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ABSTRACT

Integrated assessment models for climate change (IAMs) couple representations of economic and natural
systems to identify and evaluate strategies for managing the effects of global climate change. In this
study we subject three policy scenarios from the globally-aggregated Dynamic Integrated model of
Climate and the Economy IAM to a comprehensive global sensitivity analysis using Sobol’ variance
decomposition. We focus on cost metrics representing diversions of economic resources from global
world production. Our study illustrates how the sensitivity ranking of model parameters differs for
alternative cost metrics, over time, and for different emission control strategies. This study contributes a
comprehensive illustration of the negative consequences associated with using a priori expert elicitations
to reduce the set of parameters analyzed in IAM uncertainty analysis. The results also provide a strong
argument for conducting comprehensive model diagnostics for IAMs that explicitly account for the
parameter interactions between the coupled natural and economic system components.

Climate change

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Climate change is one of the most challenging issues confront-
ing the scientific and policy communities. The National Research
Council (NRC, 2009) has called for advances in climate change de-
cision support that facilitate a *“deliberation with analysis”
approach to the problem. A key aspect of “deliberation with anal-
ysis” is the need for frameworks that aid in identifying the key
uncertainties influencing the trade-off between near-term carbon
dioxide (CO,) mitigation costs and long-term risks posed by climate
change. A large body of literature has emerged seeking to better
characterize this trade-off using integrated assessment models
(IAMs) (Parson and Fisher-Vanden, 1997; Kelly and Kolstad, 1999).
IAMs seek to inform our understanding of the coupled natural and
economic systems that shape mitigation and adaptation decisions.
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More formally, Kelly and Kolstad (1999) define an IAM as “... any
model which combines scientific and socio-economic aspects of
climate change primarily for the purpose of assessing policy op-
tions for climate change control”. For evaluating climate mitigation
strategies, IAMs must incorporate important aspects of the climate
system and the global economy, and yet be sufficiently transparent
to be useful for decision support (Kelly and Kolstad, 1999; Stanton
et al., 2009). For IAMs to be useful they need to advance our un-
derstanding of the linkages between economic activities, green-
house gas emissions, the carbon cycle, climate and damages
(Parson and Fisher-Vanden, 1997; Courtois, 2004; Stanton et al.,
2009; Weyant, 2009). Broadly there are two classes of IAMs
(Stanton et al., 2009): (1) inter-temporal optimization models, and
(2) simulation models. Inter-temporal optimization models seek to
identify a best future course based on global/regional welfare or
cost optimization. Optimality is typically defined in this class of
IAMs subject to an assumption of perfect foresight and the 1AM
modeler’s expected state-of-the-world (SOW). Simulation (or
evaluation) models, instead, play out specific policy scenarios over
time without explicitly defining or seeking optimality. Both of these
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classes of IAMs are nonlinear and require large numbers of
externally-specified (exogenous) parameters to abstract the eco-
nomic and natural systems being modeled.

IAMs are now garnering significant roles in shaping climate
change impact projections and in the formulation of alternative
mitigation policies (IPCC, 1996; Stern, 2007; EPA, 2010, 2013; UNEP,
2010, 2011; NRC, 2011; Rogelj et al.,, 2011, 2013a,b). Many agencies
(EPA, 2009; EU, 2009) recommend that all models used for policy
development and analysis, including IAMs, be rigorously evaluated.
The challenges of evaluating IAMs, as has been reviewed over two
decades (Risbey et al., 1996; Stanton et al., 2009; Schwanitz, 2013),
include the potentially high degrees of model complexity, the de-
gree of integration and resolution of model components, and
incomplete knowledge of underlying processes and data. Efforts to
model the inherently unknown future behavior of complex, inter-
related systems have led to a focus on the uncertainties associ-
ated with framing possible futures. This is often done in the context
of community model inter-comparison exercises (e.g., Clarke et al.,
2009). Our study builds on additional guidance from broader
environmental modeling communities for improving diagnostic
assessments of complex environmental modeling systems (e.g.,
Jakeman et al., 2006; Gupta et al., 2008; Gudmundsson et al., 2012;
Kelly (Letcher) et al., 2013; Baroni and Tarantola, 2014).

Recently, Schwanitz (2013) outlines an evaluation framework
specifically for the IAM community. Included as one of the tools in
this evaluation framework, global sensitivity analysis has the po-
tential to attribute the uncertainty in an IAM'’s projections to its
parameters, both individually and collectively (Saltelli et al., 2008).
To date, sensitivity analyses of IAMs focused on specific functions or
modules within a given model (Keller et al., 2004; Gillingham et al.,
2008; Ackerman et al., 2010) or on exploiting expert elicitations to
reduce the set of parameters to be analyzed with a local sensitivity
analysis (Peck and Teisberg, 1993; Prinn et al., 1999; Toth et al,,
2003). Recent studies that have applied global statistical sampling
to IAMs still confine sensitivity testing to a small subset of pa-
rameters within a limited Monte Carlo sampling (Pizer, 1999; Scott
et al, 1999; Goodess et al., 2003; Campolongo et al., 2007;
Nordhaus, 1994, 2008; Kypreos, 2008; Johansson, 2011). Overall
these analyses overlook the potential for multiple parameters in an
IAM to interactively influence the outcomes and, consequently,
may lead to incorrect inferences as to which parameters or factors
most strongly influence key uncertainties (Saltelli and D’Hombres,
2010).

We focus our sensitivity analysis on the globally-aggregated
IAM, the Dynamic Integrated model of Climate and the Economy
(DICE) (Nordhaus, 1994; Nordhaus and Boyer, 2000; Nordhaus,
2008), and extend the uncertainty and sensitivity analysis re-
ported in Nordhaus (2008). Our purpose is to demonstrate that for
IAMs, i.e., non-linear models with many exogenous parameters,
the uncertainties of model outputs can arise from complex
parameter interactions. DICE presents a simple, yet comprehen-
sive, representation of the world where alternative economy-
climate scenarios can be tested without having to explicitly
model the complexities of the global system. There are multiple
potential foci when designing a global sensitivity analysis of an
inter-temporal optimization IAM. The choice of the appropriate
experimental approach depends on the overall policy question to
be answered. For example, one question that might be explored is,
how do scenario pathways for a given stabilization goal change across
alternative SOWs? This problem is reflective of the majority of IAM
studies where the primary focus is on comparing the resulting
optimized policy scenario outcomes. Alternatively, we pursue in
this study the question, how vulnerable are specific optimized DICE
policy scenarios to uncertainties in the exogenous assumptions? By
isolating the policy scenarios from the optimization process, we

are exploring which exogenous parameters (e.g., population
growth, technology efficiency, climate sensitivity) control de-
viations from the policy costs attained under the assumption of
perfect information. We do not recalibrate the model to external
data sources for each sampled SOW, do not re-optimize the model
for each sampled SOW, and do not claim to assign likelihoods to
exogenous parameter combinations. Rather we measure how
exogenous parameters, individually and interactively, affect
selected policy-relevant model outputs. For a deterministic, per-
fect foresight model such as DICE, it is arguably quite useful to
know the vulnerabilities of a policy solution and to identify the key
model parameters that control its performance over time. Our
results could also inform subsequent calibration efforts or uncer-
tainty analyses by giving an improved a posteriori understanding of
complex, interactive parametric effects.

Here we use the cost benefit form (see Section 2.2 below) of the
DICE model as described in Nordhaus (2008). In this form of the
model a policy scenario outcome is characterized by the control
variables, emission control rates and investment, which optimize
the objective function, the sum of the discounted utility of con-
sumption over time, given the constraints applied, such as available
fossil fuel resources and limits to atmospheric temperature in-
creases. Emission pathways are endogenous in this form of the
model. A different (cost effectiveness) form of this model is
employed for the use of pre-specified emission control pathways
(Meinshausen et al., 2011a; Rogelj et al, 2012). See Appendix
Fig. A.9 for an example of a DICE policy scenario and resulting
emissions pathway.

For this study we construct a simulation version of DICE, called
CDICE, which reproduces DICE model outcomes for a supplied
policy scenario, given the reference values of all exogenous pa-
rameters. With this simulation model, we can explore the vulner-
ability of a fixed policy scenario to the uncertainty in the DICE
model’s exogenous parameters. We choose three distinctly
different DICE policy scenarios to see how parametric sensitivities
change for scenarios with different treatments of the trade-offs
between climate damages and abatement costs. In this study, we
apply the Sobol’ method, a global variance-based sensitivity anal-
ysis method (Sobol’, 2001; Saltelli et al., 2008), to CDICE simula-
tions of each policy scenario. Using the Sobol’ method, we choose
model outputs (in this case, climate damages and abatement costs)
for the analysis. We create ensembles of these model outputs by
iteratively running the CDICE simulation model while simulta-
neously varying a selection of model parameters over specified
ranges using Sobol’ quasi-random sampling. The Sobol’ method is
used to decompose the variance of the damage and abatement cost
outputs into portions contributed individually or interactively by
the sampled parameters.

This exercise demonstrates the importance of understanding
the non-separable, interactive parameter dependencies that con-
trol uncertain IAM projections. We also contrast our findings with
the more typical local sensitivity analysis as performed in Nordhaus
(2008). Our results illustrate the consequences of using a priori
expert elicitations to reduce the set of parameters analyzed, espe-
cially within the context of a one-at-a-time (OAT) sensitivity anal-
ysis. The results of this global sensitivity analysis provide a strong
argument for comprehensive model diagnostics for IAMs to
explicitly account for the parametric interactions between their
coupled natural and economic components. Moreover, this study
illustrates how the sensitivity ranking of model parameters differs
for alternative cost metrics, over time, and for alternative emission
control strategies.

