Dynamic simulation periods are specified in Time's definition. This is usually a list of numbers or labels, typically in some unit of time (days, weeks, months, etc.). Use the ÒDynamic()Ó function in your variables to perform dynamic simulation.20K011413012000Wikiname11Risks from farmed and wild salmon v428.6.2004 Jouni Tuomisto
This is the version 4 of the model calculating risks and benefits of farmed salmon. (c) Copyright KTL (National Public Health Institute, Finland).
<ref>[http://ytoswww/yhteiset/Huippuyksikko/Tutkimus/Viljelylohi/Materiaali/Viljelylohi.rmd Reference Manager database</ref> <ref>[http://ytoswww/yhteiset/Huippuyksikko/Tutkimus/Viljelylohi/ Directory for data and models</ref>Jouni Tuomisto9. tamta 2004 20:14ktluser30. jouta 2007 17:28 48,241,40,5,929,537,172,102,90,553,461Trebuchet MS, 130,Model Risks_from_farmed_an,2,2,0,1,D:\Jouni\tuomistofarmedsalmon2004_4_model.ana97,1,1,0,2,1,2794,4312,0Pollutant health riskavoided cases/aPollutant health risk is calculated assuming additivity between the pollutants. However, dioxin risks are not considered because they were not considered in Hites. After unit conversion, numbers are calculated for Western Europe as cases per year. Note that negative numbers mean increased risk unlike in previous versions of the model.var a:= -Risk_slope*pollutant_exposure/1000*western_europe;
var b:= (if pollutant1='Dioxin' then 0 else a);
var c:= sum(b,pollutant1);
c256,336,148,242,291,123,476,2242,357,128,628,450,0,MEANGraphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:1
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:0
Ymaximum:1
Zminimum:0
Zmaximum:1
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
[Reg_poll,Recommendation][1,0,0,0][[Variable:Pollutant health risk due to the consumption of salmon]] |Health effect of fishavoided cases/aNumbers are calculated for Western Europe as avoided deaths per year. Note that positive numbers mean increased benefit unlike in previous versions of the model.-Erf_h*min([N3_exposure,benefit_limit])*western_europe1384,336,148,242,95,7,589,375,0,MEAN[Recommendation,Salmon][1,0,0,0][[Variable:Cardiovascular effects of omega-3 in salmon in the Western Europe]]Net health effectavoided cases/aNet health effect of pollutant cancer and omega-3 cardiac benefit.Eff_fish+eff_poll320,408,148,242,102,90,476,4202,537,56,726,259,0,STAT[Undefined,Recommendation,1][1,0,0,0][Salmon,1,Reg_poll,1,Recommendation,1,Sys_localindex('PROBABILITY'),1][[Variable:Net health effects due to the consumption of salmon]]Fish advisoriesktluser11. tamta 2004 9:2048,2456,208,148,241,40,0,610,544,17100,1,1,0,2,9,4744,6798,7Based on linear cancer risk extrapolationEpa_model288,40,156,32The model by EPA is well-respected and sound
However, defending his study in an interview with IntraFish yesterday
afternoon, David Carpenter of the State University of New York at Albany
said that the differences between wild and farmed salmon PCBs levels are
not insignificant. ÒI donÕt agree with [Gallo] and I donÕt think others would
agree with him either.Ó
Carpenter said that the EPA risk assessment model that he and his
colleagues used to determine that salmon posed a health risk is a
well-respected and sound one. ÒIt is not just something that we made up. It
is a time-tested measureÉitÕs a yard stick that we have.Ó
<ref>http://www.intrafish.com/articlea.php?articleID=41070&s=1</ref>Epa_model288,128,152,362,102,90,630,401Applies only to non-commercial fishingA set of four volumes that provides guidance for assessing health risks associated with the consumption of chemically contaminated
non-commercial fish and wildlife. EPA developed the series of documents to help state, local, regional, and tribal environmental health
officials who are responsible for developing and managing fish consumption advisories.
<ref>http://www.epa.gov/waterscience/fish/guidance.html</ref>Developed_for_spceci528,192,156,28Point of view is that of a local authority: how to give advice to a fisherman about the consumption of his prey.Developed_for_spceci360,432,168,56This is not a public health problem but a special case where the authority has a restricted responsibilityApplies_only_to_non_+Developed_for_spceci528,296,164,56Precautionary principle is relevant in this case200,296,148,38[Constant Developed_for_spceci]The use of the EPA model is problematic for farmed fish. Hites et al, 2004 do not discuss this issue.Point_of_view_is_tha+This_is_not_a_public528,432,164,562,102,90,476,373Based on 1/100000 additional lifetime cancer risk assuming additivity and using linearised multistage modelEpa_model528,80,172,64Developed for spcecial high-exposure subgroups such as tribes and non-commercial fishermen, who eat a lot of fish anywayEpa_model360,296,184,56[Constant Precautionary_princi]Should we use EPA screening values, FDA action levels or something else?Epa_model+Fda_model64,288,152,52FDA action level model564,448,148,242,136,146,416,303,0,MIDM[]EPA fish advisory model<ref>U.S.EPA. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisory. Volume 2: Risk Assessment and Fish Consumption Limits, 3rd Edition. 2000. Table 3-1. [http://www.epa.gov/waterscience/fish/guidance.html Open access Internet file] [http://ytoswww/yhteiset/Huippuyksikko/Kirjallisuus/Fish_and_health/EPAFishAdvisory/ Intranet file]</ref>jtue28. Junta 2004 18:0348,2464,80,148,291,40,0,517,300,17Advised fish consumption2^(Floor(logten(Epa_model)/logten(2)))56,176,148,242,48,219,743,303,1,MIDM[Location1,Undefined]EPA fish advisory modelmeals/monthCRmm variable in the U.S.EPA advisory model.
<ref>U.S.EPA. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisory. Volume 2: Risk Assessment and Fish Consumption Limits, 3rd Edition. 2000. Table 3-1. [http://www.epa.gov/waterscience/fish/guidance.html Open access Internet file] [http://ytoswww/yhteiset/Huippuyksikko/Kirjallisuus/Fish_and_health/EPAFishAdvisory/ Intranet file]</ref>index Effect:=['Cancer','Non-cancer'];
var MS:= 0.227;
var Tap:= 365.25/12;
var CSF:=Potency[potency='Ca (CSF)'];
var RfD:= Potency[Potency='Non-Ca (RfD)'];
var CRlimCa:= ARL*BW/sum(CSF*in1*(Poll_salmon_hites/1000),Pollutant1);
var a:= In1*RfD/(Poll_salmon_hites/1000);
var b:= if isnan(a) then 1 else a;
var c:= if b>0 then b else 1;
var CRlimNonCa:= min(c,Pollutant1)*BW;
var CRlim:= array(Effect,[CRlimCa,CRlimNonCa]);
var CRmm:= CRlim*Tap/MS;
CRmm56,104,148,292,43,74,632,4122,120,130,416,303,0,MIDM[]Pollutants in salmon156,32,148,24Poll_salmon_hitesInclude pollutantsTable(Pollutant1)(
1,1,0,1)216,160,148,242,469,131,476,2242,242,231,416,303,0,MIDMPotency1216,104,148,24PotencyARLprobabilityAcceptable risk level
<ref>U.S.EPA. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisory. Volume 2: Risk Assessment and Fish Consumption Limits, 3rd Edition. 2000. Table 3-1. [http://www.epa.gov/waterscience/fish/guidance.html Open access Internet file] [http://ytoswww/yhteiset/Huippuyksikko/Kirjallisuus/Fish_and_health/EPAFishAdvisory/ Intranet file]</ref>10u216,32,148,242,471,122,476,382Other partsktluser11. tamta 2004 9:2048,24760,160,148,241,0,0,1,1,1,0,,0,1,193,72,639,447,17Pollutant['Dieldrin','Toxaphene','Dioxin','PCB']504,64,148,12Array(Pollutant1,['Dieldrin','Toxaphene','Dioxin','PCB'])kg70504,392,148,241,1,1,1,1,1,0,0,0,0Location['Scotland','Faroe Islands','Frankfurt','Edinburgh','Norway','Paris','London','Oslo','East Canada','Boston','Maine','San Francisco','West Canada','Toronto','Los Angeles','Vancouver','Washington DC','Seattle','Chicago','New York','Washington St','Chile','SE AK Chinook','Denver','BC Chinook','BC Sockeye','Oregon Chinook','SE AK Sockeye','New Orleans','BC Coho','Kodiak AK Sockeye','SE AK Coho','Kodiak AK Coho','BC Pink','Kodiak AK Pink','SE AK Pink','SE AK Chum','BC Chum','Kodiak AK Chum']504,32,148,12['Scotland','Faroe Islands','Frankfurt','Edinburgh','Norway','Paris','London','Oslo','East Canada','Boston','Maine','San Francisco','West Canada','Toronto','Los Angeles','Vancouver','Washington DC','Seattle','Chicago','New York','Washington St','Chile','SE AK Chinook','Denver','BC Chinook','BC Sockeye','Oregon Chinook','SE AK Sockeye','New Orleans','BC Coho','Kodiak AK Sockeye','SE AK Coho','Kodiak AK Coho','BC Pink','Kodiak AK Pink','SE AK Pink','SE AK Chum','BC Chum','Kodiak AK Chum']['Farmed salmon','Wild salmon','Market salmon']504,96,148,12['Farmed salmon','Wild salmon','Market salmon']Loki v 220.1.2004 Jouni Tuomisto
En ole ehtinyt aiemmin lokia kirjoittaa, joten nyt yleiskuvaus mallista. Viljelylohi on tehty arvioimaan, onko Hites et al (Science 9.1.2004) riskinarviointi hyvin tehty. Ensikommenttina KTL:ss oli se, ett kalan terveyshydyt on unohdettu. Niinp rakensimme mallin, joka 1) kytt samaa EPAn riskimallia saasteiden terveyshaittojen laskemiseen kuin Hites (PCB:n, dieldriinin ja toksafeenin (mutta ei dioksiinien) aiheuttama yhdistetty syriski olettaen additiivisuuden ja linearised multistage-mallin eli suoraan kyttmll EPAn CSF-arvoja) ja 2) laskee mys omega-3-rasvahappojen tuoman hydyn sydnkuolemariskiin.
