Dynamic simulation periods are specified in Time's definition. This is usually a list of numbers or labels, typically in some unit of time (days, weeks, months, etc.). Use the ÒDynamic()Ó function in your variables to perform dynamic simulation.100[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,680,681,682,683,684,685,686,687,688,689,690,691,692,693,694,695,696,697,698,699,700,701,702,703,704,705,706,707,708,709,710,711,712,713,714,715,716,717,718,719,720,721,722,723,724,725,726,727,728,729,730,731,732,733,734,735,736,737,738,739,740,741,742,743,744,745,746,747,748,749,750,751,752,753,754,755,756,757,758,759,760,761,762,763,764,765,766,767,768,769,770,771,772,773,774,775,776,777,778,779,780,781,782,783,784,785,786,787,788,789,790,791,792,793,794,795,796,797,798,799,800,801,802,803,804,805,806,807,808,809,810,811,812,813,814,815,816,817,818,819,820,821,822,823,824,825,826,827,828,829,830,831,832,833,834,835,836,837,838,839,840,841,842,843,844,845,846,847,848,849,850,851,852,853,854,855,856,857,858,859,860,861,862,863,864,865,866,867,868,869,870,871,872,873,874,875,876,877,878,879,880,881,882,883,884,885,886,887,888,889,890,891,892,893,894,895,896,897,898,899,900,901,902,903,904,905,906,907,908,909,910,911,912,913,914,915,916,917,918,919,920,921,922,923,924,925,926,927,928,929,930,931,932,933,934,935,936,937,938,939,940,941,942,943,944,945,946,947,948,949,950,951,952,953,954,955,956,957,958,959,960,961,962,963,964,965,966,967,968,969,970,971,972,973,974,975,976,977,978,979,980,981,982,983,984,985,986,987,988,989,990,991,992,993,994,995,996,997,998,999,1000]114130120001Ident11Risks from farmed and wild salmon v428.6.2004 Jouni Tuomisto
This is the version 4 of the model calculating risks and benefits of farmed salmon. (c) Copyright KTL (National Public Health Institute, Finland).
<ref>[http://ytoswww/yhteiset/Huippuyksikko/Tutkimus/Viljelylohi/Materiaali/Viljelylohi.rmd Reference Manager database</ref> <ref>[http://ytoswww/yhteiset/Huippuyksikko/Tutkimus/Viljelylohi/ Directory for data and models</ref>Jouni Tuomisto9. tamta 2004 20:14ktluser29. Decta 2008 0:41 48,241,19,28,894,538,172,102,90,553,461Trebuchet MS, 130,Model Risks_from_farmed_an,2,2,0,1,C:\Documents and Settings\ktluser\My Documents\Farmed_salmon-1.ANA97,1,1,0,2,1,2794,4312,02,25,65,696,600Pollutant health riskavoided cases/aPollutant health risk is calculated assuming additivity between the pollutants. However, dioxin risks are not considered because they were not considered in Hites. After unit conversion, numbers are calculated for Western Europe as cases per year. Note that negative numbers mean increased risk unlike in previous versions of the model. <a href="http://heande.pyrkilo.fi/heande/index.php?title=rdb&curid=1900">Wiki variable</a>var a:= -H1906*H1905/1000*H1910;
var b:= (if pollutant1='Dioxin' then 0 else a);
var c:= sum(b,pollutant1);
c256,336,148,241,1,1,1,1,1,0,,1,2,291,123,476,2242,357,128,628,450,0,MEANGraphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:1
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:0
Ymaximum:1
Zminimum:0
Zmaximum:1
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0.05,0.25,0.5,0.75,0.95]
[H1899,H1898][1,0,0,0][Salmon1,1,Year3,1,H1898,1,H1899,1]Op_en1900Health effect of fishavoided cases/aNumbers are calculated for Western Europe as avoided deaths per year. Note that positive numbers mean increased benefit unlike in previous versions of the model. <a href="http://heande.pyrkilo.fi/heande/index.php?title=rdb&curid=1912">Wiki variable</a>-H1909*min([H1908,benefit_limit])*H1911384,336,148,241,1,1,1,1,1,0,,1,2,80,222,476,2242,95,7,589,375,0,MEAN[H1898,Salmon1][1,0,0,0][Reg_poll,1,Year3,1,Salmon1,1,Recommendation1,1]Op_en1912Net health effectavoided cases/aNet health effect of pollutant cancer and omega-3 cardiac benefit. <a href="http://heande.pyrkilo.fi/heande/index.php?title=rdb&curid=1901">Wiki variable</a>H1912+H1900320,408,148,241,1,1,1,1,1,0,,1,2,102,90,476,4202,537,56,726,259,0,MIDM[H1898,Salmon1,1,2][0,0,0,0][Salmon,1,Reg_poll,1,Recommendation,1,Sys_localindex('PROBABILITY'),1]Op_en1901Fish advisoriesktluser11. tamta 2004 9:2048,2456,208,148,241,40,0,610,544,17100,1,1,0,2,9,4744,6798,7Based on linear cancer risk extrapolationEpa_model288,40,156,32The model by EPA is well-respected and sound
However, defending his study in an interview with IntraFish yesterday
afternoon, David Carpenter of the State University of New York at Albany
said that the differences between wild and farmed salmon PCBs levels are
not insignificant. ÒI donÕt agree with [Gallo] and I donÕt think others would
agree with him either.Ó
Carpenter said that the EPA risk assessment model that he and his
colleagues used to determine that salmon posed a health risk is a
well-respected and sound one. ÒIt is not just something that we made up. It
is a time-tested measureÉitÕs a yard stick that we have.Ó
<ref>http://www.intrafish.com/articlea.php?articleID=41070&s=1</ref>Epa_model288,128,152,362,102,90,630,401Applies only to non-commercial fishingA set of four volumes that provides guidance for assessing health risks associated with the consumption of chemically contaminated
non-commercial fish and wildlife. EPA developed the series of documents to help state, local, regional, and tribal environmental health
officials who are responsible for developing and managing fish consumption advisories.
<ref>http://www.epa.gov/waterscience/fish/guidance.html</ref>Developed_for_spceci528,192,156,28Point of view is that of a local authority: how to give advice to a fisherman about the consumption of his prey.Developed_for_spceci360,432,168,56This is not a public health problem but a special case where the authority has a restricted responsibilityApplies_only_to_non_+Developed_for_spceci528,296,164,56Precautionary principle is relevant in this case200,296,148,38[Constant Developed_for_spceci]The use of the EPA model is problematic for farmed fish. Hites et al, 2004 do not discuss this issue.Point_of_view_is_tha+This_is_not_a_public528,432,164,562,102,90,476,373Based on 1/100000 additional lifetime cancer risk assuming additivity and using linearised multistage modelEpa_model528,80,172,64Developed for spcecial high-exposure subgroups such as tribes and non-commercial fishermen, who eat a lot of fish anywayEpa_model360,296,184,56[Constant Precautionary_princi]Should we use EPA screening values, FDA action levels or something else?Epa_model+Fda_model64,288,152,52FDA action level model564,448,148,242,136,146,416,303,0,MIDM[]EPA fish advisory model<ref>U.S.EPA. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisory. Volume 2: Risk Assessment and Fish Consumption Limits, 3rd Edition. 2000. Table 3-1. [http://www.epa.gov/waterscience/fish/guidance.html Open access Internet file] [http://ytoswww/yhteiset/Huippuyksikko/Kirjallisuus/Fish_and_health/EPAFishAdvisory/ Intranet file]</ref>jtue28. Junta 2004 18:0348,2464,80,148,291,40,0,517,300,17Advised fish consumption2^(Floor(logten(Epa_model)/logten(2)))56,176,148,242,48,219,743,303,1,MIDM[Location1,Undefined]EPA fish advisory modelmeals/monthCRmm variable in the U.S.EPA advisory model.
<ref>U.S.EPA. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisory. Volume 2: Risk Assessment and Fish Consumption Limits, 3rd Edition. 2000. Table 3-1. [http://www.epa.gov/waterscience/fish/guidance.html Open access Internet file] [http://ytoswww/yhteiset/Huippuyksikko/Kirjallisuus/Fish_and_health/EPAFishAdvisory/ Intranet file]</ref>index Effect:=['Cancer','Non-cancer'];
var MS:= 0.227;
var Tap:= 365.25/12;
var CSF:=Potency[potency='Ca (CSF)'];
var RfD:= Potency[Potency='Non-Ca (RfD)'];
var CRlimCa:= ARL*BW/sum(CSF*in1*(Poll_salmon_hites/1000),Pollutant1);
var a:= In1*RfD/(Poll_salmon_hites/1000);
var b:= if isnan(a) then 1 else a;
var c:= if b>0 then b else 1;
var CRlimNonCa:= min(c,Pollutant1)*BW;
var CRlim:= array(Effect,[CRlimCa,CRlimNonCa]);
var CRmm:= CRlim*Tap/MS;
CRmm56,104,148,292,43,74,632,4122,120,130,416,303,0,MIDM[]Pollutants in salmon156,32,148,24Poll_salmon_hitesInclude pollutantsTable(Pollutant1)(
1,1,0,1)216,160,148,242,469,131,476,2242,242,231,416,303,0,MIDMPotency1216,104,148,24PotencyARLprobabilityAcceptable risk level
<ref>U.S.EPA. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisory. Volume 2: Risk Assessment and Fish Consumption Limits, 3rd Edition. 2000. Table 3-1. [http://www.epa.gov/waterscience/fish/guidance.html Open access Internet file] [http://ytoswww/yhteiset/Huippuyksikko/Kirjallisuus/Fish_and_health/EPAFishAdvisory/ Intranet file]</ref>10u216,32,148,242,471,122,476,382Other partsktluser11. tamta 2004 9:2048,24760,96,148,241,0,0,1,1,1,0,,0,1,193,72,636,526,17Pollutant-['Dieldrin','Toxaphene','Dioxin','PCB']504,64,148,122,102,90,476,313Op_en2705['Dieldrin','Toxaphene','Dioxin','PCB']kg70504,392,148,241,1,1,1,1,1,0,0,0,0Location-['Scotland','Faroe Islands','Frankfurt','Edinburgh','Norway','Paris','London','Oslo','East Canada','Boston','Maine','San Francisco','West Canada','Toronto','Los Angeles','Vancouver','Washington DC','Seattle','Chicago','New York','Washington St','Chile','SE AK Chinook','Denver','BC Chinook','BC Sockeye','Oregon Chinook','SE AK Sockeye','New Orleans','BC Coho','Kodiak AK Sockeye','SE AK Coho','Kodiak AK Coho','BC Pink','Kodiak AK Pink','SE AK Pink','SE AK Chum','BC Chum','Kodiak AK Chum']504,32,148,12['Scotland','Faroe Islands','Frankfurt','Edinburgh','Norway','Paris','London','Oslo','East Canada','Boston','Maine','San Francisco','West Canada','Toronto','Los Angeles','Vancouver','Washington DC','Seattle','Chicago','New York','Washington St','Chile','SE AK Chinook','Denver','BC Chinook','BC Sockeye','Oregon Chinook','SE AK Sockeye','New Orleans','BC Coho','Kodiak AK Sockeye','SE AK Coho','Kodiak AK Coho','BC Pink','Kodiak AK Pink','SE AK Pink','SE AK Chum','BC Chum','Kodiak AK Chum']Salmon type-['Farmed salmon','Wild salmon','Market salmon']504,96,148,13Op_en2706['Farmed salmon','Wild salmon','Market salmon']Loki v 220.1.2004 Jouni Tuomisto
En ole ehtinyt aiemmin lokia kirjoittaa, joten nyt yleiskuvaus mallista. Viljelylohi on tehty arvioimaan, onko Hites et al (Science 9.1.2004) riskinarviointi hyvin tehty. Ensikommenttina KTL:ss oli se, ett kalan terveyshydyt on unohdettu. Niinp rakensimme mallin, joka 1) kytt samaa EPAn riskimallia saasteiden terveyshaittojen laskemiseen kuin Hites (PCB:n, dieldriinin ja toksafeenin (mutta ei dioksiinien) aiheuttama yhdistetty syriski olettaen additiivisuuden ja linearised multistage-mallin eli suoraan kyttmll EPAn CSF-arvoja) ja 2) laskee mys omega-3-rasvahappojen tuoman hydyn sydnkuolemariskiin.
Vertailu tehtiin 1) olettamalla lohensynti 0.25 - 32 amerikkalaista annosta kuukaudessa ja laskemalla sypriski ja/tai sydnhyty sek 2) olettamalla jokin lohensynti (esim. 20 g/d) ja lisksi jotain oletuksia muista omega-3-lhteist sek niiden muutoksista jos lohensynti muuttuisi.
Vaikutuksen lisksi tehtiin argumenttianalyysi (oma moduli) jossa katsottiin importance analysis eli rank-korrelaatio lhtmuuttujien ja lopputuleman vlille. Tss oli mukana erilaisia ptksi, mm. pitisik katsoa saasteiden syphaittaa vai nettovaikutusta?, Pitisik katsoa terveysvastetta lainkaan vai pelkk altistusta? ja Mill viljelty lohi pitisi korvata? Ptkset otettiin mukaan analyysiin siten, ett kullekin ptsvaihtoehdolle oletettiin sama todennkisyys, ja ne otettiin mukaan satunnaismuuttujina (ikn kuin me yrittisimme arvioida, mik on nestyksen tulos kun tst nestetn). Thn liittyen jin pohtimaan sit, pitisik meidn olettaa pienempi todennkisyys huonoille vaihtoehdoille (kuten eptodennkisille presidenttiehdokkaille annetaan vhemmn aikaa televisiossa) mutta en ptynyt tss mihinkn lopputulokseen, ja niin tasajako ji malliin.
Lisksi on tehty VOI-analyysi (oma moduli). Tss yritin rakentaa VOI-funktiota, joka olisi suoraan laskenut mielenkiinnon kohteena olevan tuloksen (helpottaisi mallinrakennusta jatkossa ja tekisi erilaisten VOIn laskemisen ktevksi), mutta ongelmaksi muodostui se, ett mean-funktio toimi oikein vain, kun se laskettiin variablesta. Jos yritti laskea sen tilapisest, solmun sisll olevasta muuttujasta, tuloksena oli yleens mid. Niinp tyydyttiin laskemaan homma ksipelill kuten Particle VOI -mallissa.
Conclusions from Hites 2004 sislt sitaatteja ja argumentteja keskustelusta, joka on Hitesin myt kynnistynyt. What should be the scope of the assessment oli aikeissa olla moduli, josta eri ptsvaihtoehdot olisivat sinne kirjatun argumentoinnin seurauksena nousseet, mutta sit ei ollut aikaa tyst kovin pitklle.
Confounder analysis -moduli sislt pohdintaa siit, millaiset tekijt voivat vaikuttaa Hitesin lopputulokseen ja kvalitatiivista argumentointia niiden mahdollisista vaikutuksista tulosten tulkintaan.
Help on yksinkertaisesti kopio Help v4 mallista.
20.1. alkoi ongelmaksi tulla se, ett malli rnsysi liikaa, ja oli hankalaa saada indeksit tsmmn lhtarvojen ja lopputuloksen kesken. Niinp ptin tehd uuden version 3, josta kaikki rnsyt on poistettu ja jonka tarkoituksena on toimia mallina Science-artikkelia varten. Kaikki laajemmat tarkastelut siis sstetn mallin seuraaviin versioihin. Niinp versio 2:een jtetn kaikki rnsyt, josta niit sitten voi tarpeen mukaan kopioida takaisin kytss olevaan malliversioon. Nin ehk pysyy selvn se, mit Science-vastineessa on ja mit ei ole.
Fishing and farming, Arguments on fish pollutants, Total pollutant exposure, What should be the scope of risk assessment?, Conclusions from Hites 2004, ja Confounder analysis ovat semmoiset modulit jotka nyt poistetaan versiosta 3. Samoin poistetaan pmodulista solmut Risk or net health effect?, Acceptable risk ja Health effects or exposures? sek niden input nodet.
0504,128,148,122,463,67,476,39965535,54067,19661Loki v320.1.2003 Jouni Tuomisto
Versiosta 3 siis on tehty riisuttu versio Science-juttua varten. Lue tarkemmin Loki v 2:sta. Nyt versiosta 3 poistetaan aiemmin kuvatun lisksi Other parts -modulista indeksej, joita ei kytet missn. Nm ovat Viljelyalue, Kalastusalue, Ostokaupunki, Lohilaji ja Saaste.
Argument analysis -modulista poistetaan solmut We should not consider concentrations..., Acceptable exposure, Va2, Health or exposure?, What is salmon replacement?, Va5, Va3, Va3 inputs, Va3 importance eli kaikki solmut. Trkeyssolmu luodaan uudelleen, mutta nyt se voidaan tehd suoraan Outcome-solmulle ilman indeksimuunnoksia. Niinp koko Argument analysis -moduli poistetaan ja asia siirretn VOIs-moduliin, joka nimetn uudelleen VOI and importance analysis.
Food intake -modulista poistetaan Salmon consumption, Salmon replacement, Food change, Salmon amount, Oil increase, Food intake, Wild salmon compensation, Va1, Food_rec, Source1. Eli kaikki solmut keskittyvt nyt vain loheen, eik muita omega-3-lhteit huomioida. Ne tulevat mukaan malliin raja-arvossa, joka kuvaa hydyllisen lissaannin rajaa ja siis sislt absoluuttisen fysiologisen rajan, josta on vhennetty muusta ravinnosta tuleva mr. Tm solmu tehdn Annosvastemoduliin.
VOIs-modulista poistetaan Va16, Va12, VOI, VOI1 ja VOI-laskenta tehdn suoraan Outcome-solmusta.
21.1.2004 Jouni Tuomisto
Malli muuttui eilen siten, ett nyt lasketaan VOI kahdelle eri kysymykselle: pitisik suositella viljellyn lohen enimmissaanniksi 1 annos/kk ja pitisik rajoittaa enemmn kalanrehun saastepitoisuuksia. Nm kaksi nostetaan esiin, koska edellinen on suora vastine Hitesin ym. argumenttiin, ja jlkimminen on korostamassa sit, ett asetettu kysymys mr sen, mik tieto on trke ja mik ei.
Other parts -modulista poistetaan solmut Acceptable exposure increase ja Amount or replacement, ja ARL siirretn Fish advirories -moduliin sek Potency Exposure-response function for pollutant risk -moduliin. Nist moduleista poistetaan vastaavat aliakset.
Unit- ja Description-kentt pivitetn koko mallissa, ja viitteit listtn sikli kuin ne ovat helposti ksill. Kuitenkin viitteet on viel pistettv kuntoon, nyt muotoilut eivt ole kunnossa.0504,152,148,122,212,144,476,34465535,54067,19661Compensating fish amountg/dH1900/H1909/H1910504,224,148,24[H1898,Salmon1]Probability of decisionvar a:= sum(H1900,Salmon1);
Probability(a[H1898='BAU']+0.0001>a[H1898='Restrict farmed salmon use'])504,336,148,242,115,372,476,291Probability of decisionvar a:= sum(H1901,Salmon1);
Probability(a[H1898='BAU']>a[H1898='Change farmed to wild salmon'])504,280,148,24Outcomesindex a:= ['Net effect of salmon recommendation','Net effect of feed regulation','Cancer effect of recommendation'];
var b:= array(a,[H1901,0,H1900]);
var c:= b[H1898='Restrict farmed salmon use']-b[H1898='BAU'];
var d:= (if regulate_pollutants_=1 then c[H1899='More actions'] else c[H1899='BAU']);
var e:= H1901[H1899='More actions'] - H1901[H1899='BAU'];
var f:= (if recommend= 1 then e[H1898='Restrict farmed salmon use'] else e[H1898='BAU']);
var g:= (if a= 'Net effect of feed regulation' then f else d);
var h:= sum(g,Salmon1);
h232,264,148,242,452,264,476,4692,767,202,367,474,0,MEANPollutant or net health effect?probabilityA chance node that collapses the decision about whether the proper endpoint metric is pollutant risk or net health effect.Bernoulli( .5 )336,56,148,291,1,1,1,1,1,0,0,0,02,585,196,416,303,0,MIDM2,168,178,416,303,0,SAMPMortality by recommendationcases/aNet health effect indexed by only consumption recommendation.if Regulate_pollutants_=1 then outcome3[H1899='More actions'] else outcome3[H1899='BAU']168,152,148,322,102,90,476,2932,499,269,416,303,0,MIDM2,415,126,518,378,0,MEAN[Salmon1,H1898]Regulate pollutants?probabilityA chance node that collapses the decision about regulating fish feed.bernoulli(0.5)56,152,148,24Mortality by feed regulationcases/aNet health effect indexed by only fish feed regulation.if recommend = 1 then outcome3[H1898='Restrict farmed salmon use'] else outcome3[H1898='BAU']280,152,148,322,408,141,646,2742,499,269,416,303,0,MIDM2,77,202,518,378,0,MEAN[Salmon1,H1898]Recommend?probabilityA chance node that collapses the decision about consumption recommendations for farmed salmon.bernoulli(0.5)384,152,148,241,1,1,1,1,1,0,0,0,02,298,233,476,2242,80,145,416,303,0,SAMPLifetime cancer+CHD mortality prevented by salmoncases/aNet health effect indexed by the two decisions of concern: a) whether to recommend salmon consumption restrictions and b) whether to apply stricter regulations for fish feed. The definition contained also this row: if a>ARL then 1 else 0
But it was removed when we cut the acceptable concentration concept out of the model.var a:= (if Poll_or_net = 1 then H1900 else H1901);
sum(a,Salmon1)224,56,148,462,102,90,476,2772,499,269,416,303,0,MIDM2,723,592,518,176,0,MEAN[H1899,H1898][1,0,0,0]Log v428.6.2004 Jouni Tuomisto
This version is an update of the model that was used for calculating the results for Tuomisto paper submitted to Science on January 28, 2004. Only argumentation and comments have been clarified and added. No substantive changes have been made to definitions. The descriptions of the variables described in the Table 1 in 'Supportive online material' have not been changed. Therefore, this version produces the results that were presented in the manuscript.
The main conclusions of this study were added as arguments on the top level of the model. The argumentation about the pollutant model selection was clarified (see module Fish advisories).
