Dynamic simulation periods are specified in Time's definition. This is usually a list of numbers or labels, typically in some unit of time (days, weeks, months, etc.). Use the “Dynamic()” function in your variables to perform dynamic simulation. 1000 0 [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,680,681,682,683,684,685,686,687,688,689,690,691,692,693,694,695,696,697,698,699,700,701,702,703,704,705,706,707,708,709,710,711,712,713,714,715,716,717,718,719,720,721,722,723,724,725,726,727,728,729,730,731,732,733,734,735,736,737,738,739,740,741,742,743,744,745,746,747,748,749,750,751,752,753,754,755,756,757,758,759,760,761,762,763,764,765,766,767,768,769,770,771,772,773,774,775,776,777,778,779,780,781,782,783,784,785,786,787,788,789,790,791,792,793,794,795,796,797,798,799,800,801,802,803,804,805,806,807,808,809,810,811,812,813,814,815,816,817,818,819,820,821,822,823,824,825,826,827,828,829,830,831,832,833,834,835,836,837,838,839,840,841,842,843,844,845,846,847,848,849,850,851,852,853,854,855,856,857,858,859,860,861,862,863,864,865,866,867,868,869,870,871,872,873,874,875,876,877,878,879,880,881,882,883,884,885,886,887,888,889,890,891,892,893,894,895,896,897,898,899,900,901,902,903,904,905,906,907,908,909,910,911,912,913,914,915,916,917,918,919,920,921,922,923,924,925,926,927,928,929,930,931,932,933,934,935,936,937,938,939,940,941,942,943,944,945,946,947,948,949,950,951,952,953,954,955,956,957,958,959,960,961,962,963,964,965,966,967,968,969,970,971,972,973,974,975,976,977,978,979,980,981,982,983,984,985,986,987,988,989,990,991,992,993,994,995,996,997,998,999,1000] 1 1 4 22 1 2 0 2 0 -1460 Focus+scope Moderator References INTARESE WP3.4 PM 14. jouta 2006 16:17 pmea 31. heita 2008 16:26 48,24 1,1,0,448,245,17 2,102,90,476,224 Arial Narrow, 13 0,Model Intarese_wp3_4,2,2,0,1,C:\Documents and Settings\pmea\Desktop\Nitrate.ANA Risk model Päivi 11. tamta 2008 10:45 48,24 176,48,1 48,24 1,1,0,448,245,17 Country ['Finland','UK','Spain','Hungary','Romania'] 264,144,1 48,24 2,102,90,476,224 ['Finland','UK','Spain','Hungary','Romania'] Exposure model ktluser 28. maata 2008 10:20 48,24 72,144,1 48,24 1,0,-23,1432,791,17 Proportion of boiled drinking water Table(Water_source)( 1,1) 96,184,1 40,32 2,0,-23,1440,799 [] [Variable Total_exposure_due] Total daily consumption of drinking water by infants < 6 months l/day Truncate(Normal (0.240, 0.247), 0, 0.800) 320,168,1 104,32 2,0,-23,1432,791 2,0,-23,1433,792,0,STAT [Objective Total_ingestion] http://rais.ornl.gov/homepage/DRAFT_EXPOSURE_HANDBOOK.pdf Total ingestion of nitrates in drinking water by infacts < 6 months mg/kg/d ’((No3_tap*Total_daily_consump*Total_exposure_due)’/weight)*Percentage_of_bottle’ 96,616,1 52,36 2,0,-23,1432,791 2,0,-23,1440,799,0,MIDM 2,94,226,1077,303,0,MIDM [Water_source,Country] [Water_source,Country] [Chance Total_daily_consump, Variable Total_exposure_due, Chance Weight, Chance Percentage_of_bottle] [] [Water_source,1,Age_group,1,Country,1,Data,1] [Data,1,Country,1,Water_source,1] Proportion of ingested water metabolised 0.1 96,264,1 48,40 2,102,90,476,224 [Variable Total_exposure_due] Rate of ingestion of hot water 0.5 96,344,1 48,31 [Variable Total_exposure_due] Total exposure due to ingestion of hot water {Rate_of_ingestion*{Proportion_of_inges*Proportion_of_boile} 96,448,1 48,49 2,0,-23,1440,799 [] [Variable Proportion_of_boile, Variable Proportion_of_inges1, Variable Rate_of_ingestion] [Objective Total_ingestion] Weight kg Distribution of weight for infants < 6 months of age Normal( 7, 4 ) 264,360,1 48,24 2,392,402,416,303,1,PDFP [Objective Total_ingestion] [1,0,0,0] Percentage of bottle fed infants Uniform( 8, 50 ) 288,272,1 48,24 2,40,50,416,303,1,PDFP [Objective Total_ingestion] [1,0,0,0] Drinking water exposure 328,80,1 48,24 Baby food formula exposure 96,80,1 48,29 Drinking water ingestion rate l/day cold water ingestion rate in infants up to 3 months 0.64 504,88,1 48,24 Annual per capita bottled water consumption Table(Bottled_water_scena1)( 12.7,254) 704,176,1 52,40 2,0,-23,1432,791 2,253,198,416,303,0,MIDM [Variable Daily_per_capita_bo1] [36] Daily per capita bottled water consumption {Annual_per_capita_b/365.25 840,176,1 52,40 [Variable Annual_per_capita_b1] [Chance Total_tap_water_con1] Daily per capita total water consumption 2 840,280,1 52,39 [Chance Total_tap_water_con1] Total tap water consumption (Triangular(0.5,{Daily_per_capita_to,4))*(1-Triangular(0,({Daily_per_capita_bo/Daily_per_capita_tot),1)) 704,288,1 60,40 2,0,-23,1432,791 2,152,162,416,303,1,PDFP Diststeps:0 [Undefined,Bottled_water_scena1,Undefined,Undefined,1] [Variable Daily_per_capita_bo1, Variable Daily_per_capita_to1] [Variable Exposure_adjustment1] [1,0,0,0] Exposure adjustment factor Table({Bottled_water_scena)( {Total_tap_water_con[Bottled_water_scena1="baseline"]/Total_tap_water_cons[{Bottled_water_scena="baseline"],{Total_tap_water_con[Bottled_water_scena1="increased bottled"]/Total_tap_water_cons[{Bottled_water_scena="baseline"]) 704,400,1 48,31 2,0,-23,1432,791 2,564,578,573,303,0,MIDM [Chance Total_tap_water_con1] Bottled water exposure 696,80,1 48,24 Modelled exposure of population in each area {Monitoring_data_dis*Exposure_adjustment_ 472,352,1 72,28 2,662,307,416,303,0,MIDM [Bottled_water_scena1,England___wales_wate] [Index England___wales_wate] [Bottled_water_scenar,1,Water_supply_zones,1,Sys_localindex('STEP'),1] Population size Table(Country)( 5.194901M,0,0,0,0) 176,424,1 48,24 2,0,-23,1440,799 Water source Drinking water sources: Treated tap water or untreated water from private well ['Tap water','Well water'] 264,256,1 48,24 ['Tap water','Well water'] Health effects ktluser 28. maata 2008 10:20 48,24 72,312,1 48,24 1,0,-23,1432,791,17 Background prevalence of Met-Hb Lognormal( , , 0.025, 0.01 ) 792,136,1 76,28 2,0,-23,1152,763 [Variable Infection_status_of_] [] Infection status of infants < 6 months 792,48,1 48,24 [Chance Background_prevalen1] Data ['Distribution','Average','Max'] 456,112,1 48,24 Drinking water legistation and guidance levels on nitrates mg NO3-/l Nitrate concentration in drinking water. EU Directive 80/778/ETY for waterworks >5000 people of production >1000m3/d 50 1016,40,1 68,32 [Variable Standard_for_nitrat2] Standard for nitrate mg NO3-/l Table(Country)( 50,50,50,50,50) 1016,120,1 48,24 2,0,-23,1440,799 [Decision Drinking_water_legi1] [Variable Risk_based_on_legist] Risk based on legistation Table(Country,Water_source)( 0,0, 0,0, 0,0, 0,0, 0,0 ) 1016,200,1 48,24 2,0,-23,1440,799 [Water_source,Country] [Data,Country] [Variable Standard_for_nitrat2] Excess rate of iMetHb '1-exp(Exposure_response*Total_ingestion)' 112,336,1 48,31 2,0,-23,1440,799 2,0,-23,1440,799,0,MIDM 2,384,316,479,481,0,MIDM [Water_source,Country] [] [Object Variable, Chance A1] [Scenarios,1,Water_companies,1,Sys_localindex('STEP'),1] Excess cases of iMetHb Excess_rate_of_imeth*Infants__6_months 272,336,1 48,40 2,0,0,1280,922,1,PDFP {!40000|Att_contlinestyle Graph_pdf_valdim:6} {!40000|Att_graphvaluerange Graph_pdf_valdim:1,0,1,1,0} [] [Index Age_categories1] [Sex,0,Age_categories,0,Scenarios,1,Water_companies,0,Sys_localindex('STEP'),1] Health risk estimates for infant MetHb Hazard quotient (HQ) = Ingestion exposure = Daily NO3 intake / Reference NO3 intake Reference intake = A level of daily metal intake at or below which adverse health effects are unlikely to occur, includes a safety factor TDI = Tolerable daily intake (RIVM) RfD = Reference dose (U.S.EPA) ADI = Acceptable daily intake (U.S.EPA) Margin of safety (MOS) MOS for ingestion exposure = NOAEL (or LOAEL) / Daily NO3 intake NOAEL = No observed adverse effect level (no safety factors included) LOAEL = Lowest observed adverse effect level (no safety factors included) Table(Risk_characterisatio)( '’’’Total_ingestion[Age_categories=’0-4’,Data=’Distribution’]/TDI’’’','’Noael/Total_ingestion[Age_categories=’0-4’’,Data=’Distribution’])’','(A[Age_categories=’0-4’]/Environmental_risk, Data=’Distribution)') 104,104,1 48,29 2,0,-23,1432,791 2,230,484,779,255,0,MIDM [Risk_characterisatio,Country] [Water_source,1,Country,1,Risk_characterisatio,1] Risk characterisation ['HQ calculation: TCA/TDI','MOS calculation: NOAEC/LOAEC/NOAEL/LOAEL','EQC'] 464,48,1 48,24 ['HQ calculation: TCA/TDI','MOS calculation: NOAEC/LOAEC/NOAEL/LOAEL','EQC'] Health effects of infant MetHb 15-20 % clinical cyanosis 20-45 % symptons of hypoxia result 792,224,1 48,24 2,0,-23,1440,799 Infants <6 months Number of infants < 6 months in each country Table(Country)( 28.6792K,'Population_age[Populaition_age="T0_4")/8','Population_age[Populaition_age="T0_4")/8','Population_age[Populaition_age="T0_4")/8','Population_age[Populaition_age="T0_4")/8') 272,248,1 48,24 2,0,-23,1440,799 2,207,422,506,265,0,MIDM 2,0,-23,1440,799,0,MIDM [Variable Population_age] Population age structure per country Table(Country,Age_categories1)( 287K,322K,323K,329K,326K,312K,335K,377K,378K,399K,421K,326K,274K,225K,212K,166K,104K,79.7K, 3.49M,3.74M,3.88M,3.67M,3.55M,3.87M,4.49M,4.63M,4.15M,3.74M,4.04M,3.34M,2.88M,2.6M,2.34M,1.97M,1.31M,1.12M, 1.92M,1.91M,2.1M,2.46M,3.18M,3.5M,3.38M,3.29M,3.03M,2.61M,2.43M,2.21M,1.85M,2.09M,1.85M,1.44M,875K,705K, 488K,582K,624K,669K,809K,787K,701K,609K,708K,824K,705K,609K,535K,490K,437K,339K,154K,126K, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ) 104,248,1 48,29 2,0,-23,1440,799 2,0,-23,1440,799,0,MIDM 2,296,306,419,484,0,MIDM [Country,Age_categories1] [Country,Age_categories1] [Variable Infants__6_months] ................ ......... 1 856,144,-3 252,140 1,0,0,0,1,1,0,,0, 65535,65535,65535 Unused nodes 656,32,-1 48,24 Risk estimate 1 80,32,-1 48,24 Risk estimate 2 80,176,-1 48,24 Which risk estimates are relevant and possible to calculate for nitrate? 488,280,-1 48,53 Dose response model ktluser 28. maata 2008 10:20 48,24 72,232,1 48,24 1,0,-23,1432,791,17 Exposure-response function for nitrate and iMetHb mg/kg/d Nitrate toxicity value for infants U.S. EPA has evaluated the noncancer oral data for nitrate and derived a reference dose (RfD) of 1.6 mg/kg-day with 10 % of risk to MetHb. Normal( 0.168576 ) 112,88,1 68,36 2,0,-95,1432,791 2,0,-23,1440,799,0,MIDM [Water_source,Country] [Data,Country] [] Environmental risk level for NO3- mg/l Risk level for nitrate Truncate( Normal(100,50), 100, 1000 ) 104,176,1 48,29 2,0,-23,1433,792 LOAEL for NO3- mg/l LOAEL: 11-20 mg nitrate- nitrogen/L (1.8-3.2 mg/kg/day) Uniform( 11, 20 ) 104,248,1 48,24 2,0,-23,1433,792 NOAEL for NO3- mg/kg/d No observed adverded effect level (NOEL) for nitrate in drinking water NOAEL: 10 mg nitrate-nitrogen/L (1.6 mg/kg/day) Early clinical signs of methemoglobinemia in excess of 10% (0-3 months old infants formula) Human Epidemiological Surveys Bosch et al., 1950; Walton, 1951 USEPA Iris http://www.epa.gov/NCEA/iris/subst/0076.htm Normal( 1.6, 16 ) 104,328,1 48,24 2,0,-23,1433,792 2,0,-23,1440,799,1,PDFP [1,0,0,0] Reference Oral dose for NO3- mg/kg/day US EPA reference oral dose for nitrate 7 96,424,1 48,24 2,0,-23,1433,792 Acceptable daily intake of NO3- mg/kg/day Exposure response function (acceptable daily intake according to FAO/WHO 3.7 96,504,1 48,24 Check exposure response! 