Vertailu tehtiin 1) olettamalla lohensynti 0.25 - 32 amerikkalaista annosta kuukaudessa ja laskemalla sypriski ja/tai sydnhyty sek 2) olettamalla jokin lohensynti (esim. 20 g/d) ja lisksi jotain oletuksia muista omega-3-lhteist sek niiden muutoksista jos lohensynti muuttuisi.
Vaikutuksen lisksi tehtiin argumenttianalyysi (oma moduli) jossa katsottiin importance analysis eli rank-korrelaatio lhtmuuttujien ja lopputuleman vlille. Tss oli mukana erilaisia ptksi, mm. pitisik katsoa saasteiden syphaittaa vai nettovaikutusta?, Pitisik katsoa terveysvastetta lainkaan vai pelkk altistusta? ja Mill viljelty lohi pitisi korvata? Ptkset otettiin mukaan analyysiin siten, ett kullekin ptsvaihtoehdolle oletettiin sama todennkisyys, ja ne otettiin mukaan satunnaismuuttujina (ikn kuin me yrittisimme arvioida, mik on nestyksen tulos kun tst nestetn). Thn liittyen jin pohtimaan sit, pitisik meidn olettaa pienempi todennkisyys huonoille vaihtoehdoille (kuten eptodennkisille presidenttiehdokkaille annetaan vhemmn aikaa televisiossa) mutta en ptynyt tss mihinkn lopputulokseen, ja niin tasajako ji malliin.
Lisksi on tehty VOI-analyysi (oma moduli). Tss yritin rakentaa VOI-funktiota, joka olisi suoraan laskenut mielenkiinnon kohteena olevan tuloksen (helpottaisi mallinrakennusta jatkossa ja tekisi erilaisten VOIn laskemisen ktevksi), mutta ongelmaksi muodostui se, ett mean-funktio toimi oikein vain, kun se laskettiin variablesta. Jos yritti laskea sen tilapisest, solmun sisll olevasta muuttujasta, tuloksena oli yleens mid. Niinp tyydyttiin laskemaan homma ksipelill kuten Particle VOI -mallissa.
Conclusions from Hites 2004 sislt sitaatteja ja argumentteja keskustelusta, joka on Hitesin myt kynnistynyt. What should be the scope of the assessment oli aikeissa olla moduli, josta eri ptsvaihtoehdot olisivat sinne kirjatun argumentoinnin seurauksena nousseet, mutta sit ei ollut aikaa tyst kovin pitklle.
Confounder analysis -moduli sislt pohdintaa siit, millaiset tekijt voivat vaikuttaa Hitesin lopputulokseen ja kvalitatiivista argumentointia niiden mahdollisista vaikutuksista tulosten tulkintaan.
Help on yksinkertaisesti kopio Help v4 mallista.
20.1. alkoi ongelmaksi tulla se, ett malli rnsysi liikaa, ja oli hankalaa saada indeksit tsmmn lhtarvojen ja lopputuloksen kesken. Niinp ptin tehd uuden version 3, josta kaikki rnsyt on poistettu ja jonka tarkoituksena on toimia mallina Science-artikkelia varten. Kaikki laajemmat tarkastelut siis sstetn mallin seuraaviin versioihin. Niinp versio 2:een jtetn kaikki rnsyt, josta niit sitten voi tarpeen mukaan kopioida takaisin kytss olevaan malliversioon. Nin ehk pysyy selvn se, mit Science-vastineessa on ja mit ei ole.
Fishing and farming, Arguments on fish pollutants, Total pollutant exposure, What should be the scope of risk assessment?, Conclusions from Hites 2004, ja Confounder analysis ovat semmoiset modulit jotka nyt poistetaan versiosta 3. Samoin poistetaan pmodulista solmut Risk or net health effect?, Acceptable risk ja Health effects or exposures? sek niden input nodet.
0504,128,148,122,463,67,476,39965535,54067,19661Loki v320.1.2003 Jouni Tuomisto
Versiosta 3 siis on tehty riisuttu versio Science-juttua varten. Lue tarkemmin Loki v 2:sta. Nyt versiosta 3 poistetaan aiemmin kuvatun lisksi Other parts -modulista indeksej, joita ei kytet missn. Nm ovat Viljelyalue, Kalastusalue, Ostokaupunki, Lohilaji ja Saaste.
Argument analysis -modulista poistetaan solmut We should not consider concentrations..., Acceptable exposure, Va2, Health or exposure?, What is salmon replacement?, Va5, Va3, Va3 inputs, Va3 importance eli kaikki solmut. Trkeyssolmu luodaan uudelleen, mutta nyt se voidaan tehd suoraan Outcome-solmulle ilman indeksimuunnoksia. Niinp koko Argument analysis -moduli poistetaan ja asia siirretn VOIs-moduliin, joka nimetn uudelleen VOI and importance analysis.
Food intake -modulista poistetaan Salmon consumption, Salmon replacement, Food change, Salmon amount, Oil increase, Food intake, Wild salmon compensation, Va1, Food_rec, Source1. Eli kaikki solmut keskittyvt nyt vain loheen, eik muita omega-3-lhteit huomioida. Ne tulevat mukaan malliin raja-arvossa, joka kuvaa hydyllisen lissaannin rajaa ja siis sislt absoluuttisen fysiologisen rajan, josta on vhennetty muusta ravinnosta tuleva mr. Tm solmu tehdn Annosvastemoduliin.
VOIs-modulista poistetaan Va16, Va12, VOI, VOI1 ja VOI-laskenta tehdn suoraan Outcome-solmusta.
21.1.2004 Jouni Tuomisto
Malli muuttui eilen siten, ett nyt lasketaan VOI kahdelle eri kysymykselle: pitisik suositella viljellyn lohen enimmissaanniksi 1 annos/kk ja pitisik rajoittaa enemmn kalanrehun saastepitoisuuksia. Nm kaksi nostetaan esiin, koska edellinen on suora vastine Hitesin ym. argumenttiin, ja jlkimminen on korostamassa sit, ett asetettu kysymys mr sen, mik tieto on trke ja mik ei.
Other parts -modulista poistetaan solmut Acceptable exposure increase ja Amount or replacement, ja ARL siirretn Fish advirories -moduliin sek Potency Exposure-response function for pollutant risk -moduliin. Nist moduleista poistetaan vastaavat aliakset.
Unit- ja Description-kentt pivitetn koko mallissa, ja viitteit listtn sikli kuin ne ovat helposti ksill. Kuitenkin viitteet on viel pistettv kuntoon, nyt muotoilut eivt ole kunnossa.0504,152,148,122,212,144,476,34465535,54067,19661Compensating fish amountg/deff_poll/Erf_h/western_europe504,224,148,24[Recommendation,Salmon]Probability of decisionvar a:= sum(eff_poll,salmon);
Probability(a[recommendation='BAU']+0.0001>a[recommendation='Restrict farmed salmon use'])504,336,148,242,115,372,476,291Probability of decisionvar a:= sum(eff_net,salmon);
Probability(a[recommendation='BAU']>a[recommendation='Change farmed to wild salmon'])504,280,148,24Outcomesindex a:= ['Net effect of salmon recommendation','Net effect of feed regulation','Cancer effect of recommendation'];
var b:= array(a,[eff_net,0,eff_poll]);
var c:= b[recommendation='Restrict farmed salmon use']-b[recommendation='BAU'];
var d:= (if regulate_pollutants_=1 then c[reg_poll='More actions'] else c[reg_poll='BAU']);
var e:= eff_net[reg_poll='More actions'] - eff_net[reg_poll='BAU'];
var f:= (if recommend= 1 then e[recommendation='Restrict farmed salmon use'] else e[recommendation='BAU']);
var g:= (if a= 'Net effect of feed regulation' then f else d);
var h:= sum(g,salmon);
h232,264,148,242,452,264,476,4692,767,202,367,474,0,MEANPollutant or net health effect?probabilityA chance node that collapses the decision about whether the proper endpoint metric is pollutant risk or net health effect.Bernoulli( .5 )336,56,148,291,1,1,1,1,1,0,0,0,02,585,196,416,303,0,MIDM2,168,178,416,303,0,SAMPMortality by recommendationcases/aNet health effect indexed by only consumption recommendation.if Regulate_pollutants_=1 then outcome3[reg_poll='More actions'] else outcome3[reg_poll='BAU']168,152,148,322,102,90,476,2932,499,269,416,303,0,MIDM2,415,126,518,378,0,MEAN[Alias Outcome1][Salmon,Recommendation]Regulate pollutants?probabilityA chance node that collapses the decision about regulating fish feed.bernoulli(0.5)56,152,148,24Mortality by feed regulationcases/aNet health effect indexed by only fish feed regulation.if recommend = 1 then outcome3[recommendation='Restrict farmed salmon use'] else outcome3[recommendation='BAU']280,152,148,322,408,141,646,2742,499,269,416,303,0,MIDM2,77,202,518,378,0,MEAN[Alias Lifetime_cancer_chd_][Salmon,Recommendation]Recommend?probabilityA chance node that collapses the decision about consumption recommendations for farmed salmon.bernoulli(0.5)384,152,148,241,1,1,1,1,1,0,0,0,02,298,233,476,2242,80,145,416,303,0,SAMPLifetime cancer+CHD mortality prevented by salmoncases/aNet health effect indexed by the two decisions of concern: a) whether to recommend salmon consumption restrictions and b) whether to apply stricter regulations for fish feed. The definition contained also this row: if a>ARL then 1 else 0
But it was removed when we cut the acceptable concentration concept out of the model.var a:= (if Poll_or_net = 1 then Eff_poll else Eff_net);
sum(a,salmon)224,56,148,462,102,90,476,2772,499,269,416,303,0,MIDM2,723,592,518,176,0,MEAN[Reg_poll,Recommendation][1,0,0,0]Log v428.6.2004 Jouni Tuomisto
This version is an update of the model that was used for calculating the results for Tuomisto paper submitted to Science on January 28, 2004. Only argumentation and comments have been clarified and added. No substantive changes have been made to definitions. The descriptions of the variables described in the Table 1 in 'Supportive online material' have not been changed. Therefore, this version produces the results that were presented in the manuscript.
The main conclusions of this study were added as arguments on the top level of the model. The argumentation about the pollutant model selection was clarified (see module Fish advisories).