11.1.2005 Jouni Tuomisto
The model was given a unified resource name (URN) and metadata. The only addition since 28.6.2004 is the node Urn and this note.0504,184,148,122,306,93,476,540[Alias Log_v4]65535,54067,19661Benefit-risk diagram for farmed salmonindex benefit_risk: ['Benefits','Risks'];
var a:= array(benefit_risk,[H1912,H1900]);
a[Salmon1='Farmed salmon'H1899='BAU']72,264,148,422,20,7,551,791,1,MEAN[Sys_localindex('BENEFIT_RISK'),H1898,Undefined,Undefined,1][0,0,0,0][Recommendation,1,Sys_localindex('BR'),1,Sys_localindex('STEP'),1]VOI analysis for farmed salmon72,352,148,32Rows for sql 1var a:= slice(Result_reporting,Result_reporting.decision,4);
'"'&3000+run&'";"'&1&'";"'&a&'";"'&run&'"'400,288,148,242,102,90,490,3972,568,87,416,303,0,MIDM2,I,4,2,0,0,4,0,$,0,"ABBREV",01..400056,32,148,24[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,680,681,682,683,684,685,686,687,688,689,690,691,692,693,694,695,696,697,698,699,700,701,702,703,704,705,706,707,708,709,710,711,712,713,714,715,716,717,718,719,720,721,722,723,724,725,726,727,728,729,730,731,732,733,734,735,736,737,738,739,740,741,742,743,744,745,746,747,748,749,750,751,752,753,754,755,756,757,758,759,760,761,762,763,764,765,766,767,768,769,770,771,772,773,774,775,776,777,778,779,780,781,782,783,784,785,786,787,788,789,790,791,792,793,794,795,796,797,798,799,800,801,802,803,804,805,806,807,808,809,810,811,812,813,814,815,816,817,818,819,820,821,822,823,824,825,826,827,828,829,830,831,832,833,834,835,836,837,838,839,840,841,842,843,844,845,846,847,848,849,850,851,852,853,854,855,856,857,858,859,860,861,862,863,864,865,866,867,868,869,870,871,872,873,874,875,876,877,878,879,880,881,882,883,884,885,886,887,888,889,890,891,892,893,894,895,896,897,898,899,900,901,902,903,904,905,906,907,908,909,910,911,912,913,914,915,916,917,918,919,920,921,922,923,924,925,926,927,928,929,930,931,932,933,934,935,936,937,938,939,940,941,942,943,944,945,946,947,948,949,950,951,952,953,954,955,956,957,958,959,960,961,962,963,964,965,966,967,968,969,970,971,972,973,974,975,976,977,978,979,980,981,982,983,984,985,986,987,988,989,990,991,992,993,994,995,996,997,998,999,1000,1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1011,1012,1013,1014,1015,1016,1017,1018,1019,1020,1021,1022,1023,1024,1025,1026,1027,1028,1029,1030,1031,1032,1033,1034,1035,1036,1037,1038,1039,1040,1041,1042,1043,1044,1045,1046,1047,1048,1049,1050,1051,1052,1053,1054,1055,1056,1057,1058,1059,1060,1061,1062,1063,1064,1065,1066,1067,1068,1069,1070,1071,1072,1073,1074,1075,1076,1077,1078,1079,1080,1081,1082,1083,1084,1085,1086,1087,1088,1089,1090,1091,1092,1093,1094,1095,1096,1097,1098,1099,1100,1101,1102,1103,1104,1105,1106,1107,1108,1109,1110,1111,1112,1113,1114,1115,1116,1117,1118,1119,1120,1121,1122,1123,1124,1125,1126,1127,1128,1129,1130,1131,1132,1133,1134,1135,1136,1137,1138,1139,1140,1141,1142,1143,1144,1145,1146,1147,1148,1149,1150,1151,1152,1153,1154,1155,1156,1157,1158,1159,1160,1161,1162,1163,1164,1165,1166,1167,1168,1169,1170,1171,1172,1173,1174,1175,1176,1177,1178,1179,1180,1181,1182,1183,1184,1185,1186,1187,1188,1189,1190,1191,1192,1193,1194,1195,1196,1197,1198,1199,1200,1201,1202,1203,1204,1205,1206,1207,1208,1209,1210,1211,1212,1213,1214,1215,1216,1217,1218,1219,1220,1221,1222,1223,1224,1225,1226,1227,1228,1229,1230,1231,1232,1233,1234,1235,1236,1237,1238,1239,1240,1241,1242,1243,1244,1245,1246,1247,1248,1249,1250,1251,1252,1253,1254,1255,1256,1257,1258,1259,1260,1261,1262,1263,1264,1265,1266,1267,1268,1269,1270,1271,1272,1273,1274,1275,1276,1277,1278,1279,1280,1281,1282,1283,1284,1285,1286,1287,1288,1289,1290,1291,1292,1293,1294,1295,1296,1297,1298,1299,1300,1301,1302,1303,1304,1305,1306,1307,1308,1309,1310,1311,1312,1313,1314,1315,1316,1317,1318,1319,1320,1321,1322,1323,1324,1325,1326,1327,1328,1329,1330,1331,1332,1333,1334,1335,1336,1337,1338,1339,1340,1341,1342,1343,1344,1345,1346,1347,1348,1349,1350,1351,1352,1353,1354,1355,1356,1357,1358,1359,1360,1361,1362,1363,1364,1365,1366,1367,1368,1369,1370,1371,1372,1373,1374,1375,1376,1377,1378,1379,1380,1381,1382,1383,1384,1385,1386,1387,1388,1389,1390,1391,1392,1393,1394,1395,1396,1397,1398,1399,1400,1401,1402,1403,1404,1405,1406,1407,1408,1409,1410,1411,1412,1413,1414,1415,1416,1417,1418,1419,1420,1421,1422,1423,1424,1425,1426,1427,1428,1429,1430,1431,1432,1433,1434,1435,1436,1437,1438,1439,1440,1441,1442,1443,1444,1445,1446,1447,1448,1449,1450,1451,1452,1453,1454,1455,1456,1457,1458,1459,1460,1461,1462,1463,1464,1465,1466,1467,1468,1469,1470,1471,1472,1473,1474,1475,1476,1477,1478,1479,1480,1481,1482,1483,1484,1485,1486,1487,1488,1489,1490,1491,1492,1493,1494,1495,1496,1497,1498,1499,1500,1501,1502,1503,1504,1505,1506,1507,1508,1509,1510,1511,1512,1513,1514,1515,1516,1517,1518,1519,1520,1521,1522,1523,1524,1525,1526,1527,1528,1529,1530,1531,1532,1533,1534,1535,1536,1537,1538,1539,1540,1541,1542,1543,1544,1545,1546,1547,1548,1549,1550,1551,1552,1553,1554,1555,1556,1557,1558,1559,1560,1561,1562,1563,1564,1565,1566,1567,1568,1569,1570,1571,1572,1573,1574,1575,1576,1577,1578,1579,1580,1581,1582,1583,1584,1585,1586,1587,1588,1589,1590,1591,1592,1593,1594,1595,1596,1597,1598,1599,1600,1601,1602,1603,1604,1605,1606,1607,1608,1609,1610,1611,1612,1613,1614,1615,1616,1617,1618,1619,1620,1621,1622,1623,1624,1625,1626,1627,1628,1629,1630,1631,1632,1633,1634,1635,1636,1637,1638,1639,1640,1641,1642,1643,1644,1645,1646,1647,1648,1649,1650,1651,1652,1653,1654,1655,1656,1657,1658,1659,1660,1661,1662,1663,1664,1665,1666,1667,1668,1669,1670,1671,1672,1673,1674,1675,1676,1677,1678,1679,1680,1681,1682,1683,1684,1685,1686,1687,1688,1689,1690,1691,1692,1693,1694,1695,1696,1697,1698,1699,1700,1701,1702,1703,1704,1705,1706,1707,1708,1709,1710,1711,1712,1713,1714,1715,1716,1717,1718,1719,1720,1721,1722,1723,1724,1725,1726,1727,1728,1729,1730,1731,1732,1733,1734,1735,1736,1737,1738,1739,1740,1741,1742,1743,1744,1745,1746,1747,1748,1749,1750,1751,1752,1753,1754,1755,1756,1757,1758,1759,1760,1761,1762,1763,1764,1765,1766,1767,1768,1769,1770,1771,1772,1773,1774,1775,1776,1777,1778,1779,1780,1781,1782,1783,1784,1785,1786,1787,1788,1789,1790,1791,1792,1793,1794,1795,1796,1797,1798,1799,1800,1801,1802,1803,1804,1805,1806,1807,1808,1809,1810,1811,1812,1813,1814,1815,1816,1817,1818,1819,1820,1821,1822,1823,1824,1825,1826,1827,1828,1829,1830,1831,1832,1833,1834,1835,1836,1837,1838,1839,1840,1841,1842,1843,1844,1845,1846,1847,1848,1849,1850,1851,1852,1853,1854,1855,1856,1857,1858,1859,1860,1861,1862,1863,1864,1865,1866,1867,1868,1869,1870,1871,1872,1873,1874,1875,1876,1877,1878,1879,1880,1881,1882,1883,1884,1885,1886,1887,1888,1889,1890,1891,1892,1893,1894,1895,1896,1897,1898,1899,1900,1901,1902,1903,1904,1905,1906,1907,1908,1909,1910,1911,1912,1913,1914,1915,1916,1917,1918,1919,1920,1921,1922,1923,1924,1925,1926,1927,1928,1929,1930,1931,1932,1933,1934,1935,1936,1937,1938,1939,1940,1941,1942,1943,1944,1945,1946,1947,1948,1949,1950,1951,1952,1953,1954,1955,1956,1957,1958,1959,1960,1961,1962,1963,1964,1965,1966,1967,1968,1969,1970,1971,1972,1973,1974,1975,1976,1977,1978,1979,1980,1981,1982,1983,1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,2029,2030,2031,2032,2033,2034,2035,2036,2037,2038,2039,2040,2041,2042,2043,2044,2045,2046,2047,2048,2049,2050,2051,2052,2053,2054,2055,2056,2057,2058,2059,2060,2061,2062,2063,2064,2065,2066,2067,2068,2069,2070,2071,2072,2073,2074,2075,2076,2077,2078,2079,2080,2081,2082,2083,2084,2085,2086,2087,2088,2089,2090,2091,2092,2093,2094,2095,2096,2097,2098,2099,2100,2101,2102,2103,2104,2105,2106,2107,2108,2109,2110,2111,2112,2113,2114,2115,2116,2117,2118,2119,2120,2121,2122,2123,2124,2125,2126,2127,2128,2129,2130,2131,2132,2133,2134,2135,2136,2137,2138,2139,2140,2141,2142,2143,2144,2145,2146,2147,2148,2149,2150,2151,2152,2153,2154,2155,2156,2157,2158,2159,2160,2161,2162,2163,2164,2165,2166,2167,2168,2169,2170,2171,2172,2173,2174,2175,2176,2177,2178,2179,2180,2181,2182,2183,2184,2185,2186,2187,2188,2189,2190,2191,2192,2193,2194,2195,2196,2197,2198,2199,2200,2201,2202,2203,2204,2205,2206,2207,2208,2209,2210,2211,2212,2213,2214,2215,2216,2217,2218,2219,2220,2221,2222,2223,2224,2225,2226,2227,2228,2229,2230,2231,2232,2233,2234,2235,2236,2237,2238,2239,2240,2241,2242,2243,2244,2245,2246,2247,2248,2249,2250,2251,2252,2253,2254,2255,2256,2257,2258,2259,2260,2261,2262,2263,2264,2265,2266,2267,2268,2269,2270,2271,2272,2273,2274,2275,2276,2277,2278,2279,2280,2281,2282,2283,2284,2285,2286,2287,2288,2289,2290,2291,2292,2293,2294,2295,2296,2297,2298,2299,2300,2301,2302,2303,2304,2305,2306,2307,2308,2309,2310,2311,2312,2313,2314,2315,2316,2317,2318,2319,2320,2321,2322,2323,2324,2325,2326,2327,2328,2329,2330,2331,2332,2333,2334,2335,2336,2337,2338,2339,2340,2341,2342,2343,2344,2345,2346,2347,2348,2349,2350,2351,2352,2353,2354,2355,2356,2357,2358,2359,2360,2361,2362,2363,2364,2365,2366,2367,2368,2369,2370,2371,2372,2373,2374,2375,2376,2377,2378,2379,2380,2381,2382,2383,2384,2385,2386,2387,2388,2389,2390,2391,2392,2393,2394,2395,2396,2397,2398,2399,2400,2401,2402,2403,2404,2405,2406,2407,2408,2409,2410,2411,2412,2413,2414,2415,2416,2417,2418,2419,2420,2421,2422,2423,2424,2425,2426,2427,2428,2429,2430,2431,2432,2433,2434,2435,2436,2437,2438,2439,2440,2441,2442,2443,2444,2445,2446,2447,2448,2449,2450,2451,2452,2453,2454,2455,2456,2457,2458,2459,2460,2461,2462,2463,2464,2465,2466,2467,2468,2469,2470,2471,2472,2473,2474,2475,2476,2477,2478,2479,2480,2481,2482,2483,2484,2485,2486,2487,2488,2489,2490,2491,2492,2493,2494,2495,2496,2497,2498,2499,2500,2501,2502,2503,2504,2505,2506,2507,2508,2509,2510,2511,2512,2513,2514,2515,2516,2517,2518,2519,2520,2521,2522,2523,2524,2525,2526,2527,2528,2529,2530,2531,2532,2533,2534,2535,2536,2537,2538,2539,2540,2541,2542,2543,2544,2545,2546,2547,2548,2549,2550,2551,2552,2553,2554,2555,2556,2557,2558,2559,2560,2561,2562,2563,2564,2565,2566,2567,2568,2569,2570,2571,2572,2573,2574,2575,2576,2577,2578,2579,2580,2581,2582,2583,2584,2585,2586,2587,2588,2589,2590,2591,2592,2593,2594,2595,2596,2597,2598,2599,2600,2601,2602,2603,2604,2605,2606,2607,2608,2609,2610,2611,2612,2613,2614,2615,2616,2617,2618,2619,2620,2621,2622,2623,2624,2625,2626,2627,2628,2629,2630,2631,2632,2633,2634,2635,2636,2637,2638,2639,2640,2641,2642,2643,2644,2645,2646,2647,2648,2649,2650,2651,2652,2653,2654,2655,2656,2657,2658,2659,2660,2661,2662,2663,2664,2665,2666,2667,2668,2669,2670,2671,2672,2673,2674,2675,2676,2677,2678,2679,2680,2681,2682,2683,2684,2685,2686,2687,2688,2689,2690,2691,2692,2693,2694,2695,2696,2697,2698,2699,2700,2701,2702,2703,2704,2705,2706,2707,2708,2709,2710,2711,2712,2713,2714,2715,2716,2717,2718,2719,2720,2721,2722,2723,2724,2725,2726,2727,2728,2729,2730,2731,2732,2733,2734,2735,2736,2737,2738,2739,2740,2741,2742,2743,2744,2745,2746,2747,2748,2749,2750,2751,2752,2753,2754,2755,2756,2757,2758,2759,2760,2761,2762,2763,2764,2765,2766,2767,2768,2769,2770,2771,2772,2773,2774,2775,2776,2777,2778,2779,2780,2781,2782,2783,2784,2785,2786,2787,2788,2789,2790,2791,2792,2793,2794,2795,2796,2797,2798,2799,2800,2801,2802,2803,2804,2805,2806,2807,2808,2809,2810,2811,2812,2813,2814,2815,2816,2817,2818,2819,2820,2821,2822,2823,2824,2825,2826,2827,2828,2829,2830,2831,2832,2833,2834,2835,2836,2837,2838,2839,2840,2841,2842,2843,2844,2845,2846,2847,2848,2849,2850,2851,2852,2853,2854,2855,2856,2857,2858,2859,2860,2861,2862,2863,2864,2865,2866,2867,2868,2869,2870,2871,2872,2873,2874,2875,2876,2877,2878,2879,2880,2881,2882,2883,2884,2885,2886,2887,2888,2889,2890,2891,2892,2893,2894,2895,2896,2897,2898,2899,2900,2901,2902,2903,2904,2905,2906,2907,2908,2909,2910,2911,2912,2913,2914,2915,2916,2917,2918,2919,2920,2921,2922,2923,2924,2925,2926,2927,2928,2929,2930,2931,2932,2933,2934,2935,2936,2937,2938,2939,2940,2941,2942,2943,2944,2945,2946,2947,2948,2949,2950,2951,2952,2953,2954,2955,2956,2957,2958,2959,2960,2961,2962,2963,2964,2965,2966,2967,2968,2969,2970,2971,2972,2973,2974,2975,2976,2977,2978,2979,2980,2981,2982,2983,2984,2985,2986,2987,2988,2989,2990,2991,2992,2993,2994,2995,2996,2997,2998,2999,3000,3001,3002,3003,3004,3005,3006,3007,3008,3009,3010,3011,3012,3013,3014,3015,3016,3017,3018,3019,3020,3021,3022,3023,3024,3025,3026,3027,3028,3029,3030,3031,3032,3033,3034,3035,3036,3037,3038,3039,3040,3041,3042,3043,3044,3045,3046,3047,3048,3049,3050,3051,3052,3053,3054,3055,3056,3057,3058,3059,3060,3061,3062,3063,3064,3065,3066,3067,3068,3069,3070,3071,3072,3073,3074,3075,3076,3077,3078,3079,3080,3081,3082,3083,3084,3085,3086,3087,3088,3089,3090,3091,3092,3093,3094,3095,3096,3097,3098,3099,3100,3101,3102,3103,3104,3105,3106,3107,3108,3109,3110,3111,3112,3113,3114,3115,3116,3117,3118,3119,3120,3121,3122,3123,3124,3125,3126,3127,3128,3129,3130,3131,3132,3133,3134,3135,3136,3137,3138,3139,3140,3141,3142,3143,3144,3145,3146,3147,3148,3149,3150,3151,3152,3153,3154,3155,3156,3157,3158,3159,3160,3161,3162,3163,3164,3165,3166,3167,3168,3169,3170,3171,3172,3173,3174,3175,3176,3177,3178,3179,3180,3181,3182,3183,3184,3185,3186,3187,3188,3189,3190,3191,3192,3193,3194,3195,3196,3197,3198,3199,3200,3201,3202,3203,3204,3205,3206,3207,3208,3209,3210,3211,3212,3213,3214,3215,3216,3217,3218,3219,3220,3221,3222,3223,3224,3225,3226,3227,3228,3229,3230,3231,3232,3233,3234,3235,3236,3237,3238,3239,3240,3241,3242,3243,3244,3245,3246,3247,3248,3249,3250,3251,3252,3253,3254,3255,3256,3257,3258,3259,3260,3261,3262,3263,3264,3265,3266,3267,3268,3269,3270,3271,3272,3273,3274,3275,3276,3277,3278,3279,3280,3281,3282,3283,3284,3285,3286,3287,3288,3289,3290,3291,3292,3293,3294,3295,3296,3297,3298,3299,3300,3301,3302,3303,3304,3305,3306,3307,3308,3309,3310,3311,3312,3313,3314,3315,3316,3317,3318,3319,3320,3321,3322,3323,3324,3325,3326,3327,3328,3329,3330,3331,3332,3333,3334,3335,3336,3337,3338,3339,3340,3341,3342,3343,3344,3345,3346,3347,3348,3349,3350,3351,3352,3353,3354,3355,3356,3357,3358,3359,3360,3361,3362,3363,3364,3365,3366,3367,3368,3369,3370,3371,3372,3373,3374,3375,3376,3377,3378,3379,3380,3381,3382,3383,3384,3385,3386,3387,3388,3389,3390,3391,3392,3393,3394,3395,3396,3397,3398,3399,3400,3401,3402,3403,3404,3405,3406,3407,3408,3409,3410,3411,3412,3413,3414,3415,3416,3417,3418,3419,3420,3421,3422,3423,3424,3425,3426,3427,3428,3429,3430,3431,3432,3433,3434,3435,3436,3437,3438,3439,3440,3441,3442,3443,3444,3445,3446,3447,3448,3449,3450,3451,3452,3453,3454,3455,3456,3457,3458,3459,3460,3461,3462,3463,3464,3465,3466,3467,3468,3469,3470,3471,3472,3473,3474,3475,3476,3477,3478,3479,3480,3481,3482,3483,3484,3485,3486,3487,3488,3489,3490,3491,3492,3493,3494,3495,3496,3497,3498,3499,3500,3501,3502,3503,3504,3505,3506,3507,3508,3509,3510,3511,3512,3513,3514,3515,3516,3517,3518,3519,3520,3521,3522,3523,3524,3525,3526,3527,3528,3529,3530,3531,3532,3533,3534,3535,3536,3537,3538,3539,3540,3541,3542,3543,3544,3545,3546,3547,3548,3549,3550,3551,3552,3553,3554,3555,3556,3557,3558,3559,3560,3561,3562,3563,3564,3565,3566,3567,3568,3569,3570,3571,3572,3573,3574,3575,3576,3577,3578,3579,3580,3581,3582,3583,3584,3585,3586,3587,3588,3589,3590,3591,3592,3593,3594,3595,3596,3597,3598,3599,3600,3601,3602,3603,3604,3605,3606,3607,3608,3609,3610,3611,3612,3613,3614,3615,3616,3617,3618,3619,3620,3621,3622,3623,3624,3625,3626,3627,3628,3629,3630,3631,3632,3633,3634,3635,3636,3637,3638,3639,3640,3641,3642,3643,3644,3645,3646,3647,3648,3649,3650,3651,3652,3653,3654,3655,3656,3657,3658,3659,3660,3661,3662,3663,3664,3665,3666,3667,3668,3669,3670,3671,3672,3673,3674,3675,3676,3677,3678,3679,3680,3681,3682,3683,3684,3685,3686,3687,3688,3689,3690,3691,3692,3693,3694,3695,3696,3697,3698,3699,3700,3701,3702,3703,3704,3705,3706,3707,3708,3709,3710,3711,3712,3713,3714,3715,3716,3717,3718,3719,3720,3721,3722,3723,3724,3725,3726,3727,3728,3729,3730,3731,3732,3733,3734,3735,3736,3737,3738,3739,3740,3741,3742,3743,3744,3745,3746,3747,3748,3749,3750,3751,3752,3753,3754,3755,3756,3757,3758,3759,3760,3761,3762,3763,3764,3765,3766,3767,3768,3769,3770,3771,3772,3773,3774,3775,3776,3777,3778,3779,3780,3781,3782,3783,3784,3785,3786,3787,3788,3789,3790,3791,3792,3793,3794,3795,3796,3797,3798,3799,3800,3801,3802,3803,3804,3805,3806,3807,3808,3809,3810,3811,3812,3813,3814,3815,3816,3817,3818,3819,3820,3821,3822,3823,3824,3825,3826,3827,3828,3829,3830,3831,3832,3833,3834,3835,3836,3837,3838,3839,3840,3841,3842,3843,3844,3845,3846,3847,3848,3849,3850,3851,3852,3853,3854,3855,3856,3857,3858,3859,3860,3861,3862,3863,3864,3865,3866,3867,3868,3869,3870,3871,3872,3873,3874,3875,3876,3877,3878,3879,3880,3881,3882,3883,3884,3885,3886,3887,3888,3889,3890,3891,3892,3893,3894,3895,3896,3897,3898,3899,3900,3901,3902,3903,3904,3905,3906,3907,3908,3909,3910,3911,3912,3913,3914,3915,3916,3917,3918,3919,3920,3921,3922,3923,3924,3925,3926,3927,3928,3929,3930,3931,3932,3933,3934,3935,3936,3937,3938,3939,3940,3941,3942,3943,3944,3945,3946,3947,3948,3949,3950,3951,3952,3953,3954,3955,3956,3957,3958,3959,3960,3961,3962,3963,3964,3965,3966,3967,3968,3969,3970,3971,3972,3973,3974,3975,3976,3977,3978,3979,3980,3981,3982,3983,3984,3985,3986,3987,3988,3989,3990,3991,3992,3993,3994,3995,3996,3997,3998,3999,4000]Rows for sqlCalculate rows for the SQL result database. It assumes 1000 iterations.var a:= ['Business as usual','Recommend restrictions to salmon consumption','Stricter limits for fish feed pollutants','Restrictions to salmon consumption AND stricter fish feed limits'];
var b:= floor((in2-1)/1000);
'"'&in2&'";"1";"'&slice(a,a,b+1)&'"'400,344,148,24(param1)Doresultvar a:= slice(Net_health_effects_i,net_health_effects_i.decision,4);
'"'&3000+run&'";"'&1&'";"'&a&'";"'&run&'"'56,88,148,242,102,90,476,224param1Result reportingThis node is used to report results from this model. Just replace the variable name on the first row with the variable you want to report and calculate. This node calculates the result only for farmed salmon, and it looks all four possible deicisions along one dimension (not 2*2 table).var a:= sample(H1909);
a:= a[Salmon1='Farmed salmon'];
index decision:= ['Business as usual','Recommend restrictions','Stricter rules for feed','Both'];
a:= array(decision,[
slice(slice(a,H1898,1),H1899,1),
slice(slice(a,H1898,2),H1899,1),
slice(slice(a,H1898,1),H1899,2),
slice(slice(a,H1898,2),H1899,2)]);
index statistics:= ['Mean','SD','0.01','0.025','0.05','0.25','0.5 (Median)','0.75','0.95','0.975','0.99'];
array(statistics,[mean(a), sdeviation(a), getfract(a,0.01), getfract(a,0.025), getfract(a,0.05), getfract(a,0.25), getfract(a,0.5), getfract(a,0.75), getfract(a,0.95), getfract(a,0.975), getfract(a,0.99)])232,328,148,242,102,90,476,4852,362,39,568,303,0,MIDM[Sys_localindex('DECISION'),Sys_localindex('STATISTICS'),Undefined,Undefined,Undefined,1]2,D,4,2,0,0,4,0,$,0,"ABBREV",0[Pollutant1,1,Sys_localindex('STATISTICS'),1,Sys_localindex('DECISION'),1]Pollutant exposureµg/kg/dPollutant exposure per body weight per day. <a href="http://heande.pyrkilo.fi/heande/index.php?title=rdb&curid=1905">Wiki variable</a>H1903*H1904/1000/BW256,272,148,241,1,1,1,1,1,0,,1,2,287,149,476,2242,72,47,653,399,0,MIDM[Salmon1,Pollutant1][1,0,0,0][H1899,1,H1898,1,Pollutant1,1,Salmon1,1]Op_en1905Fish feedktluser11. Janta 2004 12:0848,24168,144,148,241,472,152,516,377,172,40,50,576,600The concentrations of pollutants in fish feed have been reducingRideout said that major feed companies have been able reduce toxin levels
in their fish meal over the past several years by using substitute ingredients
and less contaminated fish. ÒIt has been an issue that the industry is
responding to. Feed companies have been working overtime to use high
quality meals that are very low in contaminants and have twice the amount of
omega-3sÉThe line is trending downward. We donÕt like having this in our
product.Ó
<ref>http://www.intrafish.com/articlea.php?articleID=41061&s=1</ref>Feed_backgr328,48,164,362,102,90,720,332Pollutant concentration in fish feedfraction <a href="http://heande.pyrkilo.fi/heande/index.php?title=rdb&curid=1902">Wiki variable</a>var a:= (if H1899='More actions' then impr_in_feed else 0);
Feed_backgr*(1-a)192,128,148,291,1,1,1,1,1,0,,1,2,102,90,479,4622,291,326,636,303,0,SAMP[Undefined,H1899,Undefined,Undefined,Undefined,1][1,0,0,0]Op_en1902What has been done and what should be done to reduce pollutants in fish feed?H1902192,240,160,44Should we change fish feed instead of giving fish consumption advisories?Impr_in_feed+H1898+H189964,248,148,55[Alias Should_we_change_fi1]Pollutant levels in fish feed after lower limits-Pollutant concentrations in fish feed can be further reduced from current levels. The estimate of 0-100 % with a gradual decrease in probability density is based on author judgement. It reflects rather a theoretical range of improvement than a realistic estimate.Triangular( 0, 0, 1 )64,128,148,382,102,90,476,4092,515,277,416,303,0,MIDM2,216,226,416,303,1,CDFP52425,39321,65535Fish feed background-This is a dummy variable only, because the actual concentrations in fish feed are not needed in the current model.1192,48,148,2452425,39321,65535Lower limits for pollutants in fish feed?-Two options are assumed for fish feed regulations: 1) business as usual (BAU) with current legislation, and 2) More restrictive regulations for fish feed, resulting in reduction of pollutant levels in feed and consequently in salmon. (This is irrespective of any trends unrelated to the decision). <a href="http://heande.pyrkilo.fi/heande/index.php?title=rdb&curid=1899">Wiki variable</a>['BAU','More actions']280,144,148,321,1,1,1,1,1,0,,1,Op_en1899['BAU','More actions']Exposure-
response function for omega3jtue12. Janta 2004 8:5148,24504,336,148,421,76,122,586,421,17Exposure-
response function for health benefitprobability/(g/d)Exposure-response function where also the uncertainty about the population that benefits from omega-3 is taken into account. <a href="http://heande.pyrkilo.fi/heande/index.php?title=rdb&curid=1909">Wiki variable</a>var a:= Erf_hcrude*(if All_or_chd=1 then 1 else F_chd_pati);
array(cause_of_death3,[a])200,248,152,441,1,1,1,1,1,0,,1,2,291,175,476,2242,136,146,489,288,0,MEANGraphtool:0
Distresol:10
Diststeps:1
Cdfresol:5
Cdfsteps:1
Symbolsize:6
Baroverlap:0
Linestyle:1
Frame:1
Grid:1
Ticks:1
Mesh:1
Scales:1
Rotation:45
Tilt:0
Depth:70
Frameauto:1
Showkey:1
Xminimum:0
Xmaximum:1
Yminimum:0
Ymaximum:1
Zminimum:0
Zmaximum:1
Xintervals:0
Yintervals:0
Includexzero:0
Includeyzero:0
Includezzero:0
Statsselect:[1,1,1,1,1,0,0,0]
Probindex:[0,0.01,0.05,0.25,0.5,0.75,0.95,0.99,1]
[0,0,0,0]Op_en1909Benefits: effects of omega-3 fatty acids on cardiovascular mortalityErf_hcrude336,152,152,56Does omega 3 help other people than CHD patients?All_or_chd64,56,148,46Does omega-3 help CHD patients or everyone?probabilityA large part of omega-3 benefit literature is based on studies on cardiac patients. This node reflects the uncertainty whether there is cardiac health benefit for everyone or only coronary heart disease (CHD) patients. The estimate is not based on data but the aim is to maximise uncertainty.Bernoulli( 0.5 )64,160,148,382,102,90,476,33352425,39321,65535Fraction of CHD patients among deathsfractionFraction of coronary heart disease patients among the deaths. Current estimate is based on the fraction of cardiac deaths from total deaths in EEA countries, although there are cardiac deaths among non-CHD patients, and there are CHD patients with other causes of death.
<ref>[http://www.who.int WHO data]</ref>1.5717M/3.8664M64,248,148,382,102,90,476,434Dose-response of health benefitprobability/(g/d)Dose-response function comes from secondary prevention trials reviewed by Din 2004 Table 1. The relative risk reductions are divided by the omega3 exposure in each study. A continuous distribution is used, and each study result is used as a quintile point for the distribution. Another review is Marckmann and Gronbaek 1999 that concluded that 0.6-0.9 g/d of omega-3 results in 40-60 % decrease in coronary heart disease mortality. The low estimate from this result was used (40% per 0.9 g/d).
<ref>Din JN, Newby DE, Flapan AD. Science, medicine, and the future - Omega 3 fatty acids and cardiovascular disease - fishing for a natural treatment. British Medical Journal 2004; 328(7430):30-35. [http://ytoswww/yhteiset/Huippuyksikko/Kirjallisuus/Fish_and_health/Din_Omega3andCVD_BMJ2004.pdf Intranet file]</ref>
<ref>Marckmann P, Gronbaek M. Fish consumption and coronary heart disease mortality. A systematic review of prospective cohort studies. European Journal of Clinical Nutrition 1999; 53(8):585-590.</ref>-Fractiles( [0/3.5,.325/1.5,.482/1.8,.297/0.85, 0.4/0.9 ])200,152,152,322,102,90,512,5272,72,82,416,303,1,PDFP52425,39321,65535Highest omega3 dose with health benefitg/dDescribes the amount of fish that is still beneficial when added to diet. After this limit, no extra benefit is assumed from omega-3 fatty acids. The value reflects both the physiological need of omega-3 and the current intake of omega-3 from other sources than salmon. Both parts of the estimate are complicated, and the latter varies from country to country. This might have implications to the decision if we could give country-wise recommendations of feed regulations. The estimate is based on author judgement. A rough idea about the magnitude comes from Din 2004, where the trials had 0.85 - 1.8 g/d of omega-3 with benefit but 3.5 g/d showed no benefit in a small trial where the population used reasonable amount of fish anyway. If the physiological limit is lower, the slope of the exposure-response function should be steeper. Another data comes from Albert 1998: the benefit may be limited to omega-3 doses <4.9 g/mo = 0.16 g/d. Markmann and Gronbaek concluded that 0.6-0.9 g/d is beneficial.
<ref>Din JN, Newby DE, Flapan AD. Science, medicine, and the future - Omega 3 fatty acids and cardiovascular disease - fishing for a natural treatment. British Medical Journal 2004; 328(7430):30-35. [http://ytoswww/yhteiset/Huippuyksikko/Kirjallisuus/Fish_and_health/Din_Omega3andCVD_BMJ2004.pdf Intranet file]</ref>
<ref>Albert CM, Hennekens CH, O'Donnell CJ, Ajani UA, Carey VJ, Willett WC et al. Fish consumption and risk of sudden cardiac death. Jama-Journal of the American Medical Association 1998; 279(1):23-28.</ref>
<ref>Marckmann P, Gronbaek M. Fish consumption and coronary heart disease mortality. A systematic review of prospective cohort studies. European Journal of Clinical Nutrition 1999; 53(8):585-590.</ref>Triangular( .2, .5, 1 )496,64,148,382,135,16,476,59852425,39321,65535Cause of death3ICD-10['Cardiovascular']200,304,156,122,613,92,416,303,0,MIDMOp_en2707Exposure-
response function for pollutant riskPieta16. tamta 2004 1:3248,24136,336,148,511,141,229,418,300,17Potency of pollutants(mg/kg/d)^Æ1Potency of pollutants. Cancer slope factors (CSF) are used for cancer and Reference Dose (RfD) values are used for non-cancer endpoints. The data comes from the U.S.EPA.
<ref>U.S.EPA. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisory. Volume 2: Risk Assessment and Fish Consumption Limits, 3rd Edition. 2000. Table 3-1. [http://www.epa.gov/waterscience/fish/guidance.html Open access Internet file]</ref> <ref>[http://ytoswww/yhteiset/Huippuyksikko/Kirjallisuus/Fish_and_health/EPAFishAdvisory/ Intranet file]</ref>Table(Pollutant1,Self)(
16,50u,
1.1,250u,
156K,0,
2,20u
)['Ca (CSF)','Non-Ca (RfD)']64,40,148,242,249,11,476,4572,480,276,416,303,0,MIDM2,103,144,416,303,0,MIDM[Alias Potency1]65535,52427,65534[Self,Pollutant1][Self,Pollutant1][1,0,0,0]Exposure-response function for pollutant risk(mg/kg/d)-1The response assessment is restricted to cancer endpoints, because it is the more sensitive endpoint. <a href="http://heande.pyrkilo.fi/heande/index.php?title=rdb&curid=1906">Wiki variable</a>potency[Potency='Ca (CSF)']64,128,148,381,1,1,1,1,1,0,,1,2,102,90,476,3992,499,251,655,303,0,MIDM[0,0,0,0]Op_en1906Is the exposure-response function affected by the target population and its background cancer risk? Should this be taken into account in the model?H1906232,128,172,722,436,19,476,224Salmon intakejtue16. Janta 2004 12:5448,24320,208,148,241,81,109,605,297,17Alternatives for farmed salmon: wild salmon, other fish, canola oil, flaxseed oil.ÒWeÕre telling people that if they want to reduce their risk of cancer, they should not eat more than one meal of farmed salmon a month,Ó Carpenter said.
He added that the cancer risk from the toxins effectively cancels out the benefits of omega-3 fatty acids found in farmed salmon, which have not been proven to prevent or reduce the risk of cancer. ÒThere are other places to get omega-3s - wild salmon, other fish, canola oil, flaxseed oil,Ó Carpenter said.
<ref>[http://www.intrafish.com/articlea.php?articleID=41061&s=1 Intrafish.com press release 9 Jan 2004]</ref>F120,56,160,442,102,90,609,347Current average consumption of salmong/dData comes from EPIC study looking at fish consumption in 10 European countries by gender. We take the minimum, the unweighed average and the maximum of these values in the distribution to represent uncertainty in population average fatty fish intake. All fatty fish is assumed to be salmon.