In Section 2 we describe the DICE IAM and the CDICE simulation
model as well as the policy scenarios used in this study. Section 3
presents the methods used and descriptions of the computation
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experiments. Results and implications are discussed in Section 4,
followed by conclusions in Section 5.

2. The integrated assessment model
2.1. The DICE model

Fig. 1 provides a schematic overview of the DICE IAM. In this
study, we use version 2007.delta.8b, which is documented in detail
in Nordhaus (2008), and was obtained from the author’s website
(http://nordhaus.econ.yale.edu) in February 2011. The model pre-
sents a neoclassical economic growth theory view of the economics
of climate change (Nordhaus, 2008). This version of the DICE model
builds on more than twenty years of development of a conceptually
simple, yet complete, example of a fully coupled economic, carbon
cycle, and climate model (Nordhaus, 1993, 1994; Nordhaus and
Boyer, 2000). DICE is a highly aggregated model comprising a sin-
gle global economy producing a single commodity. DICE couples a
simplified representation of the economy with a 3-reservoir carbon
cycle model and a 2-reservoir climate model. Industrial emissions
are a by-product of production and contribute to atmospheric
greenhouse gas concentrations, along with non-CO, greenhouse
gases and emissions from land use change. The total atmospheric
burden of greenhouse gases determines the radiative forcing and,
ultimately, changes in atmospheric temperature. Global tempera-
ture increase has a negative impact on economic output through a
simplified damages function. Climate damages can be mitigated in
DICE by transitioning to carbon-free energy sources. The abatement
costs for this transition also lower economic output, yielding a
trade-off between the costs of current mitigation activities and the
costs of future climate damages (Nordhaus, 2008). When solving
the model in the Generalized Algebraic Modeling System (GAMS,

GAMS Development Corporation, USA; GAMS Software GmbH,
Germany) using a nonlinear programming, reduced-gradient solver
(CONOPT3 from AKRI Consulting and Development), the DICE
model produces a time series of industrial emission control rates
and investment (the control variables) that maximize the sum of
discounted utility of consumption over time (the objective
function).

As an aggregated model abstracted from more detailed and
complex models, DICE is driven by dozens of exogenous factors
(shown in italics in Fig. 1). These factors include initial conditions,
parameters for sub-model functions, and constraints. For example,
the population/labor resources are determined by an initial popu-
lation, a rate of population increase, and an assumed asymptotic
upper limit of global population. The population trajectory is
derived from these three parameters. Many of these exogenous
factors are derived from calibrations to more comprehensive
models. For example, the parameters defining the exchange of
carbon between carbon reservoirs and the exchange of heat be-
tween climate reservoirs are calibrated to results from the Model
for the Assessment of Greenhouse-Gas Induced Climate Change
(MAGICC; Meinshausen et al., 2011b, and references therein). De-
tails of the model calibration and choices for reference values of the
exogenous (externally specified) parameters are documented in the
DICE model accompanying notes (Nordhaus, 2007a). Results from a
DICE model execution represent deterministic mitigation decisions
over time assuming perfect foresight of both decisions as well as
exogenous conditions (e.g., climate sensitivity, population, partici-
pation). Alternative mitigation policy scenarios are evaluated in
DICE by adding constraints. For example, the 2 °C stabilization
scenario used in this study is the result of a DICE run with a
constraint that limits the increase in the atmospheric temperature
over pre-industrial to 2 °C.
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Fig. 1. Overview of the DICE Integrated Assessment Model. Exogenous parameters are shown in italics. Parameters tested as part of this global sensitivity analysis are in bold blue
italics. Parameter names correspond to the DICE GAMS implementation (Nordhaus, 2008). Parameters are documented in Appendix B. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2A shows the trajectories of emission control rates for the
three policy scenarios included in our study. Each was generated
from a DICE GAMS execution. We save the emission control rates
and savings rates (investment as a fraction of production) from
each scenario for use in the CDICE simulation model. These policy
scenarios are: (1) a business-as-usual (BAU) or wait-and-see
strategy that delays abatement efforts for more than 100 years,
(2) an optimal strategy that balances the trade-off between climate
damages and abatement cost impacts on global production, and (3)
a 2 °C climate stabilization strategy that constrains global atmo-
spheric temperature to increase no more than 2 °C above pre-
industrial temperature with no overshoot permitted. In both the
optimal and 2 °C climate stabilization strategy scenarios, the
maximum temperature increase occurs around 2100. All policy
scenarios assume that the transition to carbon-free energy sources
is essentially complete by the mid-2200s. Fig. 2B shows the decadal
climate damages and abatement costs for the DICE optimal policy
scenario. Fig. A.9 in the Appendix shows the emission control rate,
investment, and savings rate trajectories for the optimal policy
scenario, which is characterized by a smooth ramp-up of emission
reductions.

2.2. The CDICE model

In this study we have developed a time-stepped, deterministic
simulation version of DICE, called CDICE, which we use to compare
the sensitivities of the underlying DICE model across the three
policy scenarios shown in Fig. 2A, independent of the optimization
algorithm used by the GAMS version of DICE. We are careful to
maintain the original model equations of DICE (Nordhaus, 2008)
while imposing the deterministic emission control and savings
rate trajectories from the DICE GAMS executions that produced
each of the three policy scenarios. Given the DICE control variables
and the reference values of all model parameters, the CDICE model
yields results nearly indistinguishable from the DICE GAMS opti-
mized execution. In this study, we focus in detail on the modeled
climate damages and abatement costs as summarized in Equations
(1)—(11) below and shown in detail in Nordhaus (2008, Appendix
A). Fig. 2B shows, for example, the decadal policy costs from the
DICE GAMS optimal policy solution with the corresponding CDICE
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results for the same policy and reference values of all model pa-
rameters. See Table 1 for definitions of the damages and abate-
ment cost metrics.

The CDICE model runs in decadal time steps beginning in the
year 2000. We use output from the first 200 years (or 21 time steps)
in this study, and identify decadal results with mid-decade years
(e.g., 2105). See Appendix B for descriptions of all of the exogenous
parameters and sampling ranges used in this study. We begin the
summary of pertinent model equations with the definition of global
world production. Global production (in trillions of 2005 USD at
time step t), Q(t), net of climate damages, Q(t), and abatement costs,
A(t), is defined in Equation (1).

Qt) = Q(t)[] — /I(t)]A(t)K(t)YL(t)l—y (1)

In Equation (1), A(t) is the total factor productivity or assumed
technology efficiency, K(t) is capital stock input, and L(t) is the
population or labor input to production. The capital elasticity of
production (also known as the value share of capital in production)
is represented by the exogenous parameter 7. The product of total
factor productivity and capital and labor shares in Equation (1)
constitute gross production. Of the two modifying functions in
Equation (1), climate damages, Q(t), is defined in Equation (2), and
the abatement function, A(t), is developed in Equations (3)—(8)
below. Each represents a fraction of gross world production diver-
ted to the costs of damages or emissions abatements. In this study,
we report climate damages and abatement costs as decadal values
and in net present value terms (NPV) in trillions of 2005 USD.

Q(t) = l/{l + al Tam(t) + a2 Tatm(t)a3 (2)

In the climate damages function shown in Equation (2), Tarm(t) is
the increase in atmospheric temperature since 1900 in °C. The
coefficients al and a2 as well as the exponent a3 are exogenous
parameters, calibrated so that a 2.5 °C increase in temperature re-
sults in a 1.77% decrease in output in 2105 (Nordhaus, 2007a).

Abatement cost in Equation (3) is a function of the emission
control rate, u(t), modified by factors representing the cost of
incomplete participation in the abatement, w(t), and the cost of
substituting for carbon-based energy, 6:(t). These factors are
further described in Equations (4)—(8). The value of the exponent in

I DICE damages
== CDICE damages
B W DICE abatement
= == CDICE abatement

L
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Fig. 2. A DICE emission control scenarios. Industrial emissions reductions, output from DICE runs for the business as usual (BAU) policy scenario (red), the optimal policy scenario
(black), and the 2 °C climate stabilization scenario (blue). See also Appendix Fig. A.9 for a complete description of the optimal policy scenario. B Decadal policy costs for the optimal
policy scenario. Climate damages (solid lines) and abatement costs (dashed lines). Blue lines are direct results from the DICE model. Red lines are from the CDICE model using the
optimal policy scenario and reference values for all model parameters. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)
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Table 1
Description of terms for cost metrics in this study.

Term Description

Examples

Cost metrics
Climate damages

Abatement costs
Total costs

Temporal resolution

Decadal costs Snapshot of costs

NPV costs (net present value)

Loss of production due to changes in global surface temperature

Loss of production due to efforts to reduce greenhouse gas emissions

Sum of discounted decadal costs from 2000-2010 to

Reduced agricultural yields

Loss of ecosystem services

Investments to increase industrial efficiency
Costs of using less carbon-intensive fuels

Sum of climate damages and abatement costs

Climate damages in 50 years (2050—2060)
Abatement costs in 100 years (2100—2110)
NPV of total costs

2300—2310 using modeled market return-on-capital discount rates

the abatement cost function, 65, is chosen so that the function is
convex (i.e., the marginal cost of the control rises faster than the
emission control rate).

A(t) = m(6); ()t 3)

The incomplete participation factor, #(t), in Equation (4), also
called participation markup (Nordhaus, 2008), is a function of the
participation rate in Equation (5). The participation markup in-
cludes an adjustment based on the same exogenous exponent, 6,
used in Equation (3).

