ERF of waterborne microbes

From Opasnet
Revision as of 08:59, 6 February 2022 by Jouni (talk | contribs) (Data: typo corrected)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search


What are the dose-response functions of pathogens in drinking water?


+ Show code



ObsExposure agentResponseExposureExposure unitER functionScalingThresholdERFDescription
1campylobactercampylobacter infectioningestion?beta poisson approximationNone0.0110.024
2rotavirusrotavirus infectioningestion?exact beta poissonNone0.1910.167
3norovirusnorovirus infectioningestion?exact beta poissonNone0.0550.04
4sapovirussapovirus infectioningestion?exact beta poissonNone0.0550.04
5cryptosporidiumcryptosporidium infectioningestion?exact beta poissonNone0.1760.115
6giardiagiardia infectioningestion?exponentialNone00.0199
7E.coli O157:H7E.coli O157:H7 infectioningestion?exact beta poissonNone9.160.157E. coli O157:H7 strain

Probability of illness, given infection(probability)
ObsResponse Illness SubgroupResult
1giardia infectiongastroenteritis1
2cryptosporidium infectiongastroenteritis0.71
3cryptosporidium infectiondeathAge:0-40.00000070645
4cryptosporidium infectiondeathAge:5-90
5cryptosporidium infectiondeathAge:10-140
6cryptosporidium infectiondeathAge:15-640.000014839
7cryptosporidium infectiondeathAge:65-790.0011644
8cryptosporidium infectiondeathAge:80+0.0011644
9norovirus infectiongastroenteritis0.7
10norovirus infectiondeathAge:0-40.000002058
11norovirus infectiondeathAge:5-90
12norovirus infectiondeathAge:10-140
13norovirus infectiondeathAge:15-640
14norovirus infectiondeathAge:65-790.000168
15norovirus infectiondeathAge:80+0.000168
16sapovirus infectiongastroenteritis0.7
17sapovirus infectiondeathAge:0-40.000002058
18sapovirus infectiondeathAge:5-90
19sapovirus infectiondeathAge:10-140
20sapovirus infectiondeathAge:15-640
21sapovirus infectiondeathAge:65-790.000168
22sapovirus infectiondeathAge:80+0.000168
23rotavirus infectiongastroenteritis0.5
24rotavirus infectiondeathAge:0-40.00001917
25rotavirus infectiondeathAge:5-90
26rotavirus infectiondeathAge:10-140
27rotavirus infectiondeathAge:15-640
28rotavirus infectiondeathAge:65-790
29rotavirus infectiondeathAge:80+0
30campylobacter infectiongastroenteritis0.323
31campylobacter infectionclinical Guillian-Barré syndrome0.000066
32campylobacter infectionresidual Guillian Barré syndrome0.000066
33campylobacter infectionreactive arthritis0.0066
34campylobacter infectiondeath0.000131
35E.coli O157:H7 infectiongastroenteritis0.4346
36E.coli O157:H7 infectionhemorrhagic colitis0.3854
37E.coli O157:H7 infectionhaemolytic uraemic syndrome0.0082
38E.coli O157:H7 infectionend stage renal disease0.0009676
39E.coli O157:H7 infectiondeath0.00062238

⇤--arg6688: . Find out the units of the parameters to understand the functions precisely. --Jouni (talk) 12:54, 11 July 2019 (UTC) (type: truth; paradigms: science: attack)

----arg2087: . The ERF and Threshold numbers in the tables correspond to parameters called alpha and beta respectively in the papers cited below in the cases of campylo, rota, noro and crypto. The equations alpha and beta are used in in the papers don't (seem to) match the equations below. At least for campylo the equations are significantly more complicated. For giardia the value in ERF does seem to be used in the paper it's from in the way the exponential equation shows. In the paper it's marked as r, the probability of infection. The equation in the paper uses "mean number per portion" where Dose is in this equation. E.coli is the biggest mystery: I wasn't able to find the numbers in the table above from the paper sited for it at all. --Heta (talk) 10:32, 12 July 2019 (UTC) (type: truth; paradigms: science: comment)

In these equations, Param1 and Param2 are in ERF and Threshold, respectively.

  • Beta Poisson approximation: 1-(1+Dose/Param2)^-Param1
  • Exact beta Poisson: 1-exp(-(Param1/(Param1+Param2))*Dose)
  • Exponential: 1-exp(-Param1*Dose)
Pathogen Reference
Campylobacter [1] [2]
Rotavirus [3] [2]
Norovirus [4]
Sapovirus [5]
Cryptosporidium [6][2]
Giardia [7]
E.coli O157:H7 [8]


+ Show code

+ Show code

+ Show code

⇤--arg5268: . The code below is old and does not work with the new ERF table. --Jouni (talk) 12:54, 11 July 2019 (UTC) (type: truth; paradigms: science: attack)

+ Show code

See also


  1. Teunis, P., van den Brandhof, W., Nauta, M., Wagenaar, J., van den Kerkhof, H. and van Pelt, W. 2005. A reconsideration of the Campylobacter dose–response relation. Epidemiol. Infec. 133, 583-592. DOI:
  2. 2.0 2.1 2.2 WHO Guidelines for drinking-water quality 2017. ISBN 978-92-4-154995-0 [1]
  3. Teunis, P. F. M. and Havelaar, A. 2000. "The beta Poisson dose‐response model is not a single hit model."Risk Analysis 20(4): 513-520.
  4. Teunis P.F.M., Moe, C.L., Liu, P., Miller, S.E., Lindesmith, L., Baric, R.S., Le Pendu, J., Calderon, R.L. 2008. Norwalk Virus: How Infectious is It? Journal of Medical Virology 80:1468-1476.
  5. Teunis P.F.M., Moe, C.L., Liu, P., Miller, S.E., Lindesmith, L., Baric, R.S., Le Pendu, J., Calderon, R.L. 2008. Norwalk Virus: How Infectious is It? Journal of Medical Virology 80:1468-1476.
  6. Teunis, P.F.M., Chappell, C.L., Okhuysen, P.C. 2002. Cryptosporidium Dose Response Studies: Variation Between Isolates. Risk Analysis 22(1) 175-183
  7. Teunis, P.F.M., van der Heijden, O.G., van der Giessen, J.W.B., Havelaar, A.H. 1996. The dose-response relation in human volunteers for gastro-intestinal pathogens. RIVM report No. 284550002.
  8. Teunis, P., Takumi, K. and Shinagawa, K. 2004. "Dose response for infection by Escherichia coli O157:H7 from outbreak data." Risk Analysis 24(2): 401‐407.
VipuvoimaaEU rgb1.jpg Eakr logo fi.png