<ref>Welch AA, Lund E, Amiano P, Dorronsoro M. Variability in fish consumption in 10 European countries. In: Riboli E, Lambert R, editors. Nutrition and lifestyle: opportunities for cancer prevention. Lyon: International Agency for Research on Cancer, 2002: 221-222. [http://ytoswww/yhteiset/Huippuyksikko/Kirjallisuus/Fish_and_health/RiboliNutritionLifestyle_IARC156_2002.pdf PDF of article] [http://ytoswww/yhteiset/Huippuyksikko/Tutkimus/Viljelylohi/Materiaali/ConsumptionOfFish.xls Data in Excel]</ref>Triangular( 7.5, 15.3, 31 )352,48,148,382,376,70,476,4962,0,0,793,492,0,MEAN[Chance Welch_et_al_2002][1,0,0,0]Fraction of farmed from total salmon usefractionFraction of farmed salmon of total salmon consumption in Western Europe. The current estimate is based on author judgement after discussions with people from the Finnish Game and Fisheries Research Institute.Uniform( .8, 1 )248,48,152,442,102,90,476,367Salmon intakeg/dIntake of farmed and wild salmon after the two decisions (regulate fish feed pollutants / recommend restrictions for farmed salmon use) has been made. Although market salmon exists in the index, it is not used in this version of the model. Wild salmon use after restricting farmed salmon use has a triangular probability distribution. Min assumes the same relative decrease as in farmed salmon; mode assumes no change; max assumes that wild salmon intake increases so much that it totally compensates the decrease in farmed salmon use. Estimates are based on author judgement. The wild salmon production capacity is probably much than the max used for the variable. This overestimation causes bias towards smaller costs due to salmon use restrictions. <a href="http://heande.pyrkilo.fi/heande/index.php?title=rdb&curid=1904">Wiki variable</a>Table(Salmon1,H1899,H1898)(
F,(A*F),
(F+Pollutant_scare),((A*F)+Pollutant_scare),
W,Triangular((A*W),W,(W+((1-A)*F))),
W,Triangular((A*W),W,(W+((1-A)*F))),
0,0,
0,0
)248,216,148,241,1,1,1,1,1,0,,1,2,516,77,476,2242,58,276,500,232,0,MIDM2,248,286,678,354,1,PDFP[H1898,Salmon1][Undefined,H1898,Undefined,Undefined,1][Index Salmon1][1,0,0,0][Salmon1,1,H1899,1,H1898,1,Sys_localindex('STEP'),1]Op_en1904Farmed salmon baselineg/dAverage farmed salmon consumption in Western Europe in the base case.Fraction_farmed*crude_salmon248,144,148,292,469,178,476,300Wild salmon baselineg/dAverage wild salmon consumption in Western Europe in the base case.(1-Fraction_farmed)*crude_salmon352,144,148,24Farmed salmon use after recommendationfractionFarmed salmon use per baseline after a recommendation to restrict farmed salmon use. A uniform distribution between 1 American meal/month (227 g) and no change to baseline. If baseline is lower than the recommendation, no change occurs.var a:= 1*227/(365.25/12);
var b:= min([a/f,1]);
uniform(b,1)128,144,156,362,264,94,476,2522,552,65,424,320,0,MIDMSalmon consumption after feed limitsg/dChange in farmed salmon use when fish feed is more strictly regulated. Consumer may consume more salmon, when pollutant problems are handled. However, there is a possibility of bad reputation ('There is a big problem, because authorities have to intervene'). The range overlaps zero to reflect this uncertainty. The expectation is slightly positive. The estimate is based on author judgement.Triangular( -1, 0.5, 1 )128,216,152,322,151,377,416,303,1,PDFPWelch et al 2002<ref>Welch AA, Lund E, Amiano P, Dorronsoro M. Variability in fish consumption in 10 European countries. In: Riboli E, Lambert R, editors. Nutrition and lifestyle: opportunities for cancer prevention. Lyon: International Agency for Research on Cancer, 2002: 221-222. [http://ytoswww/yhteiset/Huippuyksikko/Kirjallisuus/Fish_and_health/RiboliNutritionLifestyle_IARC156_2002.pdf PDF of article] [http://ytoswww/yhteiset/Huippuyksikko/Tutkimus/Viljelylohi/Materiaali/ConsumptionOfFish.xls Data in Excel]</ref>0472,48,148,242,102,90,476,3792,40,50,416,303,0,MIDM65535,52427,65534[Chance Crude_salmon]Recommend restricted farmed salmon consumption?-A decision about whether a general recommendation should be given to restrict the consumption of European farmed salmon to one meal (227 g) per month or not (business as usual, BAU). <a href="http://heande.pyrkilo.fi/heande/index.php?title=rdb&curid=1898">Wiki variable</a>['BAU','Restrict farmed salmon use']424,144,176,321,1,1,1,1,1,0,,1,2,102,90,476,354Op_en1898['BAU','Restrict farmed salmon use']Omega3 content in salmong/gOmega-3 fatty acid content in salmon. Estimate is from Din 2004 Table 2. In a previous version, there were other fish types as well: min is the lowest value, max is the highest value and mode is the average of the two.
<ref>Din JN, Newby DE, Flapan AD. Science, medicine, and the future - Omega 3 fatty acids and cardiovascular disease - fishing for a natural treatment. British Medical Journal 2004; 328(7430):30-35. [http://ytoswww/yhteiset/Huippuyksikko/Kirjallisuus/Fish_and_health/Din_Omega3andCVD_BMJ2004.pdf Intranet file]</ref> <a href="http://heande.pyrkilo.fi/heande/index.php?title=rdb&curid=1907">Wiki variable</a>array(Year3,[Uniform(0.0128,0.0215)])464,216,148,321,1,1,1,1,1,0,0,1,02,102,90,476,4452,106,70,416,303,0,MIDM2,472,482,416,303,0,MIDM52425,39321,65535[1,0,0,0]Op_en1907Omega3 exposureg/dOmega-3 fatty acid intake from salmon. <a href="http://heande.pyrkilo.fi/heande/index.php?curid=1908">Wiki variable</a>H1904*H1907384,272,148,241,1,1,1,1,1,0,,1,2,102,90,476,4202,57,94,723,303,0,MIDM[H1898,Salmon1][1,0,0,0][H1899,1,Year3,1,Salmon1,1,H1898,1]Op_en1908Pollutants in salmonjtok16. tamta 2004 22:1448,24168,208,148,241,439,232,556,308,17Pollutants in salmon Hites 2004µg/kgPollutant concentration data from Hites et al, Fig 2.
<ref>Hites RA, Foran JA, Carpenter DO, Hamilton MC, Knuth BA, Schwager SJ. Global assessment of organic contaminants in farmed salmon. Science 2004; 303(5655):226-229. [http://ytoswww/yhteiset/Huippuyksikko/Kirjallisuus/Fish_and_health/HitesRA%26al_Science2004.pdf Intranet file]</ref>Table(Location1,Pollutant1)(
5.607,160.008,2.94m,50.904,
5.607,190.0095,2.5725m,48.177,
6.8085,136.6735,2.52m,47.268,
3.738,126.673,2.31m,49.995,
4.539,113.339,2.31m,41.814,
4.9395,150.0075,1.995m,37.269,
3.6045,93.338,2.52m,46.359,
4.4055,153.341,2.1m,34.542,
3.204,66.67,1.7325m,39.087,
2.5365,43.3355,1.89m,34.1784,
3.3375,70.0035,1.4175m,29.997,
2.8035,43.3355,1.449m,34.542,
2.5365,36.6685,1.5225m,34.542,
2.403,36.6685,1.3545m,32.724,
2.0025,30.0015,1.554m,26.361,
1.7355,32.0016,1.1025m,21.816,
2.0025,58.6696,840u,12.726,
1.2015,23.3345,1.344m,22.725,
1.2015,23.3345,945u,18.18,
1.2015,26.668,787.5u,15.453,
0.9345,14.6674,1.344m,21.816,
1.068,18.6676,892.5u,21.816,
1.2015,53.336,1.575m,7.272,
0.801,18.6676,1.155m,14.544,
0.534,20.6677,430.5u,15.453,
0.6675,23.3345,315u,7.272,
0.534,26.668,283.5u,8.181,
0.4806,20.001,315u,6.363,
0.4806,13.334,735u,9.09,
0.4005,16.6675,178.5u,4.545,
0.267,13.334,210u,3.636,
0.4005,14.0007,105u,3.636,
0.4005,15.3341,105u,3.636,
0.4005,12.0006,126u,3.636,
0.4005,10.0005,105u,2.727,
0.4005,10.0005,105u,1.818,
0.267,6.667,105u,1.818,
0.267,6.667,105u,1.818,
0.267,6.667,105u,1.818
)56,48,148,292,354,132,476,4752,17,12,416,638,0,MIDM[Alias Pollutants_in_salmo2]65535,52427,65534[Pollutant1,Location1][Pollutant1,Location1], , ,[1,0,0,0]Pollutants in salmonµg/kgPollutant concentrations in salmon <a href="http://heande.pyrkilo.fi/heande/index.php?title=rdb&curid=1903">Wiki variable</a>Poll_i_types*H1902312,112,148,241,1,1,1,1,1,0,,1,[Salmon1,Pollutant1][1,0,0,0][Reg_poll,2,Pollutant1,1,Salmon1,1]Op_en1903Salmon typeData from Hites classified based on salmon type (farmed, wild, market)Table(Location1,Self)(
'Farmed salmon','Europe',
'Farmed salmon','Europe',
'Market salmon','Europe',
'Market salmon','Europe',
'Farmed salmon','Europe',
'Market salmon','Europe',
'Market salmon','Europe',
'Market salmon','Europe',
'Farmed salmon','North America',
'Market salmon','North America',
'Farmed salmon','North America',
'Market salmon','North America',
'Farmed salmon','North America',
'Market salmon','North America',
'Market salmon','North America',
'Market salmon','North America',
'Market salmon','North America',
'Market salmon','North America',
'Market salmon','North America',
'Market salmon','North America',
'Farmed salmon','North America',
'Farmed salmon','South America',
'Wild salmon','North America',
'Market salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America',
'Wild salmon','North America'
)['Type','Region']56,112,148,242,102,90,476,3952,72,82,416,614,0,MIDM52425,39321,65535[Self,Location1][Self,Location1]Pollutant concentration in f/w/m salmonµg/kgDieldrin, toxaphene, PCB, and dioxin concentrations in farmed, wild, and market salmon. Triangular probability distribution is used for each pollutant and salmon type. Estimates are based on data from Hites 2004. Parameters min, mode, and max are the minimum, average, and maximum of Hites' data, respectively.var typ:= salmon_type[salmon_type='Type'];
var a:= (if Salmon1=typ then poll_salmon_hites else 0);
var b:= (if Salmon1=typ then 1 else 0);
var c:= max(a,location1);
var d:= sum(a,location1)/sum(b,location1);
var e:= (if Salmon1=typ then poll_salmon_hites else 1M);
var f:= min(e,location1);
triangular(f,d,c)192,113,148,382,36,56,476,3092,489,195,416,303,1,PDFPOther partsjtue28. Junta 2004 18:0348,24488,40,148,241,0,1,1,1,1,0,,0,1,40,0,517,300,17Pollutants per types and regionµg/kgTriangular probability distribution for concentrations indexed by salmon type AND THE THREE REGIONS based on data from Hites 2004. Min is the minimum of Hites, Max is the maximum of Hites, and Mode is the average of Hites. Currently not used, but probably we should look at European values, because the consumption and population data comes from Europe.var typ:= salmon_type[salmon_type='Type'];
var reg:= salmon_type[salmon_type='Region'];
var a:= (if typ=Salmon1 and reg=Region then poll_salmon_hites else 0);
var b:= sum((if typ=Salmon1 and reg=Region then 1 else 0),location1);
var c:= max(a,location1);
var d:= if b>0 then sum(a,location1)/b else 0;
var e:= (if Salmon1=salmon_type then poll_salmon_hites else 1M);
var f:= min(e,location1);
d56,32,148,292,102,90,476,4022,72,82,451,390,0,MIDM[Salmon1,Pollutant1]RegionThe three regions considered in Hites et al 2004.['Europe','North America','South America']56,72,148,12Concentrationparameters for model descriptionµg/kgTriangular probability distribution for concentrations indexed by salmon type based on data from Hites et al, 2004. Min is the minimum, Mode is the average, and Max is the maximum calculated for each salmon type (farmed, wild, and market) separately.var typ:= salmon_type[salmon_type='Type'];
var a:= (if Salmon1=typ then poll_salmon_hites else 0);
var b:= (if Salmon1=typ then 1 else 0);
var c:= max(a,location1);
var d:= sum(a,location1)/sum(b,location1);
var e:= (if Salmon1=typ then poll_salmon_hites else 1M);
var f:= min(e,location1);
index x:=['Min','Mode','Max'];
array(x,[f,d,c])56,136,148,382,102,90,476,3652,561,214,416,303,0,MIDM1,D,4,2,0,0Total mortality W Europecases/aTotal mortality in European Economic Area countries (386.63 million inhabitants) <ref>[http://www.who.int WHO data]</ref> <a href="http://heande.pyrkilo.fi/heande/index.php?title=rdb&curid=1910">Wiki variable</a>array(Year3,[3.8664M])136,424,148,321,1,1,1,1,1,0,,1,2,102,90,476,33065535,52427,65534[1,1,0,1]Op_en1910CHD mortality W Europecases/aCoronary heart disease mortality in European Economic Area countries (386.63 million inhabitants). The estimate consists of acute myocardial infarction and other ischaemic heart diseases (ICD 10: 270, 279). <ref>[http://www.who.int WHO data]</ref> <a href="http://heande.pyrkilo.fi/heande/index.php?title=rdb&curid=1911">Wiki variable</a>array(Year3,[615.3k])504,416,148,321,1,1,1,1,1,0,,1,2,102,90,476,22465535,52427,65534[1,1,0,1]Op_en1911Should we change fish feed instead of giving fish consumption advisories?1568,145,148,61Should_we_change_fisLog v41760,144,152,1265535,54067,19661Loki_v4Pollutant risk is much smaller than the net health benefit of farmed salmonH1901+H1900256,488,160,5165535,65532,19661Scientific uncertainties related to recommendations are unimportantH1898+V3424,51,164,5165535,65532,19661Some scientific and political uncertainties related to feed limits are importantH1899+V1280,48,172,4265535,65532,19661URN:NBN:fi-fe20042774DC-attribute with refinement Scheme (if any) Value
Title Risk benefit analysis of eating farmed salmon
Creator.personalName Tuomisto, Jouni T
Creator.personalName Tuomisto, Jouko
Creator.personalName Tainio, Marko
Creator.personalName Niittynen, Marjo
Creator.personalName Verkasalo, Pia
Creator.personalName Vartiainen, Terttu
Creator.personalName Kiviranta, Hannu
Creator.personalName Pekkanen, Juha
Subject risk benefit analysis
Subject persistent organic pollutants
Subject omega-3 fatty acids
Subject MeSH polychlorinated biphenyls
Subject MeSH salmon
Subject MeSH risk assessment
Subject MeSH fatty acids, omega-3
Subject UDC 614 Public health and hygiene.
Description.abstract In their Report ÒGlobal assessment of organic contaminants in farmed salmon,Ó R. A. Hites and co-workers analyzed wild and farmed salmon samples from North and South America and Europe for organic pollutants (9 Jan. 2004, p. 226). The authors conclude that, because of chemical contaminants, farmed salmon should not be eaten more often than 0.25 to 1 times per month. However, the model used does not take into account any beneficial effects of eating fish. We analyzed both risks and benefits. We also performed a value-of-information analysis to see which uncertainties were relevant for decision-making. This is the version 4 of the model calculating risks and benefits of farmed salmon. (c) Copyright Kansanterveyslaitos (KTL; National Public Health Institute, Finland).
Publisher Kansanterveyslaitos
Date.issued W3C-DTF 2004-07-23
Type DCMIType Software
Format IMT text/xml
Format.medium computerFile
Format 115 kB
Identifier http://www.ktl.fi/risk
Identifier URN URN:NBN:fi-fe20042774
Language ISO639-2 en
Relation.hasPart URL http://www.sciencemag.org/cgi/content/full/305/5683/476
Rights Copyright Kansanterveyslaitos, 20040744,176,180,122,102,90,523,43965535,54067,19661Year3year[2000]504,456,148,12Op_en2708Inputs for RDBThe node Variables_to_be_saved in the module RDB-connection.ANA from Heande should contain the following:
Var_name Probabilistic?
'H1898' 0
'H1899' 0
'H1900' 1
'H1901' 1
'H1902' 1
'H1903' 1
'H1904' 1
'H1905' 1
'H1906' 0
'H1907' 1
'H1908' 1
'H1909' 1
'H1910' 0
'H1911' 0
'H1912' 1760,32,148,2465535,54067,19661Opasnet base connection<a href="http://en.opasnet.org/w/Image:Opasnet_base_connection.ANA">Wiki description</a>HP_Omistaja9. maata 2008 10:42ktluser18. Decta 2008 6:57 48,24112,64,048,321,0,0,1,1,1,0,0,0,01,17,27,572,442,172,102,90,476,224Arial, 15100,1,1,1,1,9,2970,2100,1,0Writerjtue1. jouta 2008 10:57 48,24192,112,148,241,249,112,505,454,17Writing codejtue18. heita 2008 10:14 48,24392,328,148,241,606,22,650,465,17Concatenation UDFsThis library contains functions to make various instances of concatenation more convenient. Concat3 thru Concat10 are generalizations of the built-in Concat function which concatenate from 3 to 10 arrays in a single call (while the built-in Concat concatenates two arrays). ConcatRows concatenates all the rows of a single array.David Kendall & Lonnie ChrismanMon, Jan 26, 2004 8:49 AMLonnieWed, Sep 05, 2007 3:23 PM48,24456,176,168,201,0,0,1,1,1,0,0,0,01,39,36,798,452,23(A1, A2, A3: ArrayType; I1, I2, I3, J: IndexType )Concat3Concatenates three arrays, A1, A2, and A3. I1, I2, and I3 are the indexes that are joined; J is the index of the new array; J usually is the concatenation of I1, I2, and I3Index I12 := Concat(I1,I2);
Concat( Concat( A1,A2,I1,I2,I12 ), A3, I12, I3, J )88,64,148,262,56,56,986,596A1,A2,A3,I1,I2,I3,J(A1, A2, A3, A4: ArrayType; I1, I2, I3, I4, J: IndexType )Concat4Concatenates four arrays, A1, A2, A3, and A4. I1, I2, I3, and I4 are the indexes that are joined; J is the index of the new array; J usually is the concatenation of I1, I2, I3, and I4.Index I12 := Concat(I1,I2);
Index I123:= Concat(I12, I3);
Concat(
Concat(
Concat( A1,A2,I1,I2,I12 ),
A3, I12, I3, I123),
A4, I123, I4, J);
192,64,148,242,30,30,986,596A1,A2,A3,A4,I1,I2,I3,I4,J0(A1, A2, A3, A4, A5, A6, A7, A8, A9: ArrayType; I1, I2, I3, I4, I5, I6, I7, I8, I9, J: IndexType)Concat9Concatenates nine arrays, A1, ..., A9. I1, ..., I9 are the indexes joined; J is the index of the new array; J usually is the concatenation of I1, ..., I9.Index I12 := Concat(I1,I2);
Index I123 := Concat(I12, I3);
Index I1234 := Concat(I123, I4);
Index I12345 := Concat(I1234, I5);
Index I123456 := Concat(I12345, I6);
Index I1234567 := Concat(I123456, I7);
Index I12345678 := Concat(I1234567, I8);
Concat(
Concat(
Concat(
Concat(
Concat(
Concat(
Concat(
Concat( A1,A2,I1,I2,I12 ),
A3, I12, I3, I123),
A4, I123, I4, I1234),
A5, I1234, I5, I12345),
A6, I12345, I6, I123456),
A7, I123456, I7, I1234567),
A8, I1234567, I8, I12345678),
A9, I12345678, I9, J);88,232,148,242,27,120,469,638A1,A2,A3,A4,A5,A6,A7,A8,A9,I1,I2,I3,I4,I5,I6,I7,I8,I9,J0(A1, A2, A3, A4, A5: ArrayType; I1, I2, I3, I4, I5, J: IndexType )Concat5Concatenates five arrays, A1, ..., A5. I1, ..., I5 are the indexes joined; J is the index of the new array; J usually is the concatenation of I1, ..., I5.Index I12 := Concat(I1,I2);
Index I123:= Concat(I12, I3);
Index I1234 := Concat(I123, I4);
Concat(
Concat(
Concat(
Concat( A1,A2,I1,I2,I12 ),
A3, I12, I3, I123),
A4, I123, I4, I1234),
A5, I1234, I5, J);88,120,148,242,160,160,986,596A1,A2,A3,A4,A5,I1,I2,I3,I4,I5,J(A1, A2, A3, A4, A5, A6: ArrayType; I1, I2, I3, I4, I5, I6, J: IndexType )Concat6Concatenates six arrays, A1, ..., A6. I1, ..., I6 are the indexes joined; J is the index of the new array; J usually is the concatenation of I1, ..., I6.Index I12 := Concat(I1,I2);
Index I123:= Concat(I12, I3);
Index I1234 := Concat(I123, I4);
Index I12345 := Concat(I1234, I5);
Concat(
Concat(
Concat(
Concat(
Concat( A1,A2,I1,I2,I12 ),
A3, I12, I3, I123),
A4, I123, I4, I1234),
A5, I1234, I5, I12345),
A6, I12345, I6, J);192,120,148,242,644,94,602,712A1,A2,A3,A4,A5,A6,I1,I2,I3,I4,I5,I6,J0(A1, A2, A3, A4, A5, A6, A7: ArrayType; I1, I2, I3, I4, I5, I6, I7, J: IndexType )Concat7Concatenates seven arrays, A1, ..., A7. I1, ..., I7 are the indexes joined; J is the index of the new array; J usually is the concatenation of I1, ..., I7.Index I12 := Concat(I1,I2);
Index I123:= Concat(I12, I3);
Index I1234 := Concat(I123, I4);
Index I12345 := Concat(I1234, I5);
Index I123456 := Concat(I12345, I6);
Concat(
Concat(
Concat(
Concat(
Concat(
Concat( A1,A2,I1,I2,I12 ),
A3, I12, I3, I123),
A4, I123, I4, I1234),
A5, I1234, I5, I12345),
A6, I12345, I6, I123456),
A7, I123456, I7, J);88,176,148,242,580,98,551,565A1,A2,A3,A4,A5,A6,A7,I1,I2,I3,I4,I5,I6,I7,J(A1, A2, A3, A4, A5, A6, A7, A8: ArrayType; I1, I2, I3, I4, I5, I6, I7, I8, J: IndexType )Concat8Concatenates eight arrays, A1, ..., A8. I1, ..., I8 are the indexes joined; J is the index of the new array; J usually is the concatenation of I1, ..., I8.Index I12 := Concat(I1,I2);
Index I123:= Concat(I12, I3);
Index I1234 := Concat(I123, I4);
Index I12345 := Concat(I1234, I5);
Index I123456 := Concat(I12345, I6);
Index I1234567 := Concat(I123456, I7);
Concat(
Concat(
Concat(
Concat(
Concat(
Concat(
Concat( A1,A2,I1,I2,I12 ),
A3, I12, I3, I123),
A4, I123, I4, I1234),
A5, I1234, I5, I12345),
A6, I12345, I6, I123456),
A7, I123456, I7, I1234567),
A8, I1234567, I8, J);192,176,148,242,12,98,561,737A1,A2,A3,A4,A5,A6,A7,A8,I1,I2,I3,I4,I5,I6,I7,I8,J0(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10: ArrayType; I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, J: IndexType)Concat10Concatenates ten arrays, A1, ..., A10. I1, ..., I10 are the indexes joined; J is the index of the new array; J usually is the concatenation of I1, ..., I10.Index I12 := Concat(I1,I2);
Index I123 := Concat(I12, I3);
Index I1234 := Concat(I123, I4);
Index I12345 := Concat(I1234, I5);
Index I123456 := Concat(I12345, I6);
Index I1234567 := Concat(I123456, I7);
Index I12345678 := Concat(I1234567, I8);
Index I123456789 := Concat(I12345678, I9);
Concat(
Concat(
Concat(
Concat(
Concat(
Concat(
Concat(
Concat(
Concat( A1,A2,I1,I2,I12 ),
A3, I12, I3, I123),
A4, I123, I4, I1234),
A5, I1234, I5, I12345),
A6, I12345, I6, I123456),
A7, I123456, I7, I1234567),
A8, I1234567, I8, I12345678),
A9, I12345678, I9, I123456789),
A10, I123456789, I10, J);192,232,148,242,542,93,632,744A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,I1,I2,I3,I4,I5,I6,I7,I8,I9,I10,J0(A : ArrayType ; RowIndex,ColIndex,ResultIndex : IndexType)ConcatRows (A,I,J,K)Takes an array, A indexed by RowIndex & ColIndex, and concatenates each row, henceforth flattening the array by one dimension. The result is indexed by ResultIndex, which must be an index with size(RowIndex) * size(ColIndex) elements.index L := [ identifier of RowIndex, identifier of ColIndex, "val"];
slice(Mdarraytotable(A,ResultIndex,L),L,3)320,64,164,242,30,320,478,348A,RowIndex,ColIndex,ResultIndexODBC LibraryLonnieThu, Sep 11, 1997 2:15 PMLonnieTue, Feb 05, 2008 10:03 AM48,24440,128,152,201,1,1,1,1,1,0,0,0,01,20,272,499,497,17Arial, 13(A:ArrayType;I:IndexType;L:IndexType;row;dbTableName)InsertRecSqlGenerates the SQL "INSERT INTO" statement for one line of table A. A is a 2-D table indexed by rows I and columns L. L's domain serves as the column names in the database table. dbTableName is the name of the table in the database. The result begins with two semi-colons, since it will be used with an SQL statement preceeding it.
29.8.2008 Jouni Tuomisto
I added the parameter IGNORE because it ignores rows that would cause duplicate-key violations. This way, there is no need to check for e.g. existing locations of new indices.(';;INSERT IGNORE INTO ' & dbTableName & '(' & JoinText(L,L,',') & ') VALUES (' & Vallist(A[I=row],L)) & ')'184,32,152,242,41,136,487,469A,I,L,row,dbTableName(V:ArrayType;I:IndexType)ValListTakes a list of values, and returns a string which the concatenation of each value, separated by commas, and with each value quoted.JoinText( '''' & V & '''', I, ',')72,32,052,24V,I1,F,4,14,0,0(Tabl:ArrayType;RowIndex:IndexType;LabelIndex:IndexType;dbTableName)WriteTableSql(Table,Rows,Labels,dbTableName)Returns the SQL that will write the table to the database table.
This can be used as the second argument to DBWrite.
This SQL statement replaces the entire contents of an existing table with the new data.'DELETE FROM '& Dbtablename & JoinText(Insertrecsql(Tabl, Rowindex, Labelindex, Rowindex, Dbtablename),RowIndex)328,32,188,242,728,341,510,476Tabl,RowIndex,LabelIndex,dbTableName(Tabl:ArrayType;RowIndex:IndexType;LabelIndex:IndexType;dbTableName)AppendTableSql(Table,Rows,Labels,dbTableName)Returns the SQL that will write the table to the database table.
This can be used as the second argument to DBWrite.
This SQL statement replaces the entire contents of an existing table with the new data.JoinText(Insertrecsql(Tabl, Rowindex, Labelindex, Rowindex, Dbtablename),RowIndex)328,88,188,242,559,127,510,476Tabl,RowIndex,LabelIndex,dbTableNameWrite Locindex j:= ['id','Obj_id_d','Location','Description'];
array(j,[
Locations[.j='Loc_id'],
Locations[.j='Dim_id'],
Locations[.j='Location'],
Locations[.j='Description']])320,168,148,162,776,153,476,2242,40,50,649,245,0,MIDM65535,45873,39321[Sys_localindex('J'),Sys_localindex('I')]2,D,4,2,0,0,4,0,$,0,"ABBREV",0[]Locations1) Initialises local variables.
2) Takes one index at a time, calculates the values and concatenates them to the previous values.
3) All parameters are lumped into a single array, with some fields calculated based on others.var a:= if objects1[.j='Typ_id']= 6 then 1 else 0;
index k:= subset(a);
a:= objects1[object4=k];
var b:= [0];
var c:= [0];
var e:= [0];
var f:= [0];
var temp:= 0;
var x:= 1;
while x<=size(k) do (
var d:= evaluate(slice(k,x));
b:= concat(b,d);
c:= concat(c,(if d=0 then slice(k,x) else slice(k,x)));
e:= concat(e,1..size(d));
var g:= evaluate(a[@k=x, .j='Description node']);
g:= {if size(g) = size(d) then g else} (if d=0 then g else g);
f:= concat(f, g);
x:= x+1);
index i:= 1..size(b)-1;
b:= slice(b,i+1)&'';
c:= slice(c,i+1);
e:= slice(e,i+1);
f:= slice(f,i+1);
var d:= for y:= c do (
var d:= if ind[.j='Iident'] = c then ind[.j='Dident'] else '';
d:= jointext(d,d.i) );
var h:= if Loc.j='Obj_id_d' then Loc&'+'&Loc[.j='Location'] else Loc;
h:= findid(findid(d,obj, 'Ident')&'+'&b, h, 'Obj_id_d');
h:= if h>0 then h else cardinals[table1='Loc']+i;
index j:= ['Dim_ident','Dim_id','Location','Loc_id','Ind_ident','Ind_id','Row_number', 'Description'];
array(j,[d, findid(d,obj,'Ident'), b, h, c, findid(c,Obj,'Ident'), e, f])200,200,148,162,666,60,521,5572,176,285,886,296,0,MIDM[Sys_localindex('J'),Sys_localindex('I')]['','','','','','','','','',''][Sys_localindex('I'),31,Sys_localindex('I'),1,Sys_localindex('J'),1]Cause of death 1ICD-10['Cardiopulmonary','Lung cancer','All others','All causes']456,272,148,222,102,90,476,440['Cardiopulmonary','Lung cancer','All others','All causes']Municipality_fin1['Harjavalta']448,304,164,122,192,588,476,224Testvariablekg<a href="http://en.opasnet.org/w/index.php?title=rdb&curid=2693">Wiki description</a>array(Op_en2665,uniform(100,110))+municipality_fin1456,224,148,242,102,90,476,3922,93,226,539,360,0,MIDM[][0,1,0,1]Op_en2693(a:prob)Statsindex statistics:= ['Mean','SD','0.01','0.025','0.05','0.25','0.5 (Median)','0.75','0.95','0.975','0.99'];
a:= array(statistics,[mean(a), sdeviation(a), getfract(a,0.01), getfract(a,0.025), getfract(a,0.05), getfract(a,0.25), getfract(a,0.5), getfract(a,0.75), getfract(a,0.95), getfract(a,0.975), getfract(a,0.99)]);
round(a*10)/10&''440,24,148,12a(table:texttype)CardBrings the largest id number from the table defined in the parameter.index i:= DBquery(odbc,'
SELECT MAX(id) AS id
FROM '&table&'
');
index j:= dblabels(i);
max(max(DBTable(i, j ),i),j)440,88,148,122,102,90,476,33139325,65535,39321tableTable1['Obj','Res','Loc','Locres','Roww','Sett','Item','Sam']200,64,148,132,15,594,158,227,0,MIDM['Obj','Res','Loc','Locres','Roww','Sett','Item','Sam']CardinalsTable(Table1)(
113,1475,671,1072,659,34,34,736.942K
)200,32,148,242,193,270,416,303,0,MIDM2,472,313,416,303,0,MIDM39325,65535,393212,I,4,2,0,0,4,0,$,0,"ABBREV",0Inp locresgetfract forces the effect of sample() away, while mid doesn't
1) Does the process for each variable one at a time. Only the deterministic information about variables are considered (therefore getfract).
2) Gets the samplesize (0 if deterministic) for the variable.
3) Gets the Var_id for the variable.
4) Flattens the array. The value is discarded and only the location info is kept. Location is changed into text because that is the format in the RDB.
5) Gets the Dimension (Dim_id) for each index of h.
6) Gets the Location (Loc_id) for each cell in a, given the dimension and location.
7) Gets the Ind_id for each Index listed in h.
8) Flattens the array a.
9) Concatenates the results of all variables.
