Log Trip rate on a workday in HMA ktluser 10. Novta 2008 7:18 ktluser 10. Novta 2008 19:10 48,24 0,Linkmodule Trip_rate_on_a_workd,2,2,-32766,1,Trip rate on a workday in HMA.ANA Unadjusted trip rate trips/time unit Calculates the traffic volume for each time point of the day. First, the matrix is selected based on the Base_time Name column, and then the numbers are scaled as the proportion of the traffic activity per each hour and the peak hour for which the matrix was calculated. var c:= Trips_by_hour[Reg=From,Reg1=To1]; c:= if c=null then 0 else c; c:= cubicinterp(hour,c,time,hour) 208,104,1 48,24 2,454,141,476,358 2,151,124,782,471,0,MIDM [Time,From] [To1,From] [Time,4,From,1,To1,1] Trip rate on a workday in HMA trips/time unit Calculates the traffic volume for each time point of the day. Adjusting is taken into account to yield results where the population in an area is not much different after the day. 8.11.2008 Jouni Tuomisto Note that the adjustment is turned off in this node. I don't remember when this has been done and why. <a href="http://en.opasnet.org/w/Trip rate on a workday in the Helsinki metropolitan area">Opasnet variable</a> <a href="http://www.pyrkilo.fi/resultdb/index.php?page_id=2625&wiki_id=1&sample=1">Result from the Result database</a> var g:= unadjusted_trip_rate; {index x:= copyindex(From); var b:= 0; var c:= 0; var e:= 0; var a:= sum(Unadjusted_trip_rate,time); b:= sum(a,From); b:= b[To1=From]; c:= sum(a,To1); c:= (b-c)*a/sum(a,To1); e:= if c<0 then -c else 0; c:= if c<0 then 0 else c; e:= e[From=x,To1=From]; e:= e[x=To1]; a:= c+e; var g:= if time>7 and time<19 then 1 else 0; g:= g/sum(g,time); g:= Unadjusted_trip_rate+a*g;} g:= g/sum(sum(sum(g,from),to1),time)*total_trips 208,168,1 48,29 1,1,1,1,1,1,0,,1, 2,26,34,476,616 2,578,39,507,476,0,MIDM Graphtool:0 Distresol:10 Diststeps:1 Cdfresol:5 Cdfsteps:1 Symbolsize:6 Baroverlap:0 Linestyle:1 Frame:1 Grid:1 Ticks:1 Mesh:1 Scales:1 Rotation:45 Tilt:0 Depth:70 Frameauto:1 Showkey:1 Xminimum:0 Xmaximum:1 Yminimum:0 Ymaximum:1 Zminimum:0 Zmaximum:1 Xintervals:0 Yintervals:0 Includexzero:0 Includeyzero:0 Includezzero:0 Statsselect:[1,1,1,1,1,0,0,0] Probindex:[0.05,0.25,0.5,0.75,0.95] [Time,From] [To1,From] [Time,5,From,1,To1,1] Total trips trips Total number of trips travelled in a personal car in Helsinki Metropolitan area during a working day. The total number of trips is 2.9 million, and 44% of them are by personal cars. Trips by traffic mode on weekday in the Helsinki metropolitan area in 2000. Total trips 2.9 million 22 % Walking 7 % Cycling 16 % Bus 3 % Tram 3 % Train 4 % Metro 34 % Personal car (driver) 10 % Personal car (passenger) and taxi 2.9M*0.44 96,168,1 48,24 2,102,90,476,478 65535,52427,65534 YTV: Helsingin seudun nykytila (The Current State of Helsinki Region) PJS B 2002:1 <a hfref="http://www.ytv.fi/seutukeh/pks/pks2025/nykytila.pdf">PDF file</a> Modelled trip rate jtue 13. Febta 2003 16:03 ktluser 25. touta 2005 12:30 48,24 208,40,1 48,24 1,1,1,1,1,1,0,0,0,0 1,85,42,656,530,17 Arial, 13 Hour Hour of day. Sequence( 0, 23 ) 400,272,1 48,12 1,1,1,1,1,1,0,,0, 1,104,114,416,303,0,MIDM [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23] (param1, param2;suurind,pienind:indextype;indtieto) Normitus A function used to divide aggragate data into its disaggregate units based on weighting factors. using a:=sum((if indtieto=Suurind then param1 else 0), pienind) do using b:= sum((if indtieto=suurind