(t) = o) (4)

The participation rates in the first two time steps (part fracl and
part frac2), a ‘final’ participation rate in time step 25 (part fracn), as
well as the rate at which participation monotonically increases
from the second to the final rate (dpart frac) determine the time
series ¢(t) or the fraction of the economy paying for the abatement
at any time step as shown in Equation (5). In practice, the ¢(t)
function is either set to model complete participation or replaced
with policy-specific participation scenarios (Nordhaus, 2008,
Chapters 5—6). We do use the ¢(t) function as defined in this study,
but are careful with the bounds of individual parameters to avoid
computational problems that arise if the final participation rate is
below 50%.

partfracl

o(t) =
partfracn

The final component in Equation (3) is 6¢(t), the cost of
substituting away from carbon-based energy. This cost is a function
of the carbon intensity of production expressed in purchasing po-
wer parity terms, o(t). Equations (6) and (7) specify the rate of
decline of carbon intensity over time. The exogenous parameters
gsigma, dsig, and dsig2 are chosen so that this decline in carbon
intensity mirrors historical trends.

gsig(t) = gsigma x exp (—10dsig t — 10dsig2 tz) (6)

o(t) = a(t—1)/(1 - gsig(t)) (7)

The cost of substituting away from carbon-based energy, #1(t) is
defined in Equation (8) and is a function of the exogenous

partfracn + (partfrac2 — partfracn) x exp( — dpartfrac x (t — 1))

parameters pbackO, backrat, and gback. This function introduces
into the DICE model an unspecified ‘backstop’ technology as a
substitute for carbon-based energy. The values of the exogenous
parameters are set to represent an initially high cost of the backstop
and a subsequent decline over time. The model is calibrated so that
the marginal cost of abatement is equal to the backstop cost in the
year when the emissions control rate reaches 100 percent
(Nordhaus, 2008).

01(t) = [(pbackO x a(t))/0,] x [(backrat — 1 + exp( — gback
x (t —1)))/backrat]
(8)

The endogenous emissions pathway is a sum of the industrial
emissions and an exogenously specified contribution from land use
change, Ejand, shown in Equation (9). The industrial emissions are a
function of gross world production modified by the carbon in-
tensity of production, sigma(t), and the emission control rate, u(t).

E(t) = a(®)[1 — p(OADKE)LEO)" ™" + Eana(t) 9)

Finally, Equations (10) and (11) describe the computation of the
discount rate and discount factors as specified in the base model
that are used to develop the net present value metrics reported in
this study. In Equation (10), rir(t) is the real interest rate at decadal
time step t, and dk is the capital depreciation rate. Net present value,

t=1
1<t<?25 (5)
t>25

as used in this study, is the sum of discounted decadal values
through the first decade of the 23rd century. As a result of the
discounting, discounted decadal values are very small by 2200.

rir(t) = QO/K(D] - [1-(1-60'*] /10 (10)
rdisc(t) = 1/(1 +rir()1% (11)

2.3. A note about modeling choices

We have not sampled the pure rate of time preference (p) or the
elasticity of marginal utility («) in this study. These two parameters
strongly influence the optimized mitigation trajectories that result
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from maximizing the sum of discounted utility of consumption
over time in the DICE model. Since there exists substantial litera-
ture on the issue of discounting the future (e.g., Stern, 2007;
Nordhaus, 2007b; Weitzman, 2007), we chose instead to focus
our study on the specific model outputs of climate damages and
abatement costs, and the net present value of these costs over 200
years, applying the discount factors described in Equations (10) and

(11).

3. Methods and computational experiment
3.1. Methods

3.1.1. Sobol’ sensitivity analysis

We apply a global sensitivity analysis based on the variance
decomposition method proposed by Sobol’ (2001) and described
by Saltelli et al. (2008) to assess the sensitivity in CDICE of the
DICE policy scenarios to (1) the exogenous model parameters
identified as having the most influence on the model in Nordhaus
(2008) and (2) an extended list of model parameters (see Section
3.2 for details). The Sobol’ method (Sobol’, 2001; Saltelli et al.,
2008) decomposes the variance of model outputs from an
ensemble of model executions. Portions of these variances are
attributed to individual model parameters or factors as well as to
interactions between those factors. Tang et al. (2007) showed
that the Sobol’ method performed well in comparison to other
sensitivity analysis methods in the case of nonlinear hydrologic
models. Their study compared local and global sensitivity anal-
ysis methods, including parameter estimation software (PEST),
Regional Sensitivity Analysis (RSA) and analysis of variance using
iterated fractional factorial design sampling (ANOVA). For addi-
tional details, see Tang et al. (2007). We note that there are other
global sensitivity methods that can be used, especially when the
model is computationally expensive. A recent example is the
study of the DICE model in Anderson et al. (2013) using the
sensitivity analysis method described in Plischke et al. (2013).
There is a useful guide for practitioners in Saltelli et al. (2008,
Table 6.9) for choosing a sensitivity analysis method suited to a
specific analysis goal. We use the Sobol’ method in our study to
identify first-order sensitivity indices (the fraction of the variance
that can be attributed to a single parameter), second-order
indices (the fraction of the variance attributed to interactions of
pairs of parameters), and total-order indices (sum of all first-
order and higher-order effects). Our parameter sampling ex-
ploits quasi-random sampling (Sobol’, 1967). The method pro-
vides an efficient and comprehensive coverage of the parameter
space and enhances the convergence speed of variance decom-
position (Saltelli, 2002). We assess the convergence and confi-
dence of our global sensitivity indices using bootstrapping to
compute confidence intervals (Archer et al., 1997) for the sensi-
tivity indices.

Following Saltelli et al. (2008), we derive the sensitivity indices.
We begin with a function f transforming the inputs X1,X>,---,X;, into
model output Y as shown in Equation (12).

Y = f(X1,X2, -+ Xn) (12)

The function f can be expanded into terms of increasing
dimension as shown in Equation (13) (Saltelli et al., 2008). For

example, f; = fi(X;) and fj; = fi{(Xi.X)).

f :f0+Zfi+Zfij+ > fik+ - +Fikn (13)

i i<j i<j<k

Sobol’ (2001) suggests computing each of these terms using
conditional expectations, as shown in Equations (14)—(16).

fo = E(Y) (14)
fi = E(YIXi) —fo (15)
fi = E(YIXi.X;) —fi —f; — fo (16)

Sensitivity indices are assembled from the variances of these
conditional expectations, normalized by the grand variance, such
that they sum to 1. The larger the sensitivity index, the larger the
contribution to the variance of the model output. The first order
and second order indices are shown in Equations (17) and (18).

_ VIR _ VIE(Y|X))]
Si = VY] —  V[Y] (a7
VIGEXX)]  VIEYX.X)]
Sij = i VY] S ) (18)

A total order index, shown in Equation (19), reflecting the total
effects due to input Xj, is the sum of the first order effect S; and all
higher order effects in which X; takes part.

o7 _ 1 _ VIEYIX )]

! VY] (19)

The notation X.; indicates all inputs except the i-th model
parameter X;.

3.1.2. One-at-a-time (OAT) sensitivity analysis

Prior sensitivity analyses of DICE have, for the most part,
assumed linear separability and focused on the local OAT model
parameter sampling approach. OAT analysis requires the user to
choose model parameters for testing and vary one parameter at a
time over a plausible range while measuring the impact on a given
model output or metric. The parameters causing the most change,
or steepest ascent (Box et al., 2005), are classified as important. The
method can be used as a simple, qualitative method for ascertain-
ing local sensitivities in linear models; however, it cannot detect
parameter interactions. We use OAT sensitivity analysis to replicate
a first step in parametric sensitivity analysis documented in
Nordhaus (2008, Chapter 7), which seeks to identify the key DICE
model parameters (the “expert set” as noted in Section 3.2). We
replicate the OAT analysis (see Section 3.2.1) as a preliminary step in
our sensitivity analysis to show that CDICE attains the same results
and that these results serve as a baseline to demonstrate the con-
sequences of using OAT analysis on nonlinear IAMs. We also use this
method (see Section 3.2.3) to show results of an OAT analyses using
an extended set of parameters.

3.1.3. Independent verification method

We employ an independent verification test of the OAT and
Sobol’ classifications of key parameters as suggested by Andres
(1997), following the example of Tang et al. (2007). We choose an
independent Latin Hypercube sample varying the full suite of 30
parameters over the bounds indicated in Appendix B. This sampled
is referred to as Set 1 in the terminology of Andres (1997). We
execute CDICE for each parameter combination in this Set 1 sample
and save one or more of the metric outputs. We then adjust the Set
1 sample by fixing the least sensitive parameters for the given
output metric to their constant reference values, leaving the sen-
sitive or influential parameters randomly sampled. These adjusted
samples, one for each metric, are referred to as Set 3 samples in the
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terminology of Andres (1997). We execute CDICE for each Set 3
sample, again saving the appropriate metric output. If our choice of
sensitive parameters is correct, then the values of the metric in Sets
1 and 3 will be highly correlated.

3.1.4. Visual representation of sensitivity results

We display the results of the Sobol’ sensitivity analyses in radial
convergence diagrams (Lima, 2011). The sampled exogenous pa-
rameters are arranged in groups related to model component
around a circle beginning with the socio-economic parameters at 3
o'clock and, proceeding counter-clockwise, with the climate-
related, damage and abatement parameters. Individual parameter
descriptions can be found in Appendix B in the same groupings. For
the Sobol’ variance decomposition analyses, the magnitudes of the
first and total order Sobol’ sensitivity indices are shown by the size
of the nodes at the location of each parameter on the diagram. First
order indices are filled circles and total order indices are hollow
rings. Second order indices are lines of increasing shading and
thickness connecting the interacting parameters. Large differences
in the sizes of the first and total order index nodes are indicative of
substantial higher order parameter interactions in the variance
decomposition. Of the higher order interactions, we show explicitly
only those of second order in these diagrams. Indices larger than a
threshold of 1% of the variance are shown in the figures. We use the
radial convergence diagrams to compare parametric sensitivities
for the different parameters sets, for the different metrics, and for
changes in the sensitivities of the metrics over policy scenarios and
time.