11.1.2005 Jouni Tuomisto
The model was given a unified resource name (URN) and metadata. The only addition since 28.6.2004 is the node Urn and this note.0504,184,148,122,306,93,476,540[Alias Log_v4]65535,54067,19661Benefit-risk diagram for farmed salmonindex benefit_risk: ['Benefits','Risks'];
var a:= array(benefit_risk,[eff_fish,eff_poll]);
a[salmon='Farmed salmon'reg_poll='BAU']72,264,148,422,20,7,551,791,1,MEAN[Sys_localindex('BENEFIT_RISK'),Recommendation,Undefined,Undefined,1][0,0,0,0][Recommendation,1,Sys_localindex('BR'),1,Sys_localindex('STEP'),1]VOI analysis for farmed salmon72,352,148,32Rows for sql 1var a:= slice(Result_reporting,Result_reporting.decision,4);
'"'&3000+run&'";"'&1&'";"'&a&'";"'&run&'"'400,288,148,242,102,90,490,3972,568,87,416,303,0,MIDM2,I,4,2,0,0,4,0,$,0,"ABBREV",01..400056,32,148,24Rows for sqlCalculate rows for the SQL result database. It assumes 1000 iterations.var a:= ['Business as usual','Recommend restrictions to salmon consumption','Stricter limits for fish feed pollutants','Restrictions to salmon consumption AND stricter fish feed limits'];
var b:= floor((in2-1)/1000);
'"'&in2&'";"1";"'&slice(a,a,b+1)&'"'400,344,148,24(param1)Doresultvar a:= slice(Net_health_effects_i,net_health_effects_i.decision,4);
'"'&3000+run&'";"'&1&'";"'&a&'";"'&run&'"'56,88,148,242,102,90,476,224param1Result reportingThis node is used to report results from this model. Just replace the variable name on the first row with the variable you want to report and calculate. This node calculates the result only for farmed salmon, and it looks all four possible deicisions along one dimension (not 2*2 table).var a:= sample(Erf_h);
a:= a[salmon='Farmed salmon'];
index decision:= ['Business as usual','Recommend restrictions','Stricter rules for feed','Both'];
a:= array(decision,[
slice(slice(a,recommendation,1),reg_poll,1),
slice(slice(a,recommendation,2),reg_poll,1),
slice(slice(a,recommendation,1),reg_poll,2),
slice(slice(a,recommendation,2),reg_poll,2)]);
index statistics:= ['Mean','SD','0.01','0.025','0.05','0.25','0.5 (Median)','0.75','0.95','0.975','0.99'];
array(statistics,[mean(a), sdeviation(a), getfract(a,0.01), getfract(a,0.025), getfract(a,0.05), getfract(a,0.25), getfract(a,0.5), getfract(a,0.75), getfract(a,0.95), getfract(a,0.975), getfract(a,0.99)])232,328,148,242,102,90,476,4852,362,39,568,303,0,MIDM[Sys_localindex('DECISION'),Sys_localindex('STATISTICS'),Undefined,Undefined,Undefined,1]2,D,4,2,0,0,4,0,$,0,"ABBREV",0[Pollutant1,1,Sys_localindex('STATISTICS'),1,Sys_localindex('DECISION'),1]Pollutant exposureµg/kg/dPollutant exposure per body weight per day.Poll_salmon*Salmon_intake/1000/BW256,272,148,242,287,149,476,2242,72,47,653,399,0,MIDM[Salmon,Pollutant1][1,0,0,0][[Variable:Exposure to persistent pollutants due to salmon in the population of the Western Europe]]Fish feedktluser11. Janta 2004 12:0848,24168,144,148,241,472,152,516,377,172,40,50,576,600The concentrations of pollutants in fish feed have been reducingRideout said that major feed companies have been able reduce toxin levels
in their fish meal over the past several years by using substitute ingredients
and less contaminated fish. ÒIt has been an issue that the industry is
responding to. Feed companies have been working overtime to use high
quality meals that are very low in contaminants and have twice the amount of
omega-3sÉThe line is trending downward. We donÕt like having this in our
product.Ó
<ref>http://www.intrafish.com/articlea.php?articleID=41061&s=1</ref>Feed_backgr328,48,164,362,102,90,720,332Pollutant concentration in fish feedvar a:= (if reg_poll='More actions' then impr_in_feed else 0);
Feed_backgr*(1-a)192,128,148,292,291,326,636,303,0,SAMP[Undefined,Reg_poll,Undefined,Undefined,Undefined,1][1,0,0,0][[Variable:Persistent pollutant concentrations in fish feed]]What has been done and what should be done to reduce pollutants in fish feed?Feed_poll192,240,160,44Should we change fish feed instead of giving fish consumption advisories?Impr_in_feed+Recommendation+Reg_poll64,248,148,55[Alias Should_we_change_fi1]Pollutant levels in fish feed after lower limits-Pollutant concentrations in fish feed can be further reduced from current levels. The estimate of 0-100 % with a gradual decrease in probability density is based on author judgement. It reflects rather a theoretical range of improvement than a realistic estimate.Triangular( 0, 0, 1 )64,128,148,382,102,90,476,4092,515,277,416,303,0,MIDM2,216,226,416,303,1,CDFP52425,39321,65535Fish feed background-This is a dummy variable only, because the actual concentrations in fish feed are not needed in the current model.1192,48,148,2452425,39321,65535Lower limits for pollutants in fish feed?Two options are assumed for fish feed regulations: 1) business as usual (BAU) with current legislation, and 2) More restrictive regulations for fish feed, resulting in reduction of pollutant levels in feed and consequently in salmon. (This is irrespective of any trends unrelated to the decision).['BAU','More actions']280,144,148,32[[Variable:Pollutant concentration limits for fish feed]]['BAU','More actions']Exposure-
response function for omega3jtue12. Janta 2004 8:5148,24504,336,148,421,76,122,586,359,17Exposure-
response function for health benefitprobability/(g/d)Exposure-response function where also the uncertainty about the population that benefits from omega-3 is taken into account.Erf_hcrude*(if All_or_chd=1 then 1 else F_chd_pati)200,248,152,442,291,175,476,2242,136,146,489,288,0,MEANGraphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:1
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:0
Ymaximum:1
Zminimum:0
Zmaximum:1
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0,0.01,0.05,0.25,0.5,0.75,0.95,0.99,1]
[[Variable:Dose-response function of cardiovascular effects of omega-3 fatty acids]]Benefits: effects of omega-3 fatty acids on cardiovascular mortalityErf_hcrude336,152,152,56Does omega 3 help other people than CHD patients?All_or_chd64,56,148,46Does omega-3 help CHD patients or everyone?probabilityA large part of omega-3 benefit literature is based on studies on cardiac patients. This node reflects the uncertainty whether there is cardiac health benefit for everyone or only coronary heart disease (CHD) patients. The estimate is not based on data but the aim is to maximise uncertainty.Bernoulli( 0.5 )64,160,148,382,102,90,476,33352425,39321,65535Fraction of CHD patients among deathsfractionFraction of coronary heart disease patients among the deaths. Current estimate is based on the fraction of cardiac deaths from total deaths in EEA countries, although there are cardiac deaths among non-CHD patients, and there are CHD patients with other causes of death.
<ref>[http://www.who.int WHO data]</ref>1.5717M/3.8664M64,248,148,382,102,90,476,434Dose-response of health benefitprobability/(g/d)Dose-response function comes from secondary prevention trials reviewed by Din 2004 Table 1. The relative risk reductions are divided by the omega3 exposure in each study. A continuous distribution is used, and each study result is used as a quintile point for the distribution. Another review is Marckmann and Gronbaek 1999 that concluded that 0.6-0.9 g/d of omega-3 results in 40-60 % decrease in coronary heart disease mortality. The low estimate from this result was used (40% per 0.9 g/d).
<ref>Din JN, Newby DE, Flapan AD. Science, medicine, and the future - Omega 3 fatty acids and cardiovascular disease - fishing for a natural treatment. British Medical Journal 2004; 328(7430):30-35. [http://ytoswww/yhteiset/Huippuyksikko/Kirjallisuus/Fish_and_health/Din_Omega3andCVD_BMJ2004.pdf Intranet file]</ref>
<ref>Marckmann P, Gronbaek M. Fish consumption and coronary heart disease mortality. A systematic review of prospective cohort studies. European Journal of Clinical Nutrition 1999; 53(8):585-590.</ref>-Fractiles( [0/3.5,.325/1.5,.482/1.8,.297/0.85, 0.4/0.9 ])200,152,152,322,102,90,512,5272,72,82,416,303,1,PDFP52425,39321,65535Highest omega3 dose with health benefitg/dDescribes the amount of fish that is still beneficial when added to diet. After this limit, no extra benefit is assumed from omega-3 fatty acids. The value reflects both the physiological need of omega-3 and the current intake of omega-3 from other sources than salmon. Both parts of the estimate are complicated, and the latter varies from country to country. This might have implications to the decision if we could give country-wise recommendations of feed regulations. The estimate is based on author judgement. A rough idea about the magnitude comes from Din 2004, where the trials had 0.85 - 1.8 g/d of omega-3 with benefit but 3.5 g/d showed no benefit in a small trial where the population used reasonable amount of fish anyway. If the physiological limit is lower, the slope of the exposure-response function should be steeper. Another data comes from Albert 1998: the benefit may be limited to omega-3 doses <4.9 g/mo = 0.16 g/d. Markmann and Gronbaek concluded that 0.6-0.9 g/d is beneficial.