10) Makes Row the index of the implicit index.var output=0;
var e:= Cardinals[table1='Res'];
var f:= Cardinals[table1='Locres'];
index j:= ['Locres_id','Location','Res_id','Roww_id','Vident','Obj_id_v','Obj_id_r','Mean','N'];
var o:= if Objects1[.j='Typ_id'] = 1 then 1 else 0;
index k:= subset(o);
o:= objects1[object4=k];
var x:= 1;
while x<= size(k) do (
var c:= slice(o,k,x);
var a:= mean(sample(evaluate(c[.j='identifier'])));
index h:= indexnames(a);
index L:= concat(h,['Value']);
index res_id:= (1..size(a))+e;
index locres_id= (1..size(a)*size(h))+f;
e:= e+size(res_id);
f:= f+size(locres);
a:= mdarraytotable(a,res_id,L);
var mean1:= a[L='Value'];
a:= a[L=h]&'';
var g:= findid(h, ind, 'Iident')&'+'&findid(a, Loc, 'Location');
var m:= if Roww.j='Obj_id_i' then Roww&'+'&Roww[.j='Loc_id'] else Roww;
var n:= if objects1[.j='Typ_id']= 9 then objects1[.j='Ident'] else '';
n:= jointext(n,object4);
a:= array(j,[
locres_id,
a,
res_id,
findid(g, m, 'Obj_id_i'),
c[.j='Ident'],
findid(c[.j='Ident'], Obj, 'Ident'),
findid(n, Obj, 'Ident'),
mean1,
if c[.j='Probabilistic?']=0 then 0 else samplesize]);
a:= concatrows(a,h,res_id,locres_id);
output:= if x= 1 then a else for y:= j do (
concat(output[j=y],a[j=y]) );
x:= x+1);
index i:= 1..size(output)/size(j);
for y:= j do (slice(output[j=y],i))200,280,148,162,702,19,518,4902,15,27,781,552,0,MIDM[Sys_localindex('J'),Sys_localindex('I')][][Sys_localindex('H'),3,Sys_localindex('I'),1,Sys_localindex('ENDSCEN'),1](in, table; cond:texttype)FindidThis function gets an id from an Opasnet Base table.
in: the variable for which the id is needed.
table: the Opasnet Base table from where the id is brought. The table must be indexed by j (field) and i (row).
comp: the name of the field that is compared with in. Comp must be text.var id:= if in = table[.j=cond] then table[.j='id'] else 0;
sum(id, table.i)440,56,148,122,589,70,476,224in,table,condWrite Locresindex j:= ['id','Res_id','Roww_id'];
var a:= inp_locres[.j=j];
if j='id' then inp_locres[.j='Locres_id'] else a320,280,152,162,790,83,476,22465535,45873,39321[Sys_localindex('J'),Sys_localindex('I')][]Write Resindex j:= ['id','Obj_id_v','Obj_id_r','Mean','N'];
var a:= inp_locres[.j=j];
a:= if j='id' then inp_locres[.j='Res_id'] else a;
index i:= unique(a,a.i);
a[.i=i]320,312,148,162,807,62,476,2242,28,38,416,303,0,MIDM65535,45873,39321[Sys_localindex('J'),Sys_localindex('I')][]WikisTable(Self)(
'Op_en','Op_fi','Heande','En','Fi','Erac','Beneris','Intarese','Piltti','Kantiva','Bioher','Heimtsa')[1,2,3,4,5,8,9,10,11,13,14,15]56,64,148,1265535,52427,65534[Object2,Self]Object typesTable(Self)(
'Variable','Dimension','Method','Model','Class','Index','Nugget','Encyclopedia article','Run','Chance','Decision','Objective','Constant','Determ','Module','Library','Form')[1,2,3,4,5,6,7,8,9,1,1,1,1,1,4,4,4]56,32,148,202,674,34,416,606,0,MIDM2,438,263,416,390,0,MIDM65535,52427,65534Write Rowwindex j:= ['id','Obj_id_i','Roww','Loc_id'];
array(j,[
cardinals[table1='Roww']+@locations.i,
Locations[.j='Ind_id'],
Locations[.j='Row_number'],
Locations[.j='Loc_id']])['item 1']320,200,148,162,791,59,475,3272,250,441,416,303,0,MIDM2,657,8,448,347,0,MIDM65535,45873,39321[Self][Sys_localindex('J'),Sys_localindex('I')]['item 1']Write SettRuns are NOT sets. There are two major kinds of sets: Indices belonging to an assessment, and variables belonging to an assessment.index i:= ['Assessment','Assessment','Run'];
var a:= Objects1[object4=i];
var b:= array(i,[3,4,9]);
var c:= if a.j='id' then a&'+'&a[.j='Typ_id'] else a;
c:= findid(a[.j='id']&'+'&b, c, 'id');
c:= if c>0 then c else Cardinals[table1='Sett']+@i;
index j:= ['id','Obj_id','Typ_id'];
a:= array(j,[c, a[.j='id'], b])320,64,148,162,59,190,495,4442,838,349,416,303,0,MIDM65535,45873,39321[Sys_localindex('I'),Sys_localindex('J')]2,D,4,2,0,0,4,0,$,0,"ABBREV",0[]Write Objindex j:= ['id','Ident','Name','Unit','Typ_id','Page','Wik_id'];
index i:= 1..size(object3);
Objects1[.j=j, @object4=@i]320,32,148,162,248,258,797,223,0,MIDM65535,45873,39321[Sys_localindex('I'),Sys_localindex('J')]2,D,4,2,0,0,4,0,$,0,"ABBREV",0[]Write ItemThis works correctly ONLY if these sets do not exist already. This should be based on findid function, not on write_sett node.index j:= ['id','Sett_id','Obj_id','Fail'];
index k:= types(1);
index L:= types(6);
var a:= array(j,k, [0, write_sett[.j='id', @.i=1], k, 0]);
var b:= array(j,L,[0, write_sett[.j='id', @.i=2], L, 0]);
index m:= 1..(size(k)+size(L));
a:= concat(a,b,k,l,m);
b:= array(j,k, [0, write_sett[.j='id', @.i=3], k, 0]);
index i:= 1..(size(m)+size(k));
a:= concat(a,b,m,k,i);
if j='id' then cardinals[table1='Item']+@i else a320,104,148,162,22,86,476,4012,921,13,345,638,0,MIDM65535,45873,39321[Sys_localindex('J'),Sys_localindex('I')]2,D,4,2,0,0,4,0,$,0,"ABBREV",0[][Self,1,Sys_localindex('J'),1,Sys_localindex('K'),1]Write DescrIf the result is not a number, then the actual result text can be written into the Description field of the Descr table. This is not coded yet, because there has not been a need for text results.index j:= ['id','Description'];
j320,344,148,1665535,45873,39321[Sys_localindex('I'),Sys_localindex('J')]2,D,4,2,0,0,4,0,$,0,"ABBREV",0[]Write Infindex j:= ['id','Begin','End','Who','Url'];
var a:= Objects1[.j=j];
a:= if a = null or j='id' or a='' then 0 else a;
a:= if sum(a,j) = 0 then 0 else 1;
index i:= subset(a);
a:= Objects1[object4=i, .j=j]320,136,148,162,771,93,476,2802,296,59,483,550,0,MIDM65535,45873,39321[Sys_localindex('J'),Sys_localindex('I')]2,D,4,2,0,0,4,0,$,0,"ABBREV",0[]Write SamThe usage of local variables: a: the temporary variable that is being edited. e: cardinal of the Res table. f: cardinal of the Sam table. j: output column headings. i: output row numbers.
1) Several local variables are initiated.
2) The process is done for each variable one at a time (this is indexed by x).
3) The variable is given index runn which is equal to run if probabilistic and 0 if not.
4) The array is flattened first to 2-D, the value only is kept.
5) Variables are concatenated to each other.
6) Index i is made the index of the implicit index.var output=0;
var e:= Cardinals[table1='Res'];
var f:= Cardinals[table1='Sam'];
index j:= ['id','Res_id','Descr_id','Sample','Result'];
var o:= if Objects1[.j='Typ_id'] = 1 then 1 else 0;
index k:= subset(o);
o:= objects1[object4=k];
var x:= 1;
while x<= size(k) do (
var c:= slice(o,k,x);
var a:= sample(evaluate(c[.j='Ident']));
index h:= indexnames(a);
index L:= concat(h,['Value']);
index runn:= if c[.j='Probabilistic?']=1 then copyindex(run) else [0];
index res_id:= (1..size(a))+e;
index sam_id:= (1..size(res_id)*size(runn))+f;
e:= e+size(res_id);
f:= f+size(sam_id);
a:= mdarraytotable(a,res_id,L)[.L='Value'];
a:= if c[.j='Probabilistic?']=1 then a[run=runn] else (if runn=0 then mean(a) else mean(a));
a:= array(j,[0, res_id, 0, runn, a]);
a:= concatrows(a,res_id,runn,sam_id);
a:= if a.j='id' then sam_id else a;
output:= if x= 1 then a else for y:= j do (
concat(output[j=y],a[j=y]) );
x:= x+1);
index i:= 1..size(output)/size(j);
for y:= j do (slice(output[j=y],i))320,248,148,162,97,21,476,7012,761,335,416,303,0,MIDM65535,45873,39321[Sys_localindex('J'),Sys_localindex('I')]2,D,4,2,0,0,4,0,$,0,"ABBREV",0[]Descr Op_en2665Table(Op_en2665)(
'Cardiopulmonary deaths, ICD-10 ## ','Lung cancer deaths, ICD-10 ## ','All other non-accidental deaths, ICD-10 ## ','All non-accidental deaths, ICD-10## ')456,344,148,2452425,39321,65535(type)Typesvar a:= if Objects1[.j='Typ_id']=type then 1 else 0;
Objects1[object4=subset(a),.j='id']544,24,148,122,796,264,476,344typeRun infoDescribe the run in this node. The same general instructions apply for Run info as for other objects. In addition, do the following:
* DO change Title to describe the run.
* Do NOT change this Description or Identifier.
* Add the Ident (wiki identifier) to the Ident attribute.
* Title should contain the main description of the run WITHOUT the following (which will be added automatically to the Opasnet Base):
** User
** Date
** Analytica version and platformTable(Self,Info)(
'Op_en1896','Benefit-risk assessment of farmed salmon',0,'2004-01-09',
'Op_en2694','Testrun 1','Jouni',0
)['Assessment','Run']56,104,148,132,576,173,476,3922,339,445,416,303,0,MIDM2,664,117,416,303,0,MIDM[Formnode Run_info1]52425,39321,65535[Self,Info][Self,Info]Op_en2694Objects1) Finds information for other parameters.
2) Adjusts the information about the Run.
There is no need to search for existing objects, because the name is unique. Thus, all additions just are ignored.var a:= Object4;
var d:= findintext(Object_types,Class of a);
d:= sum(if d=0 then 0 else indexvalue(object_types),object_types);
var f:= findid(Object4,Obj,'Ident');
f:= if f>0 then f else Cardinals[table1='Obj']+@Object4;
Index j:= ['identifier', 'id','Ident','Name','Unit','Typ_id','Page','Wik_id', 'Who','Begin','Url','Dim #','Probabilistic?','Description node'];
a:= array(j,[
object4,
f,
Ident of a,
if Object4 <>'Run' then Title of a else ' Analytica '&Analyticaedition&', ('&Analyticaplatform&'), Version: '&Analyticaversion&', Samplesize: '&samplesize,
Units of a,
if Object4 = 'Run' then 9 else d,
'', '', '', '', 0, 0, 0, 0]);
var b:= if j='Probabilistic?' then probabilistic_[objects_excl_indices=Object4] else null;
a:= if b=null then a else b;
b:= index_info[add_info1=j, object1=Object4];
a:= if b=null then a else b;
b:= run_info[info=j, run_info=object4];
b:= if j= 'Begin' and object4='Run' and b=0 then datepart(today(),'Y')&'-'&datepart(today(),'M')&'-'&datepart(today(),'D') else b;
a:= if b=null then a else b;
b:= findintext(wikis,a[j='Ident']);
b:= if b=0 then 0 else b+textlength(Wikis);
var c:= sum(if b=0 then 0 else @wikis,wikis);
b:= sum(b,wikis);
b:= if b = 0 then 0 else selecttext(a[j='Ident'],b);
a:= if j='Page' then b else a;
a:= if j='Wik_id' then c else a200,136,148,162,20,57,581,5712,20,185,1217,473,0,MIDM[Sys_localindex('J'),Object4]2,I,4,2,0,0,4,0,$,0,"ABBREV",0[0,1,1,0]['','','','','','','','','','','','','','','','','','','','','','',''][Object1,6,Object3,3,Add_info,2,Add_info1,2,Object4,1,Sys_localindex('IOBJ'),1]Object3This makes a list of all indices that are used by the variables in Object1.index a:= indexnames(evaluate(Objects_excl_indices));
a:= if a='Object1' or a='Objects_excl_indices' then 0 else 1;
subset(a)
56,272,148,132,102,90,476,4642,32,349,416,303,0,MIDM[Op_en2665,Objects_excl_indices]['Pollutant1','Salmon1','H1899','Cause_of_death3','H1898','Year3']Index infoAdd the Dimension id for each index.Table(Add_info1,Object1)(
51,36,33,34,33,35,
0,0,0,0,0,0
)56,216,148,202,140,217,476,2242,437,196,664,303,0,MIDM2,506,220,684,303,0,MIDM52425,39321,65535[Add_info1,Object1][Add_info1,Object1]Add info['Dim #','Description node']56,248,148,12['Dim #','Description node']Probabilistic?Table(Objects_excl_indices)(
1,1,1,1,1,1,1,1,1,1,1,1,0,0,1)56,168,148,222,17,23,416,364,0,MIDM52425,39321,65535Info['Ident','Name','Who','Begin']56,128,148,12['Ident','Name','Who','Begin']Object4test descriptionconcat(concat(objects_excl_indices,object1),indexvalue(Run_info))&''200,160,148,121,1,1,1,1,1,0,0,0,02,913,138,363,5272,200,210,773,264,0,MIDM[Self,Info]['H1898','H1899','H1900','H1901','H1902','H1903','H1904','H1905','H1906','H1907','H1908','H1909','H1910','H1911','H1912','Pollutant1','Salmon1','H1899','Cause_of_death3','H1898']Old partsktluser20. Decta 2008 7:52 48,24552,80,148,241,0,1,1,1,1,0,,0,Who ran the model'Jouni'248,40,148,24[Formnode Who_ran_the_model1]52425,39321,65535Object infoAdd the Dimension id for each index.Table(Add_info,Object3)(
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,51,36,33,34,33,35,
1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
)248,88,148,202,140,217,476,2242,590,344,678,477,0,MIDM2,216,150,525,504,0,MIDM[Formnode Object_info1]52425,39321,65535[Add_info,Object3][Add_info,Object3]Add info['Dim #','Probabilistic?','Who','Begin','Url','Description node']248,120,148,12Assessmentktluser20. Decta 2008 7:52 48,2496,48,148,24Objects1) Finds information for other parameters.
2) Adjusts the information about the Run.
There is no need to search for existing objects, because the name is unique. Thus, all additions just are ignored.var a:= object3;
var b:= findintext(wikis,Identifier of a);
b:= if b=0 then 0 else b+textlength(Wikis);
var c:= sum(if b=0 then 0 else @wikis,wikis);
b:= sum(b,wikis);
b:= if b = 0 then 0 else selecttext(a,b);
var d:= findintext(Object_types,Class of a);
d:= sum(if d=0 then 0 else indexvalue(object_types),object_types);
var f:= findid(object3,Obj,'Ident');
f:= if f>0 then f else Cardinals[table1='Obj']+@object3;
Index iobj:= ['id','Ident','Name','Unit','Typ_id','Page','Wik_id'];
a:= array(iobj,[
f,
Identifier of a,
Title of a,
Units of a,
d,
b,
c]);
Index j:= concat(iobj,add_info);
a:= concat(a, Object_info, iobj, add_info, j);
var e:= Object3;
e:= Description of e;
e:= if findintext('Describe the run in this node.',e)=1 then 1 else 0;
a:= if j = 'Name' and e=1 then a & ' Edition: Analytica '&Analyticaedition&', Platform: '&Analyticaplatform&', Version: '&Analyticaversion else a;
a:= if j = 'Typ_id' and e=1 then 9 else a;
a:= if j = 'Begin' and e=1 then datepart(today(),'Y')&'-'&datepart(today(),'M')&'-'&datepart(today(),'D') else a;
a:= if j = 'Who' and e=1 then Who_ran_the_model else a96,40,148,162,41,46,581,5712,20,60,1214,585,0,MIDM[Sys_localindex('J'),Object3]2,I,4,2,0,0,4,0,$,0,"ABBREV",0[0,1,1,0][Object_types,3,Object1,1,Iobj,1]Object3This makes a list of all indices that are used by the variables in Object1.var a:= indexnames(evaluate(Objects_excl_indices));
a:= concat(Objects_excl_indices,a);
index i:= a;
a:= slice(a,@i);
a:= if a='Object1' or a='Objects_excl_indices' then 0 else 1;
subset(a)96,64,148,132,102,90,476,4642,32,349,416,303,0,MIDM[Op_en2665,Objects_excl_indices]Write SettRuns are NOT sets. There are two major kinds of sets: Indices belonging to an assessment, and variables belonging to an assessment.index i:= ['Assessment','Assessment','Run'];
var a:= Objects1[object4=i];
var b:= array(i,[3,4,9]);
var c:= if a.j='id' then a&'+'&a[.j='Typ_id'] else a;
c:= findid(a[.j='id']&'+'&b, c, 'id');
c:= if c>0 then c else Cardinals[table1='Sett']+@i;
index j:= ['id','Obj_id','Typ_id'];
a:= array(j,[c, a[.j='id'], b])96,40,148,162,59,190,495,4442,838,349,416,303,0,MIDM65535,45873,39321[Sys_localindex('I'),Sys_localindex('J')]2,D,4,2,0,0,4,0,$,0,"ABBREV",0[]TODO: make buttons so that the static nodes are updated in the right places before they are needed for the next writing of a table.104,392,-180,68This module saves model results into the Result Database. You need a password for that. Note that the necessary variable, index, dimension, and run information will be asked. You must add all tables before the process is completed.240,48,-1236,40Note! You can insert several variables at the same time. Each variable MUST have at least one index.416,160,-176,64Te11Fill in the data below if needed (in this order).168,240,-5160,1441,0,0,1,0,1,0,,0,Username0156,132,1140,121,0,0,1,0,0,0,110,0,152425,39321,65535UsernamePassword0156,156,1140,121,0,0,1,0,0,0,110,0,152425,39321,65535PasswordWho ran the model0156,180,1140,121,0,0,1,0,0,0,110,0,152425,39321,65535Who_ran_the_modelObject0156,204,1140,131,0,0,1,0,0,0,72,0,152425,39321,65535Objects_excl_indicesObject info0156,229,1140,131,0,0,1,0,0,0,72,0,152425,39321,65535Object_infoObjects excl indices['H1898','H1899','H1900','H1901','H1902','H1903','H1904','H1905','H1906','H1907','H1908','H1909','H1910','H1911','H1912']392,264,148,242,958,152,321,481[Formnode Object2]52425,39321,65535['H1898','H1899','H1900','H1901','H1902','H1903','H1904','H1905','H1906','H1907','H1908','H1909','H1910','H1911','H1912']Run info0156,252,1140,121,0,0,1,0,0,0,72,0,152425,39321,65535Run_infoReaderktluser3. Augta 2008 18:31jtue9. lokta 2008 14:01 48,24192,64,148,241,1,1,1,1,1,0,0,0,01,15,17,593,327,17Arial, 15Var info0272,24,1160,161,0,0,1,0,0,0,214,0,1Var_infoVar result0272,56,1160,161,0,0,1,0,0,0,214,0,1Var_resultVar result1272,88,1160,161,0,0,1,0,0,0,72,0,1Var_result(vident:text, run:optional)Read meanReads the data about the var_name variable from the result database. Uses the run_id run if specified; otherwise uses the newest run of that variable.
PARAMETERS:
* Var_name: the name of the variable in the result database.
* Run_id: the identifier of the run from which the results will be brought. If omitted, the newest result will be brought.if isnotspecified(run) then run:= newestrun(vident);
index i:= DBquery(Odbc,'
SELECT Var.Ident as Vident, Var.Name as Vname, Var.Unit as Vunit, Res.id, Ind.Ident as Iident, Loct, Mean, N, Run.Name as Rname
FROM Obj as Var, Res, Locres, Loc, Obj as Ind, Obj as Run, Roww
WHERE Res.Obj_id_r = Run.id
AND Res.Obj_id_v = Var.id
AND Locres.Res_id = Res.id
AND Locres.Roww_id = Roww.id
AND Roww.Obj_id_i = Ind.id
AND Roww.Loc_id = Loc.id
');
index j:= dblabels(i);
dbtable(i,j)56,88,148,162,7,60,516,42839325,65535,39321vident,run(vident:text)NewestrunThis function checks for the newest result (according to run_id) of the variable. The function is used if the user does not define the run_id as an optional parameter in functions Do_first and Readdata.
PARAMETERS:
* Var_name: the name of the variable in the result database.
* Run_id: the identifier of the run from which the results will be brought. If omitted, the newest result will be brought.index i:= DBquery(Odbc,'
SELECT Obj_id_r
FROM Res, Obj as Var
WHERE Var.id = Res.Obj_id_v
AND Var.Ident = "'&vident&'"
GROUP BY Var.id, Obj_id_r
');
index j:= dblabels(i);
max(max(dbtable(i,j),i),j)56,120,148,162,401,51,476,56639325,65535,39321vident(vident:text; run, textornot:optional)Var sampleBrings the data from the result database and transforms it into variables of the correct form.
NOTE! All necessary indices must be created before running this function. The necessary indices can be viewed by calling the function Do_first with the same parameters as this function.
PARAMETERS:
* Vident: the Ident of the variable in the result database.
* Run: the identifier of the run from which the results will be brought. If omitted, the newest result will be brought.
* Textornot: Tells whether the result is numerical or text. If parameter is omitted or false, numerical is assumed, otherwise text.
1) Brings the data and makes indices for index list, locations, and result_id's.
2) Makes an array containing result_id, indexed by all indices and all locations.
3) Makes an array containing result_id, indexed by the indices of the variable itself.
4) Brings the results into the structure created in 3). Makes the sample fo along the index Run.var data:= Read_sample(vident, run);
var a:= data[.j='Iident'];
index ind_name:= a[.i=unique(a,a.i)];
a:= data[.j='Loct'];
index location:= a[.i=unique(a,a.i)];
a:= data[.j='Res.id'];
index result_id:= a[.i=unique(a,a.i)];
var x:= 1;
a:= null;
while x<= size(data.i) do (
var b:= data[@.i=x];
a:= if location = b[.j='Loct'] and ind_name = b[.j='Iident'] and result_id = b[.j='Res.id'] then b[.j='Res.id'] else a;
x:= x+1);
var c:= result_id;
x:= 1;
while x<=size(ind_name) do (
c:= if c= a[location=evaluate(ind_name[@ind_name=x]), @ind_name=x] then result_id else 0;
x:=x+1);
c:= sum(c,result_id);
a:= data[.j='sample'];
index sample:= a[.i=unique(a,a.i)];
x:= 1;
a:= null;
while x<= size(data.i) do (
var b:= data[@.i=x];
a:= if c = b[.j='result_id'] and sample = b[.j='sample'] then b[.j='result'] else a;
x:= x+1);
a:= if max(sample)>0 then a[sample=run] else a[@sample=1];
if isnotspecified(textornot) or textornot=false then evaluate(a) else a56,56,148,162,415,23,476,475vident,run,textornot(vident:text; run:optional)Do firstThis function brings the variable from the Result Database and analyses its structure. Each index used will be shown as a column along '.Ind_name', and each location of that index will be shown along '.K'. The last row of '.K' shows the samplesize of the variable.
Use this information to create the necessary indices for your model and to adjust the samplesize of the model. If the samplesize of the model is smaller than in the result database, the remaining samples are omitted; if larger, the cells with no results in the database are replaced with null.
NOTE! The indices created should be lists of labels (not lists of numbers).
PARAMETERS:
* Var_name: the name of the variable in the result database.
* Run_id: the identifier of the run from which the results will be brought. If omitted, the newest result will be brought.if isnotspecified(run) then run:= newestrun(vident);
var data:= Read_mean(vident, run);
index j:= ['Iident','Loct'];
var a:= data[.j=j];
index i:= unique(a,a.i);
a:= a[.i=i];
index ind_name:= a[i=unique(a[j='Iident'], i), j='Iident'];
a:= if ind_name=a[j='Iident'] then a[j='Loct'];
index b:= ['Sample size'];
var d:= array(b,[max(data[.j='Sample'])]);
concat(a,d,i,b)56,24,148,162,335,61,476,436vident,runVar infodo_first('Op_en2406')168,128,148,122,680,114,476,2242,653,32,569,698,0,MIDM[Formnode Var_info1][Sys_localindex('IND_NAME'),Sys_localindex('K')]Var resultVar_sample('H2556')168,152,148,122,612,23,639,490,0,MIDM[Formnode Var_result1, Formnode Var_result2][](index1:texttype)DescrThis node brings descriptions (if any) of each location of an index from the result database. The only parameter for function Descr is the name of an index (as text).var a:= sum((if indices[.j='Iident'] = index1 then indices[.j='Dim.id'] else 0), indices.i);
a:= if locations[.j='Dim.id'] = a and locations[.j='Loct'] = evaluate(index1) then locations[.j='Description'] else '';
jointext(a,a.i)56,152,148,162,281,63,476,313index1DescriptionsThis node brings descriptions (if any) of each location of an index from the result database. The only parameter for function Descr is the name of an index (as text).Descr('Condb_agent2')168,176,152,122,287,122,476,2242,610,365,331,391,0,MIDM[Sys_localindex('I')]Op_en2672['ang','bou','brw','caw','cho','dcc','eas','ess','fol','har','mik','nor','nww','por','sea','sev','sos','sou','sww','teh','tha','thr','wes','wrx','yor']456,152,148,24['item 1','item 2','item 3','item 4','item 5','item 6','item 7','item 8','item 9','item 10','item 11','item 12','item 13','item 14','item 15','item 16','item 17','item 18','item 19','item 20','item 21','item 22','item 23','item 24','item 25']newestrun('Op_en2406')312,152,148,24Read_mean('Op_en2406')384,200,148,242,56,66,1002,303,0,MIDM[Sys_localindex('J'),Sys_localindex('I')](vident:text; run, textornot:optional)Var meanBrings the data from the result database and transforms it into variables of the correct form.
NOTE! All necessary indices must be created before running this function. The necessary indices can be viewed by calling the function Do_first with the same parameters as this function.
PARAMETERS:
* Vident: the Ident of the variable in the result database.
* Run: the identifier of the run from which the results will be brought. If omitted, the newest result will be brought.
* Textornot: Tells whether the result is numerical or text. If parameter is omitted or false, numerical is assumed, otherwise text.
1) Brings the data and makes indices for index list, locations, and result_id's.
2) Makes an array containing result_id, indexed by all indices and all locations.
3) Makes an array containing result_id, indexed by the indices of the variable itself.
4) Brings the results into the structure created in 3). Makes the sample fo along the index Run.var data:= Read_mean(vident, run);
var a:= data[.j='Iident'];
index ind_name:= a[.i=unique(a,a.i)];
a:= data[.j='Loct'];
index location:= a[.i=unique(a,a.i)];
a:= data[.j='Res.id'];
index result_id:= a[.i=unique(a,a.i)];
var x:= 1;
a:= null;
while x<= size(data.i) do (
var b:= data[@.i=x];
a:= if location = b[.j='Loct'] and ind_name = b[.j='Iident'] and result_id = b[.j='Res.id'] then b[.j='Res.id'] else a;
x:= x+1);
var c:= result_id;
x:= 1;
while x<=size(ind_name) do (
c:= if c= a[location=evaluate(ind_name[@ind_name=x]), @ind_name=x] then result_id else 0;
x:=x+1);
c:= sum(c,result_id);
a:= data[.j='sample'];
index sample:= a[.i=unique(a,a.i)];
x:= 1;
a:= null;
while x<= size(data.i) do (
var b:= data[@.i=x];
a:= if c = b[.j='result_id'] and sample = b[.j='sample'] then b[.j='result'] else a;
x:= x+1);
a:= if max(sample)>0 then a[sample=run] else a[@sample=1];
if isnotspecified(textornot) or textornot=false then evaluate(a) else a56,184,148,162,431,23,476,475vident,run,textornot(vident:text, run:optional)Read sampleReads the data about the var_name variable from the result database. Uses the run_id run if specified; otherwise uses the newest run of that variable.
PARAMETERS:
* Var_name: the name of the variable in the result database.
* Run_id: the identifier of the run from which the results will be brought. If omitted, the newest result will be brought.if isnotspecified(run) then run:= newestrun(vident);
index i:= DBquery(Odbc,'
SELECT Res.id, Sample, Result
FROM Res, Sam
WHERE Res.Obj_id_v = "'&vident&'"
AND Res.Obj_id_r ='&Run&'
AND Sam.Res_id = Res.id
');
index j:= dblabels(i);
dbtable(i,j)56,224,148,222,7,60,516,42839325,65535,39321vident,runInstructions for uploading results to the Opasnet Base:
* Make sure that you have created an object page in the Opasnet wiki for each object you want to upload. (This applies also to assessments and runs!)
* Use the wiki identifier as the Identifier for the object in Analytica.
* Use the wiki page name as the Title for the object.
* Make sure that you have defined the Units.