3.2. Computational experiments

We conduct a number of experiments to determine the sensi-
tivity of the damage and abatement cost outputs/metrics to
sampled parameters using the CDICE simulation model. We iden-
tify two groups of parameters for testing: (1) a set of eight pa-
rameters designated as important (which we call the “expert set”)
in Nordhaus (2008) based on expert assessment and experience
with a previous version of the DICE model (Nordhaus, 1994) and (2)
a set of 30 parameters (the “extended set”) that includes seven of
the eight parameters in the expert set. The eighth parameter in the
expert set is the upper limit of fossil fuel resources (fosslim), which
serves as a constraint to the optimization in DICE. We configured
CDICE to only report violations of this constraint. The parameters
tested are listed in Appendix B in groups related to model
component, along with the literature sources of information used
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to set the bounds for each parameter. The parameters in the expert
set are shown in bold in the tables in Appendix B. For these pa-
rameters, we reference the standard deviations supplied in Nord-
haus (2008, Table 7-1) in setting the bounds. In some cases, time
series used in the main equations of the model are constructed
from several related parameters. For these related parameters, we
selected ranges for related parameters to constrain the overall
bounds of the time series. See Appendix B for more detail.

3.2.1. Initial OAT analysis

To ensure that we have a valid replication of the DICE model in
CDICE, we conduct the OAT sensitivity test described in Nordhaus
(2008, Chapter 7) using the expert set of parameters and the BAU
policy scenario. We varied each of these eight parameters one at a
time over +£6 standard deviations (Nordhaus, 2008, Table 7-1,
Fig. 7-1) to measure the impact on the increase in atmospheric
temperature in the first decade of the 22nd century. Fig. 7-1 of
Nordhaus (2008) is adapted here as Fig. 3A. We have excluded
values of parameters that are non-physical or cause model failure.
Results are reported relative to the reference case, the atmospheric
temperature increase in 100 years for the BAU policy scenario.

3.2.2. Verification test for expert set of important parameters

Examining the impact on 100-year atmospheric temperature
increase, Nordhaus (2008) asserts that the expert set of parameters
has “the largest impact on DICE model outcomes and policies.” We
attempt to verify this for two important net present value cost
metrics (Table 1). We use our independent verification method
(described in Section 3.1.3) for this experiment, which involves a
pairwise comparison of two ensembles of CDICE computations for
these two metrics. In the first ensemble (Set 1), parameter sets are
created from a Latin Hypercube sample of the extended set of pa-
rameters (8192 parameter sets or SOWs in the ensemble). For the
second ensemble (Set 3), we modify the Set 1 samples to use the
reference values for all parameters except those in the expert set.
This verification exercise tests the validity of the assumption that
the parameters in the expert set have the largest impacts on model
outcomes, including metrics and policy scenarios other than those
shown in Nordhaus (2008).

3.2.3. OAT Analysis for the NPV of climate damages and abatement
costs

In the next computational experiment, we conduct OAT analyses
specifically focused on the NPV of climate damages and abatement
costs output metrics. OAT sensitivity analysis has been used as an
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Fig. 3. Replication in CDICE of a DICE one-at-a-time (OAT) sensitivity analysis for the expert set of parameters for atmospheric temperature increase after 100 years using the BAU
scenario. A Results from DICE, adapted from Nordhaus (2008, Fig. 7-1). B Results from CDICE. The order of importance of the sampled parameters is the same in both analyses.
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initial step to identify important parameters to limit the compu-
tational demands of follow-on uncertainty testing (Nordhaus, 1994,
2008; Scott et al., 1999). We compute reference values metricres
using the DICE optimal policy scenario with all exogenous param-
eters at their reference settings, where metric is the NPV of climate
damages or the NPV of abatement costs. We use the optimal policy
scenario here as both the climate damages and the abatement costs
are non-negligible. For each parameter p in the expert or extended
set of parameters we compute two additional values of each NPV
metric, one with the parameter at the low end of the range, met-
ricplow, and one at the high end of its range, metricy,hign, using the
bounds in Appendix B. We then compute the normalized deviation
from the reference value for the parameter and metric using
Equations (20) and (21).

’metricp’,oW — MeLTiCref

deviationy, j,, = (20)

Metricy,f

Metricy pign — MeLTiCref

deviation, pion = - 21
v p.high MetTiCyef (21)

We choose the larger of deviationy, jow and deviationy pign for each
parameter and metric, and then rank order the parameters in terms
of the magnitude of this deviation. These rankings are posted in a
table in percentage terms. Although we cannot detect possible ef-
fects of parameter interactions, we hypothesize that comparing the
results with the two different parameter sets will show that there
are influential parameters in the extended set that are not in the
expert set.

3.2.4. Sobol’ sensitivity analysis

We impose each of the policy scenarios in turn in CDICE and
construct alternative SOWs by simultaneously varying parameters
(7 in the expert set or 30 in the extended set) using Sobol’ pseudo-
random sampling (Sobol’, 1967). First-order and total-order Sobol’
sensitivity indices for each parameter and second-order sensitivity
indices for each parameter pair in the set are computed in CDICE
from the variance decomposition of the target cost metrics using
the SOW ensemble. Results are reported here for sample sizes that
result in bootstrap confidence intervals that are <10% of the total
order indices for the leading indices. See Appendix C for an illus-
tration of how Sobol’ indices converge for increasing sample sizes
for this experiment. For the expert set, we use 65,536 samples of
each parameter for a total of 1,048,576 SOWs; for the extended set,
there are 131,072 samples of each parameter and a total of
8,126,464 SOWs.

3.2.5. Verification test of Sobol’ parameter rankings

As an additional test of the Sobol’ sensitivity analysis identifi-
cation of sensitive parameters within the extended set of param-
eters, we conduct another independent verification, as described in
Section 3.1.3, in this case for the net present value of total costs (the
sum of the NPV of climate damages and abatement costs) for the
three different policy scenarios. Using the same Set 1 Latin Hy-
percube sample chosen in the earlier independent verification
(Section 3.2.2), we compute in CDICE the NPV total cost metric for
this ensemble of SOWs for the three policy scenarios. For each
policy scenario, we modify the Set 1 parameter values, by fixing the
insensitive parameters (Sobol’ total order indices <0.1%) to their
reference values, creating Set 3 parameter sets for each policy
scenario. Pairwise comparison of the NPV total cost metrics from
the Set 1 and Set 3 SOW ensembles for each policy scenario should
be highly correlated if our designation of sensitive parameters is

correct. We report a separate verification test for each of the policy
scenarios, as the sensitive parameters could be different in the
alternative scenarios.

4. Results
4.1. OAT Sensitivities of the CDICE model outputs

Fig. 3 verifies that we are able to match the Nordhaus OAT-based
sensitivity rankings (Nordhaus, 2008, Chapter 7) for the parameters
controlling the increase in atmospheric temperature in the first
decade of the 22nd century in DICE (Fig. 3A) and CDICE (Fig. 3B)
using the BAU policy scenario. The atmospheric temperature in-
crease using reference values of all parameters is 3.2 °C for DICE
(Nordhaus, 2008) and 3.1 °C for CDICE, illustrating that the CDICE
simulation captures the atmospheric temperature OAT analysis of
Nordhaus’ selection of key DICE parameters (the expert set) and
their rank order assuming their effects are linear and separable.

Fig. 4 provides the results of the independent verification
(Section 3.2.2) used to determine whether the expert set parame-
ters are the most important parameters for the NPV of climate
damages and the NPV of abatement costs. These NPV metrics are
discounted sums through the first decade of the 23rd century
(Table 1), applying the real interest rate discount factors in Equa-
tions (10) and (11). The discount factors diminish at a rate that
makes the contributions to the discounted sum very small beyond
200 years. As described in Section 3.2.2, the results in Fig. 4 were
obtained using an initial Latin Hypercube sample (Set 1) that varied
the parameters in the extended set of 30 parameters over the
ranges in Appendix B. We computed the NPV of climate damages
and abatement costs for each SOW in the Set 1 sample using the
BAU policy scenario in CDICE. We then adjusted the Set 1 sample by
fixing all parameters except those in the expert set to their refer-
ence values; this sample is called Set 3. The NPV of climate damages
and abatement costs are computed in CDICE for the SOWs in Set 3
using the same BAU policy scenario. If the expert set of parameters
is correctly specified and sufficiently controls the NPV cost metrics,
then the pairwise plot of the unadjusted and adjusted ensembles in
Fig. 4 should lie on the 45-degree (i.e., the perfect correlation) line.
In Fig. 4, we see that this is not true and conclude that the NPV cost
metrics must be sensitive to parameters not included in the expert
set specified by Nordhaus (2008).