<ref>Din JN, Newby DE, Flapan AD. Science, medicine, and the future - Omega 3 fatty acids and cardiovascular disease - fishing for a natural treatment. British Medical Journal 2004; 328(7430):30-35. [http://ytoswww/yhteiset/Huippuyksikko/Kirjallisuus/Fish_and_health/Din_Omega3andCVD_BMJ2004.pdf Intranet file]</ref>
<ref>Albert CM, Hennekens CH, O'Donnell CJ, Ajani UA, Carey VJ, Willett WC et al. Fish consumption and risk of sudden cardiac death. Jama-Journal of the American Medical Association 1998; 279(1):23-28.</ref>
<ref>Marckmann P, Gronbaek M. Fish consumption and coronary heart disease mortality. A systematic review of prospective cohort studies. European Journal of Clinical Nutrition 1999; 53(8):585-590.</ref>Triangular( .2, .5, 1 )496,64,148,382,135,16,476,59852425,39321,65535Help for pyrkilo diagrams28.6.2004 Jouni Tuomisto
This module contains brief description about pyrkilo diagram method in Analytica platform. There are explanations for node usage and colours. Version 5, 28.6.2004. Copyright KTL (National Public Health Institute, Finland).mtad16. Aprta 2003 12:56jtue21. Novta 2003 15:4648,24760,32,148,321,1,1,1,1,1,0,0,0,01,40,8,866,552,17Arial, 1381,1,1,0,2,9,4744,6798,7Original data 3R1BContains data that comes from a referrable source. The reference must be mentioned in the Reference attribute. Colour 3R1B.1168,336,148,242,102,90,476,51665535,52427,65534Author judgement 4R2BContains data that comes from a non-referrable source, i.e. some general knowledge or author judgement. Colour 4R2B.1168,392,148,2452425,39321,65535Log 4L3BContains information about general issues related to the structure and content of a model. Text is written to Description. Each addition is started with the date and the name of the user. The title of the node is Loki n or Log n (n=version number of the model). You should not write information related to a particular node, that should be written in the node itself so that the information will be inherited with the node. Colour 4L3B.156,464,148,1265535,54067,19661Argument (claim) 2L3BArgument about a node, data, or relationship in a model; or a description of its importance. Colour: automatic (2L3B).1280,280,148,2465535,31131,19661Causal node 8R3BThis is the basic building block of an Analytica model. It is a variable that defines a (typically) measurable entity. Usually it is calculated based on data on and relationships about its causes.1168,280,148,24Module
6R3BModules are used to create a hierarchical structure. Modules may contain nodes and other modules inside them.mtad16. Aprta 2003 12:5648,2456,416,148,241,40,0,505,406,17Conclusion
6L3BA conclusion is basically an argument. The colour is used to enhance the fact that the data for this argument originates from the results of the model. Colour 6L3B.1280,392,148,242,44,90,476,22465535,65532,19661Index 5R2BIndex related to the node beside it. Indexes should be as close as possible to the place where they are used. Otherwise there is the risk of a connection brake. Colour: automatic (5R2B).[0]56,316,148,122,341,157,476,224Colour description: xLyT describes the coordinates in the colour palette, xth cell from left and yth cell from top. Directions are L left, R right, T top, B bottom, e.g. 1R1B is the right bottom cell.464,312,-1112,56Decision
9L3BDecision mode defines a decision under analysis. Other decisions (such as those decided by someone else) can be defined as uncertain variables instead of decisions.056,280,148,24Outcome
1R3BOutcome of interest. The optimisation of this variable is often defined as the criteria for choosing between decision options.056,360,148,24Chance
11L4BAn uncertain variable that is defined as a probability distribution.0168,448,148,24Read about attributesThis node describes the use of attributes. All attributes should be used as described in the manuals of Analytica. Exceptions are described here. This description is written for those who read as well as for those who write pyrkilo diagrams.
Class: Shows the type of the node. Some of the variable classes have a special meaning in pyrkilo diagrams. These are presented in Help for pyrkilo diagrams module.
Identifier: Name of the node that is used in definitions. This must be unique. When drafting a model, use automatic identifiers. Only when there is no expectation of many changes in node Titles, you can streamline all identifiers. Try to use short names and the same structure as in the Title. E.g. if title is Long-range transport, use identifier Lrt.
Units: The unit of the value calculated in the node. Should always be defined when the node is a part of causal diagram. If the variable described by the node is dimensionless, '-' should be used. If an explicit unit is not (yet) defined, a description about how the variable could be measured should be used. E.g. 'mass', 'rate', 'age'.
Title: The title that is shown on the node in diagram mode. First use a working name that roughly describes the contents. After your model is stabilised, you can rename nodes to better represent the final essence. Try to avoid intermediate nodes where it is difficult to understand what the outcome means; instead, combine consequent nodes so that the outcome is an understandable (measurable) variable.
Description: A free-text area for describing the contents of the node. All nodes should be explicitly described and justified in the Description so that a user is able to get an idea of the node without looking at the Definition. If the definiton changes remarkably between versions, it is good to describe this and use dates and user's name for clarity (in a similar manner as in Log nodes).
Definition: This defines what is calculated in this node. If the node is a non-numerical argument, it should contain a formula that refers to all nodes that are used to justify the claim; it this case, the numerical result will be nonsense. Pay attention to indexes: all important indexes must be included, but try to work with as few as possible. Use the ';' operator to chop the syntax into pieces.
Check: Criteria to check the values entered.
Reference: This contains a detailed information about the source of the data. The article or book should be found with this data. When building a model, there should be an accompanying RefMan file with the same name but a different extension. This file contains the full information about each reference cited in the model. The name and path of the RefMan file must be mentioned in the Reference of the model. If there is a relevant internet page or a network file, its path can be added here. Analytica 3.0 understands html-code and makes these links clickable. E.g. this is a link to the <a href=http://www.lumina.com>Lumina home page</a>. You can download Analytica Player from there to browse these models.0736,272,148,242,236,80,581,552Argument structuremtad30. Aprta 2003 10:22jtue7. Mayta 2003 10:2648,24736,416,148,241,1,1,1,1,1,0,0,0,01,40,15,934,679,17Arial, 1379,1,1,0,2,9,4744,6798,7D (data)
Lhttiedot056,448,148,241,1,1,1,1,1,0,,0,65535,52427,65534B (backing)
Taustatuki0160,576,148,241,1,1,1,1,1,0,,0,65535,52427,65534R (rebuttals)
Varaukset0160,392,148,241,1,1,1,1,1,0,,0,65535,52427,65534Q (qualifier)
TarkennusD_+R_+W_160,448,148,242,102,90,476,507W (warrant)
PerusteB_160,512,148,241,1,1,1,1,1,0,,0,2,102,90,476,22465535,52427,65534C (claim)
JohtoptsQ_+Model_variable264,448,148,24D: Hoek et al 2002: association between traffic vicinity & mortality0552,424,164,4065535,52427,65534B: Greenland: Cohort study is the best design in observational epi0680,576,164,3865535,52427,65534R: if the effect was due to PM0680,352,148,2849151,49151,49151Q: therefore probablyD__hoek_et_al_2002__+R__if_the_effect_was+W__design_was_approp680,424,148,2419661,48336,65535W: Design was appropriateB__greenland__cohort680,488,152,2465535,31131,19661C: Traffic PM increases cardiopulm mortalityHoek et al (Lancet 2002) found out in a cohort study that a higway near home was a risk factor for overall and cardiopulmonary mortality. The study was well designed and performed, and the results are convincing, althought the risk estimates were large. However, the exposure estimation was based on the vicinity of a major road and black smoke and nitric dioxide ambient concentrations. The current knowledge tends to associate especially fine particles (PM) with cardiopulmonary mortality, and in this study the exposure measure clearly was an indicator of traffic-related PM. However, other explanations exist as well, and e.g. noise was not ruled out as a confounder.
Taken together, the study increases the plausibility of PM being causally linked to cardiopulmonary mortality.Q__therefore_probabl+Pm_plausibility792,424,148,402,412,106,476,22465535,31131,19661D: Harry is born in Bermuda0576,136,148,2852425,39321,65535W: because
B: those born in Bermuda are citizens of Great Britain0688,232,148,5565535,52427,65534R: unless Harry was born during a holiday trip0688,56,148,3849151,49151,49151Q: therefore certainlyD__harry_is_born_in_+R__unless_harry_was_+W__because_b__those_688,136,148,291,0,-2319661,48336,65535C: Harry is a citizen of GBQ__therefore_certain800,136,148,2465535,31131,19661PM plausibilityprobability0.9904,424,148,242,102,90,476,22452425,39321,65535Model variable0376,448,148,2419661,48336,65535Here we show how to describe a complicated reasoning starting with different kinds of data and ending up with a claim. This follows the ideas of Stephen Toulmin (Uses of Argument, Cambridge University Press, 1958). In a simple case or drafting phase it is enough to create an argument by joining a piece of data to the claim. A claim node is often called an Argument node, but it should be remembered, that a full argument includes the reasoning in addition to the outcome. Instead of using several nodes to describe the reasoning, as is done here, it is often convenient to write it down inside the argument node, in description attribute (see 'C: Traffic PM increases cardiopulm mortality'). Note that the arrows usually point from the model to the claim. The logic of this is that the model is seen as a description of reality. And the reality affects the claim, not vice versa.
- Data (D) or premises describes the information that supports the claim.
- Warrant (W) makes the argument from data to claim a legitimate one. Often it is not explicitly mentioned in discussion, but it should be described in a pyrkilo unless it is obvious.
- Backing (B) contains some background information needed for warrant, and often it is practical to combine these two.
- Qualifier (Q) describes the strength of the argument.
- Rebuttal (R) defines the scope when the argument is valid.256,180,-1248,172Less important node typesjtue28. Junta 2004 18:0348,24736,480,148,291,257,40,510,515,17Set
9L3TThe set module is used as a set containing items, such as a set of emission sources summing up to the total emission. However, it is not possible to refer to a module. Therefore a set node is used instead of the module for refering in the model. If there are items that belong to several sets, aliases are created and placed in each set module. A set node is located in the respective set module. Colour 9L3T.jtue30. Octta 2003 10:3448,2456,144,148,241,60,78,398,477,171,52427,26212Set
9L3TThis node is like an alias to a set module. The set module is used as a set containing items, but it is not possible to refer to a module. Therefore a set node is created, and it is used instead of the module for refering in the model.