then a else 0), suurind) do param2/b 168,368,1 48,24 2,591,58,476,514 param1,param2,suurind,pienind,indtieto (param1, param2; suurind, pienind:indextype;indtieto) Si_pi A function used to divide aggragate data into its disaggregate units based on weighting factors. using a:= Normitus(param2,param2,suurind,pienind,indtieto) do using b:= (if indtieto=suurind then param1*a else 0) do using c:= sum(b, suurind) do c 168,424,1 48,24 2,36,83,476,312 param1,param2,suurind,pienind,indtieto Trips municipality 1000 tips/d One-way trips from one municipality to another. Table(Municipality,Municipality1)( 223,(365/2),(130/2),(95/2), (365/2),332,(103/2),(117/2), (130/2),(103/2),320,(49/2), (95/2),(117/2),(49/2),179 ) 56,64,1 48,24 2,422,91,476,513 1,77,139,758,383,0,MIDM 2,52,332,708,188,0,MIDM 65535,52427,65534 [Self,Municipality1] [Municipality,Municipality1] [Index Suuralue] YTV: Liikkumisen nykytila. PŠŠkaupunkiseudun julkaisusarja B 2001:10. Fig 6. <a href="http://www.ytv.fi/NR/rdonlyres/F6B8A4F8-C394-4972-A1DE-C64E2B69EE6D/0/nykytila_B2001_10.pdf>PDF file</a> Trips place 1000 trips/d One-way trips from one place to another (such as home, work etc). Table(Place,Place1)( 29,(642/2),(67/2),(283/2),(1315/2), (642/2),4,(71/2),(9/2),(184/2), (67/2),(71/2),21,(1/2),(21/2), (283/2),(9/2),(1/2),2,(50/2), (1315/2),(184/2),(21/2),(50/2),193 ) 56,176,1 48,24 2,402,104,476,603 2,44,37,504,196,0,MIDM 65535,52427,65534 [Place,Place1] [Place,Place1] [Index Kohde] YTV: Liikkumisen nykytila. PŠŠkaupunkiseudun julkaisusarja B 2001:10. Fig 7. <a href="http://www.ytv.fi/NR/rdonlyres/F6B8A4F8-C394-4972-A1DE-C64E2B69EE6D/0/nykytila_B2001_10.pdf>PDF file</a> Trips place&mode fraction The distribution of trips among transportation modes. Table(Place,Place1,Mode2)( 0.34,0.19,0.46,0.01, 0.15,0.39,0.46,0, 0.34,0.19,0.46,0.01, 0.42,0.42,0.15,0.01, 0.34,0.19,0.46,0.01, 0.15,0.39,0.46,0, 0.25,0.24,0.5,0.01, 0.25,0.24,0.5,0.01, 0.25,0.24,0.5,0.01, 0.25,0.24,0.5,0.01, 0.34,0.19,0.46,0.01, 0.25,0.24,0.5,0.01, 0.25,0.24,0.5,0.01, 0.25,0.24,0.5,0.01, 0.25,0.24,0.5,0.01, 0.42,0.42,0.15,0.01, 0.25,0.24,0.5,0.01, 0.25,0.24,0.5,0.01, 0.25,0.24,0.5,0.01, 0.25,0.24,0.5,0.01, 0.34,0.19,0.46,0.01, 0.25,0.24,0.5,0.01, 0.25,0.24,0.5,0.01, 0.25,0.24,0.5,0.01, 0.25,0.24,0.5,0.01 ) 64,288,1 48,24 2,377,111,476,441 1,494,125,416,303,0,MIDM 2,27,185,456,199,0,MIDM 65535,52427,65534 [Mode2,Place1] [Place,Place1] [Index Kohde] YTV: Liikkumisen nykytila. PŠŠkaupunkiseudun julkaisusarja B 2001:10. Fig 8. <a href="http://www.ytv.fi/NR/rdonlyres/F6B8A4F8-C394-4972-A1DE-C64E2B69EE6D/0/nykytila_B2001_10.pdf>PDF file</a> Trips munic&mode trips/d/inh Number of trips per inhabitant of each transportation mode in different municipalities. These data are not used in the model. Table(Municipality,Mode2)( 1.31,1.1,0.93,0.03, 0.89,1.01,1.34,0.03, 0.92,0.72,2.03,0.03, 0.92,0.73,1.67,0.05 ) 64,368,1 48,24 2,491,162,476,551 1,136,146,595,314,0,MIDM 2,30,208,649,187,0,MIDM 65535,52427,65534 [Mode2,Self] [Municipality,Mode2] [Index Suuralue] YTV: Liikkumisen nykytila. PŠŠkaupunkiseudun julkaisusarja B 2001:10. Fig 9. <a href="http://www.ytv.fi/NR/rdonlyres/F6B8A4F8-C394-4972-A1DE-C64E2B69EE6D/0/nykytila_B2001_10.pdf>PDF file</a> Fraction pub tr munic fraction The fraction of public transportation in municipalities. These data are not used in the model. Table(Municipality,Municipality1)( 0.64,0.59,0.5,0.57, 0.59,0.33,0.24,0.21, 0.5,0.24,0.22,0.14, 