* If an object with the same Ident (Analytica identifier) already exists, metadata about that object will NOT be updated. However, the actual results will be uploaded normally.208,360,-1196,192Detailsktluser8. Decta 2008 3:01 48,2464,64,148,241,15,51,556,497,17ODBC write'Driver={MySQL ODBC 5.1 Driver};Server=10.66.10.102;Database=resultdb;User='&username&'; Password='&password&';Option=3'184,248,148,121,1,0,1,1,1,0,,0,'Add username'184,200,048,121,1,1,1,1,1,0,0,0,0[Formnode Username1]52425,39321,65535'Add password'184,224,048,121,1,1,1,1,1,0,0,0,0[Formnode Password1]52425,39321,65535ODBCContains the parameters for the open database connectivity (ODBC).'Driver={MySQL ODBC 5.1 Driver};Server=10.66.10.102;Database=resultdb;User=result_reader; Password=ora4ever;Option=3'184,176,148,121,1,0,1,1,1,0,,0,2,102,90,476,224Dimindex i:= copyindex(D_i);
index j:= copyindex(D_j);
Dim1[d_i=i, d_j=j]424,64,148,131,1,0,1,1,1,0,0,0,02,89,98,476,2242,635,328,556,489,0,MIDM19661,54073,65535[D_i,D_j][Sys_localindex('J'),Sys_localindex('I')]Indindex i:= copyindex(I_i);
index j:= copyindex(I_j);
Ind1[I_i=i, I_j=j]424,88,148,131,1,0,1,1,1,0,0,0,02,380,47,476,2962,15,147,876,493,0,MIDM19661,54073,65535[Sys_localindex('J'),Sys_localindex('I')]Locindex i:= copyindex(L_i);
index j:= copyindex(L_j);
Loc1[L_i=i, L_j=j]424,112,148,131,1,0,1,1,1,0,0,0,02,370,45,476,4452,43,42,745,516,0,MIDM19661,54073,65535[Sys_localindex('J'),Sys_localindex('I')]ObjThis node checks the variables listed in Var_for_rdb and makes an index of those that are NOT found in the result database. This is then used as an index in Inp_var for adding variable information.index i:= copyindex(O_i);
index j:= copyindex(O_j);
Obj2[O_i=i, O_j=j]424,136,148,131,1,0,1,1,1,0,0,0,02,378,21,493,5012,55,147,846,421,0,MIDM19661,54073,65535[Sys_localindex('J'),Sys_localindex('I')]['H1991'][Self,1,Sys_localindex('I'),1,Sys_localindex('J'),1]Standard versions424,128,-172,1001,0,0,1,0,1,0,,0,D_i[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]80,32,148,12[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]D_j['id','Ident','Name']80,53,148,12['id','Ident','Name']I_i[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34]80,80,148,12[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34]I_j['id','Iident','Iname','Did','Dident','Dname']80,101,148,12['id','Iident','Iname','Did','Dident','Dname']L_i[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453]80,125,148,12[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453]L_j['id','Obj_id_d','Location','Locn','Num','Description','id','Ident','Name','Unit','Typ_id','Page','Wik_id']80,149,148,12['id','Obj_id_d','Location','Locn','Num','Description','id','Ident','Name','Unit','Typ_id','Page','Wik_id']O_i[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107]80,173,148,13[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107]O_j['id','Ident','Name','Unit','Typ_id','Page','Wik_id']80,197,148,13['id','Ident','Name','Unit','Typ_id','Page','Wik_id']SettThis node checks the variables listed in Var_for_rdb and makes an index of those that are NOT found in the result database. This is then used as an index in Inp_var for adding variable information.index i:= copyindex(S_i);
index j:= copyindex(S_j);
Sett1[S_i=i, S_j=j]424,208,148,131,1,0,1,1,1,0,0,0,02,378,21,493,5012,529,143,319,421,0,MIDM19661,54073,65535[Sys_localindex('J'),Sys_localindex('I')]['H1991'][Self,1,Sys_localindex('I'),1,Sys_localindex('J'),1]RowwThis node checks the variables listed in Var_for_rdb and makes an index of those that are NOT found in the result database. This is then used as an index in Inp_var for adding variable information.index i:= copyindex(R_i);
index j:= copyindex(R_j);
Roww1[R_i=i, R_j=j]424,184,148,131,1,0,1,1,1,0,0,0,02,378,21,493,5012,66,340,399,421,0,MIDM19661,54073,65535[Sys_localindex('J'),Sys_localindex('I')]['H1991'][Self,1,Sys_localindex('I'),1,Sys_localindex('J'),1]ItemThis node checks the variables listed in Var_for_rdb and makes an index of those that are NOT found in the result database. This is then used as an index in Inp_var for adding variable information.index i:= copyindex(It_i);
index j:= copyindex(It_j);
Item1[it_i=i, it_j=j]424,160,148,131,1,0,1,1,1,0,0,0,02,378,21,493,5012,529,143,700,421,0,MIDM19661,54073,65535[Sys_localindex('J'),Sys_localindex('I')]['H1991'][Self,1,Sys_localindex('I'),1,Sys_localindex('J'),1]It_i[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34]184,29,148,13[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34]It_j['id','Sett_id','Obj_id','Fail']184,53,148,13['id','Sett_id','Obj_id','Fail']R_i[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659]184,80,148,13[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659]R_j['id','Obj_id_i','Roww','Loc_id']184,101,148,13['id','Obj_id_i','Roww','Loc_id']S_i[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34]184,125,148,13[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34]S_j['id','Obj_id','Sty_id']184,149,148,13['id','Obj_id','Sty_id']DimTable(D_i,D_j)(
43,'Vehicle_type','Vehicle type',
45,'Transport_mode','Transport mode',
46,'Cost_type','Cost type',
47,'Composite_fraction','Composite fraction',
51,'Food_source','The method for food production',
52,'Feed_pollutant','Decision about fish feed',
53,'Salmon_recomm','Decision about samon consumption recommendation',
32,'0','No dimension has been identified',
54,'Parameter','Statistical and other parameters of a variable',
42,'Environ_compartment','Environmental compartment',
41,'Emission_source','Emission source',
36,'Pollutant','Pollutant',
34,'Health_impact','Health impact',
33,'Decision','Possible range of decisions for a single decision-maker',
35,'Time','Time',
40,'Period','Period',
48,'Age','Age',
37,'Spatial_location','Spatial location',
38,'Length','Length',
49,'Municipality_fin','Municipalities in Finland',
44,'Person_or_group','Person or group',
39,'Non_health_impact','Non-health impact'
)304,64,148,131,1,1,1,1,1,0,0,0,02,89,98,476,2242,604,56,556,489,0,MIDM39325,65535,39321[D_i,D_j][D_j,D_i]IndTable(I_i,I_j)(
55,'Salmon_decision','',33,'Decision','Possible range of decisions for a single decision-maker',
80,'Reg_poll','',33,'Decision','Possible range of decisions for a single decision-maker',
81,'Recommendation1','',33,'Decision','Possible range of decisions for a single decision-maker',
83,'H1899','',33,'Decision','Possible range of decisions for a single decision-maker',
84,'H1898','',33,'Decision','Possible range of decisions for a single decision-maker',
56,'Hma_area','',37,'Spatial_location','Spatial location',
57,'Hma_region','',37,'Spatial_location','Spatial location',
58,'Hma_zone','',37,'Spatial_location','Spatial location',
88,'Condb_location1','',37,'Spatial_location','Spatial location',
93,'Op_en2672','',37,'Spatial_location','Spatial location',
59,'Year_1','',35,'Time','Time',
61,'Year_2','',35,'Time','Time',
82,'Year3','',35,'Time','Time',
60,'Op_en2665','Cause of death 1',34,'Health_impact','Health impact',
62,'Cause_of_death_2','',34,'Health_impact','Health impact',
85,'Cause_of_death3','',34,'Health_impact','Health impact',
63,'Length_1','',38,'Length','Length',
70,'Output_1','',39,'Non_health_impact','Non-health impact',
65,'Period_1','',40,'Period','Period',
86,'Run','',32,'0','No dimension has been identified',
71,'Vehicle_noch','',43,'Vehicle_type','Vehicle type',
92,'Vehicle_1','',43,'Vehicle_type','Vehicle type',
72,'Stakeholder_1','',44,'Person_or_group','Person or group',
73,'Mode1','',45,'Transport_mode','Transport mode',
74,'Cost_structure_1','',46,'Cost_type','Cost type',
75,'Comp_fr_1','',47,'Composite_fraction','Composite fraction',
76,'Age1','',48,'Age','Age',
77,'Municipality_fin1','',49,'Municipality_fin','Municipalities in Finland',
79,'Salmon1','',51,'Food_source','The method for food production',
78,'Pollutant1','',36,'Pollutant','Pollutant',
89,'Condb_agent1','',36,'Pollutant','Pollutant',
91,'Condb_agent2','',36,'Pollutant','Pollutant',
87,'Condb_compartment1','',42,'Environ_compartment','Environmental compartment',
90,'Condb_param1','',54,'Parameter','Statistical and other parameters of a variable'
)304,88,148,131,1,1,1,1,1,0,0,0,02,380,47,476,2962,232,242,874,303,0,MIDM2,12,22,876,493,0,MIDM39325,65535,39321[I_j,I_i][I_j,I_i]LocTable(L_i,L_j)(
1,1,'Business as usual',0,0,'',1,'Op_en1901','Net health effects due to the consumption of salmon','avoided cases/a',1,1901,1,
2,1,'Recommend restrictions to salmon consumption',0,0,'',2,'Op_en1901','Net health effects due to the consumption of salmon','avoided cases/a',1,1901,1,
3,1,'Stricter limits for fish feed pollutants',0,0,'',3,'Op_en1901','Net health effects due to the consumption of salmon','avoided cases/a',1,1901,1,
4,1,'Restrictions to salmon consumption AND stricter fish feed limits',0,0,'',4,'Op_en1901','Net health effects due to the consumption of salmon','avoided cases/a',1,1901,1,
26,2,'All causes',0,0,'',26,'Op_en2693','Testvariable','kg',1,2693,1,
197,6,'>= 5 km',0,0,'',197,'Ppmconc_bustraffic','PM2.5 concentration from bus traffic in Helsinki in 2020','ug/m3',1,0,0,
196,6,'< 5 km',0,0,'',196,'Ppmconc_bustraffic','PM2.5 concentration from bus traffic in Helsinki in 2020','ug/m3',1,0,0,
8,3,'2020',0,0,'',8,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
7,3,'1997',0,0,'',7,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
10,2,'Cardiopulmonary',0,0,'',10,'Op_en2693','Testvariable','kg',1,2693,1,
11,2,'Lung ca',0,0,'',11,'Op_en2693','Testvariable','kg',1,2693,1,
12,2,'All others',0,0,'',12,'Op_en2693','Testvariable','kg',1,2693,1,
27,5,'Downtown',0,0,'',27,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
28,5,'Centre',0,0,'',28,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
29,5,'Suburb',0,0,'',29,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
30,5,'Länsi-Espoo',0,0,'',30,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
31,5,'Pohjois-Espoo',0,0,'',31,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
32,5,'Etelä-Espoo',0,0,'',32,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
33,5,'Keski-Espoo',0,0,'',33,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
34,5,'Länsi-Vantaa',0,0,'',34,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
35,5,'Keski-Vantaa',0,0,'',35,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
36,5,'Pohjois-Vantaa',0,0,'',36,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
37,5,'Itä-Vantaa',0,0,'',37,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
38,5,'Kanta-Helsinki',0,0,'',38,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
39,5,'Länsi-Helsinki',0,0,'',39,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
40,5,'Vanha-Helsinki',0,0,'',40,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
41,5,'Konalanseutu',0,0,'',41,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
42,5,'Pakilanseutu',0,0,'',42,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
43,5,'Malminseutu',0,0,'',43,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
44,5,'Itä-Helsinki',0,0,'',44,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
45,5,'1001',0,0,'',45,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
46,5,'1002',0,0,'',46,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
47,5,'1003',0,0,'',47,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
48,5,'1004',0,0,'',48,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
49,5,'1005',0,0,'',49,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
50,5,'1006',0,0,'',50,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
51,5,'1007',0,0,'',51,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
52,5,'1008',0,0,'',52,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
53,5,'1009',0,0,'',53,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
54,5,'1010',0,0,'',54,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
55,5,'1011',0,0,'',55,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
56,5,'1012',0,0,'',56,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
57,5,'1013',0,0,'',57,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
58,5,'1014',0,0,'',58,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
59,5,'1015',0,0,'',59,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
60,5,'1016',0,0,'',60,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
61,5,'1017',0,0,'',61,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
62,5,'1018',0,0,'',62,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
63,5,'1019',0,0,'',63,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
64,5,'1020',0,0,'',64,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
65,5,'1021',0,0,'',65,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
66,5,'1022',0,0,'',66,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
67,5,'1023',0,0,'',67,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
68,5,'1024',0,0,'',68,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
69,5,'1025',0,0,'',69,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
70,5,'1026',0,0,'',70,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
71,5,'1027',0,0,'',71,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
72,5,'1028',0,0,'',72,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
73,5,'1029',0,0,'',73,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
74,5,'1030',0,0,'',74,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
75,5,'1031',0,0,'',75,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
76,5,'1032',0,0,'',76,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
77,5,'1033',0,0,'',77,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
78,5,'1034',0,0,'',78,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
79,5,'1035',0,0,'',79,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
80,5,'1036',0,0,'',80,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
81,5,'1037',0,0,'',81,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
82,5,'1038',0,0,'',82,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
83,5,'1039',0,0,'',83,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
84,5,'1040',0,0,'',84,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
85,5,'1041',0,0,'',85,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
86,5,'1042',0,0,'',86,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
87,5,'1043',0,0,'',87,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
88,5,'1044',0,0,'',88,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
89,5,'1045',0,0,'',89,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
90,5,'1046',0,0,'',90,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
91,5,'1047',0,0,'',91,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
92,5,'1048',0,0,'',92,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
93,5,'1049',0,0,'',93,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
94,5,'1050',0,0,'',94,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
95,5,'1051',0,0,'',95,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
96,5,'1052',0,0,'',96,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
97,5,'1053',0,0,'',97,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
98,5,'1054',0,0,'',98,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
99,5,'1055',0,0,'',99,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
100,5,'1056',0,0,'',100,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
101,5,'1057',0,0,'',101,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
102,5,'1058',0,0,'',102,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
103,5,'1059',0,0,'',103,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
104,5,'1060',0,0,'',104,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
105,5,'1061',0,0,'',105,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
106,5,'1062',0,0,'',106,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
107,5,'1063',0,0,'',107,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
108,5,'1064',0,0,'',108,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
109,5,'1065',0,0,'',109,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
110,5,'1066',0,0,'',110,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
111,5,'1067',0,0,'',111,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
112,5,'1068',0,0,'',112,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
113,5,'1069',0,0,'',113,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
114,5,'1070',0,0,'',114,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
115,5,'1071',0,0,'',115,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
116,5,'1072',0,0,'',116,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
117,5,'1073',0,0,'',117,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
118,5,'1074',0,0,'',118,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
119,5,'1075',0,0,'',119,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
120,5,'1076',0,0,'',120,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
121,5,'1077',0,0,'',121,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
122,5,'1078',0,0,'',122,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
123,5,'1079',0,0,'',123,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
124,5,'1080',0,0,'',124,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
125,5,'1081',0,0,'',125,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
126,5,'1082',0,0,'',126,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
127,5,'1083',0,0,'',127,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
128,5,'1084',0,0,'',128,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
129,5,'1085',0,0,'',129,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
130,5,'1086',0,0,'',130,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
131,5,'1087',0,0,'',131,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
132,5,'1088',0,0,'',132,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
133,5,'1089',0,0,'',133,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
134,5,'1090',0,0,'',134,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
135,5,'1091',0,0,'',135,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
136,5,'1092',0,0,'',136,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
137,5,'1093',0,0,'',137,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
138,5,'1094',0,0,'',138,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
139,5,'1095',0,0,'',139,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
140,5,'1096',0,0,'',140,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
141,5,'1097',0,0,'',141,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
142,5,'1098',0,0,'',142,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
143,5,'1099',0,0,'',143,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
144,5,'1100',0,0,'',144,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
145,5,'1101',0,0,'',145,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
146,5,'1102',0,0,'',146,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
147,5,'1103',0,0,'',147,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
148,5,'1104',0,0,'',148,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
149,5,'1105',0,0,'',149,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
150,5,'1106',0,0,'',150,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
151,5,'1107',0,0,'',151,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
152,5,'1108',0,0,'',152,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
153,5,'1109',0,0,'',153,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
154,5,'1110',0,0,'',154,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
155,5,'1111',0,0,'',155,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
156,5,'1112',0,0,'',156,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
157,5,'1113',0,0,'',157,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
158,5,'1114',0,0,'',158,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
159,5,'1115',0,0,'',159,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
160,5,'1116',0,0,'',160,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
161,5,'1117',0,0,'',161,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
162,5,'1118',0,0,'',162,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
163,5,'1119',0,0,'',163,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
164,5,'1120',0,0,'',164,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
165,5,'1121',0,0,'',165,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
166,5,'1122',0,0,'',166,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
167,5,'1123',0,0,'',167,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
168,5,'1124',0,0,'',168,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
169,5,'1125',0,0,'',169,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
170,5,'1126',0,0,'',170,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
171,5,'1127',0,0,'',171,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
172,5,'1128',0,0,'',172,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
173,5,'1129',0,0,'',173,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
174,5,'1130',0,0,'',174,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
175,3,'2000',0,0,'',175,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
176,3,'2001',0,0,'',176,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
177,3,'2002',0,0,'',177,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
178,3,'2003',0,0,'',178,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
179,3,'2004',0,0,'',179,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
180,3,'2005',0,0,'',180,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
181,3,'2006',0,0,'',181,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
182,3,'2007',0,0,'',182,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
183,3,'2008',0,0,'',183,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
184,3,'2009',0,0,'',184,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
185,3,'2010',0,0,'',185,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
186,3,'2011',0,0,'',186,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
187,3,'2012',0,0,'',187,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
188,3,'2013',0,0,'',188,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
189,3,'2014',0,0,'',189,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
190,3,'2015',0,0,'',190,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
191,3,'2016',0,0,'',191,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
192,3,'2017',0,0,'',192,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
193,3,'2018',0,0,'',193,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
194,3,'2019',0,0,'',194,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
418,1,'BAU',0,0,'',418,'Op_en1901','Net health effects due to the consumption of salmon','avoided cases/a',1,1901,1,
198,8,' 6.00-20.00',0,0,'',198,'Comptraf_scenoutput','Composite traffic v.1 scenario outputs','various',1,0,0,
199,8,'20.00-24.00',0,0,'',199,'Comptraf_scenoutput','Composite traffic v.1 scenario outputs','various',1,0,0,
200,8,' 0.00- 6.00',0,0,'',200,'Comptraf_scenoutput','Composite traffic v.1 scenario outputs','various',1,0,0,
364,7,'Trips',0,0,'',364,'Op_en2202','Concentration-response to PM2.5','m3/ug',1,2202,1,
365,7,'Trips by vehicle',0,0,'',365,'Op_en2202','Concentration-response to PM2.5','m3/ug',1,2202,1,
366,7,'Vehicle km',0,0,'',366,'Op_en2202','Concentration-response to PM2.5','m3/ug',1,2202,1,
367,7,'Parking lot',0,0,'',367,'Op_en2202','Concentration-response to PM2.5','m3/ug',1,2202,1,
368,7,'Link intensity',0,0,'',368,'Op_en2202','Concentration-response to PM2.5','m3/ug',1,2202,1,
369,7,'Vehicles',0,0,'',369,'Op_en2202','Concentration-response to PM2.5','m3/ug',1,2202,1,
370,7,'Waiting',0,0,'',370,'Op_en2202','Concentration-response to PM2.5','m3/ug',1,2202,1,
371,11,'Bus no change',0,0,'',371,'Fig_5b_subsidies','Subsidies needed to obtain the composite fraction objective','e/day',1,0,0,
372,11,'Bus one change',0,0,'',372,'Fig_5b_subsidies','Subsidies needed to obtain the composite fraction objective','e/day',1,0,0,
373,11,'Cab no change',0,0,'',373,'Fig_5b_subsidies','Subsidies needed to obtain the composite fraction objective','e/day',1,0,0,
374,11,'Cab one change',0,0,'',374,'Fig_5b_subsidies','Subsidies needed to obtain the composite fraction objective','e/day',1,0,0,
375,11,'Cab non-full',0,0,'',375,'Fig_5b_subsidies','Subsidies needed to obtain the composite fraction objective','e/day',1,0,0,
376,11,'Car',0,0,'',376,'Fig_5b_subsidies','Subsidies needed to obtain the composite fraction objective','e/day',1,0,0,
377,11,'No-change',0,0,'',377,'Fig_5b_subsidies','Subsidies needed to obtain the composite fraction objective','e/day',1,0,0,
378,12,'Passenger',0,0,'',378,'Fig_5c_expanding','Societal costs at different levels of guarantee','e/day',1,0,0,
379,12,'Society',0,0,'',379,'Fig_5c_expanding','Societal costs at different levels of guarantee','e/day',1,0,0,
380,13,'Car',0,0,'',380,'Bw1','Human body weight in Harjavalta','kg',1,2475,1,
381,13,'Composite',0,0,'',381,'Bw1','Human body weight in Harjavalta','kg',1,2475,1,
382,14,'Vehicle',0,0,'',382,'Testvariable2','Another variable for testing','kg',1,0,0,
383,14,'Driver',0,0,'',383,'Testvariable2','Another variable for testing','kg',1,0,0,
384,14,'Driving',0,0,'',384,'Testvariable2','Another variable for testing','kg',1,0,0,
385,14,'Parking',0,0,'',385,'Testvariable2','Another variable for testing','kg',1,0,0,
386,14,'Parking land',0,0,'',386,'Testvariable2','Another variable for testing','kg',1,0,0,
387,14,'Emissions',0,0,'',387,'Testvariable2','Another variable for testing','kg',1,0,0,
388,14,'Time',0,0,'',388,'Testvariable2','Another variable for testing','kg',1,0,0,
389,14,'Accidents',0,0,'',389,'Testvariable2','Another variable for testing','kg',1,0,0,
390,14,'Ticket',0,0,'',390,'Testvariable2','Another variable for testing','kg',1,0,0,
391,15,'0',0,0,'',391,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
392,15,'0.02',0,0,'',392,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
393,15,'0.05',0,0,'',393,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
394,15,'0.1',0,0,'',394,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
395,15,'0.25',0,0,'',395,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
396,15,'0.4',0,0,'',396,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
397,15,'0.45',0,0,'',397,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
398,15,'0.5',0,0,'',398,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
399,15,'0.55',0,0,'',399,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
400,15,'0.65',0,0,'',400,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
401,15,'0.75',0,0,'',401,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
402,15,'0.9',0,0,'',402,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
403,15,'1',0,0,'',403,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
404,16,'18-65',0,0,'',404,'Op_en1900','Pollutant health risk due to the consumption of salmon','avoided cases/a',1,1900,1,
405,16,'3',0,0,'',405,'Op_en1900','Pollutant health risk due to the consumption of salmon','avoided cases/a',1,1900,1,
406,17,'Harjavalta',0,0,'',406,'Op_en1903','Persistent pollutant concentrations in salmon','µg/kg',1,1903,1,
407,4,'Dieldrin',0,0,'',407,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
408,4,'Toxaphene',0,0,'',408,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
409,4,'Dioxin',0,0,'',409,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
410,4,'PCB',0,0,'',410,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
411,19,'Farmed salmon',0,0,'',411,'Op_en1906','Dose-response function of persistent pollutants','(mg/kg/d)-1',1,1906,1,
412,19,'Wild salmon',0,0,'',412,'Op_en1906','Dose-response function of persistent pollutants','(mg/kg/d)-1',1,1906,1,
413,19,'Market salmon',0,0,'',413,'Op_en1906','Dose-response function of persistent pollutants','(mg/kg/d)-1',1,1906,1,
414,20,'BAU',0,0,'',414,'Op_en1907','Omega-3 content in salmon','g/g',1,1907,1,
415,20,'More actions',0,0,'',415,'Op_en1907','Omega-3 content in salmon','g/g',1,1907,1,
416,21,'BAU',0,0,'',416,'Op_en1908','Omega-3 intake due to salmon in the population of the Western Europe','g/d',1,1908,1,
417,21,'Restrict farmed salmon use',0,0,'',417,'Op_en1908','Omega-3 intake due to salmon in the population of the Western Europe','g/d',1,1908,1,
419,1,'More actions',0,0,'',419,'Op_en1901','Net health effects due to the consumption of salmon','avoided cases/a',1,1901,1,
421,1,'Restrict farmed salmon use',0,0,'',421,'Op_en1901','Net health effects due to the consumption of salmon','avoided cases/a',1,1901,1,
422,2,'Cardiovascular',0,0,'',422,'Op_en2693','Testvariable','kg',1,2693,1,
423,10,'Home indoor',0,0,'Abbreviation in the Concentration database: I',423,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
424,10,'(Home) outdoor',0,0,'Abbreviation in the Concentration database: O',424,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
425,10,'(Personal) Work',0,0,'Abbreviation in the Concentration database: W',425,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
426,10,'Personal',0,0,'Abbreviation in the Concentration database: P',426,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
427,10,'Drinking water',0,0,'Abbreviation in the Concentration database: DW',427,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
428,10,'Indoor dust',0,0,'Abbreviation in the Concentration database: ID',428,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
429,10,'Human',0,0,'Abbreviation in the Concentration database: H',429,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
430,10,'Soil',0,0,'Abbreviation in the Concentration database: S',430,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
431,10,'Beverage',0,0,'Abbreviation in the Concentration database: B',431,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
432,10,'Food',0,0,'Abbreviation in the Concentration database: F',432,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
433,10,'In-Vehicle',0,0,'Abbreviation in the Concentration database: IV',433,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
434,10,'School',0,0,'Abbreviation in the Concentration database: SC',434,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
435,5,'Athens',0,0,'Country: Greece. Abbreviation in the Concentration Database: A',435,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
436,5,'Antwerp',0,0,'Country: Belgium. Abbreviation in the Concentration Database: ANT',436,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
437,5,'Antioch-Pittsburg',0,0,'Country: USA. Abbreviation in the Concentration Database: AP',437,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
438,5,'Antioch-Pittsburg A-P',0,0,'Country: USA. Abbreviation in the Concentration Database: A-P',438,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
439,5,'Arizona',0,0,'Country: USA. Abbreviation in the Concentration Database: AZ',439,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
440,5,'Basel',0,0,'Country: Germany. Abbreviation in the Concentration Database: B',440,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
441,5,'Baltimore',0,0,'Country: USA. Abbreviation in the Concentration Database: BAL',441,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
442,5,'Bayonne',0,0,'Country: USA. Abbreviation in the Concentration Database: BAY',442,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
443,5,'Bayonne-Ellizabeth',0,0,'Country: USA. Abbreviation in the Concentration Database: BE',443,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
444,5,'Copenhagen',0,0,'Country: Denmark. Abbreviation in the Concentration Database: C',444,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
445,5,'California',0,0,'Country: USA. Abbreviation in the Concentration Database: CA',445,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
446,5,'Columbus',0,0,'Country: USA. Abbreviation in the Concentration Database: CO',446,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
447,5,'Daegu',0,0,'Country: South Korea. Abbreviation in the Concentration Database: D',447,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
448,5,'Devils Lake',0,0,'Country: USA. Abbreviation in the Concentration Database: DLA',448,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
449,5,'Dublin',0,0,'Country: Ireland. Abbreviation in the Concentration Database: DU',449,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
450,5,'Elizabeth',0,0,'Country: USA. Abbreviation in the Concentration Database: ELI',450,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
451,5,'EPA Region 5.',0,0,'Country: USA. Abbreviation in the Concentration Database: EPA5',451,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
452,5,'Flanders',0,0,'Country: Belgium. Abbreviation in the Concentration Database: FLA',452,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
453,5,'Florence',0,0,'Country: Italy. Abbreviation in the Concentration Database: FL',453,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
454,5,'Grenoble',0,0,'Country: France. Abbreviation in the Concentration Database: G',454,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