256,91,-1 48,27 Sources ktluser 28. maata 2008 10:20 48,24 72,64,1 48,24 1,1,0,448,245,17 [NO3-] in drinking water from well mg/l If Local_data_well="Na" Then General_well Else Local_data_well 80,280,1 60,40 2,0,-23,1432,791 2,0,-23,1433,792,0,MIDM [Object Variable] [, Variable Clipboard_total_dail, Variable Adjustment_factor] [NO3-] in drinking water from tap mg/l If Local_data_tap="Na" then General_tap else Local_data_tap 248,280,1 60,40 2,0,-23,1432,791 2,0,-119,1432,791,1,MEAN [Water_source,Country] [Objective Excess_rate_of_imeth] [0,1,1,0] Local data on [NO3-] in tap water mg/l Table(Country,Water_companies_in_e)( 'normal(1.73255814, 1.374642461)','normal(1.73255814, 1.374642461)','normal(1.73255814, 1.374642461)','normal(1.73255814, 1.374642461)','normal(1.73255814, 1.374642461)','normal(1.73255814, 1.374642461)','normal(1.73255814, 1.374642461)','normal(1.73255814, 1.374642461)','normal(1.73255814, 1.374642461)','normal(1.73255814, 1.374642461)','normal(1.73255814, 1.374642461)','normal(1.73255814, 1.374642461)','normal(1.73255814, 1.374642461)','normal(1.73255814, 1.374642461)','normal(1.73255814, 1.374642461)','normal(1.73255814, 1.374642461)','normal(1.73255814, 1.374642461)','normal(1.73255814, 1.374642461)','normal(1.73255814, 1.374642461)','normal(1.73255814, 1.374642461)','normal(1.73255814, 1.374642461)','normal(1.73255814, 1.374642461)','normal(1.73255814, 1.374642461)','normal(1.73255814, 1.374642461)', 'Normal (22.77, 39.53570237)','Normal (22.77, 39.53570237)','Normal (22.77, 39.53570237)','Normal (22.77, 39.53570237)','Normal (22.77, 39.53570237)','Normal (22.77, 39.53570237)','Normal (22.77, 39.53570237)','Normal (22.77, 39.53570237)','Normal (22.77, 39.53570237)','Normal (22.77, 39.53570237)','Normal (22.77, 39.53570237)','Normal (22.77, 39.53570237)','Normal (22.77, 39.53570237)','Normal (22.77, 39.53570237)','Normal (22.77, 39.53570237)','Normal (22.77, 39.53570237)','Normal (22.77, 39.53570237)','Normal (22.77, 39.53570237)','Normal (22.77, 39.53570237)','Normal (22.77, 39.53570237)','Normal (22.77, 39.53570237)','Normal (22.77, 39.53570237)','Normal (22.77, 39.53570237)','Normal (22.77, 39.53570237)', 'Na','’normal (3.3, 4.74751E-16)','’normal (3.3, 4.74751E-16)','’normal (3.3, 4.74751E-16)','’normal (3.3, 4.74751E-16)','’normal (3.3, 4.74751E-16)','’normal (3.3, 4.74751E-16)','’normal (3.3, 4.74751E-16)','’normal (3.3, 4.74751E-16)','’normal (3.3, 4.74751E-16)','’normal (3.3, 4.74751E-16)','’normal (3.3, 4.74751E-16)','’normal (3.3, 4.74751E-16)','’normal (3.3, 4.74751E-16)','’normal (3.3, 4.74751E-16)','’normal (3.3, 4.74751E-16)','’normal (3.3, 4.74751E-16)','’normal (3.3, 4.74751E-16)','’normal (3.3, 4.74751E-16)','’normal (3.3, 4.74751E-16)','’normal (3.3, 4.74751E-16)','’normal (3.3, 4.74751E-16)','’normal (3.3, 4.74751E-16)','’normal (3.3, 4.74751E-16)', 'Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na', 'Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na' ) 248,104,1 48,29 2,0,-23,1432,791 2,0,-23,1432,791,0,MIDM 2,0,-23,1432,789,1,MIDM [Undefined,Country] [Country] [Constant Source_of_drinking_w] [Rc,2,Finland_areas_nuts2,1,Country,1] General [NO3-] concentration in tap water mg/l Table(Country,Water_source)( Normal (3.5, 2.890100097),Normal (1,0), Normal (1,0),Normal (1,0), Normal (5.27, 3.29),Normal (1,0), Normal (1,0),Normal (1,0), Normal (1,0),Normal (1,0) ) 248,184,1 48,38 2,0,-23,1432,791 2,0,-23,1440,799,0,MIDM 2,0,-23,1440,799,0,MIDM [Water_source,Country] [Water_source,Country] Local data on [NO3-] in well water mg/l Table(Country)( 'Na','Na','Na','Na','Na') 80,104,1 48,29 2,0,-23,1432,791 2,264,274,416,303,0,MIDM 2,312,322,416,303,1,MIDM [Country] [Constant Source_of_drinking_w] General [NO3-] concentration in well water mg/l Table(Country)( Normal (0,0),Normal (0,0),Normal (0,0),Normal (0,0),Normal (0,0)) 80,184,1 48,29 2,0,-23,1432,791 Source of drinking water % Percentage of population using tap and well water Table(Country,Water_source)( 0.06,0.94, 0.06,0.94, 0.06,0.94, 0.06,0.94, 0.06,0.94 ) 160,32,1 48,29 2,640,744,1440,799 2,0,-23,1072,555,0,MIDM [Water_source,Country] [Undefined,Undefined] [Variable Local_data_tap, Variable Local_data_well] Areas Finland ['Etelä-Suomi','Itä-Suomi','Länsi-Suomi','Pohjois-Suomi'] 464,56,1 48,24 2,0,-23,1433,792 ['Etelä-Suomi','Itä-Suomi','Länsi-Suomi','Pohjois-Suomi'] Areas ['item 1'] 456,112,1 48,24 448,176,1 48,24 Add concentration and general distributions with spatial distribution! 