,17.86K,13.62K,12.8K,8150,
8680,78.36K,20.28K,14.52K,12.93K,0,
0,160,20,240,2165,79.71K,
0,640,0,1600,4155,79.45K,
0,3280,20,3540,5890,75.96K,
200,14.6K,1020,7060,7215,65.52K,
400,27.28K,3300,7680,8330,56.69K,
600,29.44K,4640,8140,8405,53.49K,
1520,32.68K,5440,9200,8550,50.26K,
1280,35.88K,6440,9080,8655,46.51K,
2680,41.32K,8200,9380,8670,40.97K,
3200,47.08K,10.44K,9800,8910,33.86K,
6120,54.56K,13.04K,9480,9260,24.79K,
8360,58.4K,15.9K,10K,9540,18.87K,
0,40,0,280,2010,78.91K,
0,480,20,1160,3740,78.81K,
0,2720,140,3100,4945,75.67K,
40,12.96K,1300,6060,6935,67.96K,
480,23K,3080,7420,7255,59.26K,
720,26.36K,4120,7140,7930,55.67K,
1040,29.32K,4940,7520,7745,52.55K,
1360,31.2K,6080,7640,7995,50.33K,
2680,35.72K,8620,8600,8365,44.75K,
3960,40.68K,9860,8800,7960,39.17K,
5520,47.28K,12.62K,8840,8260,31K,
6800,50.04K,15.46K,8920,8720,25.58K,
0,0,0,280,1140,80.15K,
0,400,20,940,2650,79.87K,
0,1880,100,2360,3665,78K,
40,9240,780,4820,4205,70.81K,
440,16.44K,2620,4720,4710,65.67K,
1120,18.32K,2960,5360,4875,63.08K,
1000,20.16K,3860,5420,5005,62.88K,
1320,21.68K,4340,5460,5145,60.16K,
1880,24.48K,5640,5680,5280,55.89K,
2600,27.8K,7160,5940,5345,51.16K,
4160,32.16K,10.12K,5740,5435,46.16K,
5920,33.6K,10.38K,5920,5315,42.69K,
0,0,0,20,460,81.17K,
0,80,0,280,735,81.14K,
0,320,0,620,1005,81.04K,
0,1880,320,1320,1390,78.96K,
40,3520,900,1520,1570,77.3K,
280,3800,1160,1540,1610,77.09K,
160,4040,1260,1560,1660,76.38K,
320,4960,1660,1440,1765,75.28K,
520,4960,2060,1760,1750,74.67K,
840,5600,2620,1720,1625,71.99K,
1600,6000,2980,1820,1580,72.46K,
2200,6400,3820,1720,1870,69.85K,
0,0,0,0,205,80.05K,
0,0,0,160,385,81.63K,
0,160,0,260,615,80.18K,
0,720,160,640,845,79.63K,
0,1600,620,960,1010,78.63K,
160,1920,680,700,985,77.65K,
280,2200,680,740,1025,78.52K,
160,2200,820,840,1020,78.01K,
320,2440,1420,700,1035,78.12K,
640,2600,1420,820,1115,77.51K,
920,3160,1820,960,1060,76.17K,
1200,3040,2080,1020,1210,75.87K,
0,0,0,0,80,81.9K,
0,0,0,20,160,80.18K,
0,0,0,140,275,81.09K,
0,160,120,220,380,80.43K,
40,200,220,280,465,80.14K,
80,280,320,240,525,80.12K,
80,480,200,400,530,80.39K,
120,320,420,460,540,81.43K,
240,480,500,420,535,78.85K,
400,360,500,440,565,79.71K,
400,640,660,340,545,78.99K,
400,520,740,580,610,79.66K,
0,0,0,0,0,76.22K,
0,40,0,320,2730,76.2K,
0,520,0,2060,5405,72.6K,
0,3800,160,4440,7350,69.03K,
0,18.12K,1260,8120,10.15K,57.06K,
280,32.12K,3640,10.84K,11.03K,46.6K,
640,36.96K,4220,10.98K,11.38K,42.88K,
1040,41.16K,5660,11.14K,11.21K,38.6K,
1840,46.12K,6840,11.68K,11.58K,34.87K,
2560,52.44K,9160,12.44K,12.08K,26.98K,
3920,60.08K,12.2K,12.2K,12.52K,19.11K,
5320,69.8K,15.64K,13.74K,12.98K,7655,
7640,76.2K,18.1K,13.52K,12.43K,0,
0,0,0,220,2090,75.39K,
0,600,20,1280,3920,73.8K,
0,2520,80,3440,5645,69.83K,
80,13.76K,1060,6620,7375,61.19K,
480,25.32K,2500,7920,8155,53.33K,
920,27.16K,4000,8420,8350,49.82K,
760,31.76K,5020,8420,8440,46.72K,
1000,34.12K,6340,8240,8690,43.89K,
2280,40.16K,7620,8460,8540,38.69K,
2840,45.12K,10.52K,8420,9255,32.41K,
5440,51.8K,13.78K,9500,9090,23.6K,
6600,56.24K,15.32K,9880,9285,17.77K,
0,0,0,220,1875,76.16K,
0,480,0,1220,3435,74.14K,
0,2680,80,2880,5110,70.94K,
40,12.28K,1220,5620,6755,63.66K,
480,21.8K,2860,7180,7215,56.3K,
640,24.8K,3700,7360,7285,53.18K,
880,26.88K,4980,7760,8025,49.84K,
1120,29.92K,5400,7580,8045,47.95K,
2080,35K,7600,7900,7920,41.96K,
3080,38.24K,9640,8420,8085,36.86K,
4800,44.84K,12.08K,9060,8370,28.49K,
6680,47.32K,14.6K,9320,8265,23.23K,
0,0,0,180,1235,74.86K,
0,520,20,820,2525,75.26K,
0,1920,60,2020,3495,72.73K,
80,8720,860,4000,4405,67.17K,
240,14.52K,2180,5140,4885,62.45K,
720,16.4K,2560,5320,5005,60.03K,
760,19.96K,3100,5160,4795,58.57K,
720,20.48K,4120,5620,5165,55.78K,
1400,24.24K,5220,5500,4925,52.6K,
2480,26.44K,6860,5420,5270,48.97K,
3440,31.28K,8700,5720,5390,43.59K,
4920,32.28K,10.84K,6280,5145,39.03K,
0,0,0,120,320,76.91K,
0,80,0,220,740,76.07K,
0,400,0,440,1015,74.97K,
0,1800,320,1320,1375,73.57K,
120,3560,940,1380,1515,71.65K,
160,3840,1060,1380,1545,72.16K,
80,4200,1140,1240,1600,72.16K,
160,4640,1440,1620,1595,71.07K,
720,4560,2040,1860,1740,69.98K,
720,5800,2420,1420,1605,69.29K,
1320,6320,2980,1380,1800,67.22K,
1520,6360,3720,1760,1820,66.1K,
0,0,0,0,230,77.41K,
0,0,20,100,345,78.46K,
0,160,40,300,645,76.23K,
0,1000,80,440,765,75.42K,
40,1520,520,720,1060,73.29K,
240,1920,600,760,840,74.67K,
200,1960,500,720,1165,73.12K,
280,2040,880,920,1180,73.09K,
320,2240,1240,820,1185,72.89K,
520,2280,1500,880,1155,73.03K,
1000,2760,1700,1000,1145,71.3K,
1000,2920,1980,1040,1205,70.7K,
0,0,0,20,45,77.38K,
0,0,0,0,150,77.42K,
0,0,0,100,240,76.27K,
0,120,100,300,330,75.88K,
80,320,120,260,435,74.98K,
40,240,260,400,435,76.02K,
80,240,440,460,590,75.96K,
200,240,360,460,510,76.12K,
280,480,360,400,535,76.2K,
360,440,620,400,535,76.04K,
360,480,620,460,520,76.2K,
840,720,580,460,490,75.02K,
0,0,0,0,0,72.24K,
0,80,0,400,2565,70.91K,
0,440,0,1780,4875,69.69K,
0,3240,80,4000,7330,64.97K,
160,16.36K,1040,8160,9880,54.05K,
240,30.68K,3280,9640,11.25K,43.66K,
440,35K,4360,10.36K,11.42K,40.44K,
840,38.8K,5000,11.28K,11.47K,35.59K,
1360,43.08K,5760,11.56K,11.47K,32.63K,
1640,50.72K,8780,12.04K,11.78K,25.42K,
3240,57.08K,10.18K,12.8K,12.31K,18.72K,
4760,67.4K,14.98K,13.08K,12.18K,7125,
6560,73.16K,18.02K,13.22K,12.77K,0,
0,0,0,220,1925,71.49K,
0,480,60,1440,3505,68.88K,
0,2240,40,3220,5745,66.49K,
160,12.24K,800,6540,7265,57.74K,
320,24.16K,2800,7600,7880,50.18K,
520,25.84K,3460,7480,8340,47.62K,
640,29.52K,4520,7920,8490,44.73K,
960,32.24K,4500,8420,8340,41.68K,
1400,38.36K,7340,8360,8840,36.28K,
3080,43.32K,8160,9460,8915,31.17K,
4280,49.48K,12.1K,9240,8850,22.56K,
5840,53.6K,13.28K,10.18K,9285,17.23K,
0,40,0,180,1695,72.32K,
0,360,0,1180,3480,70.03K,
0,2200,60,2760,4890,68.3K,
80,11.92K,840,5500,6705,60.7K,
240,20.48K,2680,6920,7575,51.94K,
560,23.28K,3160,6900,7750,50.44K,
800,25.48K,3660,7660,7850,47.49K,
1280,28.6K,4120,7960,7590,45.26K,
1640,32.48K,6660,8180,7890,40.95K,
2520,37.16K,8580,8460,8320,35.03K,
4480,43.08K,11.32K,8760,8380,27.34K,
5400,45.68K,13.48K,8740,8240,22.98K,
0,40,0,140,1200,71.96K,
0,480,0,880,2480,70.41K,
0,1720,0,1860,3710,68.75K,
120,7800,540,4220,4240,63.56K,
320,14.4K,1640,4800,4610,57.93K,
360,15.6K,2380,5440,5190,56.66K,
560,18.08K,2880,5320,4865,54.96K,
680,19.76K,3260,5420,5255,54.08K,
1480,23.52K,4700,5060,5020,49.02K,
1280,25.48K,6800,5800,5175,46.25K,
3280,29.64K,8380,5520,5345,41.51K,
4320,30.72K,9980,6060,5275,37.42K,
0,0,0,20,370,71.8K,
0,120,0,200,670,72.56K,
0,400,20,500,935,71.33K,
0,1920,360,1060,1420,71.55K,
80,2960,980,1520,1615,69.42K,
160,3680,1000,1300,1665,67.96K,
200,3920,1200,1400,1555,68.12K,
280,4400,1480,1540,1705,67.59K,
400,4640,1520,1740,1750,66.4K,
680,5440,2100,1620,1670,64.69K,
1240,6080,2620,1840,1620,63.59K,
1280,6400,3040,1840,1750,62.94K,
0,0,0,0,185,71.66K,
0,0,0,80,425,72.85K,
0,160,0,300,600,73.09K,
0,1040,100,420,865,71.15K,
40,1320,380,820,915,70.41K,
80,1600,520,980,995,70.39K,
160,1560,720,820,1040,70.6K,
0,1840,840,700,1090,69.34K,
440,2080,1080,780,1100,70.32K,
280,2280,1280,960,1135,68.72K,
520,2640,1780,1000,1175,69.05K,
1160,2840,1720,1100,1090,67.56K,
0,0,0,0,80,72.47K,
0,0,0,0,145,72.8K,
0,0,0,80,255,73.01K,
40,120,100,180,385,72.37K,
160,240,180,380,450,71.6K,
80,280,220,340,470,71.74K,
80,400,220,360,435,71.66K,
200,400,240,260,525,71.69K,
240,240,460,460,510,72K,
280,440,380,420,555,71.67K,
280,720,580,320,610,70.47K,
520,400,720,580,545,71.05K,
0,0,0,0,0,69.27K,
0,0,0,360,2455,68.23K,
0,760,0,1420,4800,66.7K,
0,2920,60,3920,6960,62.85K,
40,15.52K,980,7680,9825,52.18K,
400,28.88K,3300,10.08K,10.91K,41.81K,
280,32.96K,3620,10.34K,11.3K,38.43K,
520,36.64K,4700,10.98K,11.54K,34.78K,
1160,40.84K,5940,10.58K,11.52K,30.88K,
1680,49.88K,7620,11.96K,11.34K,24.23K,
2760,55.24K,10.5K,12.6K,12.14K,17.76K,
4960,64.76K,13.84K,12.44K,12.54K,6785,
6040,70.28K,15.6K,13.26K,12.5K,0,
0,0,0,240,1970,69.19K,
0,400,0,1160,3660,65.18K,
0,1920,100,3200,5225,63.34K,
0,11.36K,840,5960,7310,56.03K,
280,21.48K,2260,7940,7645,48.06K,
320,24.24K,3560,7700,8310,45.69K,
520,27.28K,4220,7880,8515,41.51K,
840,30.2K,4560,9000,8105,40.02K,
1560,36.6K,6340,9500,8670,34.79K,
2720,41.44K,8020,8980,8765,28.74K,
3800,46.8K,11.32K,9320,9065,21.54K,
4840,51.56K,13K,9920,8965,15.86K,
0,40,0,240,1760,68.91K,
0,400,0,1000,3250,66.07K,
0,2000,40,2840,4960,64.21K,
40,10.76K,620,5840,6530,57.9K,
240,19.08K,2700,7140,7465,51.14K,
440,21.88K,2640,7200,7745,47.26K,
480,24.32K,3400,7280,7825,45.41K,
800,27.16K,4840,7720,7635,42.95K,
1480,31.48K,6400,8240,8005,38.58K,
1560,35.24K,8260,8180,8140,33.54K,
3520,41.72K,10.2K,8480,8150,25.43K,
4800,44.64K,12.72K,8880,8450,21.6K,
0,0,0,200,1175,69.54K,
0,440,0,880,2350,67.43K,
0,1880,40,1900,3170,66.83K,
80,7520,520,3840,4335,60.15K,
240,13.48K,1580,4800,4700,55.46K,
240,15.64K,2100,5300,4540,54K,
320,17.4K,2460,4780,4900,53.44K,
600,18.72K,3280,5180,5320,50.47K,
1120,22.56K,4680,5020,5215,47.86K,
1720,25.36K,5920,5400,5465,44.45K,
2800,28.64K,7880,5360,5300,38.8K,
3680,29.64K,8780,5500,5460,35.68K,
0,0,0,0,385,69.61K,
0,80,20,160,605,69.9K,
0,320,40,500,850,68.25K,
0,2040,280,940,1420,67.09K,
0,2800,620,1400,1510,66.07K,
240,3360,780,1280,1505,65.06K,
320,3720,980,1340,1650,64.08K,
160,4200,1200,1360,1640,64.99K,
400,4720,1540,1380,1930,63.53K,
760,4880,2100,1620,1660,62.5K,
1040,5560,2680,1740,1725,61.12K,
1240,6160,2900,1900,1855,60.8K,
0,0,0,0,165,68.36K,
0,40,0,100,355,69.85K,
0,80,0,360,515,69.19K,
0,880,140,620,785,68.76K,
40,1560,380,740,835,67.57K,
40,1680,540,760,950,66.84K,
40,1800,540,800,930,65.77K,