The core question that emerges from this analysis is, what are
the controlling parametric sensitivities of these important cost met-
rics? At present within the integrated assessment community,
expert-driven parameter selection coupled with OAT analysis is the
primary method for a first assessment of model sensitivities (e.g.,
Scott et al., 1999; Nordhaus, 2008). This may be followed by a
limited Monte Carlo sensitivity test of impacts of the parameters
that pass the initial OAT screening. As a way to explore the conse-
quences of this methodological approach and its implicit linear
independence assumptions, we continue with the OAT analysis
described in Section 3.2.3. Using the DICE optimal policy scenario
we rank order the parameters in terms of their percentage effect on
the NPV of climate damages and abatement costs. The top five
parameters for each parameter set are shown in Table 2. We note
first the agreement of both expert and extended parameter sets in
the top-ranked parameter, t2xco2 or climate sensitivity, for the NPV
of climate damages. Differences in the rank ordered lists are pri-
marily in the effects of parameters in the extended set that are not
sampled in the expert set. For example, of the parameters related to
the climate damages function (Equation (2)), only a2, the coefficient
on the nonlinear term, is in the expert set of parameters. The
exponent of the nonlinear term, a3, and the coefficient on the linear
term, al, both have a larger individual effects that push a2 down in
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Fig. 4. Pairwise comparison of CDICE output metrics for ensembles with the extended set of parameters sampled (horizontal axis) and with all parameters except those from Fig. 3
fixed (vertical axis). Results are shown for A the net present value of climate damages and B the net present value of abatement costs. If the insensitive parameters from the
atmospheric temperature increase experiment were also insensitive for these cost metrics, the pairwise comparisons would be highly correlated.

rank order for the NPV of climate damages. Parameters that affect
the total factor productivity function (dela, a rate of decline, in the
extended set and gaO0, an initial growth rate, in both parameter sets)
are high-ranked parameters for both of the NPV metrics. Total
factor productivity, in the form of ga0, also ranked high for the 100-
year temperature increase as seen in Fig. 3. That dela outranks ga0
in the extended set of parameters is a reflection of its role in the
total factor productivity function. See Appendix B for details of how
we chose bounds for these related total factor productivity pa-
rameters. The rankings for the extended set confirm that total
factor productivity is important to both of the NPV cost metrics.
The highest ranking parameter for the NPV of abatement costs
in the extended set is the fraction of the economy sharing the costs
of the abatement in the 2010—2020 decade (partfrac2). None of the
participation parameters are included in the expert set of param-
eters. Their common use in the DICE model is as pre-set values to
model specific cost-sharing participation scenarios (see the dis-
cussion in Nordhaus, 2008, Chapter 6). Our DICE policy scenarios
were created assuming an extremely optimistic 100% participation
in the abatement. The magnitude of the effect shown in Table 2 is
largely a result of the piece-wise participation function (Equation
(5)). The OAT analysis assumes that the parameter effects are in-
dependent, which will not be true for the participation parameters.
In a typical modeling exercise, the participation function is likely to
be invoked as a whole or at the reference 100% setting. As this IAM
is highly nonlinear and composed of coupled models, we can
expect there to be significant parameter interactions. A global
sensitivity analysis method, such as the Sobol’ variance decompo-
sition method used here, is required to identify these interactions.

Table 2

Top five ranked parameters for NPV metrics for expert and extended parameters sets
for the optimal policy scenario. Parameters are ranked by their percentage effect
(shown in brackets) as described in Section 3.2.3. Parameters are defined in
Appendix B.

Rank order NPV climate damages NPV abatement costs
Expert Extended Expert Extended
1 t2xco2 [115] t2xco2 [115]  pback0 [160]  partfrac2 [1221]
2 popasym [37] a3 [88] ga0 [45] pbacko [160]
3 a2 [21] dela [40] gsigma [36] dela [83]
4 gsigma [14] popasym [37] popasym [18] gaO0 [45]
5 ga0 [14] al [24] t2xco2 [7] gsigma [36]

4.2. Sobol’ sensitivities of net present value cost metrics

Fig. 5 shows the result of the Sobol’ sensitivity analysis for these
NPV cost metrics for both the expert and extended sets of param-
eters under the BAU policy scenario. Fig. 5A and B show the vari-
ance decomposition of approximately 1 million SOWs created from
global sampling of the expert set of parameters. Comparing the
results of the BAU scenario for the expert set in Fig. 5A with Table 2,
the top three rank order parameters from the OAT analysis for the
NPV of climate damages again dominate, but note the high degree
of interactions between them. The interaction between climate
sensitivity (t2xco2) and the coefficient on the nonlinear term of the
damages function (a2) accounts for 10% [confidence interval (CI)
1%] of the variance of the NPV of climate damages. Compared to the
top three sensitive parameters in the OAT test, the total order
sensitivity indices for the climate sensitivity (t2xco2), population
limit (popasym) and the damage function coefficient (a2) parame-
ters are 45% [1%], 11% [1%], and 59% [1%]. The interactions of the a2
parameter with other parameters makes its impact much greater
than would be apparent in the OAT test. Fig. 5B shows that the top
four rank order parameters from the OAT analysis for the NPV of
abatement costs remain the leading sensitivities in the Sobol’
analysis. However, here again the parameter interactions dominate,
although the carbon intensity parameter (gsigma) now outranks
the total factor productivity parameter (ga0) due to the interaction
between the initial cost of the carbon-free energy substitute
(pback0) and the carbon intensity parameter (gsigma) accounting
for 3% [1%] of the variance of the NPV of abatement cost.

Fig. 5C and D illustrate the shortcomings and possible biases of
limiting the parameters tested to those in the expert set. These
figures show the variance decomposition of approximately 8
million SOWs created by the global sampling of the extended set of
parameters. Table 3 lists the numerical values of the total-order
indices supporting Fig. 5C and D in the columns for the BAU pol-
icy scenario. For the NPV of climate damages (Fig. 5C), the differ-
ence in first- and total-order indices shows that the parameter
interactions dominate. The second-order interaction between
climate sensitivity (t2xco2) and the exponent in the damages
function (a3) accounts for 13% [1%] of the variance in the metric. An
additional 7 parameter pair interactions each account for >1% of
the variance. The total factor productivity parameter (ga0O) in
particular accounts for a larger total-order portion of the variance
(27% [3%]) than could be inferred from the OAT analysis in Table 2.
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Fig. 5. Sobol’ sensitivity results for the NPV of climate damages (A and C) and the NPV of abatement costs (B and D). A and B use the expert set of parameters. C and D use the
extended parameter set. Filled nodes represent first-order sensitivity indices. Rings indicate the magnitude of the total-order indices. Shading and width of lines are the second-
order indices. The legend indicates the minimum and maximum indices shown in the figure. Results are from the BAU policy scenario.

Of all the climate-related parameters, the NPV of climate damages
is sensitive only to climate sensitivity (t2xco2) and not to any of the
other climate box model, land-use change, carbon box model, and
non-CO greenhouse gas forcing parameters. In Fig. 5D, we see that
the NPV of abatement costs is more sensitive to the initial growth
rate of the carbon intensity of production (gsigma) and the total
factor productivity parameter (gaO) than we found in the OAT
analysis in Table 2. The relatively small influence of the abatement
participation parameters (only partfracn has a total-order index
>1%) is a reflection of the low abatement in the BAU policy scenario
where most mitigation is deferred until after the 200 year horizon
of the NPV cost metrics. This policy scenario tends to be dominated
by climate damage costs.

Comparing the Sobol’ analysis result for the NPV cost metrics
between the expert and extended sets of parameters, we see
significant differences in the rank ordering of the sensitive

parameters in addition to the considerable increase in parameter
interactions in the extended parameter set. The principal lesson
here is that OAT analyses and the limited global analyses afforded
by the expert set of parameters fail to accurately portray the
controlling parametric sensitivities of the NPV of climate damages
and abatement costs in this DICE model policy scenario. More-
over, if the OAT analysis were used to inform investments in
further research related to the underlying uncertainties, key in-
terdependencies between the exogenous parameters would likely
be missed.

4.3. Sensitive parameters and interactions change with mitigation
strategy and time

In Fig. 6, we introduce the Sobol’ sensitivity analysis results for
a composite metric, the NPV of total costs (the sum of the NPV of
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Total-order indices [confidence intervals] for NPV metrics by policy scenario. Bold values indicate sensitivity indices above a threshold value of 0.01 (or 1% of variance).

Model parameter

BAU

Optimal

2 °C stabilization

NPV

Climate damages

NPV

NPV

NPV

NPV

NPV

Abatement costs

Climate damages

Abatement costs

Climate damages

Abatement costs

popasym 0.27 [0.05] 0.16 [0.02] 0.23 [0.03]
gpop0 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
ga0 0.27 [0.03] 0.19 [0.02] 0.20 [0.02]
dela 0.00 [0.01] 0.00 [0.01] 0.00 [0.01]
sig0 0.01 [0.01] 0.00 [0.01] 0.01 [0.01]
gsigma 0.14 [0.03] 0.31 [0.03] 0.09 [0.02]
dsig 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
dsig2 0.00 [0.01] 0.02 [0.01] 0.00 [0.00]
eland0 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
dtree 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
b12 0.01 [0.01] 0.00 [0.00] 0.01 [0.01]
b23 0.00 [0.01] 0.00 [0.01] 0.00 [0.01]
fex0 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
fex1 0.02 [0.01] 0.00 [0.00] 0.03 [0.01]
t2xco2 0.55 [0.04] 0.14 [0.03] 0.53 [0.03]
fco22x 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
cl 0.00 [0.01] 0.00 [0.00] 0.00 [0.01]
c3 0.00 [0.01] 0.00 [0.00] 0.00 [0.00]
c4 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
al 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
a2 0.02 [0.01] 0.00 [0.00] 0.02 [0.01]
a3 0.59 [0.04] 0.15 [0.03] 0.47 [0.03]
pbacko 0.00 [0.00] 0.26 [0.02] 0.00 [0.00]
theta2 0.00 [0.00] 0.08 [0.01] 0.00 [0.00]
backrat 0.00 [0.00] 1.00 [0.01] 0.00 [0.00]
gback 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
partfracl 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
partfrac2 0.00 [0.00] 0.02 [0.01] 0.00 [0.00]
partfracn 0.00 [0.00] 0.17 [0.01] 0.00 [0.00]
dpartfrac 0.00 [0.00] 0.01 [0.01] 0.00 [0.00]