0.57,0.21,0.14,0.23 ) 64,424,1 48,24 2,102,90,476,471 1,200,210,666,291,0,MIDM 2,200,210,752,301,0,MIDM 65535,52427,65534 [Self,Municipality1] [Municipality,Municipality1] YTV: Liikkumisen nykytila. PŠŠkaupunkiseudun julkaisusarja B 2001:10. Fig 6. <a href="http://www.ytv.fi/NR/rdonlyres/F6B8A4F8-C394-4972-A1DE-C64E2B69EE6D/0/nykytila_B2001_10.pdf>PDF file</a> Place weight by hour A rough weighting of different trips along the day. The purpose of this node is to take into account the fact that residences and workplaces are located differently in the area, and therefore the different trips occur unevenly in time and space. var a:= table(Time_of_day)(0.1,0.3,1,0.1,0.1); var c:= table(Time_of_day)(1,0.3,0.2,0.1,0.1); a:= (if Place='Workplace' or Place='Business' then a else if Place1='Workplace' or Place1='Business' then c else 1); a:= a[Time_of_day=Time_of_day_by_hour]; a/sum(a,hour) 504,96,1 48,24 2,667,115,476,570 2,400,26,509,574,0,MIDM 52425,39321,65535 [Place1,Hour] [Index Tunti] Municipality Municipalities in the Helsinki metropolitan area. Helsinki is divided into two parts; Kauniainen is together with Espoo. ['Helsinki, downtown','Helsinki, suburbs','Espoo, Kauniainen','Vantaa'] 56,96,1 48,12 2,243,104,476,437 2,17,221,416,303,0,MIDM ['Helsinki, downtown','Helsinki, suburbs','Espoo, Kauniainen','Vantaa'] Municipality1 The same as Municipality; this index is used as the destination. copyindex(Municipality) 56,120,1 48,12 2,451,144,476,421 2,72,82,416,303,0,MIDM ['Helsinki, downtown','Helsinki, suburbs','Espoo, Kauniainen','Vantaa'] Place The place where the trip origines/ends. Workplace is a trip to/from the workplace; business is a work-related trip outside the workplace. ['Home','Workplace','Business','School','Other'] 56,208,1 48,12 2,704,209,476,464 ['Home','Workplace','Business','School','Other'] Place1 The place where the trip ends. copyindex(Place) 56,232,1 48,12 2,120,130,416,303,0,MIDM ['Home','Workplace','Business','School','Other'] Mode The modes of transportation. ['Kevyt liikenne','Joukkoliikenne','Henkilšauto','Muu'] 64,320,1 48,12 2,102,90,476,446 ['Kevyt liikenne','Joukkoliikenne','Henkilšauto','Muu'] Time of day Time of day ['Morning','Day','Afternoon','Evening','Night'] 504,128,1 48,12 2,102,90,476,423 Time in traffic min/h Time spent in personal car traffic in Helsinki. Based on personal diaries of adult subjects in Expolis study in 1996-97. Table(hour)( 0.5434,0.3511,0.2547,0.2885,0.1949,0.4356,1.521,4.747,5.118,2.106,1.892,1.663,1.966,1.91,2.608,3.477,6.161,5.567,3.811,2.833,2.158,1.254,0.7295,0.5768) 400,240,1 48,24 2,161,264,476,428 2,136,28,416,569,0,MIDM 2,288,21,316,544,0,MIDM 65535,52427,65534 [Index Tunti] Anu Kousa, Expolis database 12.11.2002. Car trips trips/d Car trips per day. var a:= Trips_place*Trips_place_mode*1000; a[Mode2='Henkilšauto'] 176,176,1 48,24 2,108,133,476,462 2,32,12,489,204,0,MIDM [Place,Place1] Time of day by hour Time of day by hour Table(Hour)( 'Night','Night','Night','Night','Night','Night','Morning','Morning','Morning','Day','Day','Day','Day','Day','Day','Afternoon','Afternoon','Afternoon','Evening','Evening','Evening','Evening','Night','Night') 504,32,1 48,24 2,18,279,476,224 2,884,115,416,538,0,MIDM 2,56,66,416,303,0,MIDM 52425,39321,65535 Inhabitants # Number of inhabitants by district in Jan 1st, 2001. Table(Area1)( 