120,1960,700,580,1010,67.28K,
200,2000,940,740,1100,66.83K,
440,2640,1060,880,1030,64.92K,
680,2600,1560,1020,1015,65.04K,
1040,2600,1600,980,1195,64.75K,
0,0,0,0,40,69.97K,
0,0,0,0,165,70.24K,
0,0,0,40,275,69.01K,
0,80,120,160,405,69.13K,
80,280,120,300,435,69.31K,
0,200,200,340,565,68.25K,
80,360,280,280,475,67.86K,
120,280,380,300,575,67.71K,
80,440,440,280,465,68K,
240,440,440,380,555,68.45K,
320,440,540,480,615,67.87K,
640,440,560,420,600,67.89K,
0,0,0,0,0,66.35K,
0,0,0,180,2480,65.16K,
0,480,0,1500,4830,62.14K,
0,2440,80,3960,6780,59.88K,
40,14K,1060,7700,9590,49.94K,
200,27.48K,2900,9920,10.88K,40.53K,
240,30.92K,3600,10.42K,10.86K,36.33K,
720,34.64K,4580,10.8K,11.26K,32.82K,
920,38.84K,5100,10.88K,11.15K,30.45K,
1480,46.48K,6900,12.08K,11.57K,23.62K,
2200,52.36K,9400,12.02K,12.26K,16.72K,
3760,60.92K,12K,13.46K,12.09K,6920,
5080,68K,15.14K,13.42K,12.27K,0,
0,0,0,220,1895,65.67K,
0,320,0,1140,3345,64.9K,
0,1800,0,2680,5305,61.22K,
0,10.48K,840,5980,6975,52.15K,
320,20.48K,2300,7280,7645,45.65K,
360,23K,3040,8100,8295,43.47K,
440,26.08K,3460,8180,7970,40.47K,
800,28.68K,4560,8780,8410,38.52K,
1480,35.44K,6000,9080,8830,33.02K,
1880,39.12K,7760,8480,8830,28.42K,
3240,45.04K,10.04K,9380,8895,20.34K,
4080,50.12K,12.28K,9440,9055,15.15K,
0,0,0,180,1750,64.88K,
0,360,0,940,3240,64.07K,
0,1840,80,2820,4545,60.91K,
0,9360,680,5560,6645,55.02K,
320,18.72K,2060,6840,7195,47.27K,
240,20.68K,2300,7220,7475,45.15K,
680,23.04K,3240,7800,7300,43.32K,
600,26.12K,4660,7520,7860,40.92K,
1040,30.36K,5860,7820,7665,36.22K,
1960,33.56K,7000,8280,7735,31.75K,
3600,38.84K,10.1K,8620,8335,24.59K,
4320,43.16K,11.4K,8960,8285,20.02K,
0,0,0,140,1200,64.99K,
0,320,0,760,2230,63.75K,
0,1320,60,1760,3520,63.3K,
40,6520,420,4160,4395,59.49K,
240,12.92K,1700,4440,4770,53.81K,
80,15.16K,1900,4900,4570,51.84K,
400,16.88K,2320,4520,4780,50.08K,
640,17.92K,2920,5260,5055,48.43K,
840,21.48K,4400,5260,4865,45.41K,
1600,24.36K,5240,5800,5225,42.27K,
2480,27.36K,7360,5700,5120,37.83K,
3840,29.6K,7920,5680,5395,34.21K,
0,0,0,40,315,66.29K,
0,40,0,160,630,65.97K,
0,320,40,300,835,64.71K,
0,1680,180,940,1450,64.42K,
120,2840,500,1380,1465,63.36K,
40,3320,920,1100,1555,61.93K,
120,3560,920,1460,1540,62.08K,
280,3800,1080,1540,1615,61.77K,
280,4440,1420,1540,1675,61.06K,
480,4680,1980,1440,1785,59.64K,
760,5480,2740,1460,1705,56.66K,
880,6040,2920,1620,1790,57.62K,
0,0,0,0,125,65.44K,
0,0,0,40,355,66.75K,
0,120,20,220,520,65.58K,
0,560,160,680,765,65.18K,
0,1360,380,700,1060,63.87K,
0,1400,500,680,1090,64.19K,
80,1840,440,800,1005,63.97K,
120,1840,660,640,1010,63.37K,
160,2000,920,900,1065,62.9K,
200,2480,1020,920,1145,63.33K,
480,2480,1580,900,1115,61.16K,
560,2480,1660,1080,1115,61.09K,
0,0,0,0,70,65.69K,
0,0,0,20,170,65.23K,
0,0,0,60,230,67.08K,
0,120,40,160,370,64.92K,
0,280,220,280,430,65.31K,
80,200,200,400,495,65.44K,
120,200,200,360,490,65.06K,
80,280,180,300,545,65.79K,
240,280,340,480,500,64.73K,
240,400,540,500,520,65.23K,
240,360,480,480,515,65.08K,
560,440,500,520,460,64.21K,
0,0,0,0,0,63.28K,
0,40,0,300,2195,62.53K,
0,240,0,1080,4785,58.99K,
0,2560,40,3640,6540,57.04K,
40,12.72K,780,7540,9570,47.47K,
80,25.64K,2680,9340,10.85K,37.51K,
360,29.32K,3280,10.12K,10.72K,34.91K,
600,33.28K,3460,9900,11.2K,31.6K,
720,37.2K,4520,10.5K,11.31K,28.18K,
1360,43.92K,6800,11.42K,11.69K,21.54K,
2120,49.88K,8340,12.1K,11.82K,15.23K,
3480,59K,11.64K,12.58K,12.28K,6405,
4840,65.44K,13.18K,13.5K,12.26K,0,
0,40,0,180,1870,61.52K,
0,240,20,1040,3255,60.69K,
0,1720,80,2740,5100,58.1K,
0,10.04K,600,6020,7030,50.82K,
240,19.48K,2000,6900,7955,43.84K,
320,22.32K,2180,7620,7910,40.75K,
560,24.84K,3140,8020,8510,38.77K,
600,27.84K,3700,7940,8530,36.35K,
1160,33.12K,5560,8240,8700,31.43K,
1840,37.92K,7120,8500,8550,26.88K,
2520,43.88K,9460,9440,9160,19.36K,
4840,47.32K,11.06K,9660,9015,14.85K,
0,0,0,120,1680,62.25K,
0,240,0,1000,2990,61.28K,
0,1560,60,2660,4470,58.3K,
120,8880,660,5280,6325,52.76K,
360,17.32K,1680,6800,7260,45.99K,
560,19.48K,2340,7020,7420,43.07K,
480,21.84K,3080,7040,7590,41.09K,
680,24.24K,3680,7340,7935,39.96K,
1280,29.28K,5060,7740,7710,35.07K,
1360,32.16K,7080,8480,8090,29.73K,
3200,37.76K,8700,8800,8025,23.52K,
3360,42.16K,10.16K,8960,8250,19.35K,
0,0,0,160,1010,62.27K,
0,200,0,620,2245,61.95K,
0,1400,0,1580,3210,59.82K,
40,5720,380,3940,4270,55.42K,
160,11.6K,1300,4360,4585,50.5K,
280,13.56K,1880,5360,4665,49.21K,
240,15.36K,2240,4860,4950,47.74K,
680,17.24K,2680,4860,4915,46.97K,
840,20.16K,3700,5020,5220,42.76K,
1200,23.76K,4500,4960,5360,39.74K,
2280,26.56K,7000,5320,5210,35.46K,
3040,28.68K,7480,5920,5210,32.69K,
0,0,0,0,220,62.58K,
0,0,0,180,665,62.7K,
0,40,0,480,835,61.8K,
0,1520,280,1040,1240,61.36K,
40,3000,600,1180,1535,60.61K,
160,3200,760,1480,1600,58.95K,
40,3360,940,1400,1680,59.26K,
80,3400,960,1560,1660,59.17K,
320,4480,1320,1480,1715,57.46K,
240,4880,1900,1500,1710,57.32K,
520,5440,2420,1620,1685,55.15K,
1080,5720,2720,1660,1790,54.31K,
0,0,0,0,170,63.06K,
0,0,0,80,375,63.55K,
0,80,20,220,500,62.61K,
0,680,80,580,720,61.75K,
40,1280,440,640,1015,60.91K,
80,1360,340,740,895,60.68K,
40,1720,600,800,1020,61.62K,
80,1760,580,800,945,61.44K,
280,2080,720,940,925,60.58K,
200,2400,1120,900,1090,59.12K,
440,2360,1540,1040,1060,58.39K,
680,2840,1440,900,1035,56.67K,
0,0,0,0,85,63.35K,
0,0,0,20,105,63.44K,
0,0,0,20,200,62.29K,
0,40,40,240,365,63.52K,
0,240,180,240,460,61.37K,
120,240,160,340,380,62.48K,
0,280,360,280,460,62.02K,
40,200,320,380,380,62K,
160,480,320,360,490,61.88K,
160,280,420,460,490,62.26K,
240,560,440,540,415,61.46K,
400,360,620,520,525,61.4K,
0,0,0,0,0,59.24K,
0,0,0,160,2220,58.85K,
0,200,0,1520,4380,56.36K,
0,2240,80,3140,6740,53.82K,
80,12.28K,520,7380,9395,44.17K,
320,24.36K,1880,9520,10.76K,35.99K,
200,28.12K,2700,9660,11.02K,32.27K,
440,30.96K,3840,10.24K,11.02K,30.08K,
480,35.84K,4000,10.74K,11.35K,27.26K,
960,41.48K,6000,12.06K,11.68K,21.05K,
1480,48.48K,7220,11.6K,11.77K,14.59K,
3320,55.92K,10.62K,12.84K,12.21K,6010,
3760,63.68K,12.7K,12.32K,12.22K,0,
0,0,0,200,1665,58.92K,
0,440,0,820,3340,58.51K,
0,1560,60,2560,4990,54.33K,
0,9360,420,5340,7025,49.24K,
200,17.84K,1620,7360,7900,41.19K,
360,20.92K,2440,7260,7870,39.55K,
240,24.12K,3200,7420,8420,37.04K,
600,26.32K,3320,8040,8170,34.05K,
1040,31.6K,4600,8860,8420,29.59K,
1280,36.12K,6620,8480,8645,25.4K,
2440,42.08K,9060,9320,8605,18.26K,
3480,46.2K,10.42K,9060,8935,14.08K,
0,0,0,80,1625,58.92K,
0,320,0,680,3230,58.59K,
0,1520,20,2280,4555,55.08K,
40,8040,480,5220,6385,49.2K,
160,16.12K,1720,6600,7300,44.12K,
200,17.56K,2180,6280,7645,40.9K,
360,21.08K,2800,6740,7305,39.31K,
520,23.76K,3500,6560,7625,36.92K,
800,27.28K,5280,7860,7790,33.21K,
1120,31.44K,6520,7960,7930,28.98K,
1960,37.44K,8840,8140,8185,21.9K,
3240,40.64K,9820,8680,8105,18.63K,
0,40,0,180,1050,59.05K,
0,240,20,520,1970,58.49K,
0,1160,40,1520,3125,57.1K,
0,5960,340,3340,4100,53.13K,
240,11.32K,1000,4480,4550,47.86K,
160,13.32K,1560,4920,4780,45.38K,
320,14.44K,2180,5120,4605,45.04K,
400,16.6K,2360,4980,5070,44.11K,
800,19.32K,3380,5080,4850,40.92K,
1160,21.76K,4600,5740,5015,37.93K,
1680,25.16K,5980,5900,5340,34.4K,
2440,27.4K,7280,5780,5385,31.46K,
0,0,0,20,240,59.64K,
0,0,0,160,555,59.42K,
0,200,0,400,955,59.6K,
0,1160,60,960,1440,59K,
0,3040,320,1120,1470,56.26K,
40,2840,560,1620,1450,56.31K,
120,3080,660,1260,1665,55.96K,
120,3280,920,1480,1740,55.11K,
280,4360,1400,1500,1665,53.45K,
320,4600,1520,1580,1880,54.07K,
680,5200,2360,1480,1790,53.23K,
1160,5760,2280,1860,1760,51.44K,
0,0,0,0,185,59.9K,
0,0,0,100,355,59.01K,
0,40,20,240,490,59.53K,
0,720,160,580,775,58.91K,
40,1240,340,660,915,56.28K,
80,1200,380,660,1035,57.88K,
80,1320,460,800,995,57.19K,
40,1640,480,660,1040,56.81K,
120,2080,780,820,1075,57.79K,
320,2160,860,820,1115,56.12K,
240,2360,1500,800,1085,56.05K,
440,2680,1540,1180,1125,54.82K,
0,0,0,0,55,59.34K,
0,0,0,0,100,59.54K,
0,0,0,0,225,59.08K,
0,40,80,180,355,59.99K,
0,200,120,280,405,59.07K,
40,160,180,420,345,59.51K,
120,160,160,340,435,59.26K,
80,160,200,400,530,58.68K,
120,480,320,400,480,59.25K,
240,360,480,380,450,58.54K,
240,360,500,460,590,58.51K,
440,480,520,380,510,58.9K,
0,0,0,0,0,56.96K,
0,0,0,120,1840,55.66K,
0,240,0,1160,4275,53.11K,
0,1720,20,3380,6420,51.02K,
40,11.32K,580,7100,9250,42.84K,
80,21.92K,1980,8960,10.86K,34.07K,
200,26.4K,2700,9460,10.61K,30.68K,
360,28.24K,3220,10.92K,10.51K,27.79K,
400,32.84K,3880,10.78K,11.3K,25.49K,
920,40.12K,4960,10.4K,11.61K,19.29K,
1200,46.6K,7220,11.2K,11.38K,14.03K,
2560,54.16K,9580,11.98K,11.97K,5585,
3120,59.88K,12.1K,12.16K,12.15K,0,
0,0,0,160,1720,54.65K,
0,280,0,860,3395,53.97K,
0,1480,20,2160,4815,51.69K,
80,8680,540,5380,6930,46.06K,
240,17.2K,1360,6600,7510,38.55K,
320,18.84K,2020,7280,7840,37.38K,
400,22.44K,2440,7200,8340,34.39K,
480,24.68K,3100,8220,8360,31.96K,
640,28.76K,4300,8720,8400,28.49K,
1160,34.72K,5400,8380,8495,24.04K,
2200,39.96K,7880,9520,8600,17.27K,
3280,44.96K,9420,9240,8750,13.5K,
0,0,0,60,1580,56.8K,
0,120,0,1000,2800,54.73K,
0,1440,20,2400,4260,52.42K,
40,8000,360,4640,6385,47.23K,
40,14.96K,1620,6620,6910,41.37K,
80,16.4K,2180,7040,7100,38.32K,
360,20.16K,2640,6640,7205,36.33K,
240,22.24K,3000,7140,7660,34.65K,
880,26.36K,4020,7040,7795,30.42K,
1720,30.36K,5080,7760,7880,27.06K,
1920,34.88K,8020,8180,8445,21.19K,
2720,39K,8740,8160,8180,17.37K,
0,0,0,120,960,55.41K,
0,80,0,580,2095,54.83K,
0,1000,60,1440,3090,53.67K,
0,5280,460,3500,4030,50.24K,
160,10.64K,1080,4600,4600,46.31K,
80,12.2K,1380,4640,4880,44.36K,
360,13.84K,1600,4940,4595,41.94K,
440,15.96K,2000,4940,4980,41.6K,