0.03 [0.00] 0.11 [0.01] 0.01 [0.00]
0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
0.02 [0.00] 0.06 [0.01] 0.00 [0.00]
0.00 [0.00] 0.00 [0.00] 0.01 [0.00]
0.01 [0.00] 0.01 [0.00] 0.01 [0.00]
0.14 [0.01] 0.03 [0.01] 0.13 [0.01]
0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
0.00 [0.01] 0.00 [0.00] 0.00 [0.00]
0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
0.00 [0.00] 0.01 [0.00] 0.00 [0.00]
0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
0.00 [0.00] 0.04 [0.00] 0.00 [0.00]
0.01 [0.00] 0.62 [0.01] 0.00 [0.00]
0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
0.00 [0.00] 0.01 [0.00] 0.00 [0.00]
0.00 [0.00] 0.03 [0.00] 0.00 [0.00]
0.03 [0.01] 0.31[0.01] 0.00 [0.00]
0.45 [0.01] 0.00 [0.00] 0.48 [0.01]
0.02 [0.00] 0.00 [0.00] 0.00 [0.00]
0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
0.27 [0.01] 0.00 [0.00] 0.21 [0.01]
0.17 [0.01] 0.00 [0.00] 0.17 [0.01]
0.03 [0.00] 0.00 [0.00] 0.07 [0.01]

climate damages and the NPV of abatement costs) to compare the
parametric sensitivities of the three policy scenarios in our study
(Fig. 2). The BAU policy scenario defers most abatement with only
~20% of emissions reduced at 200 years. The optimal policy sce-
nario and the 2 °C stabilization scenario both impose controls on
industrial CO, emissions immediately, reaching 100% reduction in
the second half of the 22nd century. These two policy scenarios
differ primarily in how quickly emission controls are implemented.
We use these three scenarios to show how parameter sensitivities
change when there are trade-offs of near-term abatement costs for
future climate damages. In the deterministic runs for these three
scenarios in DICE and in the CDICE simulation (using reference
values of DICE’'s exogenous parameters), climate damages are
similar for all three scenarios in the first half of the 21st century. In
the 2 °C stabilization scenario, decadal abatement costs surpass
decadal climate damage costs in the 2060s, and are within a few
percent of each other at the end of the 200 year net present value
horizon. For the optimal and BAU policy scenarios the decadal
abatement costs are 40% and <1%, respectively, of the damage
costs at the end of the 200 year net present value horizon. The
Sobol’ sensitivity analysis for the NPV of total costs for the BAU
scenario in Fig. 6A closely resembles the analysis for the NPV of
climate damages for the same scenario in Fig. 5C, underscoring
how much the climate damages overwhelm the abatement costs
over the 200 year NPV horizon for this wait-and-see policy sce-
nario. The analysis for the optimal policy scenario in Fig. 6B is
similar to the analysis for the BAU scenario, even with a ramp up of
emission controls that is much closer to the 2 °C stabilization
scenario. This reflects the higher fraction of the total costs from
damages versus abatement. The aggressive strategy to stabilize the
increase in atmospheric temperature below 2 °C, shown in Fig. 6C,

presents a very different result for the NPV of total costs. More of
the total costs in the early decades of the net present value horizon
are attributed to abatement. The sensitivity to the damage-related
parameters is minimal. The parameter interactions between the
initial cost of the carbon-free energy alternative and the partici-
pation parameters dominate the metric variance reflected in
Fig. 6C.

The aggregate net present value metrics explored to this point
tell only part of the story: a picture of a limited future horizon
from the perspective of current, perfect knowledge of the future. It
is also informative to see how the sensitivities evolve over time. In
Fig. 7, we show the results of Sobol’ analyses of decadal abatement
costs in snapshots at 50 years, 100 years and 200 years within the
NPV time horizon. We use these snapshots of decadal costs as an
example of how the sensitivities of model metrics can change over
time as well as by policy scenario. We contrast the sensitivities of
the decadal abatement costs in the BAU policy scenario (Fig. 7A, C
and E) with the snapshots for the same decades for the 2 °C sta-
bilization scenario (Fig. 7B, D and F). The BAU policy scenario
imposes very little reduction in industrial emissions for the first
150 years, and consequently incurs minimal abatement costs
during this time. In our ensemble of SOWs, the abatement costs in
Fig. 7A and C are sensitive to the development of the cost of the
carbon-free energy replacement technology parameters (pbackO
and theta2). There is also the expected progression of sensitivities
to the participation parameters over time as these sensitivities
shift from the participation fraction in the second decade (part -
frac2) in Fig. 7A, to the final participation fraction (part fracn) and
the rate at which it is achieved (dpart frac) in Fig. 7C, to the final
participation rate alone in Fig. 7E. The relative sensitivities of the
total factor productivity parameter (ga0) and the carbon intensity
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Fig. 6. Sobol’ sensitivity results for the NPV of total costs by policy scenario. A BAU; B optimal; C 2 °C climate stabilization. The legend indicates the minimum and maximum indices

shown in the figure.

parameter (gsigma) increase over time. The many parameter in-
teractions illustrate a complex, evolving situation. The 2 °C stabi-
lization scenario imposes abatement immediately, with strong
sensitivities to the initial cost of the carbon-free energy substitute
(pback0) and the abatement participation in the second decade
(part frac2) in Fig. 7B. As in the BAU scenario, the sensitivities to
the total factor productivity (ga0O), carbon intensity (gsigma),
population limit (popasym), and participation parameters evolve
over time as seen in Fig. 7D and F. What is remarkable here is the
resemblance of Fig. 7E and F. By the end of the NPV planning
horizon, the parametric sensitivities are nearly identical in both
scenarios. This convergence also holds for the optimal policy sce-
nario (not shown).

4.4. Verification of the method for NPV total costs

As a final verification of the sensitive parameters for the NPV of
total costs, we undertake a verification test of the Sobol’ sensitivity
rankings for the extended set of parameters as described in Section
3.2.5. Using the same Latin Hypercube sample from the earlier
verification (Set 1 in Section 4.1), we make a Set 3 sample for each

policy scenario. We fix the insensitive parameters (Sobol’ total-
order indices <0.1%) to their reference values and compute the
NPV of total costs for each Set 3 sample in CDICE. Fig. 8 shows the
pairwise comparisons of these samples. Again, a perfect identifi-
cation of the insensitive parameters would result in each data point
lying on the 45° line and a correlation score of 1.000. In Fig. 8 we see
that sampling or not sampling the insensitive parameters makes
very little difference in the values of the NPV of total costs metric,
giving us confidence that we have identified both the insensitive
and sensitive parameters correctly for each policy scenario. Fig. 8
also shows that the range of the NPV of total costs in the BAU
policy scenario (Fig. 8A) is five times larger than in the 2 °C stabi-
lization scenario (Fig. 8C). We also note that the NPV of total costs
for the CDICE runs, assuming the reference values of all parameters,
is ~2 trillion USD in each of these three policy scenarios. This is at
the very low end of the distributions for all SOWs in each case,
reflecting the influence of the choice of parameter values on the
optimized results. The lesson here is that the more aggressive the
control on emissions, the greater the dependence on the early ex-
istence and use of renewable energy sources and more efficient use
of technology.
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Fig. 7. Sobol’ sensitivity results for decadal abatement costs at three snapshots in time for two policy scenarios: A, C and E for the BAU scenario; B, D and F for the 2 °C climate
stabilization scenario. The dates indicate the middle years of the decades of the snapshots. See Fig. 6 for legend description.
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Fig. 8. Pairwise comparison of the NPV of total costs for A BAU, B optimal and C 2 °C
climate stabilization scenarios. In each pairwise comparison, all parameters in the
extended set are sampled on the horizontal axis. On the vertical axis, the ensemble is
adjusted to fix the insensitive parameters to reference values for the scenario indicated
as determined by the Sobol’ total-order index <0.1%. Correlation indices between sets
or results are noted in each figure.

5. Conclusions

This study contributes a detailed demonstration of the conse-
quences of using expert elicitations to narrow the set of parameters
used for sensitivity and uncertainty analyses of IAMs. We demon-
strate how local approaches, such as OAT analysis with a small
parameter set varied over a small part of the feasible parameter
space, can mis-classify key sensitivities. As a result, research in-
vestments to reduce uncertainties guided by an OAT analysis could
be biased, and early-warning signs of policy failures could be
missed. Our results are based on an analysis of policy scenarios
from the globally-aggregated DICE IAM. Our CDICE results strongly
contrast with the DICE sensitivities described in Nordhaus (2008).
Our findings provide an argument for comprehensive model di-
agnostics that explicitly account for the parametric interactions and
dependencies between IAM coupled climate and economic com-
ponents. Moroever, our study illustrates how IAM controls change
with alternative metrics, over time, and with alternative emission
control scenarios.

In our analyses, we chose three sample policy scenarios and
contrasted the parametric sensitivities of the important cost met-
rics, the net present value of climate damages and abatement costs.
Our CDICE results show that the assumption of 100% global
participation in abatement costs overlooks the large variability in
the mitigation costs with less than 100% participation. This is
especially important in light of other recent studies (Clarke et al.,
2008; Nordhaus, 2010; Rogelj et al., 2011) which find it unlikely
that emission control targets can be reached with incomplete
participation. We find that uncertainties in population estimates,
future technology efficiency, carbon intensity of production, and
the emergence of replacements for carbon-based energy sources
are the most critical to these important cost metrics. These socio-
economic trends are difficult to project, but should be taken into
account in any risk assessment of potential emission control
strategies.