If there are items that belong to several sets, aliases are created and placed in each set. Set node is located in the respective set module. Colour 9L3T.Item1+Item2+Item3+Item4+Item548,24,148,241,724,971,52427,26212Item5This is one item belonging to the set 'Set'.0168,24,148,24Item1This is one item belonging to the set 'Set'.0168,248,148,24Item2This is one item belonging to the set 'Set'.0168,192,148,24Item3This is one item belonging to the set 'Set'.0168,136,148,24Item4This is one item belonging to the set 'Set'.0168,80,148,24Model place- holder 7L2BShows that there is a need for a model, but it is not yet defined explicitly. Colour 7L2B. Model prototype has the same meaning, either can be used depending on whether a node or a module is more convenient. Colour 7L2B.156,88,148,2452429,65535,39321Model prototypeShows that there is a need for a model, but it is not yet defined explicitly. Colour 7L2B. Placeholder for a model has the same meaning, either can be used depending on whether a node or a module is more convenient. Colour 7L2B.mtad16. Aprta 2003 12:5648,2456,32,148,2452429,65535,39321Question, Lack of information 5R1TA question or a lack of knowledge. An item that would be important in a model, but there is no information about its value and it cannot therefore be used in calculations. Colour: 5R1T.056,272,152,2849151,49151,49151ConstantNote: colour depends on the source of information and can be that of original data, author judgement or causal node. Do NOT use the automatic colour (L2B3), because it is reserved for the argument.0168,256,148,2465535,52427,65534(param1)Function 4R2B0168,32,148,24param1Q (qualifier)
8R3BShows the strength of an argument (or more precisely, the strength of the data, warrant, and backing to support the argument). There may be several pieces of data connected by several qualifiers to one argument (claim). Colour: automatic (8R3B).0168,144,148,24Nuisance parameter 7L1BThis is used to emphasize that there is a lack of knowledge about this variable, but the variable is still important for understanding causality. In a well-built model, the nuisance parameters are cancelled out before the outcome, so that they do not affect the result given the data used. E.g., we may want to model the human exposure to traffic emissions. We have an estimate about the relative contributions of the most important sources to the exposure, but we don't have absolute values from fate and dispersion models. Therefore, when we want to express causal connections, we must056,208,148,2958981,65535,52427Non-causal node 8R2BNon-causal nodes are used when the relation between nodes is not causal. Ice cream consumption and drowning accidents are correlated (at least in Finland). One is not a cause of the other, but both are affected by the outside temperature during summer. Non-causal connections can be used in models for deducting values for one node when the other is known. A typical example of this is a top-down model, where we may have information on 1) total concentration of a pollutant and 2) source contribution of certain emission sources (as a fraction of total concentration). The source contribution is not a causal variable, it is merely an index of all (unknown) causal variables, but it can be used to estimate the concentration caused by a particular emission source.0168,200,148,242,587,271,476,41239321,55707,65535Log 329.10.2003 Jouni Tuomisto
This is the third version of the Help model. Originally it was planned that it would habe been included in each model as a linked module, but soon it was found that the link caused much more trouble than benefit. It is therefore used as a stand alone model. However, it may be a good idea to embed it into each model using Copy (not Link).
N:\huippuyksikko\tutkimus\mallit\TainioTheUsesOfArgument.ana (7.5.2003) is closed and connected to this file in the module 'Argument strucure'. It is edited to reflect the current thinking about the argument structure.1736,368,148,121,1,1,1,1,1,1,,0,2,433,83,476,39865535,54067,19661Arial, 13Preference
8L4BA value or preference. Colour 8L4B.0280,448,148,245,65535,1Introduction to pyrkilo diagramsPyrkilo diagram method (or structured deliberation as it is sometimes called) has been developed to facilitate the Science-Policy Interface.
There is a need for methods facilitating the flow of information and understanding between science and policy. The principle is to describe a risk situation in a formal manner. Pyrkilo is an enhanced causal diagram that contains items along a causal pathway (or network) from e.g. abatement strategies to emissions to dispersion to exposure to effects. It has been designed to describe also other than causal connections such as non-causal reasoning, values, preferences, and arguments.
These diagrams use Analytica(TM) platform, a graphical Monte Carlo simulation program. It is based on nodes (or variables or objects). They are used to describe and define all the pieces needed for a description of the situation under scrutiny.
Many nodes are used as described in Analytica manuals. However, there are also special colours and shapes representing features that are important for pyrkilo diagrams. See Description of each node for more details. You can see the definitions and descriptions by clicking or double-clicking the nodes.408,124,-1400,1162,402,92,530,558Read more about pyrkiloUnderstanding of a particular risk develops simultaneously at various levels and using differently structured methods. At one end there is a "discussion layer": political and public discussions about risks of a hazard with a wide interest on e.g. economical consequences of available decision options, public health, and social justification equity. This discussion is sometimes poorly structured and does not give scientists or risk assessors clear questions that could be answered by scientific methods. At the other end there is a "modelling layer": models dealing with specific questions such as air concentrations of a pollutant from a specific source or risk-benefit analyses of particular actions. The models are complex and use several assumptions that are not abvious to outsiders.
There is a need for methods facilitating the flow of information and understanding between the existing layers. Pyrkilo (from the Finnish word pyrki, to aim at) diagrams aim at offering an interface between the two disciplines. The principle is to describe a risk situation in a formal manner. It is an enhanced causal diagram that contains items along the causal pathway (or network) from e.g. emissions to dispersion to exposure to effects. It has been designed to describe also other than causal connections such as values, preferences, and arguments.
The pyrkilo method has several objecitves. The structure is relatively easily understandable and readable. It has a basic structure similar to but simpler than mathematical causal models. Translation into a natural language or mathematical model is relatively easy, as is required from an interface. The diagram is fast to build with little data, and the critical parts of the diagram can subsequently be developed into a full-scale model. It is easy to expand into new areas, as the political discussion proceeds. Because of its structured and formal nature, it requires that many assumptions are made explicit unlike in political rhetoric, and therefore it is easier to identify possibly illogical or conflicting issues. It can be used to explore the validity or importance of an aspect before it is brought into the other discipline of heavy modelling or political discourse.
0736,328,148,242,54,111,476,224Scope
2L3BA scope node is basically an argument. The bevel is used to enhance the fact that the argument is about the scope of the model, (i.e. about the existence of a node or module). Colour: automatic (2L3B).1280,336,148,241,1,1,1,1,1,0,,1,65535,31131,19661Exposure-
response function for pollutant riskPieta16. tamta 2004 1:3248,24136,336,148,511,141,229,418,300,17Potency of pollutants(mg/kg/d)^Æ1Potency of pollutants. Cancer slope factors (CSF) are used for cancer and Reference Dose (RfD) values are used for non-cancer endpoints. The data comes from the U.S.EPA.
<ref>U.S.EPA. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisory. Volume 2: Risk Assessment and Fish Consumption Limits, 3rd Edition. 2000. Table 3-1. [http://www.epa.gov/waterscience/fish/guidance.html Open access Internet file]</ref> <ref>[http://ytoswww/yhteiset/Huippuyksikko/Kirjallisuus/Fish_and_health/EPAFishAdvisory/ Intranet file]</ref>Table(Pollutant1,Self)(
16,50u,
1.1,250u,
156K,0,
2,20u
)['Ca (CSF)','Non-Ca (RfD)']64,40,148,242,249,11,476,4572,480,276,416,303,0,MIDM2,103,144,416,303,0,MIDM[Alias Potency1]65535,52427,65534[Self,Pollutant1][Self,Pollutant1][1,0,0,0]Exposure-response function for pollutant risk(mg/kg/d)-1The response assessment is restricted to cancer endpoints, because it is the more sensitive endpoint.potency[Potency='Ca (CSF)']64,128,148,382,102,90,476,3992,136,146,655,303,0,MIDM[1,0,0,0][[Variable:Dose-response function of persistent pollutants]]Is the exposure-response function affected by the target population and its background cancer risk? Should this be taken into account in the model?Risk_slope232,128,172,722,436,19,476,224Salmon intakejtue16. Janta 2004 12:5448,24320,208,148,241,81,109,605,297,17Alternatives for farmed salmon: wild salmon, other fish, canola oil, flaxseed oil.ÒWeÕre telling people that if they want to reduce their risk of cancer, they should not eat more than one meal of farmed salmon a month,Ó Carpenter said.
He added that the cancer risk from the toxins effectively cancels out the benefits of omega-3 fatty acids found in farmed salmon, which have not been proven to prevent or reduce the risk of cancer. ÒThere are other places to get omega-3s - wild salmon, other fish, canola oil, flaxseed oil,Ó Carpenter said.
<ref>[http://www.intrafish.com/articlea.php?articleID=41061&s=1 Intrafish.com press release 9 Jan 2004]</ref>F120,56,160,442,102,90,609,347Current average consumption of salmong/dData comes from EPIC study looking at fish consumption in 10 European countries by gender. We take the minimum, the unweighed average and the maximum of these values in the distribution to represent uncertainty in population average fatty fish intake. All fatty fish is assumed to be salmon.