680,18.72K,3100,5140,4985,38.67K,
840,20.92K,3780,5380,5165,35.98K,
1880,24.32K,5340,5720,5220,32.03K,
2120,26.52K,7020,5940,5175,29.96K,
0,0,0,20,300,57.17K,
0,80,0,60,575,56.51K,
0,240,20,420,895,55.92K,
0,1280,240,1000,1250,54.59K,
0,2680,440,1060,1515,53.91K,
0,2840,620,1240,1415,53.21K,
0,2920,660,1340,1530,52.51K,
120,3240,740,1480,1425,52.49K,
40,3680,1360,1680,1670,52.06K,
280,4880,1620,1440,1590,51.1K,
440,4920,2240,1660,1805,49.31K,
840,5520,2300,1620,1690,48.89K,
0,0,0,0,125,55.64K,
0,0,0,60,355,56.13K,
0,80,0,140,585,55.63K,
0,520,60,540,690,56.3K,
40,1160,200,560,965,54.73K,
80,1080,340,880,940,55.52K,
80,1320,480,700,940,54.66K,
80,1680,400,760,960,54.57K,
80,1800,580,820,1080,53.83K,
280,2000,860,920,1050,53.76K,
440,2160,900,920,1070,52.42K,
560,2560,1280,940,1100,51.5K,
0,0,0,0,60,56.59K,
0,0,20,0,110,56.59K,
0,0,0,100,225,57.46K,
0,40,40,220,375,56.82K,
0,160,140,200,510,56.11K,
0,200,180,320,445,56.11K,
40,160,120,320,425,56.08K,
120,200,200,380,440,55.87K,
80,320,280,360,525,56.01K,
200,360,280,480,475,54.56K,
120,440,520,380,485,54.77K,
480,320,440,540,470,54.42K,
0,0,0,0,0,53.04K,
0,0,0,100,1790,51.84K,
0,280,0,1180,3935,50.18K,
0,1880,0,2900,6170,46.83K,
0,10.68K,540,6440,9035,39.33K,
40,19.88K,1480,9140,10.36K,32.06K,
240,24.36K,2180,9180,10.52K,28.77K,
360,27.08K,2280,9780,10.98K,26.22K,
480,30.68K,3160,10.1K,10.51K,23.65K,
720,37.72K,4560,11.2K,11.27K,18.45K,
1040,42.44K,6560,11.44K,11.46K,12.89K,
2120,51.52K,8300,11.74K,11.72K,5150,
2760,56.76K,10.46K,12.72K,12.09K,0,
0,0,0,100,1790,51.24K,
0,240,0,780,3195,51.27K,
0,1320,40,1820,4860,48.86K,
0,7480,400,5160,6985,42.52K,
120,15.52K,1320,6820,7540,36.39K,
80,17.96K,1540,7000,7635,34.58K,
440,20K,2240,7600,7735,32.64K,
520,22.92K,2880,8000,8125,29.85K,
600,27.56K,3800,7940,8490,27.29K,
840,32.92K,4960,8100,8460,22.48K,
1520,38.12K,6920,9080,8610,16.17K,
2680,41.52K,9020,8900,9005,11.59K,
0,0,0,120,1350,51.09K,
0,120,0,740,2720,51.33K,
0,1120,20,1980,4350,48.86K,
80,7400,260,4160,6425,44.17K,
40,13.64K,1160,6480,6790,38.79K,
200,15.6K,1620,6560,7105,35.59K,
360,18.4K,2340,6640,7020,35.06K,
400,20.44K,2580,7000,7710,32.23K,
680,24.28K,3740,7600,7535,29.16K,
920,27.88K,4640,8260,7625,25.24K,
1600,34.44K,6660,8040,7770,20.54K,
2200,37.28K,7920,8460,7795,15.92K,
0,0,0,60,930,53.19K,
0,160,0,580,2110,51.06K,
0,840,0,1140,3115,49.79K,
40,4720,240,3800,3950,45.82K,
40,9760,840,4720,4595,43.18K,
40,11.64K,1340,4100,4745,41.48K,
120,13.04K,1440,4880,4830,40.02K,
200,14.52K,1920,4740,4930,38.3K,
440,17.44K,2460,4880,5135,36.38K,
880,20.12K,3540,5380,5225,33.9K,
1400,23.32K,5040,5180,5210,30.11K,
1920,25.08K,5780,5660,5370,27.4K,
0,0,0,0,355,52.3K,
0,0,0,120,520,51.77K,
0,80,0,420,950,51.53K,
0,960,80,1060,1370,51.86K,
40,2360,320,1140,1425,50.35K,
40,2560,420,1280,1360,49.39K,
120,2920,460,1200,1625,49.9K,
0,3000,700,1360,1600,48.85K,
200,3720,1240,1360,1665,49.02K,
360,4360,1460,1460,1560,47.98K,
360,4720,1780,1620,1730,46.13K,
560,5160,1740,1640,1660,45.51K,
0,0,0,0,95,52.53K,
0,0,0,60,280,53K,
0,40,20,160,450,53.51K,
0,400,20,540,780,51.26K,
0,920,140,560,890,51.19K,
80,1320,240,620,990,51.82K,
40,1360,260,780,945,50.22K,
40,1720,460,720,900,50.58K,
40,1640,640,780,985,50.72K,
240,1960,1060,720,1055,50.43K,
200,2280,1140,820,990,49.11K,
400,2400,1280,820,1070,48.07K,
0,0,0,0,65,52.32K,
0,0,0,40,80,52.72K,
0,0,0,40,195,52.84K,
0,80,40,160,320,52.11K,
0,240,80,280,415,51.49K,
40,240,100,220,425,52.17K,
40,200,220,300,445,51.91K,
40,120,240,400,430,52.24K,
0,320,300,440,455,51.89K,
80,360,380,500,465,52.32K,
240,400,460,420,510,50.97K,
120,360,580,360,470,51.04K,
0,0,0,0,0,48.36K,
0,0,0,80,1865,47.02K,
0,160,0,820,3815,46.58K,
0,1240,40,2560,6005,42.95K,
0,9200,520,6080,8385,36.65K,
80,18.64K,1360,8060,9605,28.37K,
80,21.64K,1860,9160,10.31K,26.65K,
120,25.12K,2300,9460,10.57K,24.16K,
320,27.04K,2960,10.06K,11.09K,21.93K,
480,33.92K,4020,11.08K,11.29K,17.17K,
840,40.08K,5160,10.86K,11.25K,11.83K,
1520,46.44K,6920,12.08K,12.34K,4860,
2160,52.48K,9680,12.02K,11.98K,0,
0,0,0,160,1455,48.12K,
0,120,0,640,2990,46.2K,
0,1040,20,2020,4345,44.13K,
0,6640,280,4700,6620,39.7K,
40,14.24K,1220,6200,7560,32.73K,
160,16.4K,1320,6780,7405,32.01K,
120,19.04K,1860,6840,7915,29.78K,
320,20.92K,2160,7280,8015,27.56K,
440,25.4K,3340,8000,8165,24.24K,
800,29.4K,4080,8460,8545,20.61K,
1320,36.88K,5860,8860,8315,14.77K,
1640,38.88K,8060,8460,8910,11.47K,
0,0,0,120,1280,48.71K,
0,160,0,540,2770,46.81K,
0,800,20,2180,4105,45.16K,
0,6120,400,4240,6010,40.29K,
80,12.64K,1240,6140,6815,35.94K,
80,14.84K,1280,6260,7065,33.64K,
240,16.44K,1780,6640,7065,32.39K,
160,18.8K,2140,6620,7485,30.34K,
240,22.6K,2940,7140,7780,26.43K,
600,26.16K,4100,7400,7630,23K,
1320,31.64K,5880,8340,7455,18.32K,
1680,33.8K,7300,8460,8065,14.65K,
0,0,0,40,815,48.58K,
0,160,0,400,1875,47K,
0,720,20,1120,2930,45.54K,
40,4320,280,3220,3975,42.81K,
80,8560,880,4380,4365,38.65K,
80,9960,860,4320,4630,38.55K,
0,12.28K,1200,4280,4820,37.11K,
240,13.12K,1700,4700,4820,35.58K,
400,15.88K,2020,5280,4765,34.13K,
440,18.8K,3260,5060,5170,32.25K,
1080,21.68K,4060,5880,5120,28.06K,
1080,23.64K,5420,5160,5485,25.17K,
0,0,0,20,310,48.67K,
0,0,0,80,490,48.17K,
0,120,20,380,825,47.79K,
0,1080,100,660,1355,46.51K,
0,2000,340,1020,1480,46.51K,
0,2560,260,1140,1350,45.87K,
80,2760,480,1280,1455,45.3K,
40,3040,400,1340,1485,44.76K,
120,3280,880,1460,1665,44.32K,
160,4080,1100,1500,1645,43.24K,
360,4680,1660,1660,1560,42.91K,
240,5240,1840,1800,1570,42.22K,
0,0,0,0,175,48.84K,
0,0,0,60,215,48.82K,
0,0,20,200,380,48.54K,
0,520,60,420,740,47.63K,
0,760,120,660,810,47.29K,
0,1280,220,580,900,46.72K,
40,1040,260,920,945,45.81K,
0,1600,380,580,960,46.35K,
120,1640,300,700,965,46.25K,
80,2080,640,760,970,45.32K,
120,2160,920,820,1000,45.5K,
440,2160,1040,1080,1075,45.07K,
0,0,0,0,45,47.89K,
0,0,0,0,95,47.94K,
0,0,0,0,150,47.36K,
0,80,0,140,315,48.44K,
0,160,60,320,380,47.69K,
0,40,120,280,480,48.23K,
40,240,100,320,475,48.23K,
0,200,200,340,395,47.8K,
0,200,300,400,490,47.62K,
120,280,300,360,475,47.2K,
160,440,260,380,480,47.39K,
280,360,400,340,470,46.99K,
0,0,0,0,0,44.03K,
0,40,0,20,1905,43.86K,
0,80,0,820,3695,42.16K,
0,1120,20,2300,5495,39.65K,
40,7600,300,5580,8700,33.01K,
40,16.4K,940,8020,9665,25.66K,
80,19.76K,1520,8640,9830,24.07K,
200,22.52K,1300,9600,10.51K,22.46K,
120,24.64K,2480,9880,10.83K,20.27K,
200,31.56K,3200,9880,11.16K,14.59K,
600,36.56K,4220,10.82K,11.42K,10.93K,
1200,44.16K,5980,11.4K,11.15K,4300,
1600,48.6K,7700,11.58K,11.5K,0,
0,0,0,140,1400,43.43K,
0,160,20,560,2650,42.21K,
0,760,0,1900,4300,41.34K,
0,5160,220,4500,6520,36.28K,
40,12.72K,580,6640,7145,30.35K,
80,14.52K,960,6540,7445,28.82K,
240,16.48K,1580,6880,7675,27.86K,
120,18.52K,1860,7340,7975,24.83K,
280,22.68K,2720,7300,8210,21.79K,
480,28.12K,3320,8040,8135,18.33K,
1160,32.76K,4940,8420,8665,13.79K,
1560,35.72K,5860,8420,8775,10.48K,
0,0,0,80,1195,43.23K,
0,200,0,540,2215,42.51K,
0,960,20,1420,4030,40.82K,
40,5160,260,3720,5990,35.93K,
80,10.68K,1000,6100,6740,31.96K,
40,13.52K,1320,5780,6870,29.98K,
160,14.92K,1480,5740,7100,28.43K,
240,16.76K,1840,6360,7030,27.91K,
240,20.76K,2540,6960,7380,24.63K,
760,23.52K,2980,7820,7505,21.07K,
720,28.64K,4820,7700,7835,17.01K,
1120,31.24K,6240,7940,7890,13.81K,
0,0,0,60,830,43.38K,
0,80,0,260,1765,43.33K,
0,600,0,1100,2615,41.46K,
0,3960,80,2960,3895,38.95K,
40,7720,660,4080,4330,35.26K,
40,8840,780,4580,4490,34.45K,
160,10.4K,960,4380,4405,33.74K,
120,11.8K,1620,4620,4670,32.85K,
240,14.04K,1900,4880,4985,29.98K,
320,16.84K,2420,4780,5130,28.06K,
600,20.2K,3500,5600,4940,25.29K,
1360,22.44K,4340,5540,5050,23.19K,
0,0,0,0,290,43.63K,
0,0,0,40,510,43.81K,
0,80,0,240,840,43.48K,
0,840,120,760,1185,43.25K,
0,1840,120,980,1345,41.9K,
0,2160,240,1040,1320,40.35K,
0,2280,580,1260,1440,41K,
0,2640,500,1160,1510,40.65K,
40,2880,660,1320,1560,40.26K,
160,3800,1140,1340,1640,39.82K,
240,4320,1220,1620,1650,38.48K,
240,4560,1700,1740,1565,37.85K,
0,0,0,0,160,44.57K,
0,0,0,20,270,43.86K,
0,0,20,100,460,43.45K,
0,480,20,400,635,43.79K,
40,880,200,700,760,42.64K,
0,1160,200,600,800,42.42K,
0,1120,200,600,880,42.89K,
40,1160,320,800,955,42.78K,
0,1720,340,660,960,41.58K,
40,1880,480,880,925,41.27K,
280,2000,820,840,1035,40.47K,
160,2080,800,960,965,40.33K,
0,0,0,0,40,43.88K,
0,0,0,0,75,44.21K,
0,0,0,0,160,43.99K,
0,0,0,180,310,43.08K,
0,160,40,120,435,43.33K,
0,80,80,280,440,43.43K,
0,240,140,260,455,42.44K,
0,200,180,320,480,43.9K,
80,200,180,300,465,43.21K,
40,360,300,300,440,42.66K,
120,280,300,360,510,42.05K,
200,320,440,360,555,42.79K,
0,0,0,0,0,39.35K,
0,0,0,20,1535,37.95K,
0,80,0,460,3375,37.6K,
0,1000,20,1840,5380,35.16K,
0,7040,160,5140,8050,30.27K,
40,14.48K,560,7480,9630,23.9K,
40,16.84K,1000,7800,9840,21.86K,
120,18.92K,1320,8400,10.28K,19.71K,
160,21.4K,1780,9020,10.53K,17.83K,
400,27.56K,2400,10.1K,10.78K,13.56K,
360,31.76K,3540,10.62K,10.94K,10.15K,
840,38.64K,4820,11.6K,11.7K,3775,
1160,44.64K,6180,11.06K,11.61K,0,
0,0,0,40,1260,38.97K,
0,120,0,440,2485,38.5K,
0,600,0,1500,4175,35.69K,
0,4760,180,4460,6000,31.58K,
80,11.48K,340,5740,6875,27.82K,
40,12.76K,960,6000,7340,25.76K,
80,14.72K,1260,6520,7140,23.43K,
40,17.4K,1100,6940,7525,22.62K,
280,20.4K,1780,7040,8205,20.57K,
400,26.04K,2680,7560,7965,16.73K,
680,29.84K,3900,8140,7995,11.88K,
760,32.96K,4780,8300,8090,9200,
0,0,0,120,1055,38.74K,
0,80,0,560,2210,37.95K,
0,720,20,1500,3425,36.34K,
0,4560,160,3860,5420,32.15K,
80,9240,640,5440,6595,28.33K,
0,11.28K,820,5420,6745,27.1K,
80,12.84K,1000,6140,6875,25.66K,
120,15.04K,1380,6040,6970,24.62K,