448,293,-1 48,53 Concentration in Finland Finnish data from 2002 Table(Water_source,Areas_finland)( 'Normal(3.5,2.890100097) ','Normal(0.75, 2.321291205) ','Normal(1, 0.961304917) ','Normal(0.5, 0.597614305) ', 'NA','NA','NA','NA' ) 456,400,1 48,24 2,0,-23,1432,791 2,0,-23,1432,791,0,MIDM [Water_source,Areas_finland] Concentration in UK Table(Water_source,England___wales_wate)( 18.9,26.25085,16.35,38.85,3.0007,25.539,20.4655,28.45,5.43,18.7,3.975,2.865,28.891,16.828,18.75,19.56125,30.03,4.8454,6.167,27.835,28,21.243,4.80565,6.2882,0,0, 'Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na','Na' ) 456,464,1 48,24 2,102,90,476,224 [Water_source,England___wales_wate] 456,528,1 48,24 Age categories ['0-4','5-9','10-14','15-19','20-24','25-29','30-34','35-39','40-44','45-49','50-54','55-59','60-64','65-69','70-74','75-79','80-84','>85'] 264,200,1 48,24 2,0,-23,1440,799 [] ['0-4','5-9','10-14','15-19','20-24','25-29','30-34','35-39','40-44','45-49','50-54','55-59','60-64','65-69','70-74','75-79','80-84','>85'] jgrellie 22 May 2008 17:19 jgrellie 29 Jul 2008 16:05 48,24 456,64,1 48,24 1,1,1,1,1,1,0,0,0,0 1,160,744,1432,791,17 Arial, 15 Mean concentrations of arsenic in tap water for each water company (England & Wales, 2007) 0.37 256,128,1 92,40 2,102,90,476,224 2,40,50,416,303,0,MIDM Standard deviations of arsenic in tap water for each water company (England & Wales, 2007) 0 256,384,1 92,40 2,102,92,472,222 Monitoring data distributions for each water company (England & Wales, 2007) Lognormal( , , {Mean_concentrations, Standard_deviations1 ) 256,256,1 80,60 2,102,90,476,224 2,171,312,484,376,0,MIDM [England___wales_wate,England___wales_wate,Undefined,Undefined,2] England & Wales water companies (2007) ['ALB','ANG','BRL','BWH','CAW','CHO','DVW','DWR','ESK','FLK','HRT','MKT','NWL','PRT','SES','SEW','SRN','SST','SVT','SWT','THD','TMS','TVW','UUT','WSX','YKS'] 104,40,1 88,20 ['ALB','ANG','BRL','BWH','CAW','CHO','DVW','DWR','ESK','FLK','HRT','MKT','NWL','PRT','SES','SEW','SRN','SST','SVT','SWT','THD','TMS','TVW','UUT','WSX','YKS'] Exposure-response function Normal( 2m, 1.8m ) 640,128,1 76,40 2,0,-23,1152,753 2,0,-23,1152,753,0,MIDM {!40000|Att_contlinestyle Graph_pdf_valdim:6} {!40000|Att_graphvaluerange Exposure_response_fu:1,,,,0} [Sex1] Population structure of each water company (2005) Table(Age_categories2)( 68.6K,73.7K,76.4K,71.9K,67.9K,72.9K,84.6K,87.6K,79.1K,71.2K,77K,63.5K,54.2K,47.7K,40.7K,31.5K,18.6K,11.9K) 768,512,1 48,49 1,1,1,1,1,1,0,0,0,0 2,0,-23,1152,753 2,216,226,732,401,0,MIDM 2,120,130,703,493,0,MIDM {!40000|Att_graphindexrange Sex1:1,,,,,,10} {!40000|Att_graphvaluerange Population_structure:1,,,,,,10} Baroverlap:0 {!40000|Flip:0} {!40000|Att_catlinestyle Graph_primary_valdim:9} {!40000|Att_stackedbar Graph_primary_valdim:0} {!40000|Graph_pagebrush: } [Sex1,Age_categories2] [Sex1,Age_categories2] [Index England___wales_wate, Index Sex1, Index Age_categories2] ['item 1'] [Water_supply_zones,0,Age_categories,1,Sex,1] [Water_supply_zones,1,Age_categories,2,Sex,1] Sex ['male','female'] 256,40,1 44,20 Age categories ['0-4','5-9','10-14','15-19','20-24','25-29','30-34','35-39','40-44','45-49','50-54','55-59','60-64','65-69','70-74','75-79','80-84','>85'] 368,40,1 48,20 2,102,90,476,224 ['0-4','5-9','10-14','15-19','20-24','25-29','30-34','35-39','40-44','45-49','50-54','55-59','60-64','65-69','70-74','75-79','80-84','>85'] Background mortality rate of bladder cancer Table(Age_categories2)( 0.2,0,0.1,0.1,0.3,0.4,0.7,1,2.8,5.6,13.9,28.8,55,86.7,132.5,189.5,217.1,302.1) 640,512,1 48,49 2,0,0,1152,753 [Sex1,Age_categories2] [Sex1,Age_categories2] Attributable risk (excess rate of bladder cancer in England & Wales) ((exp({Exposure_response_f*Modelled_exposure_of)-1)/exp(Exposure_response_fu*Modelled_exposure_of))*Background_mortality/100000 640,257,1 48,67 2,357,59,476,224 2,707,52,416,303,0,MIDM [Age_categories2,England___wales_wate] [Index England___wales_wate, Index Sex1, Index Age_categories2] [Sex,0,Bottled_water_scenar,1,Water_supply_zones,1,Age_categories,1] Attributable burden (excess cases of bladder cancer in England & Wales) {Attributable_risk_}*{Population_structur 768,257,1 48,76 2,414,66,579,323 2,237,58,747,529,1,PDFP Probindex:[0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99 ] Diststeps:0 [Bottled_water_scena1,Age_categories2,1,Undefined,0] [Sysfunction Probability, Index England___wales_wate, Index Sex1, Index Age_categories2] [Sex,0,Water_supply_zones,0,Bottled_water_scenar,1,Age_categories,0,Sys_localindex('STEP'),1] Annual per capita bottled water consumption Table(Bottled_water_scena1)( 36,720) 192,640,1 52,40 2,0,-23,1432,791 2,253,198,416,303,0,MIDM [36] Total tap water consumption (Triangular(0.5,{Daily_per_capita_to,4))*(1-Triangular(0,({Daily_per_capita_bo/Daily_per_capita_tot),1)) 448,512,1 60,40 2,0,-23,1432,791 2,152,162,416,303,1,PDFP Diststeps:0 [Undefined,Bottled_water_scena1,Undefined,Undefined,1] [0,0,0,0] Modelled exposure of population in each water company (England & Wales, 2007) {Monitoring_data_dis*Exposure_adjustment_ 448,256,1 72,52 2,662,307,416,303,0,MIDM [Bottled_water_scena1,England___wales_wate] [Index England___wales_wate] [Bottled_water_scenar,1,Water_supply_zones,1,Sys_localindex('STEP'),1] Bottled water scenarios ['baseline','increased bottled'] 496,40,1 56,20 ['baseline','increased bottled'] Exposure adjustment factor