455,5,'Germany',0,0,'Country: Germany. Abbreviation in the Concentration Database: GE',455,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
456,5,'Genoa',0,0,'Country: Italy. Abbreviation in the Concentration Database: GEN',456,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
457,5,'Greensboro GNC',0,0,'Country: USA. Abbreviation in the Concentration Database: GNC',457,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
458,5,'Greensboro',0,0,'Country: USA. Abbreviation in the Concentration Database: GRB',458,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
460,5,'Helsinki',0,0,'Country: Finland. Abbreviation in the Concentration Database: H',460,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
461,5,'Hannover',0,0,'Country: Germany. Abbreviation in the Concentration Database: HA',461,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
462,5,'Ile de France',0,0,'Country: France. Abbreviation in the Concentration Database: IDF',462,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
463,5,'Los Angeles',0,0,'Country: USA. Abbreviation in the Concentration Database: LA',463,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
464,5,'Milan',0,0,'Country: Italy. Abbreviation in the Concentration Database: M',464,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
465,5,'Minneapolis',0,0,'Country: USA. Abbreviation in the Concentration Database: MP',465,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
466,5,'Minnesota',0,0,'Country: USA. Abbreviation in the Concentration Database: MS',466,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
467,5,'Murcia',0,0,'Country: Spain. Abbreviation in the Concentration Database: MU',467,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
468,5,'Mexico City',0,0,'Country: Mexico. Abbreviation in the Concentration Database: MXC',468,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
469,5,'Oxford',0,0,'Country: England. Abbreviation in the Concentration Database: O',469,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
470,5,'Prague',0,0,'Country: Czech. Abbreviation in the Concentration Database: P',470,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
471,5,'Padua',0,0,'Country: Italy. Abbreviation in the Concentration Database: PA',471,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
472,5,'Puebla',0,0,'Country: Mexico. Abbreviation in the Concentration Database: PB',472,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
473,5,'Rouen',0,0,'Country: France. Abbreviation in the Concentration Database: R',473,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
475,5,'Strasbourg',0,0,'Country: France. Abbreviation in the Concentration Database: STR',475,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
476,5,'Umbria region',0,0,'Country: Italy. Abbreviation in the Concentration Database: UMB',476,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
477,5,'United States',0,0,'Country: USA. Abbreviation in the Concentration Database: USA',477,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
478,5,'Valdez',0,0,'Country: USA. Abbreviation in the Concentration Database: VAL',478,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
479,5,'Woodland',0,0,'Country: USA. Abbreviation in the Concentration Database: WDL',479,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
480,4,'66-25-1',0,0,'hexanal',480,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
481,4,'71-36-3',0,0,'1-butanol',481,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
482,4,'71-43-2',0,0,'benzene',482,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
483,4,'78-83-1',0,0,'2-methyl-1-propanol',483,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
484,4,'79-00-5',0,0,'1,1,2-trichloroethane',484,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
485,4,'79-01-6',0,0,'trichloroethene',485,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
486,4,'80-56-8',0,0,'alfa-pinene',486,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
487,4,'91-20-3',0,0,'naphtalene',487,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
488,4,'95-47-6',0,0,'o-xylene',488,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
489,4,'95-63-6',0,0,'trimethylbenzenes',489,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
490,4,'100-41-4',0,0,'ethylbenzene',490,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
491,4,'100-42-5',0,0,'styrene',491,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
492,4,'100-52-7',0,0,'benzaldehyde',492,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
493,4,'103-65-1',0,0,'propylbenzene',493,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
494,4,'104-76-7',0,0,'2-ethylhexanol',494,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
495,4,'108-38-3',0,0,'m(&p)-xylene',495,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
496,4,'108-88-3',0,0,'toluene',496,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
497,4,'108-95-2',0,0,'phenol',497,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
498,4,'110-54-3',0,0,'hexane',498,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
499,4,'110-82-7',0,0,'cyclohexane',499,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
500,4,'111-76-2',0,0,'ethanol, 2-butoxy-',500,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
501,4,'111-84-2',0,0,'nonane',501,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
502,4,'111-87-5',0,0,'1-octanol',502,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
503,4,'124-13-0',0,0,'octanal',503,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
504,4,'124-18-5',0,0,'decane',504,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
505,4,'127-18-4',0,0,'tetrachloroethene',505,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
506,4,'138-86-3',0,0,'d-limonene',506,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
507,4,'872-50-4',0,0,'2-pyrrolidinone, 1-methyl-',507,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
508,4,'1120-21-4',0,0,'undecane',508,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
509,4,'13466-78-9',0,0,'3-caren',509,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
510,4,'TVOC',0,0,'Toluene based total VOC',510,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
511,4,'67-66-3',0,0,'chloroform',511,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
512,4,'106-46-7',0,0,'1,4-dichlorobenzene',512,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
514,4,'56-23-5',0,0,'carbon tetrachloride',514,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
515,4,'75-09-2',0,0,'methylene chloride',515,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
517,4,'127-91-3',0,0,'b-pinene',517,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
520,4,'142-82-5',0,0,'n-heptane',520,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
521,4,'111-65-9',0,0,'n-octane',521,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
525,4,'112-40-3',0,0,'n-dodecane',525,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
526,4,'629-50-5',0,0,'n-tridecane',526,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
527,4,'629-59-4',0,0,'n-tetradecane',527,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
528,4,'629-62-9',0,0,'n-pentadecane',528,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
529,4,'107-83-5',0,0,'2-methylpentane',529,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
530,4,'96-14-0',0,0,'3-methylpentane',530,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
531,4,'565-59-3',0,0,'2,3-dimethylpentane',531,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
532,4,'591-76-4',0,0,'2-methylhexane',532,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
533,4,'589-34-4',0,0,'3-methylhexane',533,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
534,4,'592-27-8',0,0,'2-methylheptane',534,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
535,4,'589-81-1',0,0,'3-methylheptane',535,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
536,4,'96-37-7',0,0,'methylcyclopentane',536,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
537,4,'108-87-2',0,0,'methylcyclohexane',537,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
538,4,'526-73-8',0,0,'1,2,3-trimethylbenzene',538,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
540,4,'108-67-8',0,0,'1,3,5 trimethylbenzene',540,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
541,4,'4994-16-5',0,0,'4-phenylcyclohexene',541,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
542,4,'1,1,1-trichloroethane',0,0,'1,1,1-trichloroethane',542,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
545,4,'141-78-6',0,0,'ethylacetate',545,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
546,4,'123-86-4',0,0,'n-butylacetate',546,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
547,4,'78-93-3',0,0,'methyl ethyl ketone',547,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
548,4,'106-35-4',0,0,'3-heptatone',548,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
549,4,'93-58-3',0,0,'methyl benzoate',549,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
552,4,'123-51-3',0,0,'iso-amyl alcohol<sup>a</sup>',552,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
554,4,'67-63-0',0,0,'2-propanol<sup>a</sup>',554,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
555,4,'1634-04-4',0,0,'t-butyl methylether',555,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
556,4,'7439-92-1',0,0,'lead',556,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
557,4,'7440-38-2',0,0,'arsenic',557,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
558,4,'7440-43-9',0,0,'cadmium',558,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
559,4,'7440-39-3',0,0,'barium',559,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
560,4,'7440-47-3',0,0,'chrome',560,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
561,4,'7440-50-8',0,0,'copper',561,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
562,4,'7439-96-5',0,0,'manganese',562,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
563,4,'7440-02-0',0,0,'nickel',563,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
564,4,'7782-49-2',0,0,'selenium',564,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
565,4,'7440-62-2',0,0,'vanadium',565,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
566,4,'7440-66-6',0,0,'zinc',566,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
567,4,'71-55-6',0,0,'1,1,1-trichloroethane',567,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
568,4,'7439-97-6',0,0,'mercury',568,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
570,4,'60-27-5',0,0,'creatinine',570,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
571,4,'7429-90-5',0,0,'aluminium',571,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
572,4,'7440-70-2',0,0,'calcium',572,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
573,4,'7439-95-4',0,0,'magnesium',573,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
574,4,'7723-14-0',0,0,'phosphorus',574,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
575,4,'7440-24-6',0,0,'strontium',575,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
576,4,'7439-89-6',0,0,'iron',576,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
577,4,'7440-09-7',0,0,'potassium',577,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
578,4,'7440-23-5',0,0,'sodium',578,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
579,4,'58-89-9',0,0,'lindane',579,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
580,4,'52645-53-1',0,0,'permenthrine',580,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
581,4,'107-13-1',0,0,'acrylonitrile',581,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
582,4,'79-06-1',0,0,'acrylamide',582,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
589,4,'611-14-3',0,0,'1-ethyl 2methyl benzene',589,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
592,4,'109-66-0',0,0,'n-pentane',592,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
593,4,'7785-26-4',0,0,'alpha-pinene',593,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
594,4,'5989-27-5',0,0,'d-limonene',594,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
596,4,'106-99-0',0,0,'butadiene',596,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
597,4,'74-84-0',0,0,'ethane',597,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
598,4,'74-85-1',0,0,'ethylene',598,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
599,4,'74-86-2',0,0,'acetylene',599,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
600,4,'107-06-2',0,0,'1,2-dichloroethane',600,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
601,4,'106-42-3',0,0,'p-xylene',601,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
603,4,'98-82-8',0,0,'isopropylbenzene',603,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
604,4,'110-86-1',0,0,'pyridine',604,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
606,4,'109-06-8',0,0,'2-picoline',606,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
608,4,'108-99-6',0,0,'3-picoline',608,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
609,4,'108-89-4',0,0,'4-picoline',609,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
610,4,'104-51-8',0,0,'n-butylbenzene',610,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
611,4,'536-78-7',0,0,'3-ethylpyridine',611,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
613,4,'25551-13-7',0,0,'trimethylbenzene',613,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
618,4,'1336-36-3',0,0,'PCBs',618,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
619,4,'3547-04-4',0,0,'DDE',619,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
620,4,'118-74-1',0,0,'HCB',620,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
621,4,'5315-79-7',0,0,'1-hydroxypyrene',621,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
623,4,'1330-20-7',0,0,'xylenes',623,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
624,4,'37210-16-5',0,0,'CO2',624,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
625,4,'630-08-0',0,0,'CO',625,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
626,4,'54-11-5',0,0,'nicotine',626,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
628,4,'3588-17-8',0,0,'trans,trans-Muconic acid',628,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
629,4,'50-32-8',0,0,'benzo(a)pyrene',629,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
631,4,'590-86-3',0,0,'isovaleraldehyde',631,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
632,4,'123-38-6',0,0,'propionaldehyde',632,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
633,4,'123-72-8',0,0,'n-butyraldehyde',633,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
634,4,'75-07-0',0,0,'acetaldehyde',634,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
636,4,'50-00-0',0,0,'formaldehyde',636,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
637,4,'110-62-3',0,0,'valeraldehyde',637,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
638,4,'4170-30-3',0,0,'crotonaldehyde',638,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
639,22,'n',0,0,'Number of observations',639,'Op_en1910','Total mortality in the Western Europe','cases/a',1,1910,1,
640,22,'n_lt_LOQ',0,0,'Number of observations below level of quantitation',640,'Op_en1910','Total mortality in the Western Europe','cases/a',1,1910,1,
641,22,'F0.10',0,0,'Fractile 0.1',641,'Op_en1910','Total mortality in the Western Europe','cases/a',1,1910,1,
642,22,'F0.50',0,0,'Fractile 0.5',642,'Op_en1910','Total mortality in the Western Europe','cases/a',1,1910,1,
643,22,'F0.90',0,0,'Fractile 0.9',643,'Op_en1910','Total mortality in the Western Europe','cases/a',1,1910,1,
644,22,'F0.95',0,0,'Fractile 0.95',644,'Op_en1910','Total mortality in the Western Europe','cases/a',1,1910,1,
645,22,'Mean',0,0,'Arithmetic mean',645,'Op_en1910','Total mortality in the Western Europe','cases/a',1,1910,1,
646,22,'GeoMean',0,0,'Geometric mean',646,'Op_en1910','Total mortality in the Western Europe','cases/a',1,1910,1,
647,5,'ang',0,0,'Anglian Water ',647,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
648,5,'bou',0,0,'Bristol Water ',648,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
649,5,'brw',0,0,'Bournemouth & West hants ',649,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
650,5,'caw',0,0,'Cambridge Water ',650,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
651,5,'cho',0,0,'Cholderton Water ',651,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
652,5,'dcc',0,0,'Dee Valley Water ',652,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
653,5,'eas',0,0,'Welsh Water ',653,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
654,5,'ess',0,0,'Essex and Suffolk Water ',654,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
655,5,'fol',0,0,'Folkestone & Dover Water ',655,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
656,5,'har',0,0,'Hartlepool Water ',656,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
657,5,'mik',0,0,'Mid Kent Water ',657,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
658,5,'nor',0,0,'Northumbrian Water ',658,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
659,5,'nww',0,0,'Portsmouth Water ',659,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
660,5,'por',0,0,'Sutton & East Surrey Water ',660,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
661,5,'sea',0,0,'South East Water ',661,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
662,5,'sev',0,0,'Southern Water ',662,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
663,5,'sos',0,0,'South Staffordshire Water ',663,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
664,5,'sou',0,0,'Severn Trent Water ',664,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
665,5,'sww',0,0,'South West Water ',665,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
666,5,'teh',0,0,'Tendring Hundred Water ',666,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
667,5,'tha',0,0,'Thames Water ',667,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
668,5,'thr',0,0,'Three Valleys Water ',668,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
669,5,'wes',0,0,'United Utilties (North West Water) ',669,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
670,5,'wrx',0,0,'Wessex Water ',670,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
671,5,'yor',0,0,'Yorkshire Water',671,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1
)304,112,148,131,1,1,1,1,1,0,0,0,02,370,45,476,4452,518,523,725,303,0,MIDM2,404,34,750,516,0,MIDM39325,65535,39321[L_j,L_i][L_j,L_i]ObjThis node checks the variables listed in Var_for_rdb and makes an index of those that are NOT found in the result database. This is then used as an index in Inp_var for adding variable information.Table(O_i,O_j)(
1,'Op_en1901','Net health effects due to the consumption of salmon','avoided cases/a',1,1901,1,
2,'Op_en2693','Testvariable','kg',1,2693,1,
3,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
4,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
5,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
6,'Ppmconc_bustraffic','PM2.5 concentration from bus traffic in Helsinki in 2020','ug/m3',1,0,0,
7,'Op_en2202','Concentration-response to PM2.5','m3/ug',1,2202,1,
8,'Comptraf_scenoutput','Composite traffic v.1 scenario outputs','various',1,0,0,
9,'Fig_3_cost_by_source','Cost by source','e/trip',1,0,0,
10,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
11,'Fig_5b_subsidies','Subsidies needed to obtain the composite fraction objective','e/day',1,0,0,
12,'Fig_5c_expanding','Societal costs at different levels of guarantee','e/day',1,0,0,
13,'Bw1','Human body weight in Harjavalta','kg',1,2475,1,
14,'Testvariable2','Another variable for testing','kg',1,0,0,
15,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
16,'Op_en1900','Pollutant health risk due to the consumption of salmon','avoided cases/a',1,1900,1,
17,'Op_en1903','Persistent pollutant concentrations in salmon','µg/kg',1,1903,1,
18,'Op_en1905','Exposure to persistent pollutants due to salmon in the population of the Western Europe','µg/kg/d',1,1905,1,
19,'Op_en1906','Dose-response function of persistent pollutants','(mg/kg/d)-1',1,1906,1,
20,'Op_en1907','Omega-3 content in salmon','g/g',1,1907,1,
21,'Op_en1908','Omega-3 intake due to salmon in the population of the Western Europe','g/d',1,1908,1,
22,'Op_en1910','Total mortality in the Western Europe','cases/a',1,1910,1,
23,'Op_en1911','Cardiovascular mortality in the Western Europe','cases/a',1,1911,1,
24,'Op_en1912','Cardiovascular effects of omega-3 in salmon in teh Western Europe','avoided cases/a',1,1912,1,
25,'Op_en1898','Recommendation for consumption of farmed salmon','-',1,1898,1,
26,'Op_en1899','Pollutant concentration limits for fish feed','-',1,1899,1,
27,'Op_en1902','Persistent pollutant concentrations in fish feed','fraction',1,1902,1,
28,'Op_en1904','Salmon intake in the population of the Western Europe','g/d',1,1904,1,
29,'Op_en1909','ERF of omega-3 fatty acids on cardiovascular effects','1/(g/d)',1,1909,1,
30,'Op_en2556','Personal exposures to volatile organic compounds in Germany','ug/m^3',1,2556,1,
31,'Op_en2406','Excess cases of iMetHb in England and Wales','number',1,2406,1,
33,'Decision','Possible range of decisions for a single decision-maker','-',2,2496,1,
34,'Health_impact','Health impact','',2,2495,1,
35,'Time','Time','s or date',2,2497,1,
36,'Pollutant','Pollutant','-',2,2493,1,
37,'Spatial_location','Spatial location',' km or °',2,2498,1,
38,'Length','Length','km',2,2498,1,
39,'Non_health_impact','Non-health impact','-',2,2500,1,
40,'Period','Period','s',2,2497,1,
41,'Emission_source','Emission source','-',2,2492,1,
42,'Environ_compartment','Environmental compartment','-',2,2490,1,
43,'Vehicle_type','Vehicle type','-',2,0,0,
44,'Person_or_group','Person or group','-',2,2499,1,
45,'Transport_mode','Transport mode','-',2,0,0,
46,'Cost_type','Cost type','-',2,0,0,
47,'Composite_fraction','Composite fraction','fraction',2,0,0,
48,'Age','Age','a',2,2497,1,
49,'Municipality_fin','Municipalities in Finland','-',2,2498,1,
51,'Food_source','The method for food production','-',2,0,0,
52,'Feed_pollutant','Decision about fish feed','-',2,0,0,
53,'Salmon_recomm','Decision about samon consumption recommendation','-',2,0,0,
32,'0','No dimension has been identified','-',2,0,0,
54,'Parameter','Statistical and other parameters of a variable','-',2,0,0,
55,'Salmon_decision','','',6,0,0,
56,'Hma_area','','',6,0,0,
57,'Hma_region','','',6,0,0,
58,'Hma_zone','','',6,0,0,
59,'Year_1','','',6,0,0,
60,'Op_en2665','Cause of death 1','ICD-10',6,2665,1,
61,'Year_2','','',6,0,0,
62,'Cause_of_death_2','','',6,0,0,
63,'Length_1','','',6,0,0,
70,'Output_1','','',6,0,0,
65,'Period_1','','',6,0,0,
86,'Run','','',6,0,0,
71,'Vehicle_noch','','',6,0,0,
72,'Stakeholder_1','','',6,0,0,
73,'Mode1','','',6,0,0,
74,'Cost_structure_1','','',6,0,0,
75,'Comp_fr_1','','',6,0,0,
76,'Age1','','',6,0,0,
77,'Municipality_fin1','','',6,0,0,
82,'Year3','','',6,0,0,
81,'Recommendation1','','',6,0,0,
80,'Reg_poll','','',6,0,0,
79,'Salmon1','','',6,0,0,
78,'Pollutant1','','',6,0,0,
83,'H1899','','',6,0,0,
84,'H1898','','',6,0,0,
85,'Cause_of_death3','','',6,0,0,
87,'Condb_compartment1','','',6,0,0,
88,'Condb_location1','','',6,0,0,
89,'Condb_agent1','','',6,0,0,
90,'Condb_param1','','',6,0,0,
91,'Condb_agent2','','',6,0,0,
92,'Vehicle_1','','',6,0,0,
93,'Op_en2672','','',6,0,0,
94,'94','Analytica','',9,0,0,
95,'95','Analytica 4.1.0.9','',9,0,0,
97,'97','Analytica 4.1.0.9, CompositeTraffic_1_0_6.ana v. 11:47, 1000 iterations','',9,0,0,
99,'99','Analytica 4.1.0.9, RDB connection.ANA, 100 iterations','',9,0,0,
100,'100','RDB connection.ANA v. 1.9.2008, Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 100','',9,0,0,
101,'101','RDB connection.ANA v. 2.9.2008. Test data only., Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 100','',9,0,0,
102,'102','RDB connection.ANA v. 3.9.2008 b. Test data only., Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 100','',9,0,0,
103,'103','Farmed salmon.ANA 10:36, 31 December 2007, RDB connection.ANA 13:58, 3 September 2008, Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 1000','',9,0,0,
104,'104','Farmed salmon.ANA 10:36, 31 December 2007, RDB connection.ANA 13:58, 3 September 2008, Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 1000','',9,0,0,
105,'105','Farmed salmon.ANA 10:36, 31 December 2007, RDB connection.ANA 13:58, 3 September 2008, Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 1000','',9,0,0,
106,'106','Farmed salmon.ANA 10:36, 31 December 2007, RDB connection.ANA 13:58, 3 September 2008, Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 10','',9,0,0,
107,'107','Farmed salmon.ANA 8.9.2008, RDB connection.ANA 8.9.2008, Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 10','',9,0,0,
108,'108','Farmed salmon.ANA 8.9.2008, RDB connection.ANA 8.9.2008, Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 1000','',9,0,0,
98,'98','Test','',9,0,0,
109,'109',' CompositeTraffic_1_0_6.ANA 16.9.2008, RDB connection.ANA 16.9.2008, Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 10','',9,0,0,
110,'110',' CompositeTraffic_1_0_6.ANA 16.9.2008, RDB connection.ANA 16.9.2008, Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 1000','',9,0,0,
111,'111','RDB connection.ANA 16.9.2008, Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 100','',9,0,0,
112,'112','RDB connection.ANA 9.10.2008, Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 100','',9,0,0,
113,'113','RDB connection.ANA 9.10.2008, Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 10','',9,0,0,
114,'Op_en2694','RDB connection.ANA 9.10.2008, Edition: Enterprise, Platform: Windows, Version: 40100, Samplesize: 10',0,9,0,0
)304,136,148,131,1,1,1,1,1,0,0,0,02,378,21,493,5012,152,162,1057,343,0,MIDM2,573,21,700,421,0,MIDM39325,65535,39321[O_j,O_i][O_j,O_i]['H1991'][Self,1,Sys_localindex('I'),1,Sys_localindex('J'),1]SettThis node checks the variables listed in Var_for_rdb and makes an index of those that are NOT found in the result database. This is then used as an index in Inp_var for adding variable information.Table(S_i,S_j)(
1,33,1,
2,37,1,
3,37,1,
4,37,1,
5,35,1,
6,34,1,
7,35,1,
8,34,1,
9,38,1,
10,39,1,
11,40,1,
12,32,1,
13,43,1,
14,44,1,
15,45,1,
16,46,1,
17,47,1,
18,48,1,
19,49,1,
20,35,1,
21,33,1,
22,33,1,
23,51,1,
24,36,1,
25,33,1,
26,33,1,
27,34,1,
28,42,1,
29,37,1,
30,36,1,
31,54,1,
32,36,1,
33,43,1,
34,37,1
)304,208,148,131,1,1,1,1,1,0,0,0,02,378,21,493,5012,529,143,700,421,0,MIDM39325,65535,39321[S_j,S_i][S_i,S_j]['H1991'][Self,1,Sys_localindex('I'),1,Sys_localindex('J'),1]RowwThis node checks the variables listed in Var_for_rdb and makes an index of those that are NOT found in the result database. This is then used as an index in Inp_var for adding variable information.Table(R_i,R_j)(
1,58,1,27,
2,58,2,28,
3,58,3,29,
4,57,1,30,
5,57,2,31,
6,57,3,32,
7,57,4,33,
8,57,5,34,
9,57,6,35,
10,57,7,36,
11,57,8,37,
12,57,9,38,
13,57,10,39,
14,57,11,40,
15,57,12,41,
16,57,13,42,
17,57,14,43,
18,57,15,44,
19,56,1,45,
20,56,2,46,
21,56,3,47,
22,56,4,48,
23,56,5,49,
24,56,6,50,
25,56,7,51,
26,56,8,52,
27,56,9,53,
28,56,10,54,
29,56,11,55,
30,56,12,56,
31,56,13,57,
32,56,14,58,
33,56,15,59,
34,56,16,60,
35,56,17,61,
36,56,18,62,
37,56,19,63,
38,56,20,64,
39,56,21,65,
40,56,22,66,
41,56,23,67,
42,56,24,68,
43,56,25,69,
44,56,26,70,
45,56,27,71,
46,56,28,72,
47,56,29,73,
48,56,30,74,
49,56,31,75,
50,56,32,76,
51,56,33,77,
52,56,34,78,
53,56,35,79,
54,56,36,80,
55,56,37,81,
56,56,38,82,
57,56,39,83,
58,56,40,84,
59,56,41,85,
60,56,42,86,
61,56,43,87,
62,56,44,88,
63,56,45,89,
64,56,46,90,
65,56,47,91,
66,56,48,92,
67,56,49,93,
68,56,50,94,
69,56,51,95,
70,56,52,96,
71,56,53,97,
72,56,54,98,
73,56,55,99,
74,56,56,100,
75,56,57,101,
76,56,58,102,
77,56,59,103,
78,56,60,104,
79,56,61,105,
80,56,62,106,
81,56,63,107,
82,56,64,108,
83,56,65,109,
84,56,66,110,
85,56,67,111,
86,56,68,112,
87,56,69,113,
88,56,70,114,
89,56,71,115,
90,56,72,116,
91,56,73,117,
92,56,74,118,
93,56,75,119,
94,56,76,120,
95,56,77,121,
96,56,78,122,
97,56,79,123,
98,56,80,124,
99,56,81,125,
100,56,82,126,
101,56,83,127,
102,56,84,128,
103,56,85,129,
104,56,86,130,
105,56,87,131,
106,56,88,132,
107,56,89,133,
108,56,90,134,
109,56,91,135,
110,56,92,136,
111,56,93,137,
112,56,94,138,
113,56,95,139,
114,56,96,140,
115,56,97,141,
116,56,98,142,
117,56,99,143,
118,56,100,144,
119,56,101,145,
120,56,102,146,
121,56,103,147,
122,56,104,148,
123,56,105,149,
124,56,106,150,
125,56,107,151,
126,56,108,152,
127,56,109,153,
128,56,110,154,
129,56,111,155,
130,56,112,156,
131,56,113,157,
132,56,114,158,
133,56,115,159,
134,56,116,160,
135,56,117,161,
136,56,118,162,
137,56,119,163,
138,56,120,164,
139,56,121,165,
140,56,122,166,
141,56,123,167,
142,56,124,168,
143,56,125,169,
144,56,126,170,
145,56,127,171,
146,56,128,172,
147,56,129,173,
148,56,130,174,
149,55,1,1,
150,55,2,2,
151,55,3,3,
152,55,4,4,
153,59,1,7,
154,59,2,8,
155,60,1,10,
156,60,2,11,
157,60,3,12,
158,61,1,175,
159,61,2,176,
160,61,3,177,
161,61,4,178,
162,61,5,179,
163,61,6,180,
164,61,7,181,
165,61,8,182,
166,61,9,183,
167,61,10,184,
168,61,11,185,
169,61,12,186,
170,61,13,187,
171,61,14,188,
172,61,15,189,
173,61,16,190,
174,61,17,191,
175,61,18,192,
176,61,19,193,
177,61,20,194,
178,61,21,8,
179,62,1,10,
180,62,2,11,
181,62,3,12,
182,62,4,26,
183,63,1,196,
184,63,2,197,
185,65,1,198,
186,65,3,200,
187,66,85,285,
188,66,84,284,
189,66,83,283,
190,66,82,282,
191,66,81,281,
192,65,2,199,
193,66,80,280,
194,66,79,279,
195,66,78,278,
196,66,77,277,
197,66,76,276,
198,66,75,275,
199,66,74,274,
200,66,73,273,
201,66,72,272,
202,66,71,271,
203,66,70,270,
204,66,69,269,
205,66,68,268,
206,66,67,267,
207,66,66,266,
208,66,65,265,
209,66,64,264,
210,66,63,263,
211,66,62,262,
212,66,61,261,
213,66,60,260,
214,66,59,259,
215,66,58,258,
216,66,57,257,
217,66,56,256,
218,66,55,255,
219,66,54,254,
220,66,53,253,
221,66,52,252,
222,66,51,251,
223,66,50,250,
224,66,49,249,
225,66,48,248,
226,66,47,247,
227,66,46,246,
228,66,45,245,
229,66,44,244,
230,66,43,243,
231,66,42,242,
232,66,41,241,
233,66,40,240,
234,66,39,239,
235,66,38,238,
236,66,37,237,
237,66,36,236,
238,66,35,235,
239,66,34,234,
240,66,33,233,
241,66,32,232,
242,66,31,231,
243,66,30,230,
244,66,29,229,
245,66,28,228,
246,66,27,227,
247,66,26,226,
248,66,25,225,
249,66,24,224,
250,66,23,223,
251,66,22,222,
252,66,21,221,
253,66,20,220,
254,66,19,219,
255,66,18,218,
256,66,17,217,
257,66,16,216,
258,66,15,215,
259,66,14,214,
260,66,13,213,
261,66,12,212,
262,66,11,211,
263,66,10,210,
264,66,9,209,
265,66,8,208,
266,66,7,207,
267,66,6,206,
268,66,5,205,
269,66,4,204,
270,66,3,203,
271,66,2,202,
272,66,1,201,
273,71,7,377,
274,71,6,376,
275,71,5,375,
276,71,4,374,
277,71,3,373,
278,71,2,372,
279,71,1,371,
280,66,163,363,
281,66,162,362,
282,66,161,361,
283,66,160,360,
284,66,159,359,
285,66,158,358,
286,66,157,357,
287,66,156,356,
288,66,155,355,
289,66,154,354,
290,66,153,353,
291,66,152,352,
292,66,151,351,
293,66,150,350,
294,66,149,349,
295,66,148,348,
296,66,147,347,
297,66,146,346,
298,66,145,345,
299,66,144,344,
300,66,143,343,
301,66,142,342,
302,66,141,341,
303,66,140,340,
304,66,139,339,
305,66,138,338,
306,66,137,337,
307,66,136,336,
308,66,135,335,
309,66,134,334,
310,66,133,333,
311,66,132,332,
312,66,131,331,
313,66,130,330,
314,66,129,329,
315,66,128,328,
316,66,127,327,
317,66,126,326,
318,66,125,325,
319,66,124,324,
320,66,123,323,
321,66,122,322,
322,66,121,321,
323,66,120,320,
324,66,119,319,
325,66,118,318,
326,66,117,317,
327,66,116,316,
328,66,115,315,
329,66,114,314,
330,66,113,313,
331,66,112,312,
332,66,111,311,
333,66,110,310,
334,66,109,309,
335,66,108,308,
336,66,107,307,
337,66,106,306,
338,66,105,305,
339,66,104,304,
340,66,103,303,
341,66,102,302,
342,66,101,301,
343,66,100,300,
344,66,99,299,
345,66,98,298,
346,66,97,297,
347,66,96,296,
348,66,95,295,
349,66,94,294,
350,66,93,293,
351,66,92,292,
352,66,91,291,
353,66,90,290,
354,66,89,289,
355,66,88,288,
356,66,87,287,
357,66,86,286,
358,73,1,380,
359,72,2,379,
360,72,1,378,
361,74,3,384,
362,74,2,383,
363,74,1,382,
364,73,2,381,
365,70,7,370,
366,70,6,369,
367,70,5,368,
368,70,4,367,
369,70,3,366,
370,70,2,365,
371,70,1,364,
372,74,4,385,
373,74,5,386,
374,74,6,387,
375,74,7,388,
376,74,8,389,
377,74,9,390,
378,75,1,391,
379,75,2,392,
380,75,3,393,
381,75,4,394,
382,75,5,395,
383,75,6,396,
384,75,7,397,
385,75,8,398,
386,75,9,399,
387,75,10,400,
388,75,11,401,
389,75,12,402,
390,75,13,403,
391,76,1,404,
392,76,2,405,
393,77,1,406,
394,78,1,407,
395,78,2,408,
396,78,3,409,
397,78,4,410,
398,79,1,411,
399,79,2,412,
400,79,3,413,
401,80,1,414,
402,80,2,415,
403,81,1,416,
404,81,2,417,
405,82,1,175,
406,83,1,418,
407,83,2,419,
408,84,1,418,
409,84,2,421,
410,85,1,422,
411,87,1,423,
412,87,2,424,
413,87,3,425,
414,87,4,426,
415,87,5,427,
416,87,6,428,
417,87,7,429,
418,87,8,430,
419,87,9,431,
420,87,10,432,
421,87,11,433,
422,87,12,434,
423,88,1,435,
424,88,2,436,
425,88,3,437,
426,88,4,438,
427,88,5,439,
428,88,6,440,
429,88,7,441,
430,88,8,442,
431,88,9,443,
432,88,10,444,
433,88,11,445,
434,88,12,446,
435,88,13,447,
436,88,14,448,
437,88,15,449,