280,17.52K,2020,6860,7310,22K,
440,21.36K,2200,7460,7400,18.67K,
720,26.08K,4100,7460,7670,14.34K,
1240,28.76K,4700,7800,7675,11.54K,
0,0,0,60,755,39.16K,
0,120,0,280,1610,38.21K,
0,520,20,780,2550,37.73K,
40,2920,180,3240,3680,34.05K,
40,6600,400,3980,4485,32.21K,
40,7640,500,4240,4345,30.76K,
80,8600,600,4540,4275,29.73K,
40,10.8K,920,4260,4380,29.45K,
80,13K,1340,4760,4765,26.74K,
320,15.28K,1760,4640,5130,25.39K,
560,18.12K,2600,5260,5010,22.44K,
960,20.68K,3580,5200,5185,19.97K,
0,0,0,40,245,39.33K,
0,0,0,60,465,38.35K,
0,40,0,280,685,39.41K,
0,680,0,780,1120,38.04K,
0,1600,120,1060,1360,36.99K,
40,1560,160,1100,1250,36.58K,
0,2200,200,1160,1385,36.56K,
0,2200,320,1200,1545,35.52K,
40,2840,480,1120,1430,35.81K,
120,3360,840,1400,1405,35.1K,
80,3960,1160,1460,1680,34.86K,
240,3880,1220,1560,1765,34.25K,
0,0,0,0,70,39.32K,
0,0,0,80,235,39.35K,
0,0,0,160,395,38.45K,
0,360,0,380,655,38.26K,
0,920,120,540,765,37.78K,
0,920,120,520,870,38.3K,
0,1000,140,560,975,37.51K,
40,960,220,760,840,37.72K,
40,1440,300,620,990,37.4K,
40,1480,440,760,1070,37.72K,
160,1840,680,880,995,36.46K,
160,2120,820,880,995,36.32K,
0,0,0,0,15,39.42K,
0,0,0,0,110,39.5K,
0,0,0,20,140,39.73K,
0,40,40,120,265,39.67K,
40,80,20,220,425,39.55K,
0,80,40,220,390,39.58K,
0,120,120,220,450,38.51K,
0,200,160,260,425,38.4K,
0,240,200,280,425,38.79K,
40,320,160,320,380,39.15K,
40,240,320,360,550,38.86K,
160,360,180,400,450,37.73K,
0,0,0,0,0,35.17K,
0,0,0,40,1375,33.97K,
0,0,0,480,2985,33.52K,
0,600,0,1740,4995,31.08K,
0,5040,120,4840,7895,26K,
40,12.32K,520,6880,9500,21.14K,
40,14K,800,7440,9280,19.32K,
200,16.16K,920,7960,9850,17.15K,
80,18.08K,1140,8280,10.04K,15.52K,
80,23.64K,1900,9640,10.35K,12.15K,
360,27.96K,2820,9880,10.63K,9100,
640,35.16K,4160,11.16K,10.71K,3310,
800,39.6K,4720,10.86K,11.49K,0,
0,0,0,60,1310,35.32K,
0,80,0,240,2370,33.92K,
0,640,0,1220,3910,32.09K,
0,3720,20,3780,6125,28.43K,
40,9040,520,5640,6930,24.36K,
0,10.16K,760,5820,7420,23.01K,
80,12.68K,820,6020,7580,21.17K,
120,14.16K,1080,7060,7280,20.17K,
80,18K,1460,6780,8075,17.58K,
280,22.04K,1960,7180,8115,14.91K,
400,26.52K,3560,7440,8330,10.52K,
680,29.12K,3980,7960,8600,7940,
0,0,0,20,980,34.17K,
0,0,0,340,2180,32.83K,
0,400,20,1420,3445,32.54K,
0,3640,200,3300,5335,29.02K,
0,7760,500,4800,6315,25.04K,
40,9520,520,5160,6340,24.37K,
80,12K,740,5320,6595,22.84K,
80,12.36K,1240,5820,6985,21.5K,
40,15.68K,1520,6260,7285,19.01K,
120,19.4K,2140,6760,7245,16.85K,
400,23.24K,2880,7400,7495,12.92K,
600,26.16K,3780,7360,7600,10.51K,
0,0,0,60,695,34.63K,
0,40,0,280,1610,34.16K,
0,480,20,680,2260,32.63K,
0,2480,140,2400,3525,30.87K,
40,5520,340,3840,4130,28.25K,
0,6440,340,3640,4575,27.08K,
80,7760,520,4200,4200,26.14K,
80,9160,680,4140,4560,25.89K,
240,10.6K,940,4980,4250,24.59K,
280,13K,1460,4880,4770,22.55K,
600,15.48K,2260,5160,5065,19.96K,
480,18.36K,2740,4860,5100,17.43K,
0,0,0,0,185,34.37K,
0,0,0,60,440,34.4K,
0,0,0,280,620,34.15K,
0,520,0,500,1170,34.17K,
0,1200,140,1080,1265,33.03K,
0,1400,120,880,1390,33.12K,
0,1800,200,1180,1360,32.83K,
0,1960,300,1080,1380,32.68K,
0,2520,420,1200,1535,31.88K,
40,2680,660,1300,1660,30.88K,
120,3560,620,1320,1635,30.69K,
160,3960,960,1520,1530,30.53K,
0,0,0,0,50,34.39K,
0,0,0,40,305,34.55K,
0,0,0,100,400,34.2K,
0,240,20,380,710,33.63K,
0,360,80,560,825,33.94K,
0,680,60,620,740,32.77K,
0,800,160,660,910,33.52K,
0,920,260,540,900,33.03K,
40,1040,140,620,935,33.68K,
0,1400,300,740,880,33.24K,
80,1720,420,860,930,32.26K,
80,1920,620,740,1080,32.24K,
0,0,0,0,35,34.43K,
0,0,0,0,80,35.33K,
0,0,0,0,160,35.11K,
0,0,20,120,300,33.8K,
0,40,60,240,385,34.62K,
0,80,80,200,335,33.66K,
0,160,40,140,400,34.97K,
0,120,80,200,465,35.12K,
0,160,140,220,470,34.08K,
80,240,140,240,390,34.49K,
40,240,200,340,520,34.44K,
40,280,180,360,485,33.25K,
0,0,0,0,0,30.61K,
0,0,0,20,1325,30.14K,
0,80,0,440,2795,29.51K,
0,680,20,1560,4505,27.08K,
0,3840,80,4160,7390,22.53K,
0,10.44K,460,6320,8825,18.22K,
40,11.24K,540,7200,8865,16.98K,
80,14K,560,7080,9430,15.03K,
40,16.28K,700,7960,9680,13.37K,
0,20.6K,1540,8120,10.52K,10.92K,
160,24.12K,1860,9880,10.59K,7310,
400,30.4K,2560,10.28K,10.89K,3030,
360,34.36K,3400,10.52K,11.07K,0,
0,0,0,20,1085,30.18K,
0,40,0,340,2105,30.22K,
0,400,0,980,3340,28.54K,
0,3160,120,3260,5640,25.02K,
0,7400,400,4560,6710,21.37K,
0,8520,560,5500,6760,19.84K,
80,10.16K,580,6100,7225,18.69K,
0,12.4K,740,5640,7575,17.81K,
120,16K,1240,6380,7525,15K,
120,18.92K,1640,7300,7410,12.77K,
320,22.04K,2260,8080,8355,9405,
480,26.12K,2480,7760,7780,7040,
0,0,0,0,875,30.09K,
0,40,0,340,1955,29.71K,
0,400,0,920,3075,28.43K,
0,2560,80,3520,4760,25.66K,
0,6880,260,4260,5995,22.33K,
40,7440,340,5100,6420,21.61K,
40,9960,420,4620,6705,19.78K,
80,10.2K,580,5700,6555,19.23K,
40,13.4K,1120,5860,6850,16.62K,
200,15.8K,1680,6800,7235,14.76K,
200,20.56K,2020,6620,7480,11.46K,
400,22.12K,2900,7300,7615,9760,
0,0,0,40,650,30.39K,
0,120,20,340,1395,29.66K,
0,160,0,600,2220,29.77K,
0,1680,100,2120,3390,26.97K,
0,4720,200,3580,3800,25.55K,
40,5880,240,3500,3970,24.38K,
40,5920,500,4160,4155,23.24K,
0,7520,520,3880,4540,22.27K,
0,9680,740,4300,4700,21.08K,
160,11.2K,1220,4700,4760,19.53K,
160,13.36K,1660,5060,4915,17.28K,
320,15.56K,2020,5240,4880,15.68K,
0,0,0,0,150,30.98K,
0,0,0,60,350,30.1K,
0,40,0,140,585,30.01K,
0,400,0,560,970,29.52K,
0,1120,0,680,1250,28.78K,
0,1040,240,1040,1250,29.26K,
0,1560,100,800,1390,28.36K,
0,1800,140,960,1330,28.96K,
0,2200,360,1120,1415,27.73K,
0,2600,580,1100,1485,27.72K,
0,3120,660,1280,1560,26.94K,
0,3400,720,1460,1575,26.62K,
0,0,0,0,55,30.84K,
0,0,0,40,260,30.64K,
0,0,0,80,360,31.01K,
0,80,40,360,600,30.59K,
0,480,80,340,660,30.07K,
0,640,100,500,725,29.25K,
40,680,240,600,795,29.87K,
0,680,160,560,780,29.75K,
0,1120,220,460,965,29.24K,
0,1240,360,560,975,29.09K,
40,1280,400,740,1055,28.19K,
80,1600,580,760,990,28.77K,
0,0,0,0,40,30.51K,
0,0,0,0,75,30.03K,
0,0,20,20,120,30.31K,
0,0,20,140,230,30.92K,
0,40,0,160,305,30.87K,
0,120,40,200,285,30.49K,
0,0,100,240,380,29.77K,
0,120,60,200,455,29.87K,
0,80,100,300,340,29.96K,
40,200,100,220,425,30.62K,
40,160,180,380,510,30.2K,
120,200,180,380,415,29.58K,
0,0,0,0,0,26.64K,
0,0,0,20,1140,26.48K,
0,40,0,400,2580,25.85K,
0,320,0,1320,4360,24.02K,
0,2600,60,3760,7030,20.65K,
0,8680,200,5880,8130,16.3K,
0,9160,380,6860,8625,14.67K,
0,11.2K,660,7180,8855,13.7K,
0,13.72K,420,7480,9070,12.25K,
40,16.8K,1120,7820,9635,9615,
80,20.48K,1300,9020,9895,6750,
160,24.72K,2220,10.22K,11.01K,2520,
280,29.2K,2800,9780,10.98K,0,
0,0,0,0,915,26.89K,
0,80,0,160,1950,25.54K,
0,320,0,780,3305,24.78K,
0,2240,100,2900,5385,21.89K,
0,5640,300,4800,6265,18.51K,
40,7640,280,4940,6630,18.17K,
40,8960,400,5120,6990,16.36K,
0,9880,440,5720,7150,15.73K,
120,13.08K,960,5920,7150,13.55K,
120,15.4K,1320,6780,7380,11.38K,
280,19.76K,1780,7040,7735,8500,
280,22.48K,2160,7180,7935,6140,
0,0,0,20,795,26.75K,
0,0,0,240,1725,25.91K,
0,120,20,1020,2990,24.68K,
0,1760,60,2960,4870,21.99K,
40,5480,260,4320,5705,19.43K,
0,6200,300,4460,5855,19.55K,
0,7560,480,5360,6075,17.3K,
80,9320,620,4720,6400,16.84K,
40,11.32K,760,5200,7095,15.15K,
120,13.92K,1260,6340,6690,12.7K,
80,17.76K,1740,6680,7235,10.32K,
160,19.48K,2340,6380,7300,8380,
0,0,0,20,640,26.85K,
0,0,0,200,1445,25.95K,
0,120,0,420,2220,26.15K,
0,1520,60,1860,3035,24.41K,
0,3840,280,3280,3795,22.11K,
40,4320,240,3600,4090,21.39K,
40,4720,240,3620,4105,20.99K,
40,6400,500,3540,4450,20.01K,
40,8000,520,4000,4690,18.74K,
120,9880,840,4260,4725,17.38K,
200,12.16K,1540,4540,4965,15K,
80,14.08K,1800,4560,4835,13.56K,
0,0,0,0,170,26.91K,
0,0,0,40,340,27.1K,
0,120,0,80,520,26.78K,
0,240,0,480,900,26.1K,
0,840,40,760,1060,25.24K,
0,920,120,940,1140,24.94K,
0,1120,60,940,1300,25.43K,
0,1360,120,860,1330,24.99K,
0,1920,80,1120,1380,25.07K,
0,2000,300,1240,1415,23.7K,
0,2840,500,1200,1650,24.02K,
40,2880,760,1400,1645,23.3K,
0,0,0,0,40,27.06K,
0,0,0,0,250,27.53K,
0,0,0,100,350,26.87K,
0,120,0,360,505,26.88K,
0,240,60,460,660,26.48K,
0,400,80,460,760,26.1K,
0,560,140,560,770,26.41K,
0,520,60,520,750,25.74K,
0,880,160,560,890,25.79K,
0,880,140,760,855,24.98K,
40,1160,300,680,850,24.77K,
120,1400,320,560,1055,24.94K,
0,0,0,0,35,26.72K,
0,0,0,0,40,27.59K,
0,0,0,0,110,27K,
0,40,0,20,270,26.37K,
0,40,0,120,340,26.78K,
0,0,20,180,340,26.52K,
0,0,80,260,355,26.62K,
0,80,120,180,400,26.94K,
0,80,40,280,340,26.05K,
0,200,160,220,400,26.14K,
0,280,180,280,445,26.48K,
80,120,120,360,530,26.45K,
0,0,0,0,0,23.98K,
0,0,0,60,1005,23.26K,
0,0,0,280,2200,22.6K,
0,160,20,720,4195,21.93K,
0,2600,20,3300,6455,18.52K,
0,6560,320,5520,8315,13.9K,
0,7560,320,5680,8545,13.47K,
40,9120,420,6320,8405,12.02K,
0,10.76K,420,6940,9190,10.8K,
0,13.8K,1020,7820,9520,8810,
40,17.56K,1040,8440,10K,5965,
120,22.52K,1800,9400,10.28K,2570,
200,25.24K,2280,9700,10.88K,0,
0,0,0,0,725,23.83K,
0,0,0,280,1735,23.32K,
0,200,0,600,3115,22.85K,
0,1560,120,2900,5095,19.24K,
40,4320,160,4360,6110,17.58K,
0,5880,360,4400,6285,15.94K,
40,7240,320,4860,6740,14.73K,
40,8720,400,5380,6705,14.04K,
0,10.68K,560,5640,6945,11.88K,
80,12.76K,640,6360,7055,10.24K,
120,16.48K,1520,6600,7935,7395,
200,19.04K,1640,7340,7965,5535,
0,0,0,0,775,24.12K,
0,0,0,160,1575,22.73K,
0,280,0,800,2605,22.39K,
0,1280,40,2300,4505,20.17K,
0,4520,160,3660,5570,16.41K,
40,4760,160,3940,5865,16.21K,
0,6480,280,4200,5800,15.34K,
40,7560,300,4580,6245,14.93K,
0,9400,660,5460,6215,13.38K,
40,11.36K,820,5400,6440,11.71K,
160,14.84K,1340,6440,6850,9130,
120,17K,1860,6240,7310,7485,
0,0,0,0,530,23.48K,
0,0,0,140,1190,23.01K,
0,80,0,360,1870,23.02K,
0,1040,80,1420,3055,21.05K,
