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CHAPTER 1 ISSUE FRAMING: MEASURING 

1.1 Introduction 

Recently, it has become more and more obvious that there is a tremendous effect of 

adverse environmental conditions on the occurrence of chronic disease in the general 

population, ranging from e.g. diabetes due to bad nutritional habits to cardiovascular 

diseases due to environmental exposure to particulate matter. With the impact being 

substantial, it is an even bigger task to unravel the often very subtle and multi-causal 

interactions between the environment, life-style, individual genetic susceptibility and 

the occurrence of health effects in the general population. Willett (2002) estimates that 

for many frequent diseases such as stroke, coronary heart disease or type 2 diabetes, 

70% to 90% of all attributable risks are due to life-style factors, which hence is 

potentially preventable.  

Traditionally, environmental epidemiology studies the environment-related factors that 

directly affect the distribution of health and illness among populations, and aims at 

deriving causal relationships and insights among exposure and health data. Apart from 

a very limited number of cases (e.g. smoking and lung cancer), a “one cause – one 

effect” understanding of the relationship between environmental stressors and health 

effects is a simplistic misbelieve. Most outcomes of morbidity and mortality are caused 

by an intricate chain of events. Hence, epidemiology addresses the question whether an 

agent could cause a disease, not whether an agent did actually cause a specific adverse 

health effect (Bailey et al, undated). 

To better understand the effects of exposure to environmental chemicals on public 

health, including internal dose as an intermediate step between environmental 

exposure data and health effect offers increased opportunities to further substantiate 

potentially relevant causal inference along an exposure-dose-response chain (EDR, 

Figure 1.1). Internal dose, i.e. the amount of agent that enters a target after crossing 

an exposure surface, refines exposure assessment by describing exposure to chemicals 

in terms of an internal metric rather than an external one. By this shift from external to 

internal, dose integrates a wide variety of processes from a very diverse nature, 

including biological, chemical and socio-economic ones (Table 1.1). The main aim of 

this framework is to move away from the simplistic “distance from source” approach, 

and to include “a more refined and person-specific assessment” of the link between 

environmental exposure and health effects ((National Research Council 2006; Lyons et 

al 2008, Smolders and Schoeters 2007).   
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Table 1.1 Dose as a metric of internal concentration allows integration of information 

from a disparity of sources   

Information source Added value along the EDR information chain 

Time-activity patterns: 

People frequent multiple micro-environments during 

the period of a day, a week, a lifetime... These 

different environments may all contribute in various 

ways to the total exposure profile of an individual and 

hence are reflected in the internal dose  

Confounding factors: 

Age, gender, ... may be confounding factors that have 

a profound effect on internal concentrations of 

pollutants 

Socio-economic/lifestyle 

factors: 

Housing conditions, smoking behavior, food 

consumption patterns,... may all be important factors 

that directly (as a source of contaminants) or 

indirectly (through alteration of general physical 

status) have an impact on internal dose 

Pharmacokinetic information: 

For a chemical to elicit a toxic response, contact 

needs to be made with the target tissue. Factors like 

absorption, distribution, metabolism and excretion 

(ADME) to a large extend drive this process 

Individual susceptibility: 
Differences in genetic composition also may influence 

sensitivity or susceptibility to pollutants 

Apart from its advantage of being an integrative measure of exposure through multiple 

environmental compartments and time-scales (which offers important benefits for 

refining exposure assessment), including dose in the exposure-response relationship 

increases the potential of an environmental health impact assessment to make a shift 

from a population-based to a more individual environmental health impact 

assessment(Figure 1.1).  

Including dose as an intermediate metric can be done in two different ways: 

 Direct EDR-relationship: human biomonitoring (HBM) provides a direct means to 

quantify internal dose of a chemical by measuring the chemical, metabolite or 

reaction product in human tissues or specimens, such as blood, hair, or urine; 

 Indirect EDR-relationship: separate pieces of information, describing (some of 

the) information sources outlined in Table 1.1, are combined, generally in some 

mathematical format, to derive a modeled estimation of internal concentration. 