Table({Bottled_water_scena)( {Total_tap_water_con[Bottled_water_scena1="baseline"]/Total_tap_water_cons[{Bottled_water_scena="baseline"],{Total_tap_water_con[Bottled_water_scena1="increased bottled"]/Total_tap_water_cons[{Bottled_water_scena="baseline"]) 448,384,1 48,31 2,625,68,476,224 2,564,578,573,303,0,MIDM Daily per capita bottled water consumption {Annual_per_capita_b/365.25 320,640,1 52,40 Daily per capita total water consumption 2 448,640,1 52,39 Impact of bladder cancer attributable to arsenic in drinking water (DALYs) Years_of_life_disabl+Years_of_life_lost_d 896,512,1 60,60 [Age_categories2,England___wales_wate] DALY calculation module jgrellie 29 Jul 2008 15:47 48,24 896,256,1 48,32 1,1,2,314,479,17 Disability weight for bladder cancer 224,159,1 48,40 [Objective Years_of_life_disabl] Average duration of bladder cancer 160,263,1 48,40 [Objective Years_of_life_disabl] Years of life lost due to bladder cancer Average_duration_of_*Excess_deaths_from_b 96,384,1 48,40 Years of life disabled due to bladder cancer Average_duration_of_*Disability_weight_fo*{Attributable_burden 224,384,1 48,49 [Variable Disability_weight_fo, Variable Average_duration_of_] Excess deaths from bladder cancer attributable to arsenic {Attributable_burden*Survival_for_bladder 96,160,1 48,58 Survival for bladder cancer 96,55,1 48,31 WP3.4 THM model jgrellie 22 May 2008 17:19 jgrellie 04 Jun 2008 12:49 48,24 456,128,1 48,24 1,1,1,1,1,1,0,0,0,0 1,1,0,448,245,17 Arial, 15 Mean [TTHM] from monitoring data Table(Water_companies)( 2.515616105,3.462306609,1.061904662,1.891604804,3.508230042,1.968248375,3.812996075,1.127094735,1.152390134,0,3.587048158,3.684155296,2.543052225,2.567033836,3.201538972,3.385417133,2.784197439,3.636112187,3.210850627,2.7069758,1.593463434,2.336630105,3.134370357,3.397089518) 128,576,1 48,49 2,102,90,476,224 2,392,402,546,493,0,MIDM Standard deviations of [TTHM] from monitoring data Table(Water_companies)( 0.850161316,0.496615774,0.9944016610000001,0,0.735875544,1.43615411,0.351172012,1.92591779,0.373289121,2.314687324,0.5910945560000001,0.726992581,0.764971871,1.08916286,0.700487414,0.856400759,0.754094272,0.618670419,0.7633092,0.887639414,1.911632371,0.708324068,1.1219691,0.546802236) 256,577,1 48,58 2,102,92,472,222 Distributions of [TTHM] derived from monitoring data Lognormal(,, exp(Mean_), exp(Standard_deviations_) ) 192,448,1 76,36 2,365,323,690,303,1,PDFP [Water_companies,Water_companies,Undefined,Undefined,2] Water companies ['ang','brw','caw','cho','dcc','eas','ess','fol','har','mik','nor','nww','por','sea','sev','sos','sou','sww','teh','tha','thr','wes','wrx','yor'] 832,136,1 44,24 2,0,744,1432,791 ['ang','brw','caw','cho','dcc','eas','ess','fol','har','mik','nor','nww','por','sea','sev','sos','sou','sww','teh','tha','thr','wes','wrx','yor'] Exposure-response slope derived from meta-analysis Note that this is an approximation... Need to work out how to make it robust... should it be log or normal?? etc... Normal( 1.0132, 2m ) 512,256,1 104,36 2,568,93,476,224 2,486,357,779,339,1,PDFP Distresol:8 Diststeps:1 [Sex] [Sex,Sex,Undefined,Undefined,2] UK population data for each water company Table(Water_companies,Sex,Age_categories)( 329,306,314,277,225,270,340,318,290,238,250,180,161,153,155,149,95,47, 304,402,263,276,247,335,408,350,314,248,231,221,176,202,251,225,141,145, 410,397,351,283,313,323,379,386,326,250,289,198,196,163,132,108,116,41, 403,383,302,326,394,380,444,415,293,231,267,230,192,195,166,203,129,99, 373,375,370,288,299,276,428,394,351,294,266,242,185,174,157,119,74,46, 342,313,295,304,292,379,459,449,360,247,325,230,176,220,183,184,109,81, 430,579,480,450,386,428,505,627,556,496,488,380,336,289,244,181,109,90, 424,459,455,465,431,449,613,687,603,496,518,423,365,305,286,234,176,180, 599,688,626,566,467,581,591,582,529,429,367,265,207,218,188,130,84,43, 590,642,552,496,542,628,751,754,587,496,426,297,260,260,240,212,156,186, 537,550,470,469,753,983,722,640,508,441,451,371,296,278,256,197,114,181, 493,502,452,469,894,1105,791,652,552,470,519,392,344,301,308,288,258,349, 552,497,468,500,568,589,547,551,437,408,346,329,230,224,172,114,55,35, 579,524,406,464,648,711,734,596,530,412,412,284,300,208,194,155,107,113, 470,442,427,427,500,662,785,667,536,455,410,310,219,195,196,107,94,57, 438,470,406,383,471,768,784,684,617,473,502,298,262,238,217,177,138,212, 498,507,516,446,399,559,698,651,580,524,508,400,303,267,238,174,97,68, 491,514,462,453,436,661,686,732,576,513,545,403,311,274,263,284,168,158, 403,438,385,302,490,744,773,604,464,383,410,324,269,236,206,172,91,55, 458,399,364,329,632,915,729,679,533,436,432,384,291,277,233,242,178,280, 488,465,573,515,453,416,451,484,497,536,523,370,312,262,256,186,140,95, 406,483,539,553,514,476,508,554,562,553,589,388,366,279,325,249,186,215, 367,419,361,340,532,691,584,556,403,375,431,345,290,250,267,180,144,119, 369,366,362,382,567,699,543,514,400,452,431,401,349,285,327,292,206,240, 470,410,390,326,416,621,579,509,485,425,490,383,285,278,216,212,143,127, 480,457,352,336,524,644,617,572,521,465,558,439,355,294,289,297,260,406, 678,686,624,499,664,797,563,493,469,427,386,283,253,250,235,187,124,140, 597,629,574,534,787,841,580,539,538,440,441,303,308,261,293,277,230,301, 565,556,568,464,434,523,573,618,543,489,482,388,303,273,264,204,116,108, 