0,2680,60,2900,3645,19.3K,
0,3560,160,2880,4090,19.15K,
0,4320,220,3120,4045,18.37K,
40,5040,320,3400,4300,17.83K,
0,6840,320,3920,4385,16.8K,
160,8320,620,4000,4620,15.53K,
160,10.56K,880,4440,4780,13.59K,
160,12.08K,1040,4720,4720,12.39K,
0,0,0,0,140,23.79K,
0,0,0,40,355,23.3K,
0,0,0,120,540,23.38K,
0,160,20,440,840,22.8K,
0,440,40,680,1185,22.7K,
0,920,20,820,1030,22.76K,
0,1200,60,700,1225,22.58K,
40,1080,160,860,1390,21.58K,
0,1680,120,940,1290,21.09K,
0,1640,260,1140,1420,21.77K,
40,2200,300,1240,1505,21.05K,
40,2440,540,1440,1510,21.28K,
0,0,0,0,65,23.8K,
0,0,0,20,195,23.58K,
0,0,0,60,270,24.24K,
0,160,20,220,525,23.94K,
0,280,20,300,675,22.84K,
0,400,20,500,660,23.39K,
0,440,40,600,690,22.18K,
0,600,40,580,760,22.86K,
40,680,100,480,825,22.61K,
0,880,140,600,725,22.38K,
0,1080,260,680,860,22.61K,
40,1160,340,820,820,21.68K,
0,0,0,0,30,23.79K,
0,0,0,0,40,24.16K,
0,0,0,0,110,23.62K,
0,0,0,80,240,24.02K,
0,0,0,160,310,24.05K,
0,0,40,200,280,23.76K,
0,40,80,60,375,23.89K,
0,0,40,240,355,23.61K,
0,80,40,200,375,23.32K,
0,120,20,200,430,23.47K,
120,160,80,320,355,23.09K,
0,240,140,260,485,23.23K,
0,0,0,0,0,21.56K,
0,0,0,0,900,21.56K,
0,0,0,140,1990,20.85K,
0,160,0,620,3485,19.13K,
0,1840,0,3080,6265,16.13K,
0,5360,240,5100,8110,12.77K,
0,5560,100,6000,7980,11.66K,
80,7720,180,5620,8600,10.68K,
0,9400,260,5940,8700,9595,
80,11.44K,620,7060,9525,7435,
40,14.72K,800,8040,9260,5400,
120,18.96K,1400,8680,9935,2115,
160,20.88K,1560,9380,10.45K,0,
0,0,0,0,590,21.57K,
0,40,0,140,1570,21.03K,
0,280,0,480,2615,19.95K,
0,1320,0,2320,4665,17.32K,
0,3640,100,3960,5825,14.68K,
0,4840,80,4280,5930,14.15K,
0,6320,180,4340,6590,13.55K,
0,7080,280,4540,6745,12.25K,
0,8360,480,5380,6775,10.52K,
120,10.32K,700,6460,7115,9300,
40,14.36K,1040,6480,7580,6675,
120,16.04K,1620,6880,7520,4985,
0,0,0,0,605,21.42K,
0,40,0,20,1405,20.37K,
0,40,0,460,2585,19.88K,
0,1160,0,2080,4105,17.97K,
0,3400,100,3160,5515,15.61K,
0,4200,80,3760,5515,14.75K,
0,5320,200,4080,5885,14.31K,
0,5840,300,4300,5980,13.4K,
0,7440,520,4680,6425,12.08K,
0,9760,740,4880,6620,10.55K,
120,13.04K,920,5780,6890,8035,
120,14.4K,1160,6080,7060,6580,
0,0,0,0,455,21.25K,
0,0,0,60,1010,21.13K,
0,200,0,320,1660,20.68K,
0,840,20,1420,3155,18.69K,
0,2200,160,2540,3485,17.19K,
0,3440,220,2680,3780,16.85K,
0,4040,120,2860,3970,15.95K,
0,4200,240,2900,4165,16.43K,
40,5720,200,3680,4175,14.48K,
40,6720,460,3760,4640,13.48K,
80,8760,980,4500,4365,12.03K,
120,10.44K,900,4540,4630,10.91K,
0,0,0,0,105,21.55K,
0,0,0,20,245,21.17K,
0,0,0,80,455,21.29K,
0,280,0,360,850,20.68K,
0,440,80,500,1150,20.74K,
0,600,0,820,1180,19.97K,
0,680,40,820,1215,20.61K,
0,960,80,820,1285,20.21K,
40,1280,180,1000,1260,19.74K,
0,1560,200,1060,1375,19.32K,
0,1960,300,1140,1365,19.12K,
0,2440,240,1300,1430,19.03K,
0,0,0,0,75,21.51K,
0,0,0,20,185,21.61K,
0,0,0,40,215,21.1K,
0,0,20,280,490,21.5K,
0,160,60,360,615,20.96K,
0,360,0,380,640,21.03K,
0,240,40,520,695,20.93K,
0,560,40,440,690,20.54K,
0,520,60,560,630,20.53K,
0,840,80,440,745,19.99K,
0,1040,220,700,820,20.22K,
80,1120,240,580,825,19.99K,
0,0,0,0,25,21.35K,
0,0,0,0,30,20.99K,
0,0,0,0,85,21.73K,
0,0,0,60,225,21.49K,
0,0,20,80,300,21.31K,
0,40,40,160,240,20.81K,
0,80,20,80,325,21.14K,
0,40,0,80,350,21.47K,
0,80,20,180,375,21.22K,
0,0,60,240,320,21.11K,
0,160,20,160,470,21.13K,
0,120,100,260,450,20.56K,
0,0,0,0,0,19.58K,
0,0,0,0,775,18.88K,
0,0,0,160,1915,18.6K,
0,120,0,740,3405,17.97K,
0,1520,0,2640,6005,14.44K,
0,4160,140,4480,7665,11.22K,
0,4840,220,5020,7805,11K,
0,5480,60,5900,8075,9950,
0,7840,240,5560,8520,8795,
0,9120,360,6680,8870,6915,
0,13.12K,560,7820,9535,4690,
40,16.28K,1020,8120,9685,1960,
80,18.76K,980,8940,9815,0,
0,0,0,0,475,19.23K,
0,0,0,80,1500,18.87K,
0,40,0,500,2470,18.29K,
0,1160,0,2300,4405,16.37K,
0,2880,40,3500,5650,13.81K,
0,4000,180,3660,5815,13.15K,
0,4680,100,4460,6355,12.22K,
40,5480,320,4440,6485,11.05K,
0,7440,500,4980,6675,9510,
40,9680,520,5780,6910,8455,
40,12.48K,700,6080,7355,6285,
80,13.64K,1220,6740,7560,4655,
0,0,0,0,575,19.33K,
0,0,0,140,1370,19.39K,
0,120,0,340,2220,18.36K,
0,1040,40,1880,4085,16.02K,
0,2960,40,2820,5130,13.87K,
0,3640,60,3360,5275,13.24K,
0,3880,100,3940,5585,12.53K,
0,5200,180,3780,5625,12.16K,
0,6240,420,4560,6110,10.79K,
0,8960,500,4980,6125,9535,
0,10.96K,1040,5520,6490,7210,
80,12.64K,820,6020,7175,6160,
0,0,0,40,415,19.09K,
0,0,0,120,955,18.95K,
0,80,0,200,1730,18.1K,
0,720,0,1340,2740,16.99K,
0,1480,20,2420,3525,15.88K,
0,2440,140,2460,3630,15.24K,
0,3200,120,2900,3695,14.93K,
0,3680,80,3040,3830,13.89K,
0,4800,200,3380,4055,13.59K,
0,5880,400,3620,4255,12.64K,
40,7720,780,4460,4245,11.41K,
120,9040,620,4380,4670,10.52K,
0,0,0,0,100,19.27K,
0,0,0,0,235,19.34K,
0,0,0,140,395,19.69K,
0,200,20,340,825,18.82K,
0,360,0,620,955,17.98K,
0,440,20,720,1130,18.06K,
0,680,20,680,1020,17.85K,
0,1000,40,760,1140,18.22K,
0,1000,160,920,1310,17.41K,
0,1240,60,1040,1325,17.14K,
0,2160,160,920,1305,17.1K,
0,2040,260,1240,1485,16.78K,
0,0,0,0,55,18.92K,
0,0,0,0,130,19.21K,
0,0,0,0,275,19.66K,
0,40,0,180,460,19.25K,
0,160,0,220,635,18.42K,
0,160,40,400,585,18.41K,
0,360,0,340,630,18.64K,
0,520,60,360,655,18.38K,
0,400,80,420,685,18.44K,
0,640,120,520,860,18.93K,
40,1000,140,580,785,18.15K,
40,760,280,520,880,18.08K,
0,0,0,0,20,19.56K,
0,0,0,0,60,18.85K,
0,0,0,0,85,19.01K,
0,0,0,60,170,19.28K,
0,0,0,80,295,19.19K,
0,0,20,80,290,19.61K,
0,40,60,60,320,19.1K,
0,0,20,100,315,19.2K,
0,80,40,180,270,18.95K,
0,80,80,220,340,18.87K,
40,120,100,80,425,18.87K,
0,120,100,280,420,18.69K,
0,0,0,0,0,18.45K,
0,0,0,0,690,17.57K,
0,0,0,80,1740,16.8K,
0,120,0,320,3245,15.89K,
0,1280,40,2420,5595,13.34K,
0,3160,140,4300,7085,10.97K,
0,4440,80,4380,7405,9995,
0,5240,220,4820,7950,8660,
0,6400,160,5720,8125,7910,
0,8320,300,6460,8760,6255,
80,11.24K,420,6700,8935,4735,
0,13.96K,680,7720,9560,1765,
80,16.28K,960,8340,9650,0,
0,0,0,0,535,17.48K,
0,0,0,140,1175,17.58K,
0,200,0,220,2235,16.64K,
0,720,20,1960,4365,14.39K,
0,2840,100,3080,5290,12.12K,
40,3440,120,3440,6035,11.63K,
40,4560,140,4040,5645,10.67K,
0,4280,140,4300,6180,10.48K,
0,6840,160,4280,6535,8860,
0,8520,440,5100,6555,7540,
0,10.92K,580,5480,7390,5510,
120,12.24K,980,6120,7295,4070,
0,0,0,20,525,17.71K,
0,0,0,120,1360,17.07K,
0,0,0,300,2195,16.71K,
0,760,20,1860,3835,14.82K,
0,2280,60,2900,5045,13.04K,
0,2560,140,3440,5130,12.06K,
0,3480,40,3540,5285,11.88K,
0,4520,220,3640,5565,10.85K,
0,5880,300,4180,5775,9990,
0,7480,420,4940,5980,8690,
0,9880,740,4720,6475,6635,
40,11.8K,900,5400,7005,5380,
0,0,0,0,415,17.72K,
0,0,0,60,890,17.58K,
0,120,0,160,1645,16.58K,
0,760,0,1000,2695,15.13K,
0,1560,100,1760,3350,14.4K,
0,2000,20,2400,3450,13.83K,
0,2600,120,2720,3435,14.18K,
0,3000,200,2760,3770,13K,
0,4320,240,2920,3860,11.97K,
0,4560,240,3700,4185,11.27K,
80,6560,480,4020,4445,10.35K,
40,8040,600,4180,4490,9045,
0,0,0,0,115,18.36K,
0,0,0,0,255,18.24K,
0,0,0,80,375,17.09K,
0,120,0,340,845,17.72K,
0,240,0,580,955,16.8K,
0,560,20,700,1065,17.21K,
0,520,60,720,1070,16.62K,
0,680,20,700,1275,16.47K,
0,760,20,980,1220,16.34K,
0,1360,40,640,1340,15.77K,
0,1680,200,1000,1305,15.42K,
40,2080,240,880,1430,15.87K,
0,0,0,0,60,17.5K,
0,0,0,0,90,17.25K,
0,0,0,40,230,17.79K,
0,40,0,160,400,17.62K,
0,160,20,200,660,16.77K,
0,80,0,400,580,16.73K,
0,480,0,260,680,17.02K,
0,400,40,380,600,17.22K,
0,400,60,380,690,16.39K,
0,600,80,460,715,17.43K,
0,800,160,560,850,16.4K,
0,640,140,640,745,16.78K,
0,0,0,0,15,17.99K,
0,0,0,0,65,18.5K,
0,0,0,0,90,17.67K,
0,0,0,0,190,17.54K,
0,40,20,60,245,17.49K,
0,0,20,140,250,17.38K,
0,0,0,100,260,17.9K,
0,40,40,80,255,17.65K,
0,0,40,140,355,17.14K,
0,120,100,160,360,17.57K,
0,0,40,120,350,17.33K,
0,120,100,200,440,16.9K,
0,0,0,0,0,17.05K,
0,0,0,0,635,16.21K,
0,0,0,160,1585,15.6K,
0,0,0,500,2750,15.29K,
0,880,40,2360,5455,12.23K,
0,2680,80,3680,6815,9945,
0,3560,80,4460,7260,9345,
0,4480,180,4580,7615,8165,
0,5280,300,5180,7755,7690,
0,7520,300,5720,8130,5500,
40,10.04K,260,6500,8695,4080,
40,12.4K,660,7240,9500,1760,
40,14.08K,900,8120,9495,0,
0,0,0,20,565,16.37K,
0,0,0,40,1275,15.55K,
0,0,0,340,2275,14.86K,
0,480,0,1760,4110,13.77K,
0,2040,60,2860,5265,11.06K,
0,3360,60,3140,5515,10.49K,
0,3480,40,3580,5910,10.44K,
0,3800,200,3800,5985,9840,
0,5360,320,4360,6485,8435,
40,6720,400,5200,6650,7145,
80,9400,520,5180,6870,5340,
80,10.96K,600,6100,7220,3960,
0,0,0,20,600,16.5K,
0,0,0,20,1195,16.51K,
0,80,0,320,1980,15.79K,
0,680,0,1560,3705,13.11K,
0,1600,20,2820,4710,11.7K,
0,2480,20,2920,5205,11.51K,
0,3120,120,3240,5245,10.81K,
0,3760,100,3660,5420,10.47K,
0,5600,200,4040,5575,9185,
0,6520,320,4580,5755,7585,
40,8600,760,4960,6305,6250,
40,9960,920,5360,6945,4880,
0,0,0,20,315,16.2K,
0,0,0,60,745,16.04K,
0,0,0,200,1430,16.1K,
0,520,40,1020,2590,14.11K,
0,1480,40,1980,3155,13.7K,
0,1800,20,1980,3325,13.05K,
0,1960,60,2400,3500,12.76K,
0,2480,240,2680,3630,12.52K,
0,4000,180,3020,3780,11.75K,
0,4760,240,3280,3935,11.04K,
40,6240,340,3820,4215,9295,
0,7480,360,4060,4525,8520,
0,0,0,0,90,16.34K,
0,0,0,0,235,16.47K,
0,0,0,20,340,16.06K,
0,160,0,220,775,15.92K,
0,320,20,440,935,15.62K,
0,440,0,500,1065,15.9K,
0,440,0,700,1025,15.66K,
0,520,40,740,1095,15.22K,
0,960,40,760,1145,15.2K,
0,1320,120,720,1285,14.99K,
0,1440,160,1020,1295,15.04K,
0,1760,180,880,1300,14.72K,
0,0,0,0,45,16.37K,
0,0,0,0,70,16.91K,
0,0,0,0,240,16.53K,
0,40,0,120,360,16.52K,
0,120,0,180,570,16.2K,
0,160,20,260,580,16.05K,
0,360,20,280,585,15.83K,
0,200,40,380,685,15.84K,
0,320,20,480,675,15.85K,
0,440,0,520,665,15.91K,
0,720,160,560,675,15.48K,
0,520,120,600,800,15.27K,
0,0,0,0,5,16.25K,