438,88,16,450,
439,88,17,451,
440,88,18,452,
441,88,19,453,
442,88,20,454,
443,88,21,455,
444,88,22,456,
445,88,23,457,
446,88,24,458,
447,88,25,459,
448,88,26,460,
449,88,27,461,
450,88,28,462,
451,88,29,463,
452,88,30,464,
453,88,31,465,
454,88,32,466,
455,88,33,467,
456,88,34,468,
457,88,35,469,
458,88,36,470,
459,88,37,471,
460,88,38,472,
461,88,39,473,
462,88,40,474,
463,88,41,475,
464,88,42,476,
465,88,43,477,
466,88,44,478,
467,88,45,479,
468,89,1,480,
469,89,2,481,
470,89,3,482,
471,89,4,483,
472,89,5,484,
473,89,6,485,
474,89,7,486,
475,89,8,487,
476,89,9,488,
477,89,10,489,
478,89,11,490,
479,89,12,491,
480,89,13,492,
481,89,14,493,
482,89,15,494,
483,89,16,495,
484,89,17,496,
485,89,18,497,
486,89,19,498,
487,89,20,499,
488,89,21,500,
489,89,22,501,
490,89,23,502,
491,89,24,503,
492,89,25,504,
493,89,26,505,
494,89,27,506,
495,89,28,507,
496,89,29,508,
497,89,30,509,
498,89,31,510,
499,89,32,511,
500,89,33,512,
501,89,34,513,
502,89,35,514,
503,89,36,515,
504,89,37,516,
505,89,38,517,
506,89,39,518,
507,89,40,519,
508,89,41,520,
509,89,42,521,
510,89,43,522,
511,89,44,523,
512,89,45,524,
513,89,46,525,
514,89,47,526,
515,89,48,527,
516,89,49,528,
517,89,50,529,
518,89,51,530,
519,89,52,531,
520,89,53,532,
521,89,54,533,
522,89,55,534,
523,89,56,535,
524,89,57,536,
525,89,58,537,
526,89,59,538,
527,89,60,539,
528,89,61,540,
529,89,62,541,
530,89,63,542,
531,89,64,543,
532,89,65,544,
533,89,66,545,
534,89,67,546,
535,89,68,547,
536,89,69,548,
537,89,70,549,
538,89,71,550,
539,89,72,551,
540,89,73,552,
541,89,74,553,
542,89,75,554,
543,89,76,555,
544,89,77,556,
545,89,78,557,
546,89,79,558,
547,89,80,559,
548,89,81,560,
549,89,82,561,
550,89,83,562,
551,89,84,563,
552,89,85,564,
553,89,86,565,
554,89,87,566,
555,89,88,567,
556,89,89,568,
557,89,90,569,
558,89,91,570,
559,89,92,571,
560,89,93,572,
561,89,94,573,
562,89,95,574,
563,89,96,575,
564,89,97,576,
565,89,98,577,
566,89,99,578,
567,89,100,579,
568,89,101,580,
569,89,102,581,
570,89,103,582,
571,89,104,583,
572,89,105,584,
573,89,106,585,
574,89,107,586,
575,89,108,587,
576,89,109,588,
577,89,110,589,
578,89,111,590,
579,89,112,591,
580,89,113,592,
581,89,114,593,
582,89,115,594,
583,89,116,595,
584,89,117,596,
585,89,118,597,
586,89,119,598,
587,89,120,599,
588,89,121,600,
589,89,122,601,
590,89,123,602,
591,89,124,603,
592,89,125,604,
593,89,126,605,
594,89,127,606,
595,89,128,607,
596,89,129,608,
597,89,130,609,
598,89,131,610,
599,89,132,611,
600,89,133,612,
601,89,134,613,
602,89,135,614,
603,89,136,615,
604,89,137,616,
605,89,138,617,
606,89,139,618,
607,89,140,619,
608,89,141,620,
609,89,142,621,
610,89,143,622,
611,89,144,623,
612,89,145,624,
613,89,146,625,
614,89,147,626,
615,89,148,627,
616,89,149,628,
617,89,150,629,
618,89,151,630,
619,89,152,631,
620,89,153,632,
621,89,154,633,
622,89,155,634,
623,89,156,635,
624,89,157,636,
625,89,158,637,
626,89,159,638,
627,94,6,652,
628,94,5,651,
629,94,4,650,
630,94,3,649,
631,94,2,648,
632,94,1,647,
633,90,1,639,
634,90,2,640,
635,90,3,641,
636,90,4,642,
637,90,5,643,
638,90,6,644,
639,90,7,645,
640,90,8,646,
641,94,7,653,
642,94,8,654,
643,94,9,655,
644,94,10,656,
645,94,11,657,
646,94,12,658,
647,94,13,659,
648,94,14,660,
649,94,15,661,
650,94,16,662,
651,94,17,663,
652,94,18,664,
653,94,19,665,
654,94,20,666,
655,94,21,667,
656,94,22,668,
657,94,23,669,
658,94,24,670,
659,94,25,671
)304,184,148,131,1,1,1,1,1,0,0,0,02,378,21,493,5012,529,143,700,421,0,MIDM39325,65535,39321[R_j,R_i][R_i,R_j]['H1991'][Self,1,Sys_localindex('I'),1,Sys_localindex('J'),1]ItemThis node checks the variables listed in Var_for_rdb and makes an index of those that are NOT found in the result database. This is then used as an index in Inp_var for adding variable information.Table(It_i,It_j)(
1,1,55,0,
2,2,56,0,
3,2,57,0,
4,2,58,0,
5,5,59,0,
6,6,60,0,
7,5,61,0,
8,6,62,0,
9,9,63,0,
10,11,65,0,
11,10,70,0,
12,13,71,0,
13,14,72,0,
14,15,73,0,
15,16,74,0,
16,17,75,0,
17,18,76,0,
18,19,77,0,
19,24,78,0,
20,23,79,0,
21,1,80,0,
22,1,81,0,
23,5,82,0,
24,1,83,0,
25,1,84,0,
26,6,85,0,
27,12,86,0,
28,28,87,0,
29,2,88,0,
30,24,89,0,
31,31,90,0,
32,24,91,0,
33,13,92,0,
34,2,93,0
)304,160,148,131,1,1,1,1,1,0,0,0,02,378,21,493,5012,529,143,700,421,0,MIDM39325,65535,39321[It_j,It_i][It_i,It_j]['H1991'][Self,1,Sys_localindex('I'),1,Sys_localindex('J'),1]DescrTable(D_i,D_j)(
43,'Vehicle_type','Vehicle type',
45,'Transport_mode','Transport mode',
46,'Cost_type','Cost type',
47,'Composite_fraction','Composite fraction',
51,'Food_source','The method for food production',
52,'Feed_pollutant','Decision about fish feed',
53,'Salmon_recomm','Decision about samon consumption recommendation',
32,'0','No dimension has been identified',
54,'Parameter','Statistical and other parameters of a variable',
42,'Environ_compartment','Environmental compartment',
41,'Emission_source','Emission source',
36,'Pollutant','Pollutant',
34,'Health_impact','Health impact',
33,'Decision','Possible range of decisions for a single decision-maker',
35,'Time','Time',
40,'Period','Period',
48,'Age','Age',
37,'Spatial_location','Spatial location',
38,'Length','Length',
49,'Municipality_fin','Municipalities in Finland',
44,'Person_or_group','Person or group',
39,'Non_health_impact','Non-health impact'
)304,240,148,131,1,1,1,1,1,0,0,0,02,89,98,476,2242,604,56,556,489,0,MIDM39325,65535,39321[D_i,D_j][D_j,D_i]InfTable(I_i,I_j)(
55,'Salmon_decision','',33,'Decision','Possible range of decisions for a single decision-maker',
80,'Reg_poll','',33,'Decision','Possible range of decisions for a single decision-maker',
81,'Recommendation1','',33,'Decision','Possible range of decisions for a single decision-maker',
83,'H1899','',33,'Decision','Possible range of decisions for a single decision-maker',
84,'H1898','',33,'Decision','Possible range of decisions for a single decision-maker',
56,'Hma_area','',37,'Spatial_location','Spatial location',
57,'Hma_region','',37,'Spatial_location','Spatial location',
58,'Hma_zone','',37,'Spatial_location','Spatial location',
88,'Condb_location1','',37,'Spatial_location','Spatial location',
93,'Op_en2672','',37,'Spatial_location','Spatial location',
59,'Year_1','',35,'Time','Time',
61,'Year_2','',35,'Time','Time',
82,'Year3','',35,'Time','Time',
60,'Cause_of_death_1','',34,'Health_impact','Health impact',
62,'Cause_of_death_2','',34,'Health_impact','Health impact',
85,'Cause_of_death3','',34,'Health_impact','Health impact',
63,'Length_1','',38,'Length','Length',
70,'Output_1','',39,'Non_health_impact','Non-health impact',
65,'Period_1','',40,'Period','Period',
86,'Run','',32,'0','No dimension has been identified',
71,'Vehicle_noch','',43,'Vehicle_type','Vehicle type',
92,'Vehicle_1','',43,'Vehicle_type','Vehicle type',
72,'Stakeholder_1','',44,'Person_or_group','Person or group',
73,'Mode1','',45,'Transport_mode','Transport mode',
74,'Cost_structure_1','',46,'Cost_type','Cost type',
75,'Comp_fr_1','',47,'Composite_fraction','Composite fraction',
76,'Age1','',48,'Age','Age',
77,'Municipality_fin1','',49,'Municipality_fin','Municipalities in Finland',
79,'Salmon1','',51,'Food_source','The method for food production',
78,'Pollutant1','',36,'Pollutant','Pollutant',
89,'Condb_agent1','',36,'Pollutant','Pollutant',
91,'Condb_agent2','',36,'Pollutant','Pollutant',
87,'Condb_compartment1','',42,'Environ_compartment','Environmental compartment',
90,'Condb_param1','',54,'Parameter','Statistical and other parameters of a variable'
)304,264,148,131,1,1,1,1,1,0,0,0,02,380,47,476,2962,232,242,874,303,0,MIDM2,209,67,876,493,0,MIDM39325,65535,39321[I_j,I_i][I_j,I_i]LocresTable(L_i,L_j)(
1,1,'Business as usual',0,0,'',1,'Op_en1901','Net health effects due to the consumption of salmon','avoided cases/a',1,1901,1,
2,1,'Recommend restrictions to salmon consumption',0,0,'',2,'Op_en1901','Net health effects due to the consumption of salmon','avoided cases/a',1,1901,1,
3,1,'Stricter limits for fish feed pollutants',0,0,'',3,'Op_en1901','Net health effects due to the consumption of salmon','avoided cases/a',1,1901,1,
4,1,'Restrictions to salmon consumption AND stricter fish feed limits',0,0,'',4,'Op_en1901','Net health effects due to the consumption of salmon','avoided cases/a',1,1901,1,
26,2,'All causes',0,0,'',26,'Testvariable','Variable used for testing','kmh',1,0,0,
197,6,'>= 5 km',0,0,'',197,'Ppmconc_bustraffic','PM2.5 concentration from bus traffic in Helsinki in 2020','ug/m3',1,0,0,
196,6,'< 5 km',0,0,'',196,'Ppmconc_bustraffic','PM2.5 concentration from bus traffic in Helsinki in 2020','ug/m3',1,0,0,
8,3,'2020',0,0,'',8,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
7,3,'1997',0,0,'',7,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
10,2,'Cardiopulmonary',0,0,'',10,'Testvariable','Variable used for testing','kmh',1,0,0,
11,2,'Lung ca',0,0,'',11,'Testvariable','Variable used for testing','kmh',1,0,0,
12,2,'All others',0,0,'',12,'Testvariable','Variable used for testing','kmh',1,0,0,
27,5,'Downtown',0,0,'',27,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
28,5,'Centre',0,0,'',28,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
29,5,'Suburb',0,0,'',29,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
30,5,'Länsi-Espoo',0,0,'',30,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
31,5,'Pohjois-Espoo',0,0,'',31,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
32,5,'Etelä-Espoo',0,0,'',32,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
33,5,'Keski-Espoo',0,0,'',33,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
34,5,'Länsi-Vantaa',0,0,'',34,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
35,5,'Keski-Vantaa',0,0,'',35,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
36,5,'Pohjois-Vantaa',0,0,'',36,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
37,5,'Itä-Vantaa',0,0,'',37,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
38,5,'Kanta-Helsinki',0,0,'',38,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
39,5,'Länsi-Helsinki',0,0,'',39,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
40,5,'Vanha-Helsinki',0,0,'',40,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
41,5,'Konalanseutu',0,0,'',41,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
42,5,'Pakilanseutu',0,0,'',42,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
43,5,'Malminseutu',0,0,'',43,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
44,5,'Itä-Helsinki',0,0,'',44,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
45,5,'1001',0,0,'',45,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
46,5,'1002',0,0,'',46,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
47,5,'1003',0,0,'',47,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
48,5,'1004',0,0,'',48,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
49,5,'1005',0,0,'',49,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
50,5,'1006',0,0,'',50,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
51,5,'1007',0,0,'',51,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
52,5,'1008',0,0,'',52,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
53,5,'1009',0,0,'',53,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
54,5,'1010',0,0,'',54,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
55,5,'1011',0,0,'',55,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
56,5,'1012',0,0,'',56,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
57,5,'1013',0,0,'',57,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
58,5,'1014',0,0,'',58,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
59,5,'1015',0,0,'',59,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
60,5,'1016',0,0,'',60,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
61,5,'1017',0,0,'',61,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
62,5,'1018',0,0,'',62,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
63,5,'1019',0,0,'',63,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
64,5,'1020',0,0,'',64,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
65,5,'1021',0,0,'',65,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
66,5,'1022',0,0,'',66,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
67,5,'1023',0,0,'',67,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
68,5,'1024',0,0,'',68,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
69,5,'1025',0,0,'',69,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
70,5,'1026',0,0,'',70,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
71,5,'1027',0,0,'',71,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
72,5,'1028',0,0,'',72,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
73,5,'1029',0,0,'',73,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
74,5,'1030',0,0,'',74,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
75,5,'1031',0,0,'',75,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
76,5,'1032',0,0,'',76,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
77,5,'1033',0,0,'',77,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
78,5,'1034',0,0,'',78,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
79,5,'1035',0,0,'',79,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
80,5,'1036',0,0,'',80,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
81,5,'1037',0,0,'',81,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
82,5,'1038',0,0,'',82,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
83,5,'1039',0,0,'',83,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
84,5,'1040',0,0,'',84,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
85,5,'1041',0,0,'',85,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
86,5,'1042',0,0,'',86,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
87,5,'1043',0,0,'',87,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
88,5,'1044',0,0,'',88,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
89,5,'1045',0,0,'',89,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
90,5,'1046',0,0,'',90,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
91,5,'1047',0,0,'',91,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
92,5,'1048',0,0,'',92,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
93,5,'1049',0,0,'',93,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
94,5,'1050',0,0,'',94,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
95,5,'1051',0,0,'',95,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
96,5,'1052',0,0,'',96,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
97,5,'1053',0,0,'',97,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
98,5,'1054',0,0,'',98,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
99,5,'1055',0,0,'',99,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
100,5,'1056',0,0,'',100,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
101,5,'1057',0,0,'',101,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
102,5,'1058',0,0,'',102,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
103,5,'1059',0,0,'',103,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
104,5,'1060',0,0,'',104,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
105,5,'1061',0,0,'',105,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
106,5,'1062',0,0,'',106,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
107,5,'1063',0,0,'',107,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
108,5,'1064',0,0,'',108,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
109,5,'1065',0,0,'',109,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
110,5,'1066',0,0,'',110,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
111,5,'1067',0,0,'',111,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
112,5,'1068',0,0,'',112,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
113,5,'1069',0,0,'',113,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
114,5,'1070',0,0,'',114,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
115,5,'1071',0,0,'',115,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
116,5,'1072',0,0,'',116,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
117,5,'1073',0,0,'',117,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
118,5,'1074',0,0,'',118,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
119,5,'1075',0,0,'',119,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
120,5,'1076',0,0,'',120,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
121,5,'1077',0,0,'',121,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
122,5,'1078',0,0,'',122,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
123,5,'1079',0,0,'',123,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
124,5,'1080',0,0,'',124,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
125,5,'1081',0,0,'',125,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
126,5,'1082',0,0,'',126,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
127,5,'1083',0,0,'',127,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
128,5,'1084',0,0,'',128,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
129,5,'1085',0,0,'',129,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
130,5,'1086',0,0,'',130,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
131,5,'1087',0,0,'',131,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
132,5,'1088',0,0,'',132,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
133,5,'1089',0,0,'',133,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
134,5,'1090',0,0,'',134,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
135,5,'1091',0,0,'',135,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
136,5,'1092',0,0,'',136,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
137,5,'1093',0,0,'',137,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
138,5,'1094',0,0,'',138,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
139,5,'1095',0,0,'',139,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
140,5,'1096',0,0,'',140,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
141,5,'1097',0,0,'',141,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
142,5,'1098',0,0,'',142,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
143,5,'1099',0,0,'',143,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
144,5,'1100',0,0,'',144,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
145,5,'1101',0,0,'',145,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
146,5,'1102',0,0,'',146,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
147,5,'1103',0,0,'',147,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
148,5,'1104',0,0,'',148,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
149,5,'1105',0,0,'',149,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
150,5,'1106',0,0,'',150,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
151,5,'1107',0,0,'',151,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
152,5,'1108',0,0,'',152,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
153,5,'1109',0,0,'',153,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
154,5,'1110',0,0,'',154,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
155,5,'1111',0,0,'',155,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
156,5,'1112',0,0,'',156,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
157,5,'1113',0,0,'',157,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
158,5,'1114',0,0,'',158,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
159,5,'1115',0,0,'',159,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
160,5,'1116',0,0,'',160,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
161,5,'1117',0,0,'',161,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
162,5,'1118',0,0,'',162,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
163,5,'1119',0,0,'',163,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
164,5,'1120',0,0,'',164,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
165,5,'1121',0,0,'',165,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
166,5,'1122',0,0,'',166,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
167,5,'1123',0,0,'',167,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
168,5,'1124',0,0,'',168,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
169,5,'1125',0,0,'',169,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
170,5,'1126',0,0,'',170,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
171,5,'1127',0,0,'',171,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
172,5,'1128',0,0,'',172,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
173,5,'1129',0,0,'',173,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
174,5,'1130',0,0,'',174,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
175,3,'2000',0,0,'',175,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
176,3,'2001',0,0,'',176,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
177,3,'2002',0,0,'',177,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
178,3,'2003',0,0,'',178,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
179,3,'2004',0,0,'',179,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
180,3,'2005',0,0,'',180,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
181,3,'2006',0,0,'',181,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
182,3,'2007',0,0,'',182,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
183,3,'2008',0,0,'',183,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
184,3,'2009',0,0,'',184,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
185,3,'2010',0,0,'',185,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
186,3,'2011',0,0,'',186,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
187,3,'2012',0,0,'',187,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
188,3,'2013',0,0,'',188,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
189,3,'2014',0,0,'',189,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
190,3,'2015',0,0,'',190,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
191,3,'2016',0,0,'',191,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
192,3,'2017',0,0,'',192,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
193,3,'2018',0,0,'',193,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
194,3,'2019',0,0,'',194,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
418,1,'BAU',0,0,'',418,'Op_en1901','Net health effects due to the consumption of salmon','avoided cases/a',1,1901,1,
198,8,' 6.00-20.00',0,0,'',198,'Comptraf_scenoutput','Composite traffic v.1 scenario outputs','various',1,0,0,
199,8,'20.00-24.00',0,0,'',199,'Comptraf_scenoutput','Composite traffic v.1 scenario outputs','various',1,0,0,
200,8,' 0.00- 6.00',0,0,'',200,'Comptraf_scenoutput','Composite traffic v.1 scenario outputs','various',1,0,0,
364,7,'Trips',0,0,'',364,'Op_en2202','Concentration-response to PM2.5','m3/ug',1,2202,1,
365,7,'Trips by vehicle',0,0,'',365,'Op_en2202','Concentration-response to PM2.5','m3/ug',1,2202,1,
366,7,'Vehicle km',0,0,'',366,'Op_en2202','Concentration-response to PM2.5','m3/ug',1,2202,1,
367,7,'Parking lot',0,0,'',367,'Op_en2202','Concentration-response to PM2.5','m3/ug',1,2202,1,
368,7,'Link intensity',0,0,'',368,'Op_en2202','Concentration-response to PM2.5','m3/ug',1,2202,1,
369,7,'Vehicles',0,0,'',369,'Op_en2202','Concentration-response to PM2.5','m3/ug',1,2202,1,
370,7,'Waiting',0,0,'',370,'Op_en2202','Concentration-response to PM2.5','m3/ug',1,2202,1,
371,11,'Bus no change',0,0,'',371,'Fig_5b_subsidies','Subsidies needed to obtain the composite fraction objective','e/day',1,0,0,
372,11,'Bus one change',0,0,'',372,'Fig_5b_subsidies','Subsidies needed to obtain the composite fraction objective','e/day',1,0,0,
373,11,'Cab no change',0,0,'',373,'Fig_5b_subsidies','Subsidies needed to obtain the composite fraction objective','e/day',1,0,0,
374,11,'Cab one change',0,0,'',374,'Fig_5b_subsidies','Subsidies needed to obtain the composite fraction objective','e/day',1,0,0,
375,11,'Cab non-full',0,0,'',375,'Fig_5b_subsidies','Subsidies needed to obtain the composite fraction objective','e/day',1,0,0,
376,11,'Car',0,0,'',376,'Fig_5b_subsidies','Subsidies needed to obtain the composite fraction objective','e/day',1,0,0,
377,11,'No-change',0,0,'',377,'Fig_5b_subsidies','Subsidies needed to obtain the composite fraction objective','e/day',1,0,0,
378,12,'Passenger',0,0,'',378,'Fig_5c_expanding','Societal costs at different levels of guarantee','e/day',1,0,0,
379,12,'Society',0,0,'',379,'Fig_5c_expanding','Societal costs at different levels of guarantee','e/day',1,0,0,
380,13,'Car',0,0,'',380,'Bw1','Human body weight in Harjavalta','kg',1,2475,1,
381,13,'Composite',0,0,'',381,'Bw1','Human body weight in Harjavalta','kg',1,2475,1,
382,14,'Vehicle',0,0,'',382,'Testvariable2','Another variable for testing','kg',1,0,0,
383,14,'Driver',0,0,'',383,'Testvariable2','Another variable for testing','kg',1,0,0,
384,14,'Driving',0,0,'',384,'Testvariable2','Another variable for testing','kg',1,0,0,
385,14,'Parking',0,0,'',385,'Testvariable2','Another variable for testing','kg',1,0,0,
386,14,'Parking land',0,0,'',386,'Testvariable2','Another variable for testing','kg',1,0,0,
387,14,'Emissions',0,0,'',387,'Testvariable2','Another variable for testing','kg',1,0,0,
388,14,'Time',0,0,'',388,'Testvariable2','Another variable for testing','kg',1,0,0,
389,14,'Accidents',0,0,'',389,'Testvariable2','Another variable for testing','kg',1,0,0,
390,14,'Ticket',0,0,'',390,'Testvariable2','Another variable for testing','kg',1,0,0,
391,15,'0',0,0,'',391,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
392,15,'0.02',0,0,'',392,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
393,15,'0.05',0,0,'',393,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
394,15,'0.1',0,0,'',394,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
395,15,'0.25',0,0,'',395,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
396,15,'0.4',0,0,'',396,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
397,15,'0.45',0,0,'',397,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
398,15,'0.5',0,0,'',398,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
399,15,'0.55',0,0,'',399,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
400,15,'0.65',0,0,'',400,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
401,15,'0.75',0,0,'',401,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
402,15,'0.9',0,0,'',402,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
403,15,'1',0,0,'',403,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
404,16,'18-65',0,0,'',404,'Op_en1900','Pollutant health risk due to the consumption of salmon','avoided cases/a',1,1900,1,
405,16,'3',0,0,'',405,'Op_en1900','Pollutant health risk due to the consumption of salmon','avoided cases/a',1,1900,1,
406,17,'Harjavalta',0,0,'',406,'Op_en1903','Persistent pollutant concentrations in salmon','µg/kg',1,1903,1,
407,4,'Dieldrin',0,0,'',407,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
408,4,'Toxaphene',0,0,'',408,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
409,4,'Dioxin',0,0,'',409,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
410,4,'PCB',0,0,'',410,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
411,19,'Farmed salmon',0,0,'',411,'Op_en1906','Dose-response function of persistent pollutants','(mg/kg/d)-1',1,1906,1,
412,19,'Wild salmon',0,0,'',412,'Op_en1906','Dose-response function of persistent pollutants','(mg/kg/d)-1',1,1906,1,
413,19,'Market salmon',0,0,'',413,'Op_en1906','Dose-response function of persistent pollutants','(mg/kg/d)-1',1,1906,1,
414,20,'BAU',0,0,'',414,'Op_en1907','Omega-3 content in salmon','g/g',1,1907,1,
415,20,'More actions',0,0,'',415,'Op_en1907','Omega-3 content in salmon','g/g',1,1907,1,
416,21,'BAU',0,0,'',416,'Op_en1908','Omega-3 intake due to salmon in the population of the Western Europe','g/d',1,1908,1,
417,21,'Restrict farmed salmon use',0,0,'',417,'Op_en1908','Omega-3 intake due to salmon in the population of the Western Europe','g/d',1,1908,1,
419,1,'More actions',0,0,'',419,'Op_en1901','Net health effects due to the consumption of salmon','avoided cases/a',1,1901,1,
421,1,'Restrict farmed salmon use',0,0,'',421,'Op_en1901','Net health effects due to the consumption of salmon','avoided cases/a',1,1901,1,
422,2,'Cardiovascular',0,0,'',422,'Testvariable','Variable used for testing','kmh',1,0,0,
423,10,'Home indoor',0,0,'Abbreviation in the Concentration database: I',423,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
424,10,'(Home) outdoor',0,0,'Abbreviation in the Concentration database: O',424,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
425,10,'(Personal) Work',0,0,'Abbreviation in the Concentration database: W',425,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
426,10,'Personal',0,0,'Abbreviation in the Concentration database: P',426,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
427,10,'Drinking water',0,0,'Abbreviation in the Concentration database: DW',427,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
428,10,'Indoor dust',0,0,'Abbreviation in the Concentration database: ID',428,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
429,10,'Human',0,0,'Abbreviation in the Concentration database: H',429,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
430,10,'Soil',0,0,'Abbreviation in the Concentration database: S',430,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
431,10,'Beverage',0,0,'Abbreviation in the Concentration database: B',431,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
432,10,'Food',0,0,'Abbreviation in the Concentration database: F',432,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
433,10,'In-Vehicle',0,0,'Abbreviation in the Concentration database: IV',433,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
434,10,'School',0,0,'Abbreviation in the Concentration database: SC',434,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
435,5,'Athens',0,0,'Country: Greece. Abbreviation in the Concentration Database: A',435,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
436,5,'Antwerp',0,0,'Country: Belgium. Abbreviation in the Concentration Database: ANT',436,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
437,5,'Antioch-Pittsburg',0,0,'Country: USA. Abbreviation in the Concentration Database: AP',437,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
438,5,'Antioch-Pittsburg A-P',0,0,'Country: USA. Abbreviation in the Concentration Database: A-P',438,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
439,5,'Arizona',0,0,'Country: USA. Abbreviation in the Concentration Database: AZ',439,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
440,5,'Basel',0,0,'Country: Germany. Abbreviation in the Concentration Database: B',440,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
441,5,'Baltimore',0,0,'Country: USA. Abbreviation in the Concentration Database: BAL',441,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
442,5,'Bayonne',0,0,'Country: USA. Abbreviation in the Concentration Database: BAY',442,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
443,5,'Bayonne-Ellizabeth',0,0,'Country: USA. Abbreviation in the Concentration Database: BE',443,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
444,5,'Copenhagen',0,0,'Country: Denmark. Abbreviation in the Concentration Database: C',444,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
445,5,'California',0,0,'Country: USA. Abbreviation in the Concentration Database: CA',445,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
446,5,'Columbus',0,0,'Country: USA. Abbreviation in the Concentration Database: CO',446,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
447,5,'Daegu',0,0,'Country: South Korea. Abbreviation in the Concentration Database: D',447,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
448,5,'Devils Lake',0,0,'Country: USA. Abbreviation in the Concentration Database: DLA',448,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
449,5,'Dublin',0,0,'Country: Ireland. Abbreviation in the Concentration Database: DU',449,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
450,5,'Elizabeth',0,0,'Country: USA. Abbreviation in the Concentration Database: ELI',450,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
451,5,'EPA Region 5.',0,0,'Country: USA. Abbreviation in the Concentration Database: EPA5',451,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
452,5,'Flanders',0,0,'Country: Belgium. Abbreviation in the Concentration Database: FLA',452,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
453,5,'Florence',0,0,'Country: Italy. Abbreviation in the Concentration Database: FL',453,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
454,5,'Grenoble',0,0,'Country: France. Abbreviation in the Concentration Database: G',454,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
455,5,'Germany',0,0,'Country: Germany. Abbreviation in the Concentration Database: GE',455,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
456,5,'Genoa',0,0,'Country: Italy. Abbreviation in the Concentration Database: GEN',456,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
457,5,'Greensboro GNC',0,0,'Country: USA. Abbreviation in the Concentration Database: GNC',457,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
458,5,'Greensboro',0,0,'Country: USA. Abbreviation in the Concentration Database: GRB',458,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