<ref>Welch AA, Lund E, Amiano P, Dorronsoro M. Variability in fish consumption in 10 European countries. In: Riboli E, Lambert R, editors. Nutrition and lifestyle: opportunities for cancer prevention. Lyon: International Agency for Research on Cancer, 2002: 221-222. [http://ytoswww/yhteiset/Huippuyksikko/Kirjallisuus/Fish_and_health/RiboliNutritionLifestyle_IARC156_2002.pdf PDF of article] [http://ytoswww/yhteiset/Huippuyksikko/Tutkimus/Viljelylohi/Materiaali/ConsumptionOfFish.xls Data in Excel]</ref>Triangular( 7.5, 15.3, 31 )352,48,148,382,376,70,476,4962,0,0,793,492,0,MEAN[Chance Welch_et_al_2002][1,0,0,0]Fraction of farmed from total salmon usefractionFraction of farmed salmon of total salmon consumption in Western Europe. The current estimate is based on author judgement after discussions with people from the Finnish Game and Fisheries Research Institute.Uniform( .8, 1 )248,48,152,442,102,90,476,367Salmon intakeg/dIntake of farmed and wild salmon after the two decisions (regulate fish feed pollutants / recommend restrictions for farmed salmon use) has been made. Although market salmon exists in the index, it is not used in this version of the model. Wild salmon use after restricting farmed salmon use has a triangular probability distribution. Min assumes the same relative decrease as in farmed salmon; mode assumes no change; max assumes that wild salmon intake increases so much that it totally compensates the decrease in farmed salmon use. Estimates are based on author judgement. The wild salmon production capacity is probably much than the max used for the variable. This overestimation causes bias towards smaller costs due to salmon use restrictions.Table(Salmon,Reg_poll,Recommendation)(
F,(A*F),
(F+Pollutant_scare),((A*F)+Pollutant_scare),
W,Triangular((A*W),W,(W+((1-A)*F))),
W,Triangular((A*W),W,(W+((1-A)*F))),
0,0,
0,0
)248,216,148,242,516,77,476,2242,58,276,500,232,0,MIDM2,248,258,443,303,1,PDFP[Recommendation,Salmon][Undefined,Recommendation,Undefined,Undefined,1][Index Salmon][1,0,0,0][[Variable:Salmon intake in the population of the Western Europe]]Farmed salmon baselineg/dAverage farmed salmon consumption in Western Europe in the base case.Fraction_farmed*crude_salmon248,144,148,292,469,178,476,300Wild salmon baselineg/dAverage wild salmon consumption in Western Europe in the base case.(1-Fraction_farmed)*crude_salmon352,144,148,24Farmed salmon use after recommendationfractionFarmed salmon use per baseline after a recommendation to restrict farmed salmon use. A uniform distribution between 1 American meal/month (227 g) and no change to baseline. If baseline is lower than the recommendation, no change occurs.var a:= 1*227/(365.25/12);
var b:= min([a/f,1]);
uniform(b,1)128,144,156,362,264,94,476,2522,552,65,424,320,0,MIDMSalmon consumption after feed limitsg/dChange in farmed salmon use when fish feed is more strictly regulated. Consumer may consume more salmon, when pollutant problems are handled. However, there is a possibility of bad reputation ('There is a big problem, because authorities have to intervene'). The range overlaps zero to reflect this uncertainty. The expectation is slightly positive. The estimate is based on author judgement.Triangular( -1, 0.5, 1 )128,216,152,322,151,377,416,303,1,PDFPWelch et al 2002<ref>Welch AA, Lund E, Amiano P, Dorronsoro M. Variability in fish consumption in 10 European countries. In: Riboli E, Lambert R, editors. Nutrition and lifestyle: opportunities for cancer prevention. Lyon: International Agency for Research on Cancer, 2002: 221-222. [http://ytoswww/yhteiset/Huippuyksikko/Kirjallisuus/Fish_and_health/RiboliNutritionLifestyle_IARC156_2002.pdf PDF of article] [http://ytoswww/yhteiset/Huippuyksikko/Tutkimus/Viljelylohi/Materiaali/ConsumptionOfFish.xls Data in Excel]</ref>0472,48,148,242,102,90,476,3792,40,50,416,303,0,MIDM65535,52427,65534[Chance Crude_salmon]Recommend restricted farmed salmon consumption?A decision about whether a general recommendation should be given to restrict the consumption of European farmed salmon to one meal (227 g) per month or not (business as usual, BAU).['BAU','Restrict farmed salmon use']424,144,176,322,102,90,476,354[[Variable:Recommendation for consumption of farmed salmon]]['BAU','Restrict farmed salmon use']Omega3 content in salmong/gOmega-3 fatty acid content in salmon. Estimate is from Din 2004 Table 2. In a previous version, there were other fish types as well: min is the lowest value, max is the highest value and mode is the average of the two.
<ref>Din JN, Newby DE, Flapan AD. Science, medicine, and the future - Omega 3 fatty acids and cardiovascular disease - fishing for a natural treatment. British Medical Journal 2004; 328(7430):30-35. [http://ytoswww/yhteiset/Huippuyksikko/Kirjallisuus/Fish_and_health/Din_Omega3andCVD_BMJ2004.pdf Intranet file]</ref>Uniform(0.0128,0.0215)464,216,148,321,1,1,1,1,1,0,0,0,02,102,90,476,4452,106,70,416,303,0,MIDM52425,39321,65535[[Variable:Omega-3 content in salmon]]Omega3 exposureg/dOmega-3 fatty acid intake from salmon.salmon_intake*N3_content384,272,148,242,57,94,723,303,0,MIDM[Recommendation,Salmon][[Variable:Omega-3 intake due to salmon in the population of the Western Europe]]Pollutants in salmonjtok16. tamta 2004 22:1448,24168,208,148,241,439,232,556,308,17Pollutants in salmon Hites 2004µg/kgPollutant concentration data from Hites et al, Fig 2.
<ref>Hites RA, Foran JA, Carpenter DO, Hamilton MC, Knuth BA, Schwager SJ. Global assessment of organic contaminants in farmed salmon. Science 2004; 303(5655):226-229. [http://ytoswww/yhteiset/Huippuyksikko/Kirjallisuus/Fish_and_health/HitesRA%26al_Science2004.pdf Intranet file]</ref>Table(Location1,Pollutant1)(
5.607,160.008,2.94m,50.904,
5.607,190.0095,2.5725m,48.177,
6.8085,136.6735,2.52m,47.268,
3.738,126.673,2.31m,49.995,
4.539,113.339,2.31m,41.814,
4.9395,150.0075,1.995m,37.269,
3.6045,93.338,2.52m,46.359,
4.4055,153.341,2.1m,34.542,
3.204,66.67,1.7325m,39.087,
2.5365,43.3355,1.89m,34.1784,
3.3375,70.0035,1.4175m,29.997,
2.8035,43.3355,1.449m,34.542,
2.5365,36.6685,1.5225m,34.542,
2.403,36.6685,1.3545m,32.724,
2.0025,30.0015,1.554m,26.361,
1.7355,32.0016,1.1025m,21.816,
2.0025,58.6696,840u,12.726,
1.2015,23.3345,1.344m,22.725,
1.2015,23.3345,945u,18.18,
1.2015,26.668,787.5u,15.453,
0.9345,14.6674,1.344m,21.816,
1.068,18.6676,892.5u,21.816,
1.2015,53.336,1.575m,7.272,
0.801,18.6676,1.155m,14.544,
0.534,20.6677,430.5u,15.453,
0.6675,23.3345,315u,7.272,
0.534,26.668,283.5u,8.181,
0.4806,20.001,315u,6.363,
0.4806,13.334,735u,9.09,
0.4005,16.6675,178.5u,4.545,
0.267,13.334,210u,3.636,
0.4005,14.0007,105u,3.636,
0.4005,15.3341,105u,3.636,
0.4005,12.0006,126u,3.636,
0.4005,10.0005,105u,2.727,
0.4005,10.0005,105u,1.818,
0.267,6.667,105u,1.818,
0.267,6.667,105u,1.818,
0.267,6.667,105u,1.818
)56,48,148,292,354,132,476,4752,17,12,416,638,0,MIDM[Alias Pollutants_in_salmo2]65535,52427,65534[Pollutant1,Location1][Pollutant1,Location1], , ,[1,0,0,0]Pollutants in salmonµg/kgPollutant concentrations in salmonPoll_i_types*Feed_poll312,112,148,24[Salmon,Pollutant1][1,0,0,0][Reg_poll,2,Pollutant1,1,Salmon,1][[Variable:Persistent pollutant concentrations in salmon]]Salmon typeData from Hites classified based on salmon type (farmed, wild, market)Table(Location1,Self)(
'Farmed salmon','Europe',
'Farmed salmon','Europe',
'Market salmon','Europe',
'Market salmon','Europe',
'Farmed salmon','Europe',
'Market salmon','Europe',
'Market salmon','Europe',
'Market salmon','Europe',
'Farmed salmon','North America',
'Market salmon','North America',
'Farmed salmon','North America',
'Market salmon','North America',
'Farmed salmon','North America',
'Market salmon','North America',
'Market salmon','North America',
'Market salmon','North America',
'Market salmon','North America',
'Market salmon','North America',
'Market salmon','North America',
'Market salmon','North America',
'Farmed salmon','North America',
'Farmed salmon','South America',
'Wild salmon','North America',
'Market salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America'
)['Type','Region']56,112,148,242,102,90,476,3952,72,82,416,614,0,MIDM52425,39321,65535[Self,Location1][Self,Location1]Pollutant concentration in f/w/m salmonµg/kgDieldrin, toxaphene, PCB, and dioxin concentrations in farmed, wild, and market salmon. Triangular probability distribution is used for each pollutant and salmon type. Estimates are based on data from Hites 2004. Parameters min, mode, and max are the minimum, average, and maximum of Hites' data, respectively.var typ:= salmon_type[salmon_type='Type'];
var a:= (if salmon=typ then poll_salmon_hites else 0);
var b:= (if salmon=typ then 1 else 0);
var c:= max(a,location1);
var d:= sum(a,location1)/sum(b,location1);
var e:= (if salmon=typ then poll_salmon_hites else 1M);
var f:= min(e,location1);
triangular(f,d,c)192,113,148,382,36,56,476,3092,489,195,416,303,1,PDFPOther partsjtue28. Junta 2004 18:0348,24488,40,148,241,0,1,1,1,1,0,,0,1,40,0,517,300,17Pollutants per types and regionµg/kgTriangular probability distribution for concentrations indexed by salmon type AND THE THREE REGIONS based on data from Hites 2004. Min is the minimum of Hites, Max is the maximum of Hites, and Mode is the average of Hites. Currently not used, but probably we should look at European values, because the consumption and population data comes from Europe.var typ:= salmon_type[salmon_type='Type'];
var reg:= salmon_type[salmon_type='Region'];
var a:= (if typ=salmon and reg=Region then poll_salmon_hites else 0);
var b:= sum((if typ=salmon and reg=Region then 1 else 0),location1);
var c:= max(a,location1);