0,0,0,0,25,16.58K,
0,0,0,0,105,16.6K,
0,0,0,20,170,16.68K,
0,0,0,20,300,16.43K,
0,40,0,120,230,16.91K,
0,0,20,120,220,16.37K,
0,0,0,120,215,15.95K,
0,0,60,180,310,15.99K,
0,40,60,160,325,16.2K,
0,0,40,240,270,16.52K,
0,80,40,140,400,16.42K,
0,0,0,0,0,15.96K,
0,0,0,0,610,15.7K,
0,0,0,40,1565,14.92K,
0,40,0,280,2750,13.95K,
0,720,20,2020,5270,11.85K,
0,2080,40,4180,6935,9480,
0,3120,40,4140,7165,8460,
0,3880,100,4240,7660,8090,
0,4560,140,4860,7685,7100,
0,6800,100,5740,8295,5685,
0,8920,320,6120,8635,4065,
0,11.28K,480,7140,9155,1520,
40,12.44K,620,7900,9500,0,
0,0,0,0,490,15.43K,
0,0,0,20,1135,15.36K,
0,0,0,160,2245,14.36K,
0,400,0,1500,3985,12.74K,
0,1960,60,2580,5265,11.35K,
0,2800,100,3320,5240,10.62K,
0,2960,120,3580,5615,9675,
40,3120,60,3920,5945,9045,
0,4920,280,4300,6290,8005,
0,6400,300,4700,6630,6645,
40,8560,420,5540,6685,5090,
40,10.2K,640,5140,7240,3765,
0,0,0,20,545,16.15K,
0,0,0,40,995,15.4K,
0,0,0,240,1925,14.74K,
0,480,40,1240,3655,13.51K,
0,1440,80,2520,4635,11.15K,
0,2040,40,2820,5005,10.9K,
0,2880,40,3320,4935,10.52K,
0,3560,80,3120,5400,9845,
0,4840,220,3880,5320,8380,
0,5800,300,4440,5705,7465,
40,7760,460,4840,6260,5920,
40,9560,460,5060,6415,5165,
0,0,0,0,345,15.64K,
0,0,0,20,725,15.37K,
0,0,0,220,1285,14.67K,
0,360,0,780,2530,14.03K,
0,1040,20,2080,3100,12.64K,
0,1440,60,1900,3200,12.14K,
0,1680,40,2120,3410,11.64K,
0,1960,120,2360,3530,11.63K,
0,3560,140,2900,3790,10.78K,
0,4080,200,2940,3860,10.21K,
40,5840,380,3540,4110,8635,
40,6640,420,3660,4490,8390,
0,0,0,0,65,15.84K,
0,0,0,0,210,15.77K,
0,0,0,40,345,15.87K,
0,40,0,360,765,16.08K,
0,200,40,460,895,14.87K,
0,240,0,560,1045,14.72K,
0,320,40,580,1135,14.87K,
0,520,20,660,1160,14.08K,
0,800,0,720,1060,14.41K,
0,1000,40,1020,1305,13.94K,
0,1360,120,940,1265,13.84K,
40,1360,180,1080,1220,13.55K,
0,0,0,0,30,15.67K,
0,0,0,20,80,15.89K,
0,0,0,20,205,16.03K,
0,0,0,100,465,15.5K,
0,80,20,240,525,15.24K,
0,40,0,340,530,15.23K,
0,120,40,400,475,15.1K,
0,320,0,300,615,14.58K,
0,400,0,340,700,14.96K,
0,600,40,380,660,14.78K,
0,560,80,440,810,14.52K,
0,520,160,560,795,14.48K,
0,0,0,0,5,15.33K,
0,0,0,0,30,15.76K,
0,0,0,0,80,15.4K,
0,40,0,0,180,15.82K,
0,0,20,100,185,15.16K,
0,0,0,100,290,15.5K,
0,0,0,60,240,15.68K,
0,0,40,120,245,15.12K,
0,40,60,120,215,15.17K,
0,40,20,100,340,15.22K,
0,40,20,180,345,15.03K,
0,120,60,120,315,14.8K,
0,0,0,0,0,15.15K,
0,0,0,0,590,15.22K,
0,0,0,20,1525,14.51K,
0,40,0,340,2765,13.47K,
0,800,20,1700,5365,11.4K,
0,2080,60,3440,6730,9385,
0,3320,60,4020,6925,7955,
0,3320,100,4180,7125,7355,
0,4160,180,4700,7470,6715,
0,6160,220,5520,7780,5245,
0,8240,220,5600,8630,3665,
0,10.36K,440,7100,9010,1550,
0,12K,840,7500,9080,0,
0,0,0,0,425,14.6K,
0,0,0,40,1290,14.31K,
0,40,0,240,1975,14.04K,
0,320,20,1560,3865,12.22K,
0,1480,80,2500,4935,10.89K,
0,1920,20,3020,5215,9695,
0,2560,100,3340,5440,9490,
0,2840,100,3760,5860,8310,
0,4560,180,4040,6270,7420,
0,5520,220,4880,6700,6190,
0,8080,340,4980,6790,4525,
0,9160,660,5440,6835,3420,
0,0,0,0,495,15.03K,
0,0,0,0,895,14.3K,
0,0,0,280,1760,13.97K,
0,520,20,1080,3510,12.56K,
0,1520,40,2460,4450,10.7K,
0,2200,80,2820,4575,10.25K,
0,2400,60,2920,5010,9990,
0,2840,80,3260,5235,9495,
0,3720,140,3720,5460,8445,
0,5280,240,4040,5865,7465,
0,6680,420,4600,6085,5500,
80,8200,460,4800,6365,4785,
0,0,0,0,320,15.23K,
0,0,0,20,675,14.5K,
0,0,0,100,1225,14.24K,
0,240,0,820,2390,13.3K,
0,920,60,1720,3135,11.93K,
0,1480,20,1620,3545,12.17K,
0,1560,40,2260,3285,11.14K,
0,2440,20,1900,3570,10.9K,
0,3200,140,2660,3865,10.43K,
0,3800,100,2900,4090,9840,
0,4920,340,3500,4040,8530,
80,5880,340,3480,4130,7845,
0,0,0,0,55,15.33K,
0,0,0,0,250,14.78K,
0,0,0,20,415,14.83K,
0,120,0,220,810,14.41K,
0,240,40,320,920,14.26K,
0,280,20,560,935,13.93K,
0,240,40,600,975,14.35K,
0,440,80,700,1045,13.69K,
0,400,60,680,1080,13.26K,
0,720,40,1040,1310,13.67K,
0,1080,120,1180,1110,13.57K,
0,1360,100,900,1315,13.02K,
0,0,0,0,45,14.88K,
0,0,0,0,75,14.97K,
0,0,0,20,160,14.58K,
0,0,0,100,390,14.76K,
0,160,0,240,580,14.82K,
0,0,0,320,520,14.57K,
0,40,0,340,650,14.1K,
0,120,20,240,575,14.31K,
0,320,20,260,665,14.07K,
0,560,0,440,590,14.23K,
40,600,100,560,755,14.38K,
0,320,120,640,755,13.9K,
0,0,0,0,5,15.27K,
0,0,0,0,45,15.22K,
0,0,0,0,35,15.07K,
0,0,0,40,135,14.87K,
0,40,0,80,170,14.55K,
0,0,0,80,270,14.72K,
0,40,0,120,210,14.6K,
0,0,40,60,270,15.32K,
0,0,0,60,300,15.08K,
0,0,40,140,325,14.85K,
0,40,20,220,350,14.38K,
0,0,100,140,480,14.74K,
0,0,0,0,0,14.72K,
0,0,0,20,650,14.49K,
0,0,0,40,1490,13.62K,
0,40,0,300,2740,12.9K,
0,440,0,1800,4970,10.57K,
0,1800,40,3460,6540,8895,
0,2440,100,4200,6710,7840,
0,3520,80,3900,6965,7550,
0,3960,160,4200,7410,6255,
0,5480,220,5040,8090,5195,
0,7600,260,5660,8515,3635,
0,9720,540,6540,8525,1485,
0,10.64K,580,7600,9225,0,
0,0,0,0,365,14.01K,
0,0,0,80,1110,14.44K,
0,0,0,200,2050,13.67K,
0,400,40,1260,3765,11.59K,
0,1280,20,2300,5060,10.18K,
0,2160,40,2720,5020,9325,
0,2080,120,3360,5725,8695,
0,3040,120,3660,5515,8025,
0,4120,180,3980,6030,7400,
40,5840,200,4320,6125,6025,
0,7280,380,5240,6715,4460,
0,8240,440,6040,6705,3270,
0,0,0,0,420,13.77K,
0,0,0,60,890,13.83K,
0,0,0,220,1925,13.42K,
0,400,20,1040,3395,12.09K,
0,1640,0,2140,4405,10.68K,
0,2000,40,2460,4975,10.1K,
0,2360,20,2700,4900,9630,
0,2640,100,2940,5260,9520,
0,3520,100,3580,5285,8025,
40,4760,120,4160,5835,6940,
40,6360,340,4440,6460,5600,
0,7480,460,4980,6160,4455,
0,0,0,0,315,14.38K,
0,0,0,60,560,13.84K,
0,0,0,160,1305,13.62K,
0,240,20,680,2235,12.61K,
0,1000,0,1520,3080,11.86K,
0,1320,0,1940,3200,11.51K,
0,1560,40,1840,3520,11.06K,
0,1680,160,2320,3610,10.85K,
0,2760,180,2440,3890,9815,
0,2960,220,2900,4155,9515,
0,4400,360,3540,4100,8255,
40,5160,300,3680,4230,7705,
0,0,0,0,65,14.68K,
0,0,0,0,180,14.65K,
0,0,0,40,400,14.61K,
0,40,0,180,670,13.94K,
0,120,0,440,865,13.69K,
0,240,20,520,915,14.1K,
0,320,0,580,980,13.57K,
0,480,20,560,1040,13.75K,
0,520,40,780,1060,12.94K,
0,880,80,740,1175,13.28K,
0,960,80,940,1360,12.6K,
0,1120,200,940,1225,12.38K,
0,0,0,0,35,13.98K,
0,0,0,0,100,14.86K,
0,0,0,20,195,14.73K,
0,0,0,140,310,14.36K,
0,120,0,180,505,14.33K,
0,80,20,220,525,13.72K,
0,120,20,260,655,13.67K,
0,80,40,280,485,14.39K,
0,240,20,380,570,13.83K,
0,400,20,420,710,14K,
0,520,60,460,795,13.6K,
0,600,80,400,750,13.47K,
0,0,0,0,20,14.56K,
0,0,0,0,35,14.34K,
0,0,0,0,35,14.49K,
0,0,0,0,170,14.5K,
0,0,0,100,200,14.28K,
0,40,0,60,220,14.11K,
0,0,0,80,240,14.07K,
0,40,0,40,240,14.25K,
0,0,0,160,290,14.03K,
0,0,60,100,295,14.32K,
0,160,80,140,335,14.01K,
0,120,0,180,360,13.43K,
0,0,0,0,0,13.65K,
0,0,0,0,610,13.56K,
0,0,0,100,1390,13.61K,
0,0,0,360,2375,12.49K,
0,560,0,1500,5095,10.41K,
0,1960,40,3080,6470,8435,
0,2480,60,3580,6675,7325,
0,2880,80,4020,7200,6900,
0,3440,80,4120,7220,6295,
0,5160,40,4680,7660,4740,
0,6480,240,5460,8580,3490,
40,9040,420,6180,9025,1400,
40,10.72K,480,6900,9100,0,
0,0,0,0,430,14K,
0,0,0,20,1085,13.94K,
0,0,0,340,1905,12.99K,
0,680,0,1100,3670,11.25K,
0,1120,40,2360,4960,9735,
0,1440,60,2680,5020,8860,
0,2160,140,2760,5580,8560,
0,2840,80,3300,5680,8225,
40,3800,220,4100,5790,6985,
0,4960,240,4680,6420,5860,
0,6880,340,4880,6570,4500,
40,8200,280,5360,6880,3180,
0,0,0,0,350,13.95K,
0,0,0,60,860,13.5K,
0,0,0,200,1770,12.75K,
0,440,0,1080,3375,11.04K,
0,1440,40,2260,4265,10.69K,
0,1440,60,2540,4540,9875,
0,1760,120,3100,4995,8845,
0,2760,140,3120,5020,8900,
0,3600,200,3360,5465,8000,
0,4440,260,3920,5740,6755,
0,6720,240,4120,5880,5585,
0,7040,560,4760,6195,4290,
0,0,0,0,260,14.34K,
0,0,0,40,655,13.53K,
0,0,0,180,1285,13.34K,
0,280,0,880,2245,12.7K,
0,840,40,1500,3035,11.13K,
0,1320,60,1540,3170,11.23K,
0,1600,40,1880,3160,11.12K,
0,1640,60,2060,3585,10.31K,
0,2600,100,2360,3650,9990,
0,2760,220,2640,3960,9245,
0,4440,220,3200,3975,7965,
40,4600,440,3920,4160,7320,
0,0,0,0,90,14.52K,
0,0,0,0,165,14.22K,
0,0,0,60,360,13.66K,
0,0,0,200,580,13.3K,
0,40,0,500,835,13.46K,
0,360,0,400,940,12.91K,
0,400,0,380,1045,12.99K,
0,240,40,600,1005,13.06K,
0,600,20,580,1105,12.55K,
0,680,0,640,1370,12.82K,
0,960,140,860,1245,12.39K,
0,1000,120,960,1235,11.86K,
0,0,0,0,30,13.84K,
0,0,0,0,85,13.97K,
0,0,0,20,170,13.83K,
0,0,0,140,395,13.88K,
0,40,0,140,550,13.62K,
0,40,0,300,535,13.81K,
0,120,0,340,525,12.9K,
0,200,20,260,540,13.38K,
0,280,0,280,615,13.7K,
0,280,60,440,695,13.35K,
0,400,40,480,805,13.08K,
0,480,40,620,705,12.82K,
0,0,0,0,20,14.19K,
0,0,0,0,20,14.06K,
0,0,0,0,40,14.32K,
0,0,0,0,165,13.76K,
0,0,0,60,235,13.91K,
0,0,0,60,225,14.08K,
0,0,0,20,245,13.63K,
0,0,40,40,210,14.01K,
0,0,0,120,300,13.93K,
0,40,40,120,315,13.51K,
40,40,20,220,345,13.72K,
0,0,40,180,430,14.3K,
0,0,0,0,0,13.97K,
0,0,0,0,605,13.87K,
0,0,0,40,1455,13.47K,
0,0,0,360,2325,12.47K,
0,440,20,1520,4965,10.71K,
0,1520,80,3080,6405,8345,
0,2520,0,3140,6730,8075,
0,3120,80,4060,7170,7295,
0,3320,40,4100,7065,6420,
0,5040,280,4960,7825,4720,
0,6560,160,5680,8280,3530,
0,8560,420,6680,8435,1465,
0,10.56K,580,7220,8965,0,
0,0,0,0,400,13.89K,
0,0,0,20,1085,13.86K,
0,0,0,180,1835,13.09K,
0,360,0,980,3830,11.63K,
0,1240,20,2120,4875,9585,
0,1760,80,2440,4905,9310,
0,1840,60,2720,5325,8995,
0,2640,100,3200,5395,8270,
0,3240,140,3640,6030,7035,
40,4720,140,4400,6085,5885,
0,6440,320,4940,6840,4310,
0,8000,420,5200,6520,3200,
0,0,0,0,410,13.69K,
0,0,0,0,980,13.55K,
0,0,0,100,1760,12.89K,
0,480,20,1000,3125,12.3K,
0,840,0,2600,4240,10.37K,
0,1320,60,2060,4755,9700,
0,1920,40,2600,4850,9320,
0,2440,60,3280,4965,8765,
0,3480,160,3620,5270,7600,
0,4520,220,3620,5580,7010,
40,6360,400,4460,6255,5185,
40,6520,460,4880,6050,4510,
0,0,0,0,320,13.92K,
0,0,0,0,715,13.75K,