389,10.248K,8215,882,6768,4157,11.62K,761,2407,3401,13.137K,14.569K,8705,6832,4746,10,3542,2284,15.89K,7028,11.8K,6825,3344,5755,10.28K,19K,9940,7288,12.956K,12.983K,10.358K,4523,8375,12.656K,5284,8470,13.653K,6422,8695,3549,8782,4169,11.435K,10.766K,2122,5480,7962,11.615K,10.91K,7636,5795,3710,16.146K,9493,8819,8331,11.226K,4023,8631,28.283K,5951,8259,16.458K,13.495K,12,829,9,3235,9228,6191,3145,7835,8819,16.405K,14.91K,6105,8003,15.762K,14.608K,2209,2888,12.29K,7692,3475,8069,2237,5239,8905,9199,8253,15.238K,5847,5934,1845,4671,549,3999,572,3579,9299,6466,18.695K,14.052K,2140,4118,2619,112,3145,3465,215,47,1807,10.396K,4301,11.36K,4840,2895,1346,3723,8338,2620,5403,3375,9873,12.478K,3167,4698,14.244K,9899,0) 400,32,1 48,24 2,102,90,476,492 1,216,226,703,303,0,MIDM 2,489,294,416,303,0,MIDM 65535,52427,65534 SeutuCD 02, a CD ROM database about the Helsinki area. Workplaces # The number of workplaces by district Table(Area1)( 23.894K,28.844K,6227,11.46K,9798,6390,4771,3018,1284,6659,8195,8960,17.766K,4184,12.672K,4232,8797,5226,8561,11.629K,3571,17.037K,2849,3602,3469,9525,2861,2476,3305,5571,17.35K,5016,1728,4239,1053,3709,5964,1673,849,1308,1604,2162,1287,8431,2242,975,720,1853,1668,2334,538,699,1596,1333,7414,1828,1070,7452,1394,3051,893,849,1463,1481,443,1723,4068,9201,6916,2818,6321,3340,1389,2487,7270,1709,690,2794,2389,1237,3399,3463,3694,1581,7038,3254,519,832,1336,1927,2510,4198,4122,309,1681,79,2301,478,1629,3254,2826,7822,5587,2206,1529,504,3285,1814,4254,3928,9509,2633,7034,275,1063,1958,1856,2519,232,1023,346,1808,478,1358,1605,308,2012,3644,794,0) 288,32,1 48,24 2,102,90,476,548 1,248,258,713,303,0,MIDM 2,583,35,416,303,0,MIDM 65535,52427,65534 SeutuCD 02, a CD ROM database about the Helsinki area. Municipality info The municipality to which each district belongs. Table(Area1)( 'Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, downtown','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Helsinki, suburbs','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Espoo, Kauniainen','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa','Vantaa',0) 184,32,1 48,24 2,102,90,476,356 2,696,93,416,532,0,MIDM 52425,39321,65535 Trips place munic trips/d Car trips per day by municipality and place. Several weighting factors are used to derive the numbers from the original data. var ap:= array(Place,[Inhabitants, Workplaces, Workplaces, Inhabitants, Inhabitants]); ap:= sum((if Municipality=Municipality_info then ap else 0),area1); ap:= ap/sum(ap,Municipality); var a:= ap*Car_trips; ap:= ap[Municipality=Municipality1, Place=Place1]; a:= ap*a; a:= a/sum(sum(a,Place),Place1); a:= a*Trips_municipality; a:= a/sum(sum(sum(sum(a, Municipality), Municipality1), Place), Place1); a*sum(sum(Car_trips,Place),Place1) 288,176,1 48,24 2,16,104,498,591 1,339,342,644,303,0,MIDM 2,49,67,784,245,0,MIDM [Place,Place1] [Municipality1,Municipality] [Index Suuralue] Trips by hour trips/h Trips by hour from one district to another district. var ap:= array(Place,[Inhabitants, Workplaces, Workplaces, Inhabitants, Workplaces]); ap:= ap/sum(ap,area1); var a:= si_pi(Trips_place_munic,ap,Municipality,area1,Municipality_info); a:= si_pi(a,ap[area1=reg1],Municipality1,reg1,Municipality_info[area1=reg1]); var va4:= Place_weight_by_hour*Time_in_traffic; va4:= va4/sum(va4,hour); a:= a*va4; a:= a/sum(sum(a,Place),Place1) *sum(sum(sum(a,Place),Place1),hour) *Time_in_traffic/sum(Time_in_traffic,hour); a:= sum(sum(a,Place),Place1); a[area1=reg] 400,176,1 48,24 2,38,32,562,688 2,571,93,540,493,0,MIDM [Reg1,Reg]