578,528,511,559,446,573,632,709,603,514,535,425,333,317,304,261,202,236, 465,497,475,435,770,768,622,550,457,393,400,330,277,277,254,176,124,133, 536,451,405,421,849,809,640,529,479,437,474,334,298,291,278,258,207,327, 476,422,400,394,346,427,567,600,551,477,492,360,285,242,248,199,127,86, 369,435,358,353,354,485,564,614,573,501,515,387,308,335,302,299,234,282, 549,475,500,534,393,545,572,604,541,461,499,400,323,277,229,200,114,114, 515,522,516,442,431,603,630,698,568,463,548,413,344,299,318,299,200,252, 420,458,466,399,446,484,474,546,555,511,487,455,328,315,259,210,138,117, 365,445,523,432,409,487,561,572,538,502,583,463,347,351,347,288,239,294, 492,448,403,384,365,510,647,622,498,453,469,354,275,313,238,206,111,94, 484,466,416,369,365,563,637,653,568,400,512,410,326,308,342,252,215,258, 552,589,559,504,386,426,541,580,552,457,474,397,346,325,224,214,141,74, 502,549,599,567,425,527,655,745,585,544,530,454,360,339,326,311,184,178, 392,362,317,297,479,840,762,681,490,390,386,297,247,248,217,161,101,85, 412,374,326,346,613,796,765,669,536,404,431,321,296,278,311,238,199,246, 445,508,378,442,557,662,629,657,495,391,356,294,272,287,290,179,98,63, 454,439,420,409,641,726,680,609,537,390,427,312,357,314,305,221,161,165, 448,479,463,410,486,698,717,679,558,489,427,350,307,278,250,193,136,115, 429,453,423,392,498,754,735,693,582,474,508,358,342,319,323,274,195,255 ) 640,576,1 44,48 1,1,1,1,1,1,0,0,0,0 2,0,-23,1280,922 2,216,226,732,401,0,MIDM 2,0,-23,1280,922,0,MIDM {!40000|Att_graphindexrange Sex1:1,,,,,,10} {!40000|Att_graphvaluerange Uk_population_data_f:1,,,,,,10} Baroverlap:0 {!40000|Flip:0} {!40000|Att_catlinestyle Graph_primary_valdim:9} {!40000|Att_stackedbar Graph_primary_valdim:0} {!40000|Graph_pagebrush: } [Age_categories,Water_companies] [Water_companies,Age_categories] [Index Water_companies, Index Age_categories] ['item 1'] [Sex,1,Water_companies,1,Age_categories,1] Sex ['male','female'] 832,456,1 48,24 2,102,90,476,224 ['male','female'] Age categories ['0-4','5-9','10-14','15-19','20-24','25-29','30-34','35-39','40-44','45-49','50-54','55-59','60-64','65-69','70-74','75-79','80-84','>85'] 832,392,1 48,24 ['0-4','5-9','10-14','15-19','20-24','25-29','30-34','35-39','40-44','45-49','50-54','55-59','60-64','65-69','70-74','75-79','80-84','>85'] Note: this model uses data for 2001 (where relevant) 832,576,-1 64,38 Background prevalence of IUGR Lognormal( , , 2500, 100 ) 512,576,1 76,36 2,0,-23,1280,922 2,472,482,416,303,1,PDFP [Sex,Age_categories] Excess rate of IUGR ((exp(Exposure_response_sl*Modelled_exposure_to)-1)/exp(Exposure_response_sl*Modelled_exposure_to))*Background_prevalenc/100000 512,448,1 40,36 2,439,111,476,224 2,384,316,479,481,0,MIDM [Bottled_water_scenar,Water_companies] [Scenarios,1,Water_companies,1,Sys_localindex('STEP'),1] Excess cases of IUGR in England & Wales Excess_rate_of_iugr*Uk_population_data_f 640,449,1 48,49 2,0,-23,1280,922,0,MIDM {!40000|Att_contlinestyle Graph_pdf_valdim:6} {!40000|Att_graphvaluerange Graph_pdf_valdim:1,0,1,1,0} [Bottled_water_scenar,Water_companies] [Index Water_companies, Index Sex, Index Age_categories] [Sex,0,Age_categories,0,Scenarios,1,Water_companies,0,Sys_localindex('STEP'),1] Exposure pathways ['shower','bath','swimming'] 832,264,1 48,24 2,0,-23,1281,923 ['shower','bath','swimming'] Overall exposure to TTHM Indexless_total_exp2+Indexless_total_expo+Total_exposure_due_2+Total_exposure_due_t 384,192,1 48,31 2,102,90,476,224 2,424,434,602,303,0,MIDM [Exposure_pathways,Bottled_water_scenar] [Scenarios,1,Types_of_drink,1,Exposure_pathways,1] Types of drink ['Cold drinks','Hot drinks'] 832,200,1 48,24 Proportion of population exposed through different washing and bathing pathways Table(Exposure_pathways)( 0.9,0.3,0.3) 128,192,1 80,48 Bottled water scenarios ['Scenario 0 (BAU)','Scenario 1 (Increased bottled water consumption)'] 832,329,1 48,31 ['Scenario 0 (BAU)','Scenario 1 (Increased bottled water consumption)'] TTHM exposure adjustment factor Table(Bottled_water_scenar)( Overall_exposure_to_[Bottled_water_scenar="Scenario 0 (BAU)"]/Overall_exposure_to_[Bottled_water_scenar="Scenario 0 (BAU)"],Overall_exposure_to_[Bottled_water_scenar="Scenario 1 (Increased bottled water consumption)"]/Overall_exposure_to_[Bottled_water_scenar="Scenario 0 (BAU)"]) 384,321,1 48,40 2,102,90,476,224 2,168,178,1093,489,0,MIDM 2,488,498,416,303,0,MIDM [Types_of_drink,Exposure_pathways] Exposure to TTHM through ingestion jgrellie 30 May 2008 18:52 48,24 384,64,1 48,42 1,960,744,1432,791,17 Proportion of ingested water metabolised 0.1 192,384,1 48,40 Proportion of tap water used in hot drinks Table(Bottled_water_scenar)( 1,1) 320,512,1 48,40 2,774,619,476,224 2,812,243,416,303,0,MIDM Daily total water consumption (any type) 2 2 56,192,1 52,40 2,440,339,476,224 Total exposure due to ingestion of cold water Daily_total_water_co[Types_of_drink="Cold drinks"]*Proportion_of_ingest*Proportion_of_tap_w1 192,256,1 48,49 2,437,90,581,409 [Types_of_drink,Bottled_water_scenar] Proportion of TTHM evaporating 0.1 192,640,1 48,31 2,0,-23,1280,922 Rate of ingestion of hot water 0.5 64,512,1 48,31 Total exposure due to ingestion of hot water Rate_of_ingestion_of*Proportion_of_ingest*Proportion_of_tthm_e*Proportion_of_tap_wa 