0,0,0,180,1220,13.9K,
0,360,20,660,2290,12.43K,
0,1080,40,1360,2730,11.2K,
0,1400,60,1340,3210,11.21K,
0,1320,0,1560,3510,10.72K,
0,1800,80,2060,3350,10.36K,
0,2640,140,2280,3730,9760,
0,2760,180,2920,3755,8845,
0,4560,160,3200,3965,8125,
40,5080,280,3760,4115,7220,
0,0,0,0,110,14.15K,
0,0,0,0,145,13.57K,
0,0,0,0,360,13.48K,
0,80,0,200,595,13.38K,
0,240,0,380,860,13.06K,
0,240,0,420,945,13.36K,
0,280,20,540,935,13.5K,
0,520,60,380,990,13.58K,
0,520,80,720,1070,13.07K,
0,760,60,720,1210,12.71K,
0,960,80,840,1235,12.7K,
0,1240,160,760,1215,12.06K,
0,0,0,0,40,14.32K,
0,0,0,0,75,14.02K,
0,0,0,20,145,14.33K,
0,40,0,100,420,13.45K,
0,0,20,200,530,14.05K,
0,80,0,300,525,13.43K,
0,120,20,300,630,13.39K,
0,240,40,320,525,13.38K,
0,280,80,320,600,13.16K,
0,160,20,420,635,13.5K,
0,520,40,400,735,13.22K,
0,520,60,600,760,13.23K,
0,0,0,0,15,14.2K,
0,0,0,0,35,14.33K,
0,0,0,0,90,14.25K,
0,0,0,0,130,13.66K,
0,0,0,40,180,13.9K,
0,0,0,80,230,13.99K,
0,0,0,60,205,13.93K,
0,0,20,60,235,13.96K,
0,0,20,40,270,13.74K,
0,40,0,120,355,14.28K,
0,80,20,120,360,14K,
0,0,20,300,310,13.56K,
0,0,0,0,0,13.9K,
0,0,0,0,535,13.65K,
0,0,0,60,1385,13.15K,
0,0,0,160,2520,12.31K,
0,480,0,1540,4755,10.96K,
0,1600,20,2980,6005,8720,
0,2040,100,3720,6440,8100,
0,2560,20,4180,7215,7025,
0,3160,120,4460,7020,6180,
0,5400,220,5180,7750,5080,
0,6320,180,5760,8350,3580,
0,9360,420,6480,8520,1375,
0,10.12K,500,6560,9270,0,
0,0,0,0,425,13.55K,
0,0,0,80,1040,13.64K,
0,0,0,240,1860,12.98K,
0,320,20,1140,3725,11.58K,
0,1160,20,2300,4625,9780,
0,1520,0,2520,5190,9165,
0,2320,80,2840,5255,9025,
0,2920,20,2980,5390,7860,
0,3600,180,3980,5790,7115,
0,5040,120,4200,6205,5910,
40,6600,380,4500,6680,4275,
0,8160,400,5100,6665,2990,
0,0,0,20,370,13.74K,
0,0,0,0,960,13.84K,
0,40,0,200,1610,12.75K,
0,480,0,1200,3105,11.94K,
0,1040,40,2320,4345,10.15K,
0,1600,0,1900,4690,9480,
0,2200,80,2640,4530,9145,
0,2400,80,3360,4980,8690,
0,3440,180,3740,5450,7825,
0,4040,280,4280,5610,7005,
0,6360,320,3900,6055,5115,
0,7400,380,4640,6035,4090,
0,0,0,0,280,13.92K,
0,0,0,60,630,13.95K,
0,0,0,220,1150,13.42K,
0,280,0,680,2335,12.59K,
0,880,0,1560,2710,11.32K,
0,960,80,1760,3160,11.05K,
0,1320,20,1720,3275,10.44K,
0,1600,60,2140,3445,10.51K,
0,2440,100,2280,3685,9335,
0,3320,180,2680,3775,9180,
0,4280,300,3660,4220,7880,
0,4920,280,3460,4170,7100,
0,0,0,0,85,13.77K,
0,0,0,0,165,13.9K,
0,0,0,40,315,14.38K,
0,0,0,240,620,13.42K,
0,160,20,380,930,13.15K,
0,160,20,600,980,13.34K,
0,160,20,560,925,13.22K,
0,440,20,700,900,12.92K,
0,600,0,480,1295,12.89K,
0,560,80,880,1300,12.65K,
0,680,100,980,1245,12.1K,
0,1120,140,980,1115,11.9K,
0,0,0,0,40,13.62K,
0,0,0,0,130,14.23K,
0,0,0,20,160,14.48K,
0,40,0,140,445,13.87K,
0,0,0,220,570,13.48K,
0,80,0,160,600,13.4K,
0,120,0,300,660,13.51K,
0,120,0,280,565,13.84K,
0,280,40,320,635,13K,
0,240,0,420,690,13.27K,
0,480,60,400,700,13.9K,
0,480,40,480,795,13.65K,
0,0,0,0,5,14.38K,
0,0,0,0,30,13.76K,
0,0,0,0,55,13.92K,
0,0,0,0,140,13.9K,
0,0,0,20,220,14.47K,
0,0,0,60,200,13.62K,
0,0,0,60,255,13.86K,
0,0,0,60,220,13.56K,
0,0,0,140,240,13.34K,
0,0,40,120,295,13.72K,
0,80,60,140,310,13.56K,
0,40,40,180,330,13.44K,
0,0,0,0,0,13.99K,
0,0,0,0,555,14.05K,
0,0,0,40,1360,13.69K,
0,0,0,320,2410,12.63K,
0,480,0,1720,4775,10.61K,
0,1640,80,3280,5995,8450,
0,2440,40,3640,6585,7665,
0,3000,20,3840,7010,6875,
0,3480,80,4120,6950,6230,
0,4760,60,5280,7940,5270,
0,6600,220,5820,8150,3535,
0,8800,500,6600,8885,1260,
40,11.04K,420,6780,8985,0,
0,0,0,0,400,13.99K,
0,0,0,0,1035,13.5K,
0,0,0,120,2135,12.88K,
0,240,0,1320,3740,10.84K,
0,1080,40,2600,4680,9885,
0,1480,60,2840,4750,9285,
0,2240,100,3040,5230,8815,
0,2520,80,3240,5375,8585,
0,3800,120,3700,6185,7285,
0,4880,280,4460,6280,5905,
40,6480,300,4740,6730,4290,
40,8040,500,5420,6485,3340,
0,0,0,0,400,13.89K,
0,0,0,40,890,13.52K,
0,40,0,140,1705,12.94K,
0,320,0,1240,3245,11.48K,
0,1120,20,2100,4515,9995,
0,1560,40,2580,4480,9545,
0,1880,60,2720,4600,9155,
0,2440,40,2820,4850,8785,
0,3520,40,3520,5270,7975,
0,4160,240,3800,5545,6930,
0,6240,260,4620,6030,5410,
0,7240,380,4900,6355,4480,
0,0,0,0,215,13.73K,
0,0,0,20,585,13.85K,
0,80,0,160,1185,12.83K,
0,320,0,680,2300,12.11K,
0,720,40,1500,3125,11.77K,
0,1280,60,1740,3070,10.82K,
0,1200,0,2000,3190,10.93K,
0,1560,80,1980,3445,10.35K,
0,2280,80,2520,3695,9560,
0,3680,120,2420,3705,9020,
0,4720,200,3380,3965,7905,
40,4920,280,3500,4335,7600,
0,0,0,0,90,13.98K,
0,0,0,0,180,13.82K,
0,0,0,40,320,14.28K,
0,40,0,180,625,13.58K,
0,160,40,400,885,13.63K,
0,280,0,500,975,13.48K,
0,160,20,540,905,12.97K,
0,480,20,580,980,12.19K,
0,600,0,740,1200,12.91K,
0,560,60,860,1055,12.61K,
0,800,100,920,1075,12.72K,
0,1080,140,960,1310,11.98K,
0,0,0,0,55,13.45K,
0,0,0,0,115,14.08K,
0,0,0,0,175,14.01K,
0,0,0,100,480,14K,
0,0,20,260,525,13.81K,
0,80,20,240,505,13.71K,
0,120,0,220,625,13.63K,
0,80,0,320,630,13.5K,
0,280,40,360,600,13.91K,
0,320,60,440,680,13.18K,
0,400,40,440,765,13.39K,
0,520,80,380,820,13.14K,
0,0,0,0,20,13.64K,
0,0,0,0,25,13.89K,
0,0,0,0,65,13.75K,
0,0,0,20,125,14.04K,
0,0,0,0,195,14.29K,
0,0,0,60,190,13.58K,
0,0,0,80,285,14.19K,
0,0,20,60,275,14.21K,
0,0,20,120,270,14.2K,
0,0,0,160,315,13.59K,
0,0,0,100,335,13.65K,
0,40,100,180,325,13.95K,
0,0,0,0,0,14.35K,
0,0,0,40,590,13.63K,
0,0,0,20,1430,13.37K,
0,0,0,180,2490,12.91K,
0,720,0,1560,4665,10.71K,
0,1840,40,3200,6010,8275,
0,2040,40,3540,6710,7550,
0,2560,80,4000,6890,7100,
0,3320,140,4560,7065,6090,
0,5160,220,4680,7705,4820,
40,6960,340,5400,8140,3585,
0,9320,640,6000,9005,1430,
0,10.84K,520,6540,9105,0,
0,0,0,0,415,13.76K,
0,0,0,0,990,13.55K,
0,0,0,240,2110,13.08K,
0,240,0,1180,3765,11.24K,
0,1280,40,2120,4860,9850,
0,1440,0,2900,4900,9285,
0,2320,120,2960,5090,8640,
0,2480,60,3140,5610,8395,
0,3640,100,3780,5995,6735,
0,4720,200,4420,6120,6145,
0,6960,420,4620,6395,4185,
0,7920,500,5260,6710,3370,
0,0,0,0,415,13.91K,
0,0,0,40,810,13.13K,
0,0,0,160,1655,13.25K,
0,400,0,1120,3235,11.86K,
0,1240,40,2080,4210,10.68K,
0,1400,20,2500,4645,9665,
0,1800,100,2600,4725,9285,
0,2360,120,2920,5040,8930,
0,3400,120,3640,5195,7795,
0,4720,240,3460,5600,6645,
0,5280,420,4760,6015,5210,
40,7600,300,4840,6285,4335,
0,0,0,20,215,13.95K,
0,0,0,40,520,13.8K,
0,40,0,180,1185,13.6K,
0,360,0,680,2235,12.55K,
0,800,40,1300,3090,11.72K,
0,1120,40,1800,3235,11.21K,
0,1440,40,1700,3270,10.77K,
0,1920,40,2100,3590,10.35K,
0,2400,120,2200,3670,9535,
0,3240,120,2620,3810,9260,
0,4800,160,2860,4265,8025,
0,5440,460,3800,3920,7415,
0,0,0,0,95,14.35K,
0,0,0,0,210,14.05K,
0,0,0,20,385,14.02K,
0,0,0,220,685,13.5K,
0,160,20,380,810,13.2K,
0,240,20,420,955,13.11K,
0,200,40,460,940,13.1K,
0,480,20,460,1070,12.75K,
0,440,20,680,1280,13.46K,
0,680,40,720,1110,12.69K,
0,1040,60,780,1270,12.04K,
0,960,80,880,1295,12.21K,
0,0,0,0,35,14.21K,
0,0,0,0,120,13.94K,
0,0,0,20,175,14.16K,
0,0,0,140,405,13.68K,
0,40,0,280,440,13.96K,
0,160,40,220,470,13.66K,
0,40,20,280,500,13.82K,
0,160,40,380,555,13.27K,
0,160,0,460,660,13.22K,
0,360,20,400,625,13.4K,
0,320,120,420,715,12.78K,
0,520,60,480,760,13.59K,
0,0,0,0,20,14.13K,
0,0,0,0,45,14.24K,
0,0,0,0,70,14.16K,
0,0,0,20,135,14.17K,
0,0,0,40,180,13.89K,
0,0,0,80,255,13.67K,
0,0,20,60,245,13.96K,
0,0,20,80,265,13.76K,
0,0,20,140,225,14.2K,
0,0,0,180,345,13.47K,
0,80,20,100,345,14.03K,
0,0,60,140,440,13.29K
)
288,288,1
48,24
2,165,61,553,492,0,MIDM
2,152,162,661,477,1,MIDM
[Vehicle,Scenario1_0]
[Time_stat,Vehicle]
Cost elements
1
56,88,1
48,24
1,0,0,1,1,1,0,,0,
Cost_elements
Costs not included:
Accidents
Street infrastructure
City planning
1
208,72,1
68,55
1,1,1,1,1,1,0,,1,
Costs_not_included__
Composite traffic is more attractive to those with long (>= 5 km trips)
1
472,56,1
52,48
65535,65532,19661
Composite_traffic_is
Total societal VOI is only 23000 e/d, which implies robust conclusions
1
688,96,1
52,48
65535,65532,19661
Total_societal__voi_
Other actions
0
104,256,1
96,12
There are several new personal rapid transit (PRT) solutions under operation or preparation. However, all require extensive new infrastructure, either vehicles or roads
Under operation:
CyberCab: The CyberCab is a new people mover system which first application is a temporary installation during the Floriade 2002 Ð a horticultural exposition organized once every ten years. 25 CyberCabs will provide transportation to the summit of the 40 meter high observation point: Big SpottersÕ Hill. The CyberCab is a fully automated vehicle seating 4 passengers. The system is operated by 2getthere.<a href="http://faculty.washington.edu/jbs/itrans/cybercab.htm">Click</a>
Under planning:
HiLoMag: special high-speed gateways for dual-mode cars <a href="http://faculty.washington.edu/~jbs/itrans/hilo1.htm">Click</a>
BiWay dual mode transport: network of elevated tracks along which vehicles are magnetically levitated, and guided under computer control. <a href="http://www.buick.co.uk/biway/intro4.html">Click</a>
Other_actions
104,360,1
76,72
2,299,66,476,385
Composite traffic alone cannot cover all needs of car ownership, but it is almost as good when combined with car sharing or rental
composite_traffic_dummy
504,264,1
76,56
There is an inefficiency bump at 0-20% composite fraction: with too low trip volumes, the benefits from aggregating trips are not realised, and the system is not profitable
There is an inefficiency bump at 0-30% (depending on various details about organising the traffic) composite fraction: with too low trip volumes, the benefits from aggregating trips are not realised, and the system is not profitable
Inefficiency bump in Finnish: tehottomuustyssy.