var d:= if b>0 then sum(a,location1)/b else 0;
var e:= (if salmon=salmon_type then poll_salmon_hites else 1M);
var f:= min(e,location1);
d56,32,148,292,102,90,476,4022,72,82,451,390,0,MIDM[Salmon,Pollutant1]RegionThe three regions considered in Hites et al 2004.['Europe','North America','South America']56,72,148,12Concentrationparameters for model descriptionµg/kgTriangular probability distribution for concentrations indexed by salmon type based on data from Hites et al, 2004. Min is the minimum, Mode is the average, and Max is the maximum calculated for each salmon type (farmed, wild, and market) separately.var typ:= salmon_type[salmon_type='Type'];
var a:= (if salmon=typ then poll_salmon_hites else 0);
var b:= (if salmon=typ then 1 else 0);
var c:= max(a,location1);
var d:= sum(a,location1)/sum(b,location1);
var e:= (if salmon=typ then poll_salmon_hites else 1M);
var f:= min(e,location1);
index x:=['Min','Mode','Max'];
array(x,[f,d,c])56,136,148,382,102,90,476,3652,561,214,416,303,0,MIDM1,D,4,2,0,0VOI and importance analysisjtuomistTue, Mar 27, 2001 11:2648,24760,96,148,321,0,0,1,1,1,0,,0,1,40,84,859,492,17100,1,1,1,2,9,4744,6798,7Fractile-Index for making classes number of bins for classification.sequence(1/9,1,1/9)760,64,148,12Array(Frac,[0,0,0,0,1,1,1,1,1])(input,output)ClassifyvaryA function that classifies the values of output variable into classes number of different bins (defined by centiles) based on the values of the input variable.(if (input >= getfract(input,Frac-1/9) and input<getfract(input,Frac) ) then output else 0) + (if getfract(input,1)=input and Frac=1 then output else 0)760,32,148,24input,outputTotal VOIavoided deaths/aTotal VOI (EVPI)mean(max(outcome,recommendation))-Nbuu320,56,148,242,537,64,416,303,0,MIDM[Reg_poll,Salmon]1,I,4,2,0,0NB under uncertaintycases/aExpected net benefits under uncertaintymax(mean(outcome),recommendation)208,56,148,241,114,51,409,331,0,MIDMNB i variablecases/aclassify(outcome_inputs,outcome)208,112,148,242,155,110,843,183,0,MEANGraphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:1
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:0
Ymaximum:1
Zminimum:0
Zmaximum:1
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
[Frac,Recommendation]VOI resultavoided deaths/aCollects all VOI to one table (EVPI and EVPPI).var a:= Max(mean(Nb),recommendation);
sum(a,Frac)-Nbuu320,112,148,241,533,191,416,303,0,MIDM2,165,255,741,391,0,MIDMGraphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:10
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:0
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:0
Ymaximum:13K
Zminimum:1
Zmaximum:8
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
Arial, 21,I,6,2,0,0Outcome156,56,148,46OutcomeOutcome InputsTable(outcome_inputs1)(
Impr_in_feed,Pollutant_scare,All_or_chd,Erf_hcrude,Benefit_limit,Crude_salmon,Fraction_farmed,N3_content,Poll_or_net,Poll_i_types[Pollutant1='Dieldrin', Salmon='Farmed salmon'],Poll_i_types[Pollutant1='Toxaphene', Salmon='Farmed salmon'],Poll_i_types[Pollutant1='PCB', Salmon='Farmed salmon'],A,Regulate_pollutants_,Recommend)['Pollutant levels in fish feed after lower limits (S+P)','Salmon consumption after feed limits (S+P)','Does omega-3 help CHD patients or everyone? (S)','Dose-response of health benefit (S)','Highest omega-3 dose with health benefit (S)','Current average consumption of salmon (S)','Fraction of farmed from total salmon use (S)','Omega3 content in salmon (S)','Consider pollutant or net health effect? (P)','Dieldrin concentration in farmed salmon (S)','Toxaphene concentration in farmed salmon (S)','PCB concentration in farmed salmon (S)','Farmed salmon use after recommendation (S)','Lower limits for pollutants in fish feed? (P)','Recommend restricted farmed salmon consumption? (P)']752,112,148,241,1,1,1,1,1,0,0,0,02,377,196,476,2752,443,237,688,342,0,MIDM2,168,178,582,361,0,MIDM[Self,Self]Outcome Importancerank correlationAbs( RankCorrel( Outcome_inputs, Outcome ) )208,168,148,241,1,1,1,1,1,0,0,0,02,523,32,715,354,0,MIDM[Recommendation,Outcome_inputs1]Lifetime cancer+CHD mortality prevented by salmon156,240,148,46Outcome2Total VOIavoided deaths/aTotal VOI (EVPI)mean(max(outcome2,reg_poll))-Nbuu1320,240,148,242,559,23,416,303,0,MIDM[Reg_poll,Salmon]NB under uncertaintycases/aExpected net benefits under uncertaintymax(mean(outcome2),reg_poll)208,240,148,241,114,51,409,331,0,MIDMNB i variablecases/aclassify(outcome_inputs,outcome2)208,296,148,242,45,47,932,338,0,SAMPGraphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:1
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:0
Ymaximum:1
Zminimum:0
Zmaximum:1
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
[Frac,Reg_poll]VOI resultavoided deaths/aCollects all VOI to one table (EVPI and EVPPI).var a:= Max(mean(Nb1),reg_poll);
sum(a,Frac)-Nbuu1320,296,148,241,533,191,416,303,0,MIDM2,61,82,685,383,0,MIDMGraphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:10
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:0
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:0
Ymaximum:13K
Zminimum:1
Zmaximum:8
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
Arial, 2[Pollutant1,Outcome_inputs]1,I,6,2,0,0Outcome Importancerank correlationAbs( RankCorrel( Outcome_inputs, Outcome2 ) )208,352,148,241,1,1,1,1,1,0,0,0,02,577,431,673,383,0,MIDM[Reg_poll,Outcome_inputs1]var b:= nb1;
var c:=0;
var x:=1;
while x<=samplesize do
(c:=c+b[run=x];
x:=x+1);
var d:= c/samplesize;
var a:= Max(d,reg_poll);
sum(a,Frac)-Nbuu1;
x320,352,148,242,446,377,658,349,0,MIDM[Frac,Outcome_inputs]1,I,4,2,0,0Combinationindex a:= ['Total VOI'];
index b1:= concat(a,outcome_inputs1);
index b2:= concat(a,outcome_inputs1);
index d:= concat(b1,b2);
var c:= (if a='Total VOI' then total_voi1 else 0);
var e:= concat(c,v3,a,outcome_inputs1,b1);
var f:= (if a='Total VOI' then total_voi2 else 0);
var g:= concat(f,v1,a,outcome_inputs1,b2);
var h:= concat(e,g,b1,b2,d);
h432,184,148,242,217,23,532,727,0,MIDMGraphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:1
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:0
Ymaximum:1
Zminimum:0
Zmaximum:1
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
Outcome Inputs['Pollutant levels in fish feed after lower limits (S+P)','Salmon consumption after feed limits (S+P)','Does omega-3 help CHD patients or everyone? (S)','Dose-response of health benefit (S)','Highest omega-3 dose with health benefit (S)','Current average consumption of salmon (S)','Fraction of farmed from total salmon use (S)','Omega3 content in salmon (S)','Consider pollutant or net health effect? (P)','Dieldrin concentration in farmed salmon (S)','Toxaphene concentration in farmed salmon (S)','PCB concentration in farmed salmon (S)','Farmed salmon use after recommendation (S)','Lower limits for pollutants in fish feed? (P)','Recommend restricted farmed salmon consumption? (P)']752,168,148,241,1,1,1,1,1,0,0,0,02,102,90,476,4692,351,356,688,342,0,MIDM2,168,178,582,361,0,MIDM[Self,Self]['Pollutant levels in fish feed after lower limits (S+P)','Salmon consumption after feed limits (S+P)','Does omega-3 help CHD patients or everyone? (S)','Dose-response of health benefit (S)','Highest omega-3 dose with health benefit (S)','Current average consumption of salmon (S)','Fraction of farmed from total salmon use (S)','Omega3 content in salmon (S)','Consider pollutant or net health effect? (P)','Dieldrin concentration in farmed salmon (S)','Toxaphene concentration in farmed salmon (S)','PCB concentration in farmed salmon (S)','Farmed salmon use after recommendation (S)','Lower limits for pollutants in fish feed? (P)','Recommend restricted farmed salmon consumption? (P)']Dee['Total VOI','Pollutant levels in fish feed after lower limits (S+P)','Salmon consumption after feed limits (S+P)','Does omega-3 help CHD patients or everyone? (S)','Dose-response of health benefit (S)','Highest omega-3 dose with health benefit (S)','Current average consumption of salmon (S)','Fraction of farmed from total salmon use (S)','Omega3 content in salmon (S)','Consider pollutant or net health effect? (P)','Dieldrin concentration in farmed salmon (S)','Toxaphene concentration in farmed salmon (S)','PCB concentration in farmed salmon (S)','Farmed salmon use after recommendation (S)','Lower limits for pollutants in fish feed? (P)','Recommend restricted farmed salmon consumption? (P)','Total VOI','Pollutant levels in fish feed after lower limits (S+P)','Salmon consumption after feed limits (S+P)','Does omega-3 help CHD patients or everyone? (S)','Dose-response of health benefit (S)','Highest omega-3 dose with health benefit (S)','Current average consumption of salmon (S)','Fraction of farmed from total salmon use (S)','Omega3 content in salmon (S)','Consider pollutant or net health effect? (P)','Dieldrin concentration in farmed salmon (S)','Toxaphene concentration in farmed salmon (S)','PCB concentration in farmed salmon (S)','Farmed salmon use after recommendation (S)','Lower limits for pollutants in fish feed? (P)','Recommend restricted farmed salmon consumption? (P)']536,216,148,12['Total VOI','Pollutant levels in fish feed after lower limits (S+P)','Salmon consumption after feed limits (S+P)','Does omega-3 help CHD patients or everyone? (S)','Dose-response of health benefit (S)','Highest omega-3 dose with health benefit (S)','Current average consumption of salmon (S)','Fraction of farmed from total salmon use (S)','Omega3 content in salmon (S)','Consider pollutant or net health effect? (P)','Dieldrin concentration in farmed salmon (S)','Toxaphene concentration in farmed salmon (S)','PCB concentration in farmed salmon (S)','Farmed salmon use after recommendation (S)','Lower limits for pollutants in fish feed? (P)','Recommend restricted farmed salmon consumption? (P)','Total VOI','Pollutant levels in fish feed after lower limits (S+P)','Salmon consumption after feed limits (S+P)','Does omega-3 help CHD patients or everyone? (S)','Dose-response of health benefit (S)','Highest omega-3 dose with health benefit (S)','Current average consumption of salmon (S)','Fraction of farmed from total salmon use (S)','Omega3 content in salmon (S)','Consider pollutant or net health effect? (P)','Dieldrin concentration in farmed salmon (S)','Toxaphene concentration in farmed salmon (S)','PCB concentration in farmed salmon (S)','Farmed salmon use after recommendation (S)','Lower limits for pollutants in fish feed? (P)','Recommend restricted farmed salmon consumption? (P)']VOI result28.1.2004 Jouni Tuomisto