192,512,1 48,49 2,0,0,1281,923 [Bottled_water_scenar,Types_of_drink] Daily tap water consumption Daily_total_water_co-Daily_bottled_water_ 328,192,1 52,32 2,310,465,476,224 Daily bottled water consumption Table(Bottled_water_scenar)( 0.3,0.6) 448,192,1 56,32 Proportion of tap water used in cold drinks Daily_tap_water_cons/Daily_total_water_co 192,128,1 48,40 Exposure to TTHM through absorption jgrellie 30 May 2008 18:52 48,24 256,64,1 48,42 1,1,2,593,487,17 Body surface area 1.81 224,73,1 48,31 Duration of exposure to TTHM through dermal contact Table(Exposure_pathways)( 0.1,0.01,0.01) 352,72,1 48,58 Total exposure due to dermal absorption Possible____*Dermal_absorption_ra*Body_surface_area*Duration_of_exposure*Proportion_of_popula 224,201,1 48,49 2,545,545,476,224 2,248,258,416,303,0,MIDM Possible ??? Table(Exposure_pathways)( 1,1,1) 352,201,1 48,24 Dermal absorption rate for TTHM 0.002 352,280,1 48,40 Indexless total exposure due to dermal exp sum(Total_exposure_due_6,Exposure_pathways) 96,265,1 48,49 Exposure to TTHM through inhalation jgrellie 30 May 2008 18:52 48,24 256,320,1 48,42 1,1,2,593,557,17 [TTHM] in indoor air Water_air_partition_ 352,247,1 48,24 2,226,113,476,224 Water/air partition coefficient of TTHM Table(Exposure_pathways)( 2,2,1) 352,376,1 48,40 Breathing rate 0.83333 224,55,1 48,24 Duration of inhalation exposure Table(Exposure_pathways)( 0.2,0.01,0.01) 352,55,1 48,31 2,536,546,416,303,0,MIDM Total exposure due to inhalation Possible_*A*Breathing_rate*Duration_of_inhalati*Proportion_of_popula 224,184,1 48,49 2,232,242,416,303,0,MIDM Possible (?) Table(Exposure_pathways)( 1,1,1) 352,183,1 48,24 Indexless total exposure due to inhalation sum(Total_exposure_due_1, Exposure_pathways) 96,119,1 48,49 Indexes 832,288,-1 64,204 Modelled exposure to TTHM Tthm_exposure_adjust*Distributions_of_ 384,448,1 48,31 [Bottled_water_scenar,Water_companies] Sex is irrelevant for this model, since it only looks at exposure of mothers 960,506,-1 48,74 Bottled water scenarios ['baseline','increased bottled'] 256,312,1 56,20 ['baseline','increased bottled'] Water companies in England ['ang','brw','caw','cho','dcc','eas','ess','fol','har','mik','nor','nww','por','sea','sev','sos','sou','sww','teh','tha','thr','wes','wrx','yor'] 272,88,1 48,24 2,0,744,1432,791 ['ang','brw','caw','cho','dcc','eas','ess','fol','har','mik','nor','nww','por','sea','sev','sos','sou','sww','teh','tha','thr','wes','wrx','yor'] Unify model with arsenic and THM models when possible! 456,204,-1 48,36 Conceptual model ktluser 10. huhta 2008 12:14 48,24 56,48,1 48,24 1,160,744,1440,799,17 Attributable burden of disease to nitrates in drinking water {Daly_valuation}; {Concentration_of_ni 976,256,1 60,28 [Variable Background_prevalen2, Objective Total_met_hb_mortal3] [Objective Dalys_and_or_financ2] Background prevalence of Met-Hb [1] 976,320,1 64,20 2,0,-23,1152,763 [Objective Attributable_burden2] Concentration of nitrates in drinking water from private supply 0 376,264,1 60,32 [Variable Concentration_of_ni7, Variable Removal_of_nitrates1] [Variable Total_daily_consump7] Concentration of nitrates in drinking water from public supply [1,Raw_water_quality1,Concentration_of_ni6,Concentration_of_ni7,Removal_of_nitrates1] 536,104,1 72,28 [Variable Total_daily_consump6] Concentration of nitrates in surface water Lognormal( 1 ) 224,104,1 48,32 2,166,180,476,224 [Constant Usage_of_nitrate_fe3] Concentration of nitrates in ground water [1,Usage_of_nitrate_fe3] 224,264,1 48,32 [Variable Concentration_of_ni4] Daily consumption of bottled water by infacts <6 months [1,Daily_sales_of_bott2] 776,176,1 48,32 [Variable Total_daily_consump6, Variable Total_daily_consump7] Daily sales of bottled water 880,432,1 48,28 DALYs and/or financial costs {Dbp_dalys}; {Mirobes_dalys} 1104,256,1 48,28 [Objective Attributable_burden2, Variable Daly_and_or_cost_we2] DALY and/or cost weightings 0 1104,104,1 48,32 [Objective Dalys_and_or_financ2] Drinking water legistation and guidance levels on nitrates 5 88,264,1 68,32 Exposure-response function {Chlorination}; {Dose_response_of_mi; Water_treatment_meth 984,104,1 64,28 [Objective Total_met_hb_mortal3] Population using private water supplies 728,432,1 48,29 [Variable Total_daily_consump7] Population demanding safe, wholesome and clean drinking water supply 0 88,104,1 68,32 Proportion of boiled drinking water 0 672,176,1 40,32 Raw water quality chemical and microbial quality of raw water [1] 376,432,1 52,28 Removal of nitrates by treatment {Dbp_exposure_via_dr; Dbp_exposure_via_oth; Dose_response_of_dbp 536,368,1 72,24 [Variable Standard_for_nitrat3, Constant Water_treatment_met3] [Variable Concentration_of_ni4] Standard for nitrates [1,Drinking_water_legi2] 88,368,1 64,24 2,0,0,1025,668 [Variable Removal_of_nitrates1] Te1 Actions 80,40,-1 48,24 Te1 Sources 224,40,-1 48,24 Te1 Media 360,40,-1 48,24 Te1 Exposure 696,40,-1 48,24 Te1 Impacts 984,40,-1 44,24 Te1 Valuation 1096,40,-1 48,24 Total daily consumption of drinking water from public supply by infants < 6 months 0 720,104,1 92,28 [Variable Concentration_of_ni5, Variable Daily_consumption_o2] Total daily consumption of privately supplied drinking water by infacts < 6 months 1 728,368,1 100,24 