composite_traffic_dummy
480,408,1
80,72
2,103,257,476,343
65535,65532,19661
Composite traffic aggregates similar trips into public vehicles
In composite traffic, a centralised system collects the information on all trips online, aggregates the trips with the same origin and destination into public vehicles with eight or four seats, and sends the travel instructions to the passengers' mobile phones.
composite_traffic_dummy
504,64,1
48,55
1,1,1,1,1,1,0,,1,
[Alias Composite_traffic_a1]
The pressures from road traffic have stimulated efforts to reduce emissions, congestion, injuries, and need to travel
The pressures from road traffic have stimulated efforts to reduce emissions (electric, hybrid, and hydrogen cars1, natural gas buses2, catalysts and particle traps3, and driving style4); congestion (traffic control5, street tolls, public transport subsidies); injuries (anti-locking brakes, airbags, speed limits6); and need to travel (urban planning7).
Emissions
328,336,1
72,52
2,310,109,596,455
1. Ortmeyer,T.H. & Pillay,P. Trends in transportation sector technology energy use and greenhouse gas emissions. Proceedings of the Ieee 89, 1837-1847 (2001).
2. Tainio,M. et al. Health effect caused by primary fine particulate matter (PM2.5) emitted from busses in Helsinki Metropolitan Area, Finland. Risk Anal. 25, 149-158 (2005).
3. Mediavilla-Sahagun,A. & ApSimon,H.M. Urban scale integrated assessment of options to reduce PM10 in London towards attainment of air quality objectives. Atmos. Environ. 37, 4651-4665 (2003).
4. Vangi,D. & Virga,A. Evaluation of energy-saving driving styles for bus drivers. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering 217, 299-305 (2003).
5. Hounsell,N.B. & McDonald,M. Urban network traffic control. Proceedings of the Institution of Mechanical Engineers Part I-Journal of Systems and Control Engineering 215, 325-334 (2001).
6. Elvik,R. Optimal speed limits - Limits of optimality models. Transportation Research Record 32-38 (2002).
7. Banister,D. Reducing the need to travel. Environment and Planning B-Planning & Design 24, 437-449 (1997).
New fuels and engines
0
104,64,1
96,12
Particle traps, catalysts
0
104,96,1
96,12
Driving style
0
104,128,1
96,12
Traffic control, speed limits
0
104,160,1
96,12
Subsidies to public transport
0
104,32,1
96,12
Airbags, ABS brakes
0
104,192,1
96,12
Urban planning
0
104,224,1
96,12
Emissions
New_fuels_and_engine;
Particle_traps__cata;
Driving_style;
Traffic_control__spe;
Urban_planning;
Composite_traffic_du
328,64,1
88,12
Congestion
Driving_style;
Traffic_control__spe;
Subsidies_to_public_;
Urban_planning;
Composite_traffic_du
328,128,1
88,12
Injuries
Traffic_control__spe;
Airbags__abs_brakes;
Composite_traffic_du;
Driving_style
328,160,1
88,12
Need to travel
Urban_planning
328,256,1
88,12
City infrastructure
Urban_planning;
Composite_traffic_du
328,192,1
88,12
Price of a trip
Subsidies_to_public_;
Composite_traffic_du
328,32,1
88,12
Recreational values
Urban_planning;
Composite_traffic_du
328,224,1
88,12
Other details
jtue
15. Aprta 2005 14:34
48,24
56,208,1
48,24
1,0,1,1,1,1,0,,0,
1,40,0,422,398,17
However, the marginal cost of buying a new car given a good composite traffic is high. This benefit realises itself only during years, not months
Other_actions;
Effect;
The_marginal_cost_of
320,240,1
72,72
65535,31131,19661
Van Bohemen: Source-oriented measures (volume and technical) will thus have more effect on environmental quality than measures that treat runoff.
State
432,96,1
88,60
There is a need for studies on the full chain from emissions to health. Especially, measures to reduce kilometres driven by car should be studied
Only a few studies have estimated the full chain from control techniques to health effects. Our previous work and a few others have compared the effects of emissions control techniques to health in full-scale risk assessment or cost-benefit analysis. The conclusion has been that the reduction of emissions has significant public health benefits. There are risk assessment studies on various technologies, but they are using emission-per-car models. Measures to reduce kilometres driven by car have not been much studied. It would be interesting to compare these results to studies with control technologies.
Pressure
248,80,1
76,64
Bus ticket price
ARVO
Henkilkohtaiset ja haltijakohtaiset matkakortit
Kaikilla arvolipuilla voi vaihtaa lipun voimassaoloaikana. Liput ovat voimassa
¥ Helsingin sisisill matkoilla 60 minuuttia
¥ seutumatkoilla sek Espoon, Kauniaisten ja Vantaan sisisill matkoilla 80 minuuttia.
SEUTU
Aikuinen Lapsi
¥ arvolippu 2,90 1,45
¥ pivarvolippu ma-pe 9-14 2,70
¥ yarvolippu ma-su 2-4.30 4,00
HELSINGIN SISINEN
Aikuinen Lapsi
¥ arvolippu 1,70 0,70
¥ pivarvolippu ma-pe 9-14 1,40
¥ yarvolippu ma-su 2-4.30 2,50
¥ arvolippu, raitiovaunu 1,28
________________________________
Matkakorttiyksikn toimintamenot vuonna 2005
ovat noin 4,2 milj. euroa, mik on hieman
vhemmn kuin edellisvuonna.
__________________________________
YTV:n matkakorttijrjestelmn piiriss on 800.000 matkakortin kyttj pkaupunkiseudulla. Pivittin jrjestelm kytetn yli miljoonan matkan tekemiseen.
4.2M/1M/365
64,136,1
48,24
2,325,106,476,384
65535,52427,65534
<a href="http://www.ytv.fi/matkakortti/mitamaksaa.html">Ticket prices (in Finnish)</a>
<a href="http://www.ytv.fi/yleis/asiak/poutakirjat/04015347.HTM"> Total costs of the travel card system (matkakortti)</a>
<a href="http://www.ytv.fi/liikenne/ajank/uutinen.php?id=2774">Total trip volumes using travel card</a>
If most of the trips are known well beforehand, there is room for last-minute flexibility in the composite traffic
The major advantage of a personal car is that you can drive it from your starting point directly to your destination according to your own time schedule. This public transportation model does the same. When a large enough population moves around, its transportation needs can be met even if a part of it is not known until, let's say, five minutes beforehand. The system is based on assumptions that a vast majority of trips can be predicted based on statistics and on consumers' early orders, and that it is possible to organise the public vehicles, the 'buses' and 'scooters' to fulfill the needs and run optimally at the same time.
0
120,224,1
64,60
Acknolwedgements
We wish to thank Prof. Matti Jantunen, M.Sc. Olli Leino, M.Sc. Marjo Niittynen, M.Sc. Sanna Lensu, and Ms. Arja Tamminen for their helpful comments, evaluations, and work to collect data. The idea of a transportation system with public vehicles running without predetermined route was independently and interdepently developed by Matti Jantunen and Jouni Tuomisto. Jouni T. Tuomisto invented the idea of the work and performed most of the modelling. The first drafts of the model were written in November 2002 by Jouni Tuomisto. Marko Tainio reviewed the literature, checked the model, and wrote the first draft of the paper. This study was funded by the Academy of Finland, grant 53307, and the National Technology Agency of Finland (Tekes), grant 40715/01.
0
472,200,1
48,24
2,102,90,476,405
Composite traffic aggregates similar trips into public vehicles
1
656,360,1
48,55
1,1,1,1,1,1,0,,1,
Composite_traffic_ag
Argument
0
56,456,1
48,24
Conclusion
0
56,512,1
48,24
65535,65532,19661
Calculations
0
56,400,1
48,24
Module: more details inside
0
jtue
15. Aprta 2005 14:34
56,344,1
48,29
Legend
Code legend for model items
64,277,-1
64,37
1,0,0,1,0,0,1,,0,
39321,52431,65535
Arial, 19
45-60% composite fraction is optimal
1
504,128,1
48,38
65535,65532,19661
A45_60__composite_fr
Model info
URN:NBN:fi-fe20051439
DC-attribute with refinement Scheme (if any) Value
Title Composite traffic model 1.0.1
Creator Tuomisto, Jouni
Creator Tainio, Marko
Subject Trip aggregation
Subject Urban traffic
Subject Public transportation
Description.abstract Background Traffic congestion is rapidly becoming the most important obstacle to urban development. In addition, traffic creates major health, environmental, and economical problems. Nonetheless, automobiles are crucial for the functions of the modern society. Most proposals for sustainable traffic solutions face major political opposition, economical consequences, or technical problems. Methods We performed a decision analysis in a poorly studied area, trip aggregation, and studied decisions from the perspective of two different stakeholders, the passenger and society. We modelled the impact and potential of composite traffic, a hypothetical large-scale demand-responsive public transport system for the Helsinki metropolitan area, where a centralised system would collect the information on all trip demands online, would merge the trips with the same origin and destination into public vehicles with eight or four seats, and then would transmit the trip instructions to the passengers' mobile phones. Results We show here that in an urban area with one million inhabitants, trip aggregation could reduce the health, environmental, and other detrimental impacts of car traffic typically by 50-70 %, and if implemented could attract about half of the car passengers, and within a broad operational range would require no public subsidies. Conclusions Composite traffic provides new degrees of freedom in urban decision-making in identifying novel solutions to the problems of urban traffic.
Publisher Kansanterveyslaitos (KTL; National Public Health Institute)
Date.issued W3C-DTF 2005-11-30
Type DCMIType Software
Format IMT text/xml
Format.medium computerFile
Format 836 kB
Identifier http://www.ktl.fi/risk
Identifier URN URN:NBN:fi-fe20051439
Language ISO639-2 en
Rights Copyright Kansanterveyslaitos, 2005
0
88,28,1
80,20
2,105,198,476,499
65535,54067,19661
Most proposed solutions aiming at sustainable traffic involve severe political, economical, or technical problems
other_actions
504,400,1
72,56
End-user assumptions and outputs
ktluser
12. heita 2005 22:51
48,24
56,85,1
48,29
1,0,0,1,1,1,0,,0,
1,274,10,631,466,17
Choose comp
0
172,20,1
156,12
1,0,0,1,0,0,0,72,0,1
Choose_comp
Choose guar
0
172,44,1
156,12
1,0,0,1,0,0,0,72,0,1
Choose_guar
Choose period
0
172,68,1
156,12
1,0,0,1,0,0,0,105,0,1
Choose_period
Table 1
1
172,196,1
156,12
1,0,0,1,0,0,0,72,0,1
Table_1_pressures
Figure 3.top
1
172,292,1
156,12
1,0,0,1,0,0,0,72,0,1
Fig_5a_societal_cost
Figure 3.middle
1
172,316,1
156,12
1,0,0,1,0,0,0,72,0,1
Fig_5b_subsidies
Figure 3.bottom
1
172,340,1
156,12
1,0,0,1,0,0,0,72,0,1
Fig_5c_expanding
Figure 2
1
172,268,1
156,12
1,0,0,1,0,0,0,72,0,1
Fig_4_cost_variation
Figure 1
1
172,220,1
156,12
1,0,0,1,0,0,0,72,0,1
Fig_2_trips
Cost by type to stakeholder
1
172,244,1
156,12
1,0,0,1,0,0,0,72,0,1
Fig_3_cost_by_source
Fig 6A Passenger VOI
1
172,364,1
156,12
1,0,0,1,0,0,0,72,0,1
Fig_6a_passenger_voi
Fig 6B Societal VOI
1
172,388,1
156,12
1,0,0,1,0,0,0,72,0,1
Fig_6b_societal_voi
Decision
0
56,568,1
48,24