With the exception of the climate sensitivity parameter, the
climate damage and abatement costs are not sensitive to any of the
climate-related parameters of the model, including land use
change, non-CO, greenhouse gases, the carbon cycle model, and
the climate model. This is in direct contrast to studies with other
IAMs (for a recent example, see Rogelj et al., 2013b). Other IAMS in
addition to DICE directly use, or are calibrated to, the MAGICC
model (Meinshausen et al., 2011b). In a recent study using MAGICC,
Bodman et al. (2013) attribute more importance to the carbon cycle
in constraining atmospheric temperature increases than we find.
Our findings in this case may be indicative of DICE and not [AMs in
general, and may be due to the limited detail in the climate and
carbon cycle components in DICE. The policy costs we find are
demonstrated most simply in the industrial emissions function
(Equation (9)). The nonlinear relationships between population,
total factor productivity, and the carbon intensity of production in
determining total emissions are carried forward in the parameter
interactions for abatement costs for all three of the policies we
studied.

To at least some extent our concerns with IAMs have not
changed since Kelly and Kolstad (1999) identified the critical as-
sumptions of IAMs to be the discount factor, the projected trajec-
tories of population growth and technology growth (and how
endogenous it is within the model), the response to control policy,
and, finally, the degree of model aggregation. We acknowledge that,
while the DICE model covers all of the important aspects of the
climate-economy problem, it is a globally aggregated, highly
abstracted model. As such, its specific sensitivities will likely not
transfer to more complex IAMs which deal more completely
with inter-regional trade, specific energy choices, emerging
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technological capabilities, and learning over time. There is a
regional version of the DICE model, RICE (Nordhaus and Yang, 1996;
Nordhaus and Boyer, 2000; Nordhaus, 2010) which addresses the
aggregation problem. Nonetheless, uncertainties in the projections
from higher complexity IAMs should be expected to be controlled
by non-separable, highly interactive parameter groupings.

The reference deterministic policy formulations used in our
analysis assume perfect knowledge of future SOWs and parameter
values and neglect future learning (see, for example, Keller et al.,
2007; Keller and Mclnerney, 2008). Additional uncertainties (e.g.,
about the pure rate of social time preference and the elasticity of
marginal utility of consumption) are known to be important, but
not tested here. While the median discounted utilities of our
ensembles are within 10% of the DICE reference values for each of
the policy scenarios in our analysis, the 90th percentile values of
total climate damage and abatement costs are more than twice
the DICE reference values (2—3 trillion 2005 USD). We hypothe-
size that a more comprehensive pre-calibration step to reduce the
sampling of parameters at the tails of their ranges would reduce
the uncertainties of these costs. However, based on our experi-
ence with the climate sensitivity parameter, we expect that this
would not necessarily change the rank order of parameter
sensitivities.

The Sobol’ analysis we report here is one example of an evalua-
tion of model structure and behavior as recommended in the [AM
evaluation framework of Schwanitz (2013). IAM modelers are
encouraged to consult that framework for additional evaluation
practices. For parameter sensitivity analysis of more computation-
ally expensive IAMs, an initial parameter screening (e.g., Morris,
1991) to discover total-order sensitivities can be accomplished
with a fraction of the sample sizes we used in this study. This can be
followed with a more detailed analysis with the most sensitive pa-
rameters to identify second-order parameter interactions. There is a
need for the integrated assessment field to embrace rigorous model
diagnostics that can account for uncertainties when seeking to
advance our management of future climate change risks.
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Appendix A. Example emissions pathways for optimal policy
scenario

The optimal policy scenario as determined by a DICE GAMS
execution is shown in Panel A of Fig. A.9. It consists of the control
variables from the GAMS optimization, which are the emission
control and investment variables. The savings rate from the
GAMS optimization is the investment fraction of global world
production. The CDICE model accepts as a policy scenario the
emission control and savings shown in the figure. Panel B of
Fig. A.9 shows the endogenous emission pathway calculated in
DICE (solid black line) as well as the distribution of emissions
pathways calculated in CDICE using the optimal policy scenario
and the ~8 million SOWs used in this study. The difference in the
DICE emissions pathway and the median and mean CDICE path-
ways for this policy scenario are due to a modeling decision to
constrain the total factor productivity trajectory within a range
similar to earlier and later Excel versions of DICE (see Panel B of
Fig. B.10). The DICE2007 total factor productivity reference values
give a trajectory that increases the likelihood of model instability
in decades beyond the net present value planning horizon used
in this study.
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Fig. A.9. A The optimal policy scenario from DICE is described by the control variables: emission control rate (solid line, left axis) and investment (dashed line, right axis). The gray
dashed line is the savings rate or the investment percent of global world product. B The distribution of emission pathways in the CDICE ensemble of SOWs for the optimal policy
scenario in this study. The solid black line is the endogenous emissions pathway from the DICE optimal policy scenario described in A. The dashed and dotted lines are the median
and mean of the emissions pathways in the CDICE ensemble in this study. Dark shaded areas represent the central 90% of the ensemble. Light shaded areas include the extremes.
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Appendix B. Exogenous parameters and sampling ranges

The exogenous parameters of the DICE and CDICE models are
documented in the following tables. Parameter names are as given
in Nordhaus (2008) and Nordhaus (2007a) and the DICE GAMS
code. See the DICE model equations in Nordhaus (2008, Appendix
A). In this study, parameters are sampled uniformly within the
bounds listed, but see the note below about the climate box model.
Bounds were chosen based on literature references where avail-
able. Where the parameters are the results of fits to additional
models (Nordhaus, 2007a), the parameters are sampled in a range
of £10—50% from the reference value, depending on the magnitude
of the reference value. In some cases parameter bounds for related
parameters were chosen to influence the bounds of a time series
constructed from a function containing several parameters. Ex-
amples are noted below and illustrated in Fig. B.10. Care was taken
to avoid parameter values which either do not make sense or cause
model failures (for example, a negative value of the population
limit). Parameters in bold in the tables are members of the expert
set (Nordhaus, 2008, Chapter 7).

Fundamental Economic Factors No parameters in this group
were sampled. The stock of fossil fuel resources (fosslim) is used as a
constraint in the DICE GAMS optimization. This constraint is not
implemented in CDICE, but violations are reported. For the BAU
policy scenario, 3.4% of the SOWs violated the fossil fuel resources
limit. No violations of this constraint occurred in the SOWs for the
optimal or 2 °C stabilization policy scenarios in this study.

Fundamental Economic Factors

Parameter Description [Units] DICE Sampling
value bounds
elasmu or «  Elasticity of marginal 2 Not sampled
utility of consumption
[no units]
prstp or p Pure rate of social time 0.015 Not sampled
preference [per year]
gama or vy Capital elasticity in production 0.3 Not sampled
function [no units]
KO 2005 capital stock [trillions 2005 USD] 137 Not sampled
dk or dy Capital depreciation [per year] 0.1 Not sampled
fosslim Stock of fossil fuel resources [Gt C] 6000 Not sampled
scalel Arbitrary scaling factor in 194 Not sampled
discounted utility of consumption
calculation
scale2 Arbitrary scaling factor in discounted 31,800 Not sampled

utility of consumption calculation

Population or Labor These parameters are used to develop a
population or labor time series. Guidance for the population esti-
mates for popasym is from I[IASA (2007) and UN (2011). The growth
factor gpop0 was sampled to allow for alternative approaches to the
population limit. See the illustration of the overall sampling range
for the population trajectory in Panel A of Fig. B.10. Population
limits over 15 billion introduce model instability.

Population or Labor

Parameter  Description [Units] DICE Sampling
value bounds

pop0 2005 global population [millions] 6514  Not sampled

popasym Asymptotic population limit [millions] 8600  [5000, 13,000]

gpop0 Population growth rate [per decade] 035 [0.20, 0.25]

Total Factor Productivity These parameters are used to develop
a total factor productivity or technology efficiency time series. The
function in DICE GAMS indicates efficiencies >100% in decades
beyond the typical planning horizon, introducing model instability.
Parameter values were chosen based on alternative functions in
other Excel versions of DICE from http://nordhaus.yale.econ.edu.
See the illustration of the overall sampling range for the total factor
productivity trajectory in Panel B of Fig. B.10.

Total Factor Productivity

Parameter Description [Units] DICE Sampling
value bounds
a0 Initial total factor productivity 0.02722 Not sampled
ga0 Initial growth of technology 0.092 [0.092, 0.200]
efficiency [per decade]
dela Decline in technology 0.001 [0.011, 0.016]

efficiency [per decade]

Carbon Intensity of Production In DICE the carbon intensity of
production (sigma) is measured in purchasing power parity terms.
Historical data from [EA (2010) and EIA (2012) were used to set the
bounds for these parameters in the function to develop the sigma
time series. The DICE model structure enforces a decline in the
carbon intensity of production over time. See the illustration of the
overall sampling range for the carbon intensity of production tra-
jectory in Panel C of Fig. B.10.

Carbon Intensity of Production

Parameter Description [Units] DICE Sampling bounds
value
sig0 2005 COy, industrial emissions/ 0.13418 [0.133636, 0.152727]

production ratio

gsigma Initial growth of carbon intensity —0.073  [-0.016, —0.07]
[per decade]

dsig Decline in decarbonization 0.003 [0.0010, 0.0015]
[per decade]

dsig2 Quadratic coefficient in 0 [0.0, 0.0002]

decarbonization

Land Use Change The DICE model assumes a constant decline in
emissions from land use change for the current century until a
constant low level is reached after 2100 with no further change.
Projections for the current emissions for land use change are from
[PCC (2007), WHRC (2008) and MIT (2012). The decline rate is
explicit in DICE; we sampled it in this study.