2,102,90,476,224 [Variable Concentration_of_ni4, Variable Daily_consumption_o2, Constant Population_using_pr2] Total ingestion of nitrates in drinking water by infacts < 6 months [1,Total_daily_consump6,Total_daily_consump7,Proportion_of_boile2,Population_demandin2] 720,256,1 92,24 2,102,90,476,224 [Objective Total_met_hb_mortal3] Total met-Hb mortality and morbidity due to nitrates in drinking water {Daly_valuation}; {Dbp_health_effects} 976,176,1 64,32 [Variable Exposure_response_f1, Variable Total_ingestion_of_3] [Objective Attributable_burden2] Usage of nitrate fertilisers in catcment 208,432,1 48,29 [Chance Concentration_of_ni6] Water treatment method none water treatment methods [1] 536,432,1 48,28 2,0,0,1025,668 [Variable Removal_of_nitrates1] Instructions ktluser 11. kesta 2008 12:21 48,24 296,48,1 48,24 1,0,-23,1440,799,1 Arial Narrow, 13 This model is built for INTARESE project, WP3.4. The risk assessment behind the model is on INTARESE wiki http:// www.pyrkilo.fi/intarese. This model uses 2001 data when appropriate and possible 248,88,-1 184,68 Original data 3R1B Contains data that comes from a referrable source. The reference must be mentioned in the Reference attribute. Colour 3R1B. 1 224,496,1 48,24 2,102,90,476,516 65535,52427,65534 Author judgement 4R2B Contains data that comes from a non-referrable source, i.e. some general knowledge or author judgement. Colour 4R2B. 1 224,552,1 48,24 52425,39321,65535 Log 4L3B Contains information about general issues related to the structure and content of a model. Text is written to Description. Each addition is started with the date and the name of the user. The title of the node is Loki n or Log n (n=version number of the model). You should not write information related to a particular node, that should be written in the node itself so that the information will be inherited with the node. Colour 4L3B. 1 112,624,1 48,24 65535,54067,19661 Argument (claim) 2L3B Argument about a node, data, or relationship in a model; or a description of its importance. Colour: automatic (2L3B). 1 336,440,1 48,24 65535,31131,19661 Causal node 8R3B This is the basic building block of an Analytica model. It is a variable that defines a (typically) measurable entity. Usually it is calculated based on data on and relationships about its causes. 1 224,440,1 48,24 Module 6R3B Modules are used to create a hierarchical structure. Modules may contain nodes and other modules inside them. mtad 16. Aprta 2003 12:56 48,24 112,576,1 48,24 1,40,0,505,406,17 Conclusion 6L3B A conclusion is basically an argument. The colour is used to enhance the fact that the data for this argument originates from the results of the model. Colour 6L3B. 1 336,552,1 48,24 2,44,90,476,224 65535,65532,19661 Index 5R2B Index related to the node beside it. Indexes should be as close as possible to the place where they are used. Otherwise there is the risk of a connection brake. Colour: automatic (5R2B). [0] 112,476,1 48,24 2,341,157,476,224 Colour description: xLyT describes the coordinates in the colour palette, xth cell from left and yth cell from top. Directions are L left, R right, T top, B bottom, e.g. 1R1B is the right bottom cell. 552,472,-1 112,44 Decision 9L3B Decision mode defines a decision under analysis. Other decisions (such as those decided by someone else) can be defined as uncertain variables instead of decisions. 0 112,440,1 48,24 Outcome 1R3B Outcome of interest. The optimisation of this variable is often defined as the criteria for choosing between decision options. 0 112,520,1 48,24 Chance 11L4B An uncertain variable that is defined as a probability distribution. 0 224,608,1 48,24 Preference 8L4B A value or preference. Colour 8L4B. 0 336,608,1 48,24 5,65535,1 Introduction to pyrkilo diagrams Pyrkilo diagram method (or structured deliberation as it is sometimes called) has been developed to facilitate the Science-Policy Interface. There is a need for methods facilitating the flow of information and understanding between science and policy. The principle is to describe a risk situation in a formal manner. Pyrkilo is an enhanced causal diagram that contains items along a causal pathway (or network) from e.g. abatement strategies to emissions to dispersion to exposure to effects. It has been designed to describe also other than causal connections such as non-causal reasoning, values, preferences, and arguments. These diagrams use Analytica(TM) platform, a graphical Monte Carlo simulation program. It is based on nodes (or variables or objects). They are used to describe and define all the pieces needed for a description of the situation under scrutiny. Many nodes are used as described in Analytica manuals. However, there are also special colours and shapes representing features that are important for pyrkilo diagrams. See Description of each node for more details. You can see the definitions and descriptions by clicking or double-clicking the nodes. 464,223,-1 400,87 2,402,92,530,558 Scope 2L3B A scope node is basically an argument. The bevel is used to enhance the fact that the argument is about the scope of the model, (i.e. about the existence of a node or module). Colour: automatic (2L3B). 1 336,496,1 48,24 1,1,1,1,1,1,0,,1, 65535,31131,19661