Tulos on laskettu 28.1.2004 malliversiolla TuomistoViljelylohi2004_4.ana (28.1.2004 14:42). Iteraatioita on ollut 2000 kussakin ajossa, ja siemenlukua on vaihdettu 13, 14...22.Table(Dee,Self)(
45.99,54.68,52.26,36.1612390137561,54.3154602065333,34.9994540997468,48.2712149729705,43.4418171126272,36.5685772254328,48.5061584782452,
-7.28p,3.64p,29.1p,-40.0177668780088p,-18.1898940354586p,-10.9139364212751p,-3.63797880709171p,32.7418092638254p,-25.465851649642p,7.27595761418343p,
-10.9p,3.64p,29.1p,-43.6557456851006p,-18.1898940354586p,-7.27595761418343p,-3.63797880709171p,32.7418092638254p,-25.465851649642p,7.27595761418343p,
0,-10.9p,40p,-25.465851649642p,-3.63797880709171p,-3.63797880709171p,-18.1898940354586p,10.9139364212751p,-40.0177668780088p,3.63797880709171p,
-10.9p,0,21.8p,-40.0177668780088p,-14.5519152283669p,-7.27595761418343p,-3.63797880709171p,32.7418092638254p,-29.1038304567337p,3.63797880709171p,
-3.64p,7.28p,25.5p,-43.6557456851006p,-10.9139364212751p,-7.27595761418343p,-7.27595761418343p,29.1038304567337p,-32.7418092638254p,3.63797880709171p,
-7.28p,3.64p,25.5p,-43.6557456851006p,-14.5519152283669p,-7.27595761418343p,-7.27595761418343p,32.7418092638254p,-21.8278728425503p,3.63797880709171p,
-7.28p,3.64p,29.1p,-43.6557456851006p,-14.5519152283669p,-7.27595761418343p,-3.63797880709171p,29.1038304567337p,-25.465851649642p,7.27595761418343p,
-7.28p,3.64p,25.5p,-40.0177668780088p,-14.5519152283669p,-7.27595761418343p,-7.27595761418343p,29.1038304567337p,-25.465851649642p,3.63797880709171p,
19.73,19.19,19.44,19.4379094993274,20.0175573351808,20.3445513117949,20.355546642757,19.7440144359389,20.7034870828174,19.9763413781584,
-7.28p,3.64p,29.1p,-43.6557456851006p,-10.9139364212751p,-7.27595761418343p,-3.63797880709171p,32.7418092638254p,-25.465851649642p,7.27595761418343p,
-7.28p,0,29.1p,-43.6557456851006p,-14.5519152283669p,-7.27595761418343p,-7.27595761418343p,29.1038304567337p,-29.1038304567337p,3.63797880709171p,
-7.28p,3.64p,29.1p,-40.0177668780088p,-18.1898940354586p,-7.27595761418343p,-3.63797880709171p,32.7418092638254p,-25.465851649642p,3.63797880709171p,
-7.28p,0,29.1p,-43.6557456851006p,-14.5519152283669p,-10.9139364212751p,-3.63797880709171p,29.1038304567337p,-29.1038304567337p,7.27595761418343p,
14.6p,7.28p,29.1p,-36.3797880709171p,-14.5519152283669p,-18.1898940354586p,-7.27595761418343p,43.6557456851006p,-40.0177668780088p,7.27595761418343p,
3.64p,-3.64p,32.7p,-29.1038304567337p,-29.1038304567337p,-29.1038304567337p,-10.9139364212751p,43.6557456851006p,-32.7418092638254p,0,
320.6,318.5,264.9,335.708549076064,337.442817728655,275.665732995609,290.791226693727,334.370728607537,273.164494316921,276.459606918472,
10.57,14.86,41.8p,5.74955088028401,24.7671730730817,5.45696821063757p,-14.5519152283669p,4.67620054120562,-40.0177668780088p,-1.81898940354586p,
123.2,86.48,60.06,90.5814652189947,101.172076686928,59.0112207949551,50.290428820892,122.376689417411,54.4520162740264,81.5371850319334,
-18.2p,18.2p,34.6p,9.09494701772928p,-3.63797880709171p,20.0088834390044p,-9.09494701772928p,18.1898940354586p,-36.3797880709171p,-16.3709046319127p,
2.138,1.82p,38.2p,-5.45696821063757p,11.8073357625708,7.27595761418343p,-12.732925824821p,9.96986357776404,-43.6557456851006p,1.81898940354586p,
6.398,3.079,43.7p,-9.09494701772928p,21.7569893201817,3.63797880709171p,-14.5519152283669p,18.4151329940305,-41.8367562815547p,-1.81898940354586p,
11.02,3.64p,41.8p,11.9510390913656,19.2005104308973,3.63797880709171p,-12.732925824821p,13.7459735344328,-40.0177668780088p,1.81898940354586p,
13.24,3.928,41.8p,-10.9139364212751p,6.94312189276934,3.84243531387074,-12.732925824821p,3.79393370039361,-41.8367562815547p,-1.81898940354586p,
-20p,3.64p,13.18,2.94388484912088,6.21058777152939,5.45696821063757p,-12.732925824821p,3.40300298175498,-43.6557456851006p,6.49686528052371,
-18.2p,3.64p,30.9p,-16.3709046319127p,10.9139364212751p,5.45696821063757p,-5.45696821063757p,9.09494701772928p,-12.732925824821p,1.81898940354586p,
-20p,9.1p,41.8p,9.43435100685565,1.66582958040635,7.27595761418343p,-12.732925824821p,29.1038304567337p,-41.8367562815547p,-1.81898940354586p,
10.8,7.28p,41.8p,6.27069051176841,5.9436259337399,2.82376602475961,-14.5519152283669p,21.799220341687,-43.6557456851006p,-1.81898940354586p,
32.63,1.013,43.7p,-9.09494701772928p,14.1657807083811,0.412992603269231,-16.3709046319127p,29.1038304567337p,-41.8367562815547p,-1.81898940354586p,
7.526,5.46p,41.8p,16.9614523061118,33.5381902710542,7.27595761418343p,-12.732925824821p,29.0075866389925,-41.8367562815547p,1.81898940354586p,
-10.9p,3.64p,34.6p,9.09494701772928p,-12.732925824821p,12.732925824821p,-20.0088834390044p,36.3797880709171p,-43.6557456851006p,-9.09494701772928p,
-10.9p,9.1p,34.6p,5.45696821063757p,-9.09494701772928p,10.9139364212751p,-20.0088834390044p,32.7418092638254p,-40.0177668780088p,-10.9139364212751p
)['Seed 13','Seed 14','Seed 15','Seed 16','Seed 17','Seed 18','Seed 19','Seed 20','Seed 21','Seed 22']536,184,148,242,130,115,985,303,0,MIDM2,136,146,921,371,0,MIDM65535,52427,65534Graphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:1
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:0
Ymaximum:1
Zminimum:0
Zmaximum:1
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
[Self,Dee][Self,Dee]Combined VOI result28.1.2004 Jouni Tuomisto
The result has been calculated with the model version TuomistoViljelylohi2004_4.ana (28.1.2004 14:42). We used 2000 iterations in each ten runs, and the random seed number was 13, 14...22.average(voi_result,voi_result)640,184,148,242,120,59,1054,669,0,MIDM{!40000|Att_catlinestyle Graph_primary_valdim:9}
{!40000|Flip:0}
{!40000|Att_graphindexrange Dee:1,,,,,,10}
{!40000|Att_graphvaluerange Combined_voi_result:1,,,,,,10}Total mortality W Europecases/aTotal mortality in European Economic Area countries (386.63 million inhabitants) <ref>[http://www.who.int WHO data]</ref>3.8664M136,424,148,322,102,90,476,33065535,52427,65534[[Variable:Total mortality in the Western Europe]]CHD mortality W Europecases/aCoronary heart disease mortality in European Economic Area countries (386.63 million inhabitants). The estimate consists of acute myocardial infarction and other ischaemic heart diseases (ICD 10: 270, 279). <ref>[http://www.who.int WHO data]</ref>615.3k504,416,148,3265535,52427,65534[[Variable:Cardiovascular mortality in the Western Europe]]Should we change fish feed instead of giving fish consumption advisories?1568,145,148,61Should_we_change_fisLog v41760,208,152,1265535,54067,19661Loki_v4Pollutant risk is much smaller than the net health benefit of farmed salmonEff_net+Eff_poll256,488,160,5165535,65532,19661Scientific uncertainties related to recommendations are unimportantRecommendation+V3424,51,164,5165535,65532,19661Some scientific and political uncertainties related to feed limits are importantReg_poll+V1280,48,172,4265535,65532,19661URN:NBN:fi-fe20042774DC-attribute with refinement Scheme (if any) Value
Title Risk benefit analysis of eating farmed salmon
Creator.personalName Tuomisto, Jouni T
Creator.personalName Tuomisto, Jouko
Creator.personalName Tainio, Marko
Creator.personalName Niittynen, Marjo
Creator.personalName Verkasalo, Pia
Creator.personalName Vartiainen, Terttu
Creator.personalName Kiviranta, Hannu
Creator.personalName Pekkanen, Juha
Subject risk benefit analysis
Subject persistent organic pollutants
Subject omega-3 fatty acids
Subject MeSH polychlorinated biphenyls
Subject MeSH salmon
Subject MeSH risk assessment
Subject MeSH fatty acids, omega-3
Subject UDC 614 Public health and hygiene.
Description.abstract In their Report ÒGlobal assessment of organic contaminants in farmed salmon,Ó R. A. Hites and co-workers analyzed wild and farmed salmon samples from North and South America and Europe for organic pollutants (9 Jan. 2004, p. 226). The authors conclude that, because of chemical contaminants, farmed salmon should not be eaten more often than 0.25 to 1 times per month. However, the model used does not take into account any beneficial effects of eating fish. We analyzed both risks and benefits. We also performed a value-of-information analysis to see which uncertainties were relevant for decision-making. This is the version 4 of the model calculating risks and benefits of farmed salmon. (c) Copyright Kansanterveyslaitos (KTL; National Public Health Institute, Finland).
Publisher Kansanterveyslaitos
Date.issued W3C-DTF 2004-07-23
Type DCMIType Software
Format IMT text/xml
Format.medium computerFile
Format 115 kB
Identifier http://www.ktl.fi/risk
Identifier URN URN:NBN:fi-fe20042774
Language ISO639-2 en
Relation.hasPart URL http://www.sciencemag.org/cgi/content/full/305/5683/476
Rights Copyright Kansanterveyslaitos, 20040744,240,180,1265535,54067,19661