Land Use Change

Parameter  Description [Units] DICE value  Sampling bounds
eland0 2005 emissions from land 11 [9, 15]

use change [Gt C per decade]
dtree Decline rate in land use 0.1 [0.05, 0.20]

emissions [per decade]

Carbon Cycle Box Model The carbon cycle box model in DICE is
calibrated to the A1F1 emissions scenario in MAGICC (Meinshausen
etal.,, 2011b) as noted in Nordhaus (2007a). There are three boxes or
layers in the carbon cycle model: atmosphere, surface (land and
ocean) and deep ocean. The bounds for b12 are 2¢ from Nordhaus
(2008, Table 7-1). Note that only two of the transfer coefficients are
explicitly defined. The others are derived from b12 and b23.
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Carbon Cycle Box Model

Parameter Description [Units] DICE value Sampling bounds

mat2000 2005 atmospheric burden [Gt C] 808.9 Not sampled

mu2000 2005 land and upper ocean 1255 Not sampled
burden [Gt C]

ml2000 2005 deep ocean burden [Gt C] 18,365 Not sampled

b12 Atmosphere to surface 0.189288  [0.155288,
transfer coefficient [per decade] 0.223288]

b23 Surface to deep ocean 0.05 [0.025, 0.10]
transfer coefficient [per decade]

b11 Atmosphere to atmosphere 0.810712  Derived
transfer coefficient [per decade]

b21 Surface to atmosphere transfer 0.097213  Derived
coefficient [per decade]

b22 Surface to surface transfer 0.852787  Derived
coefficient [per decade]

b32 Deep ocean to surface transfer 0.003119  Derived
coefficient [per decade]

b33 Deep ocean to deep ocean transfer 0.996881  Derived

coefficient [per decade]

Non-CO, Greenhouse Gases The DICE model assumes a steady-
state for the non-CO, greenhouse gases after 2100. Guidance for
both current and 2100 GHG forcing were taken from IPCC (2007)
and MIT (2012).

Non-CO, Greenhouse Gases

Climate Damages The climate damages function formulation in
IAMs has been the subject of criticism for the assumption of a
quadratic dependence on the change in temperature. See Stanton
et al. (2009) for an example of the discussion. Here we sample
the exponent (See Equation (2)), but note that the model fails when
the exponent is >3.5.

Climate Damages

Parameter Description [Units] DICE value Sampling
bounds

al Linear term coefficient 0 [0.0, 0.001]

a2 Non-linear term coefficient 0.0028388 [0.002255,
0.003123]

a3 Non-linear term exponent 2 [1.5,3.0]

Backstop Guidance for choosing the bounds for the backstop
function were taken from Nordhaus (2007a) and Nordhaus
(2008).

Parameter  Description [Units] DICE value  Sampling
bounds Backstop
fex0 2000 non-CO, GHG forcing [W m—2]  —0.06 [-0.3, 0.0] Parameter Description [Units] DICE Sampling
fex1 2100 non-CO, GHG forcing [W m 2] 0.3 [-0.2, 0.5] value  bounds
pback0 Initial backstop price [USD tC~'] 1.17 [0.6, 3.0]
expcost2 or f,  Exponent in abatement cost equation 2.8 [2.6, 3.0]
Climate Box Model The climate in DICE is represented as a two backrat Initial to final backstop price [no units] 2 [1.5,2.5]
box model. It is calibrated to MAGICC (Meinshausen et al., 2011b) gback Initial decline in backstop price 005 10.045,
[fraction per decade] 0.055]

along with the carbon cycle box model as noted above. Note that
the model fails when the climate sensitivity (t2xco2) is <0.5. The
forcing parameter (fco22x) is used in the model as A = fco22x/
t2xco2. We have repeated this experiment basing the Sobol’ sample
of climate sensitivity (t2xco2) on empirical distributions (Libardoni
and Forest, 2011, 2013; Olson et al., 2012) rather than the uniform
distribution and find no difference in the rank ordering of sensitive
parameters for the net present value metrics. The total variance,
however, will be reduced by limiting the samples at the tails of the
distribution. The results of this study use the updated distribution
from Libardoni and Forest (2011, 2013), with total variance of
climate damages intermediate between those from the uniform
distribution and the sharper distribution of Olson et al. (2012).

Climate Box Model

Parameter Description [Units] DICE value Sampling bounds

tatmO 2000 atmospheric temperature  0.7307 Not sampled
change since 1900 [°C]

tocean0 2000 ocean temperature change 0.0068 Not sampled
since 1900 [°C]

t2xco2 Temperature sensitivity [°C per 3 [0.5, 8]
doubling of CO;]

fco22x Radiative forcing from doubling 3.8 [3.6, 3.9]
of CO, [W m™?]

cl Climate equation coefficient for  0.22 [0.20, 0.24]
upper level [per decade]

c3 Upper to lower level transfer 03 [0.27,0.33]
coefficient [per decade]

c4 Lower to upper level transfer 0.05 [0.045, 0.055]

coefficient [per decade]

Participation in Abatement An algorithm is presented in
the DICE GAMS code to develop the time series of the fraction of
the global economy participating in the abatement costs. It is not
used in the sample participation scenarios presented with the
GAMS code. Instead, fully specified time series are used. We
experiment with the algorithm as presented in this study. Early
bounds are related to the Kyoto Protocol (Nordhaus, 2007a). We
note that the lower bound for part fracn is set to prevent model
failure.

Participation in Abatement

Parameter Description [Units] DICE Sampling
value bounds

partfracl Participation in emissions 0.25372 [0.0, 0.25372]
abatement in 2000—2010
decade [fraction of global
economy]

partfrac2 Participation in 2010—2020 1 [0.25372, 1.0]
[fraction of global economy]

partfracn Participation in 2180—2190 1 [0.5, 1.0]
[fraction of global economy]

dpartfrac Rate of change of participation 0 [0.05, 0.25]

[fraction per decade]
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Appendix C. Convergence criteria

The pseudo-random sampling and Sobol’ analysis require a
multiple of 2(n + 1) samples of each parameter where n is the
number of parameters. The goal is to use a sample size large
enough so that the bootstrapped confidence intervals for the
total-order indices for the most sensitive parameters in the
Sobol’ analyses are <10% of the index values. The following table

shows the total-order indices and confidence intervals for the
NPV of climate damages and abatement costs metrics for
increasing sample sizes for the extended set of parameters
(n = 30) and the optimal policy scenario. Sample sizes of 214, 216
and 2'7 correspond to approximately 1 million, 4 million and 8
million model executions, respectively. Bold values in the table
indicate sensitivity indices above a threshold value of 0.01 (or 1%
of variance).

Model parameter NPV climate damages

NPV abatement costs

214 Samples 216 samples 217 samples 214 samples 216 samples 217 samples
popasym 0.24 [0.09] 0.24 [0.05] 0.23 [0.03] 0.03 [0.01] 0.03 [0.00] 0.03 [0.00]
gpop0 0.01 [0.01] 0.00 [0.01] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
a0 0.19 [0.09] 0.20 [0.04] 0.20 [0.02] 0.02 [0.01] 0.02 [0.00] 0.02 [0.00]
dela 0.00 [0.01] 0.00 [0.01] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
sig0 0.02 [0.01] 0.01 [0.01] 0.01 [0.01] 0.01 [0.00] 0.01 [0.00] 0.01 [0.00]
gsigma 0.13 [0.05] 0.10 [0.03] 0.09 [0.02] 0.15 [0.02] 0.14 [0.01] 0.14 [0.01]
dsig 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
dsig2 0.00 [0.01] 0.00 [0.00] 0.00 [0.00] 0.01 [0.00] 0.00 [0.00] 0.00 [0.01]
eland0 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
dtree 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
b12 0.02 [0.02] 0.01 [0.01] 0.01[0.01] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
b23 0.01 [0.01] 0.00 [0.01] 0.00 [0.01] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
fex0 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
fex1 0.02 [0.04] 0.03 [0.02] 0.03 [0.01] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
t2xc02 0.56 [0.07] 0.52 [0.04] 0.53 [0.03] 0.00 [0.01] 0.00 [0.00] 0.01 [0.00]
fco22x 0.00 [0.01] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
cl 0.00 [0.01] 0.01 [0.01] 0.00 [0.01] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
a3 0.01 [0.01] 0.00 [0.01] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
c4 0.00 [0.01] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
al 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
a2 0.04 [0.03] 0.03 [0.01] 0.02 [0.01] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
a3 0.47 [0.07] 0.48 [0.05] 0.47 [0.03] 0.01 [0.01] 0.01 [0.00] 0.01 [0.00]
pbacko 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.45 [0.02] 0.45 [0.01] 0.45 [0.01]
theta2 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.02 [0.00] 0.02 [0.00] 0.02 [0.00]
backrat 0.00 [0.00] 0.00 [0.01] 0.00 [0.00] 0.01 [0.00] 0.00 [0.00] 0.00 [0.00]
gback 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
partfracl 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]
partfrac2 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.28 [0.02] 0.27 [0.01] 0.27 [0.01]
partfracn 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.17 [0.02] 0.17 [0.02] 0.17 [0.01]
dpartfrac 0.00 [0.00] 0.00 [0.00] 0.00 [0.00] 0.03 [0.01] 0.03 [0.01] 0.03 [0.00]
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