460,5,'Helsinki',0,0,'Country: Finland. Abbreviation in the Concentration Database: H',460,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
461,5,'Hannover',0,0,'Country: Germany. Abbreviation in the Concentration Database: HA',461,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
462,5,'Ile de France',0,0,'Country: France. Abbreviation in the Concentration Database: IDF',462,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
463,5,'Los Angeles',0,0,'Country: USA. Abbreviation in the Concentration Database: LA',463,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
464,5,'Milan',0,0,'Country: Italy. Abbreviation in the Concentration Database: M',464,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
465,5,'Minneapolis',0,0,'Country: USA. Abbreviation in the Concentration Database: MP',465,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
466,5,'Minnesota',0,0,'Country: USA. Abbreviation in the Concentration Database: MS',466,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
467,5,'Murcia',0,0,'Country: Spain. Abbreviation in the Concentration Database: MU',467,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
468,5,'Mexico City',0,0,'Country: Mexico. Abbreviation in the Concentration Database: MXC',468,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
469,5,'Oxford',0,0,'Country: England. Abbreviation in the Concentration Database: O',469,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
470,5,'Prague',0,0,'Country: Czech. Abbreviation in the Concentration Database: P',470,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
471,5,'Padua',0,0,'Country: Italy. Abbreviation in the Concentration Database: PA',471,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
472,5,'Puebla',0,0,'Country: Mexico. Abbreviation in the Concentration Database: PB',472,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
473,5,'Rouen',0,0,'Country: France. Abbreviation in the Concentration Database: R',473,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
475,5,'Strasbourg',0,0,'Country: France. Abbreviation in the Concentration Database: STR',475,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
476,5,'Umbria region',0,0,'Country: Italy. Abbreviation in the Concentration Database: UMB',476,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
477,5,'United States',0,0,'Country: USA. Abbreviation in the Concentration Database: USA',477,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
478,5,'Valdez',0,0,'Country: USA. Abbreviation in the Concentration Database: VAL',478,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
479,5,'Woodland',0,0,'Country: USA. Abbreviation in the Concentration Database: WDL',479,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
480,4,'66-25-1',0,0,'hexanal',480,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
481,4,'71-36-3',0,0,'1-butanol',481,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
482,4,'71-43-2',0,0,'benzene',482,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
483,4,'78-83-1',0,0,'2-methyl-1-propanol',483,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
484,4,'79-00-5',0,0,'1,1,2-trichloroethane',484,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
485,4,'79-01-6',0,0,'trichloroethene',485,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
486,4,'80-56-8',0,0,'alfa-pinene',486,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
487,4,'91-20-3',0,0,'naphtalene',487,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
488,4,'95-47-6',0,0,'o-xylene',488,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
489,4,'95-63-6',0,0,'trimethylbenzenes',489,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
490,4,'100-41-4',0,0,'ethylbenzene',490,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
491,4,'100-42-5',0,0,'styrene',491,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
492,4,'100-52-7',0,0,'benzaldehyde',492,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
493,4,'103-65-1',0,0,'propylbenzene',493,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
494,4,'104-76-7',0,0,'2-ethylhexanol',494,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
495,4,'108-38-3',0,0,'m(&p)-xylene',495,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
496,4,'108-88-3',0,0,'toluene',496,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
497,4,'108-95-2',0,0,'phenol',497,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
498,4,'110-54-3',0,0,'hexane',498,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
499,4,'110-82-7',0,0,'cyclohexane',499,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
500,4,'111-76-2',0,0,'ethanol, 2-butoxy-',500,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
501,4,'111-84-2',0,0,'nonane',501,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
502,4,'111-87-5',0,0,'1-octanol',502,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
503,4,'124-13-0',0,0,'octanal',503,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
504,4,'124-18-5',0,0,'decane',504,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
505,4,'127-18-4',0,0,'tetrachloroethene',505,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
506,4,'138-86-3',0,0,'d-limonene',506,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
507,4,'872-50-4',0,0,'2-pyrrolidinone, 1-methyl-',507,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
508,4,'1120-21-4',0,0,'undecane',508,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
509,4,'13466-78-9',0,0,'3-caren',509,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
510,4,'TVOC',0,0,'Toluene based total VOC',510,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
511,4,'67-66-3',0,0,'chloroform',511,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
512,4,'106-46-7',0,0,'1,4-dichlorobenzene',512,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
514,4,'56-23-5',0,0,'carbon tetrachloride',514,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
515,4,'75-09-2',0,0,'methylene chloride',515,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
517,4,'127-91-3',0,0,'b-pinene',517,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
520,4,'142-82-5',0,0,'n-heptane',520,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
521,4,'111-65-9',0,0,'n-octane',521,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
525,4,'112-40-3',0,0,'n-dodecane',525,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
526,4,'629-50-5',0,0,'n-tridecane',526,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
527,4,'629-59-4',0,0,'n-tetradecane',527,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
528,4,'629-62-9',0,0,'n-pentadecane',528,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
529,4,'107-83-5',0,0,'2-methylpentane',529,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
530,4,'96-14-0',0,0,'3-methylpentane',530,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
531,4,'565-59-3',0,0,'2,3-dimethylpentane',531,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
532,4,'591-76-4',0,0,'2-methylhexane',532,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
533,4,'589-34-4',0,0,'3-methylhexane',533,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
534,4,'592-27-8',0,0,'2-methylheptane',534,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
535,4,'589-81-1',0,0,'3-methylheptane',535,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
536,4,'96-37-7',0,0,'methylcyclopentane',536,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
537,4,'108-87-2',0,0,'methylcyclohexane',537,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
538,4,'526-73-8',0,0,'1,2,3-trimethylbenzene',538,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
540,4,'108-67-8',0,0,'1,3,5 trimethylbenzene',540,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
541,4,'4994-16-5',0,0,'4-phenylcyclohexene',541,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
542,4,'1,1,1-trichloroethane',0,0,'1,1,1-trichloroethane',542,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
545,4,'141-78-6',0,0,'ethylacetate',545,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
546,4,'123-86-4',0,0,'n-butylacetate',546,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
547,4,'78-93-3',0,0,'methyl ethyl ketone',547,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
548,4,'106-35-4',0,0,'3-heptatone',548,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
549,4,'93-58-3',0,0,'methyl benzoate',549,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
552,4,'123-51-3',0,0,'iso-amyl alcohol<sup>a</sup>',552,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
554,4,'67-63-0',0,0,'2-propanol<sup>a</sup>',554,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
555,4,'1634-04-4',0,0,'t-butyl methylether',555,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
556,4,'7439-92-1',0,0,'lead',556,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
557,4,'7440-38-2',0,0,'arsenic',557,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
558,4,'7440-43-9',0,0,'cadmium',558,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
559,4,'7440-39-3',0,0,'barium',559,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
560,4,'7440-47-3',0,0,'chrome',560,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
561,4,'7440-50-8',0,0,'copper',561,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
562,4,'7439-96-5',0,0,'manganese',562,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
563,4,'7440-02-0',0,0,'nickel',563,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
564,4,'7782-49-2',0,0,'selenium',564,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
565,4,'7440-62-2',0,0,'vanadium',565,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
566,4,'7440-66-6',0,0,'zinc',566,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
567,4,'71-55-6',0,0,'1,1,1-trichloroethane',567,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
568,4,'7439-97-6',0,0,'mercury',568,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
570,4,'60-27-5',0,0,'creatinine',570,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
571,4,'7429-90-5',0,0,'aluminium',571,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
572,4,'7440-70-2',0,0,'calcium',572,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
573,4,'7439-95-4',0,0,'magnesium',573,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
574,4,'7723-14-0',0,0,'phosphorus',574,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
575,4,'7440-24-6',0,0,'strontium',575,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
576,4,'7439-89-6',0,0,'iron',576,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
577,4,'7440-09-7',0,0,'potassium',577,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
578,4,'7440-23-5',0,0,'sodium',578,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
579,4,'58-89-9',0,0,'lindane',579,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
580,4,'52645-53-1',0,0,'permenthrine',580,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
581,4,'107-13-1',0,0,'acrylonitrile',581,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
582,4,'79-06-1',0,0,'acrylamide',582,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
589,4,'611-14-3',0,0,'1-ethyl 2methyl benzene',589,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
592,4,'109-66-0',0,0,'n-pentane',592,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
593,4,'7785-26-4',0,0,'alpha-pinene',593,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
594,4,'5989-27-5',0,0,'d-limonene',594,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
596,4,'106-99-0',0,0,'butadiene',596,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
597,4,'74-84-0',0,0,'ethane',597,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
598,4,'74-85-1',0,0,'ethylene',598,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
599,4,'74-86-2',0,0,'acetylene',599,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
600,4,'107-06-2',0,0,'1,2-dichloroethane',600,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
601,4,'106-42-3',0,0,'p-xylene',601,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
603,4,'98-82-8',0,0,'isopropylbenzene',603,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
604,4,'110-86-1',0,0,'pyridine',604,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
606,4,'109-06-8',0,0,'2-picoline',606,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
608,4,'108-99-6',0,0,'3-picoline',608,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
609,4,'108-89-4',0,0,'4-picoline',609,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
610,4,'104-51-8',0,0,'n-butylbenzene',610,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
611,4,'536-78-7',0,0,'3-ethylpyridine',611,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
613,4,'25551-13-7',0,0,'trimethylbenzene',613,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
618,4,'1336-36-3',0,0,'PCBs',618,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
619,4,'3547-04-4',0,0,'DDE',619,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
620,4,'118-74-1',0,0,'HCB',620,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
621,4,'5315-79-7',0,0,'1-hydroxypyrene',621,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
623,4,'1330-20-7',0,0,'xylenes',623,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
624,4,'37210-16-5',0,0,'CO2',624,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
625,4,'630-08-0',0,0,'CO',625,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
626,4,'54-11-5',0,0,'nicotine',626,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
628,4,'3588-17-8',0,0,'trans,trans-Muconic acid',628,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
629,4,'50-32-8',0,0,'benzo(a)pyrene',629,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
631,4,'590-86-3',0,0,'isovaleraldehyde',631,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
632,4,'123-38-6',0,0,'propionaldehyde',632,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
633,4,'123-72-8',0,0,'n-butyraldehyde',633,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
634,4,'75-07-0',0,0,'acetaldehyde',634,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
636,4,'50-00-0',0,0,'formaldehyde',636,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
637,4,'110-62-3',0,0,'valeraldehyde',637,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
638,4,'4170-30-3',0,0,'crotonaldehyde',638,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
639,22,'n',0,0,'Number of observations',639,'Op_en1910','Total mortality in the Western Europe','cases/a',1,1910,1,
640,22,'n_lt_LOQ',0,0,'Number of observations below level of quantitation',640,'Op_en1910','Total mortality in the Western Europe','cases/a',1,1910,1,
641,22,'F0.10',0,0,'Fractile 0.1',641,'Op_en1910','Total mortality in the Western Europe','cases/a',1,1910,1,
642,22,'F0.50',0,0,'Fractile 0.5',642,'Op_en1910','Total mortality in the Western Europe','cases/a',1,1910,1,
643,22,'F0.90',0,0,'Fractile 0.9',643,'Op_en1910','Total mortality in the Western Europe','cases/a',1,1910,1,
644,22,'F0.95',0,0,'Fractile 0.95',644,'Op_en1910','Total mortality in the Western Europe','cases/a',1,1910,1,
645,22,'Mean',0,0,'Arithmetic mean',645,'Op_en1910','Total mortality in the Western Europe','cases/a',1,1910,1,
646,22,'GeoMean',0,0,'Geometric mean',646,'Op_en1910','Total mortality in the Western Europe','cases/a',1,1910,1,
647,5,'ang',0,0,'Anglian Water ',647,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
648,5,'bou',0,0,'Bristol Water ',648,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
649,5,'brw',0,0,'Bournemouth & West hants ',649,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
650,5,'caw',0,0,'Cambridge Water ',650,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
651,5,'cho',0,0,'Cholderton Water ',651,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
652,5,'dcc',0,0,'Dee Valley Water ',652,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
653,5,'eas',0,0,'Welsh Water ',653,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
654,5,'ess',0,0,'Essex and Suffolk Water ',654,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
655,5,'fol',0,0,'Folkestone & Dover Water ',655,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
656,5,'har',0,0,'Hartlepool Water ',656,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
657,5,'mik',0,0,'Mid Kent Water ',657,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
658,5,'nor',0,0,'Northumbrian Water ',658,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
659,5,'nww',0,0,'Portsmouth Water ',659,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
660,5,'por',0,0,'Sutton & East Surrey Water ',660,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
661,5,'sea',0,0,'South East Water ',661,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
662,5,'sev',0,0,'Southern Water ',662,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
663,5,'sos',0,0,'South Staffordshire Water ',663,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
664,5,'sou',0,0,'Severn Trent Water ',664,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
665,5,'sww',0,0,'South West Water ',665,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
666,5,'teh',0,0,'Tendring Hundred Water ',666,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
667,5,'tha',0,0,'Thames Water ',667,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
668,5,'thr',0,0,'Three Valleys Water ',668,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
669,5,'wes',0,0,'United Utilties (North West Water) ',669,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
670,5,'wrx',0,0,'Wessex Water ',670,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
671,5,'yor',0,0,'Yorkshire Water',671,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1
)304,288,148,131,1,1,1,1,1,0,0,0,02,370,45,476,4452,404,34,750,516,0,MIDM39325,65535,39321[L_j,L_i][L_j,L_i]ResThis node checks the variables listed in Var_for_rdb and makes an index of those that are NOT found in the result database. This is then used as an index in Inp_var for adding variable information.Table(O_i,O_j)(
2,'Testvariable','Variable used for testing','kmh',1,0,0,
6,'Ppmconc_bustraffic','PM2.5 concentration from bus traffic in Helsinki in 2020','ug/m3',1,0,0,
8,'Comptraf_scenoutput','Composite traffic v.1 scenario outputs','various',1,0,0,
9,'Fig_3_cost_by_source','Cost by source','e/trip',1,0,0,
10,'Fig_5a_societal_cost','Societal cost','e/day',1,0,0,
11,'Fig_5b_subsidies','Subsidies needed to obtain the composite fraction objective','e/day',1,0,0,
12,'Fig_5c_expanding','Societal costs at different levels of guarantee','e/day',1,0,0,
14,'Testvariable2','Another variable for testing','kg',1,0,0,
15,'Testvariable3','Testvariable 3: Another variable for testing','kg',1,0,0,
25,'Op_en1898','Recommendation for consumption of farmed salmon','-',1,1898,1,
26,'Op_en1899','Pollutant concentration limits for fish feed','-',1,1899,1,
16,'Op_en1900','Pollutant health risk due to the consumption of salmon','avoided cases/a',1,1900,1,
1,'Op_en1901','Net health effects due to the consumption of salmon','avoided cases/a',1,1901,1,
27,'Op_en1902','Persistent pollutant concentrations in fish feed','fraction',1,1902,1,
17,'Op_en1903','Persistent pollutant concentrations in salmon','µg/kg',1,1903,1,
28,'Op_en1904','Salmon intake in the population of the Western Europe','g/d',1,1904,1,
18,'Op_en1905','Exposure to persistent pollutants due to salmon in the population of the Western Europe','µg/kg/d',1,1905,1,
19,'Op_en1906','Dose-response function of persistent pollutants','(mg/kg/d)-1',1,1906,1,
20,'Op_en1907','Omega-3 content in salmon','g/g',1,1907,1,
21,'Op_en1908','Omega-3 intake due to salmon in the population of the Western Europe','g/d',1,1908,1,
29,'Op_en1909','ERF of omega-3 fatty acids on cardiovascular effects','1/(g/d)',1,1909,1,
22,'Op_en1910','Total mortality in the Western Europe','cases/a',1,1910,1,
23,'Op_en1911','Cardiovascular mortality in the Western Europe','cases/a',1,1911,1,
24,'Op_en1912','Cardiovascular effects of omega-3 in salmon in teh Western Europe','avoided cases/a',1,1912,1,
3,'Op_en2201','The mortality due to PM 2.5 from buses','premature deaths',1,2201,1,
7,'Op_en2202','Concentration-response to PM2.5','m3/ug',1,2202,1,
5,'Op_en2204','Primary PM2.5 emissions from bus traffic in Helsinki Metropolitan Area','kg/a',1,2204,1,
4,'Op_en2205','Bus engine technology','see wiki page',1,2205,1,
31,'Op_en2406','Excess cases of iMetHb in England and Wales','number',1,2406,1,
13,'Bw1','Human body weight in Harjavalta','kg',1,2475,1,
30,'Op_en2556','Personal exposures to volatile organic compounds in Germany','ug/m^3',1,2556,1,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0
)304,312,148,131,1,1,1,1,1,0,0,0,02,378,21,493,5012,152,162,1057,343,0,MIDM2,529,143,700,421,0,MIDM39325,65535,39321[O_j,O_i][O_j,O_i]['H1991'][Self,1,Sys_localindex('I'),1,Sys_localindex('J'),1]TypThis node checks the variables listed in Var_for_rdb and makes an index of those that are NOT found in the result database. This is then used as an index in Inp_var for adding variable information.Table(S_i,S_j)(
1,33,1,
2,37,1,
3,37,1,
4,37,1,
5,35,1,
6,34,1,
7,35,1,
8,34,1,
9,38,1,
10,39,1,
11,40,1,
12,32,1,
13,43,1,
14,44,1,
15,45,1,
16,46,1,
17,47,1,
18,48,1,
19,49,1,
20,35,1,
21,33,1,
22,33,1,
23,51,1,
24,36,1,
25,33,1,
26,33,1,
27,34,1,
28,42,1,
29,37,1,
30,36,1,
31,54,1,
32,36,1,
33,43,1,
34,37,1
)304,384,148,131,1,1,1,1,1,0,0,0,02,378,21,493,5012,529,143,700,421,0,MIDM39325,65535,39321[S_j,S_i][S_i,S_j]['H1991'][Self,1,Sys_localindex('I'),1,Sys_localindex('J'),1]StyThis node checks the variables listed in Var_for_rdb and makes an index of those that are NOT found in the result database. This is then used as an index in Inp_var for adding variable information.Table(R_i,R_j)(
1,58,1,27,
2,58,2,28,
3,58,3,29,
4,57,1,30,
5,57,2,31,
6,57,3,32,
7,57,4,33,
8,57,5,34,
9,57,6,35,
10,57,7,36,
11,57,8,37,
12,57,9,38,
13,57,10,39,
14,57,11,40,
15,57,12,41,
16,57,13,42,
17,57,14,43,
18,57,15,44,
19,56,1,45,
20,56,2,46,
21,56,3,47,
22,56,4,48,
23,56,5,49,
24,56,6,50,
25,56,7,51,
26,56,8,52,
27,56,9,53,
28,56,10,54,
29,56,11,55,
30,56,12,56,
31,56,13,57,
32,56,14,58,
33,56,15,59,
34,56,16,60,
35,56,17,61,
36,56,18,62,
37,56,19,63,
38,56,20,64,
39,56,21,65,
40,56,22,66,
41,56,23,67,
42,56,24,68,
43,56,25,69,
44,56,26,70,
45,56,27,71,
46,56,28,72,
47,56,29,73,
48,56,30,74,
49,56,31,75,
50,56,32,76,
51,56,33,77,
52,56,34,78,
53,56,35,79,
54,56,36,80,
55,56,37,81,
56,56,38,82,
57,56,39,83,
58,56,40,84,
59,56,41,85,
60,56,42,86,
61,56,43,87,
62,56,44,88,
63,56,45,89,
64,56,46,90,
65,56,47,91,
66,56,48,92,
67,56,49,93,
68,56,50,94,
69,56,51,95,
70,56,52,96,
71,56,53,97,
72,56,54,98,
73,56,55,99,
74,56,56,100,
75,56,57,101,
76,56,58,102,
77,56,59,103,
78,56,60,104,
79,56,61,105,
80,56,62,106,
81,56,63,107,
82,56,64,108,
83,56,65,109,
84,56,66,110,
85,56,67,111,
86,56,68,112,
87,56,69,113,
88,56,70,114,
89,56,71,115,
90,56,72,116,
91,56,73,117,
92,56,74,118,
93,56,75,119,
94,56,76,120,
95,56,77,121,
96,56,78,122,
97,56,79,123,
98,56,80,124,
99,56,81,125,
100,56,82,126,
101,56,83,127,
102,56,84,128,
103,56,85,129,
104,56,86,130,
105,56,87,131,
106,56,88,132,
107,56,89,133,
108,56,90,134,
109,56,91,135,
110,56,92,136,
111,56,93,137,
112,56,94,138,
113,56,95,139,
114,56,96,140,
115,56,97,141,
116,56,98,142,
117,56,99,143,
118,56,100,144,
119,56,101,145,
120,56,102,146,
121,56,103,147,
122,56,104,148,
123,56,105,149,
124,56,106,150,
125,56,107,151,
126,56,108,152,
127,56,109,153,
128,56,110,154,
129,56,111,155,
130,56,112,156,
131,56,113,157,
132,56,114,158,
133,56,115,159,
134,56,116,160,
135,56,117,161,
136,56,118,162,
137,56,119,163,
138,56,120,164,
139,56,121,165,
140,56,122,166,
141,56,123,167,
142,56,124,168,
143,56,125,169,
144,56,126,170,
145,56,127,171,
146,56,128,172,
147,56,129,173,
148,56,130,174,
149,55,1,1,
150,55,2,2,
151,55,3,3,
152,55,4,4,
153,59,1,7,
154,59,2,8,
155,60,1,10,
156,60,2,11,
157,60,3,12,
158,61,1,175,
159,61,2,176,
160,61,3,177,
161,61,4,178,
162,61,5,179,
163,61,6,180,
164,61,7,181,
165,61,8,182,
166,61,9,183,
167,61,10,184,
168,61,11,185,
169,61,12,186,
170,61,13,187,
171,61,14,188,
172,61,15,189,
173,61,16,190,
174,61,17,191,
175,61,18,192,
176,61,19,193,
177,61,20,194,
178,61,21,8,
179,62,1,10,
180,62,2,11,
181,62,3,12,
182,62,4,26,
183,63,1,196,
184,63,2,197,
185,65,1,198,
186,65,3,200,
187,66,85,285,
188,66,84,284,
189,66,83,283,
190,66,82,282,
191,66,81,281,
192,65,2,199,
193,66,80,280,
194,66,79,279,
195,66,78,278,
196,66,77,277,
197,66,76,276,
198,66,75,275,
199,66,74,274,
200,66,73,273,
201,66,72,272,
202,66,71,271,
203,66,70,270,
204,66,69,269,
205,66,68,268,
206,66,67,267,
207,66,66,266,
208,66,65,265,
209,66,64,264,
210,66,63,263,
211,66,62,262,
212,66,61,261,
213,66,60,260,
214,66,59,259,
215,66,58,258,
216,66,57,257,
217,66,56,256,
218,66,55,255,
219,66,54,254,
220,66,53,253,
221,66,52,252,
222,66,51,251,
223,66,50,250,
224,66,49,249,
225,66,48,248,
226,66,47,247,
227,66,46,246,
228,66,45,245,
229,66,44,244,
230,66,43,243,
231,66,42,242,
232,66,41,241,
233,66,40,240,
234,66,39,239,
235,66,38,238,
236,66,37,237,
237,66,36,236,
238,66,35,235,
239,66,34,234,
240,66,33,233,
241,66,32,232,
242,66,31,231,
243,66,30,230,
244,66,29,229,
245,66,28,228,
246,66,27,227,
247,66,26,226,
248,66,25,225,
249,66,24,224,
250,66,23,223,
251,66,22,222,
252,66,21,221,
253,66,20,220,
254,66,19,219,
255,66,18,218,
256,66,17,217,
257,66,16,216,
258,66,15,215,
259,66,14,214,
260,66,13,213,
261,66,12,212,
262,66,11,211,
263,66,10,210,
264,66,9,209,
265,66,8,208,
266,66,7,207,
267,66,6,206,
268,66,5,205,
269,66,4,204,
270,66,3,203,
271,66,2,202,
272,66,1,201,
273,71,7,377,
274,71,6,376,
275,71,5,375,
276,71,4,374,
277,71,3,373,
278,71,2,372,
279,71,1,371,
280,66,163,363,
281,66,162,362,
282,66,161,361,
283,66,160,360,
284,66,159,359,
285,66,158,358,
286,66,157,357,
287,66,156,356,
288,66,155,355,
289,66,154,354,
290,66,153,353,
291,66,152,352,
292,66,151,351,
293,66,150,350,
294,66,149,349,
295,66,148,348,
296,66,147,347,
297,66,146,346,
298,66,145,345,
299,66,144,344,
300,66,143,343,
301,66,142,342,
302,66,141,341,
303,66,140,340,
304,66,139,339,
305,66,138,338,
306,66,137,337,
307,66,136,336,
308,66,135,335,
309,66,134,334,
310,66,133,333,
311,66,132,332,
312,66,131,331,
313,66,130,330,
314,66,129,329,
315,66,128,328,
316,66,127,327,
317,66,126,326,
318,66,125,325,
319,66,124,324,
320,66,123,323,
321,66,122,322,
322,66,121,321,
323,66,120,320,
324,66,119,319,
325,66,118,318,
326,66,117,317,
327,66,116,316,
328,66,115,315,
329,66,114,314,
330,66,113,313,
331,66,112,312,
332,66,111,311,
333,66,110,310,
334,66,109,309,
335,66,108,308,
336,66,107,307,
337,66,106,306,
338,66,105,305,
339,66,104,304,
340,66,103,303,
341,66,102,302,
342,66,101,301,
343,66,100,300,
344,66,99,299,
345,66,98,298,
346,66,97,297,
347,66,96,296,
348,66,95,295,
349,66,94,294,
350,66,93,293,
351,66,92,292,
352,66,91,291,
353,66,90,290,
354,66,89,289,
355,66,88,288,
356,66,87,287,
357,66,86,286,
358,73,1,380,
359,72,2,379,
360,72,1,378,
361,74,3,384,
362,74,2,383,
363,74,1,382,
364,73,2,381,
365,70,7,370,
366,70,6,369,
367,70,5,368,
368,70,4,367,
369,70,3,366,
370,70,2,365,
371,70,1,364,
372,74,4,385,
373,74,5,386,
374,74,6,387,
375,74,7,388,
376,74,8,389,
377,74,9,390,
378,75,1,391,
379,75,2,392,
380,75,3,393,
381,75,4,394,
382,75,5,395,
383,75,6,396,
384,75,7,397,
385,75,8,398,
386,75,9,399,
387,75,10,400,
388,75,11,401,
389,75,12,402,
390,75,13,403,
391,76,1,404,
392,76,2,405,
393,77,1,406,
394,78,1,407,
395,78,2,408,
396,78,3,409,
397,78,4,410,
398,79,1,411,
399,79,2,412,
400,79,3,413,
401,80,1,414,
402,80,2,415,
403,81,1,416,
404,81,2,417,
405,82,1,175,
406,83,1,418,
407,83,2,419,
408,84,1,418,
409,84,2,421,
410,85,1,422,
411,87,1,423,
412,87,2,424,
413,87,3,425,
414,87,4,426,
415,87,5,427,
416,87,6,428,
417,87,7,429,
418,87,8,430,
419,87,9,431,
420,87,10,432,
421,87,11,433,
422,87,12,434,
423,88,1,435,
424,88,2,436,
425,88,3,437,
426,88,4,438,
427,88,5,439,
428,88,6,440,
429,88,7,441,
430,88,8,442,
431,88,9,443,
432,88,10,444,
433,88,11,445,
434,88,12,446,
435,88,13,447,
436,88,14,448,
437,88,15,449,
438,88,16,450,
439,88,17,451,
440,88,18,452,
441,88,19,453,
442,88,20,454,
443,88,21,455,
444,88,22,456,
445,88,23,457,
446,88,24,458,
447,88,25,459,
448,88,26,460,
449,88,27,461,
450,88,28,462,
451,88,29,463,
452,88,30,464,
453,88,31,465,
454,88,32,466,
455,88,33,467,
456,88,34,468,
457,88,35,469,
458,88,36,470,
459,88,37,471,
460,88,38,472,
461,88,39,473,
462,88,40,474,
463,88,41,475,
464,88,42,476,
465,88,43,477,
466,88,44,478,
467,88,45,479,
468,89,1,480,
469,89,2,481,
470,89,3,482,
471,89,4,483,
472,89,5,484,
473,89,6,485,
474,89,7,486,
475,89,8,487,
476,89,9,488,
477,89,10,489,
478,89,11,490,
479,89,12,491,
480,89,13,492,
481,89,14,493,
482,89,15,494,
483,89,16,495,
484,89,17,496,
485,89,18,497,
486,89,19,498,
487,89,20,499,
488,89,21,500,
489,89,22,501,
490,89,23,502,
491,89,24,503,
492,89,25,504,
493,89,26,505,
494,89,27,506,
495,89,28,507,
496,89,29,508,
497,89,30,509,
498,89,31,510,
499,89,32,511,
500,89,33,512,
501,89,34,513,
502,89,35,514,
503,89,36,515,
504,89,37,516,
505,89,38,517,
506,89,39,518,
507,89,40,519,
508,89,41,520,
509,89,42,521,
510,89,43,522,
511,89,44,523,
512,89,45,524,
513,89,46,525,
514,89,47,526,
515,89,48,527,
516,89,49,528,
517,89,50,529,
518,89,51,530,
519,89,52,531,
520,89,53,532,
521,89,54,533,
522,89,55,534,
523,89,56,535,
524,89,57,536,
525,89,58,537,
526,89,59,538,
527,89,60,539,
528,89,61,540,
529,89,62,541,
530,89,63,542,
531,89,64,543,
532,89,65,544,
533,89,66,545,
534,89,67,546,
535,89,68,547,
536,89,69,548,
537,89,70,549,
538,89,71,550,
539,89,72,551,
540,89,73,552,
541,89,74,553,
542,89,75,554,
543,89,76,555,
544,89,77,556,
545,89,78,557,
546,89,79,558,
547,89,80,559,
548,89,81,560,
549,89,82,561,
550,89,83,562,
551,89,84,563,
552,89,85,564,
553,89,86,565,
554,89,87,566,
555,89,88,567,
556,89,89,568,
557,89,90,569,
558,89,91,570,
559,89,92,571,
560,89,93,572,
561,89,94,573,
562,89,95,574,
563,89,96,575,
564,89,97,576,
565,89,98,577,
566,89,99,578,
567,89,100,579,
568,89,101,580,
569,89,102,581,
570,89,103,582,
571,89,104,583,
572,89,105,584,
573,89,106,585,
574,89,107,586,
575,89,108,587,
576,89,109,588,
577,89,110,589,
578,89,111,590,
579,89,112,591,
580,89,113,592,
581,89,114,593,
582,89,115,594,
583,89,116,595,
584,89,117,596,
585,89,118,597,
586,89,119,598,
587,89,120,599,
588,89,121,600,
589,89,122,601,
590,89,123,602,
591,89,124,603,
592,89,125,604,
593,89,126,605,
594,89,127,606,
595,89,128,607,
596,89,129,608,
597,89,130,609,
598,89,131,610,
599,89,132,611,
600,89,133,612,
601,89,134,613,
602,89,135,614,
603,89,136,615,
604,89,137,616,
605,89,138,617,
606,89,139,618,
607,89,140,619,
608,89,141,620,
609,89,142,621,
610,89,143,622,
611,89,144,623,
612,89,145,624,
613,89,146,625,
614,89,147,626,
615,89,148,627,
616,89,149,628,
617,89,150,629,
618,89,151,630,
619,89,152,631,
620,89,153,632,
621,89,154,633,
622,89,155,634,
623,89,156,635,
624,89,157,636,
625,89,158,637,
626,89,159,638,
627,94,6,652,
628,94,5,651,
629,94,4,650,
630,94,3,649,
631,94,2,648,
632,94,1,647,
633,90,1,639,
634,90,2,640,
635,90,3,641,
636,90,4,642,
637,90,5,643,
638,90,6,644,
639,90,7,645,
640,90,8,646,
641,94,7,653,
642,94,8,654,
643,94,9,655,
644,94,10,656,
645,94,11,657,
646,94,12,658,
647,94,13,659,
648,94,14,660,
649,94,15,661,
650,94,16,662,
651,94,17,663,
652,94,18,664,
653,94,19,665,
654,94,20,666,
655,94,21,667,
656,94,22,668,
657,94,23,669,
658,94,24,670,
659,94,25,671
)304,360,148,131,1,1,1,1,1,0,0,0,02,378,21,493,5012,529,143,700,421,0,MIDM39325,65535,39321[R_j,R_i][R_i,R_j]['H1991'][Self,1,Sys_localindex('I'),1,Sys_localindex('J'),1]SamThis node checks the variables listed in Var_for_rdb and makes an index of those that are NOT found in the result database. This is then used as an index in Inp_var for adding variable information.Table(It_i,It_j)(
1,1,55,0,
2,2,56,0,
3,2,57,0,
4,2,58,0,
5,5,59,0,
6,6,60,0,
7,5,61,0,
8,6,62,0,
9,9,63,0,
10,11,65,0,
11,10,70,0,
12,13,71,0,
13,14,72,0,
14,15,73,0,
15,16,74,0,
16,17,75,0,
17,18,76,0,
18,19,77,0,
19,24,78,0,
20,23,79,0,
21,1,80,0,
22,1,81,0,
23,5,82,0,
24,1,83,0,
25,1,84,0,
26,6,85,0,
27,12,86,0,
28,28,87,0,
29,2,88,0,
30,24,89,0,
31,31,90,0,
32,24,91,0,
33,13,92,0,
34,2,93,0
)304,336,148,131,1,1,1,1,1,0,0,0,02,378,21,493,5012,529,143,700,421,0,MIDM39325,65535,39321[It_j,It_i][It_i,It_j]['H1991'][Self,1,Sys_localindex('I'),1,Sys_localindex('J'),1]WikThis node checks the variables listed in Var_for_rdb and makes an index of those that are NOT found in the result database. This is then used as an index in Inp_var for adding variable information.Table(S_i,S_j)(
1,33,1,
2,37,1,
3,37,1,
4,37,1,
5,35,1,
6,34,1,
7,35,1,
8,34,1,
9,38,1,
10,39,1,
11,40,1,
12,32,1,
13,43,1,
14,44,1,
15,45,1,
16,46,1,
17,47,1,
18,48,1,
19,49,1,
20,35,1,
21,33,1,
22,33,1,
23,51,1,
24,36,1,
25,33,1,
26,33,1,
27,34,1,
28,42,1,
29,37,1,
30,36,1,
31,54,1,
32,36,1,
33,43,1,
34,37,1
)304,408,148,131,1,1,1,1,1,0,0,0,02,378,21,493,5012,529,143,700,421,0,MIDM39325,65535,39321[S_j,S_i][S_i,S_j]['H1991'][Self,1,Sys_localindex('I'),1,Sys_localindex('J'),1]