Rather than seeing these as two separate means to improve the relationship between 

exposure and effect along the EDR-chain, it are two different ways to describe the same 

relationship, and hence also should be used as mutually supporting lines of evidence. 

Human biomonitoring provides a direct observational measure of the internal dose of a 

chemical, but very often lacks the sensitivity and specificity to identify individual 

sources. Models provide a more mechanistic approach to relate dose to environmental 

exposure to specific exposure pathways, and/or to relate to dose to particular health 

effects, but require validation as they only represent an approximation of the 

hypothesized relationships between environmental exposure and associated health 

effects. 
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Figure 1.1 Outline of the exposure-dose-response (EDR) framework in Environmental 

health impact assessment 

In the whole suite of modeled approximations, Physiologically-Based PharmacoKinetic 

(PBPK) or Physiologically-Based Toxicokinetic (PBTK) models play a key role in eliciting 

the relationship between external exposure and internal dose1. By mathematically 

representing the behavior of a compound following exposure, these models can be of 

great value for interpreting human biomonitoring values. They provide a mechanistic 

description of the phenomena involved in the complex ADME processes. 

The main aim of this document is to examine the use of PBPK models to describe the 

relationship between exposure and dose along the EDR-chain, and clarify the mutual 

benefit of using both measured HBM data (i.e. direct EDR relationship) and modeled 

PBPK data (i.e. indirect EDR relationship) for improving environmental health impact 

assessment are discussed. In the end, both techniques to approximate internal dose 

can be mutually beneficial in improving the interpretation of human biomonitoring, and 

hence also the complex relationships between environmental exposure and health 

effects/ 

We will start by a very brief overview of the advantages of human biomonitoring 

techniques in addressing the EDR-relationship. However, a lot of information on this 

has already been aggregated, and is available elsewhere within the INTARESE toolbox. 

1.2 HBM and the direct EDR-relationship 

Human biomonitoring (HBM) data provides unique tools to directly assess the 

relationship between exposure to environmental contaminants and associated health 

effect. As a means to quantify internal dose, it is a valuable midway point between 

external concentrations and early health effects (Figure 1.2). A typical (research) study 

would illustrate that the exposure-dose-response continuum follows a logical 

progression of events from external to internal concentration, and further onto early 

detection of health effects (typically left-to-right progression in figure 1.1).  

                                           

1 In this document, the terms “pharmacokinetic/PBPK” and “toxicokinetic (PBTK)” are considered to have the 

same meaning 
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Human biomonitoring in such a research study uses a perceived relationship between 

exposure and health effect as the driving hypothesis, and biomonitoring data is used to 

further specify to which extend the particular chemical had entered the body. In this 

perspective, human biomonitoring data would not be an endpoint in itself, but a means 

to better describe internal processes and a more direct relationship with potential 

health effects. Generally, this type of research studies describes exposure, dose and 

response of (a limited number of) individuals in detail, and is a source for both 

hypothesis generation and testing. 

In the last decade or so, another “type” of human biomonitoring data has emerged that 

has had a significant impact in how we nowadays see Environment & Health related 

issues. Broad population surveys, such as GerES in Germany, NHANES in the USA, or 

the Flemish Human Biomonitoring Program in Belgium have focused on quantifying 

background information on the exposure in the general population, without necessarily 

addressing immediate research questions (Table 1.2). Because often several thousands 

of individuals generally are included in this type of study, it would be both financially 

and logistically impossible to describe environmental exposure and health effects in the 

same detail is generally the case in the previously mentioned research studies. In large 

HBM survey projects, biomarker data are often gathered and reported without 

corresponding detailed external exposure data, leaving the relationship between 

internal and external exposure as one to be determined (Clewell et al 2008; Smolders 

et al 2009). The typical left-to-right progression from Figure 1.1 is not necessarily 

followed in a human biomonitoring survey project, and retracing source identification 

and identifying early warning signs of adverse health effects becomes a difficult task. 

Hence, for improved understanding of human biomonitoring data originating from 

survey projects, additional options for “source identification”, “exposure 

reconstruction”, or “population health relevance” are needed.  

Figure 1.2 The role of biomonitoring in the “Exposure-Dose-Response” continuum 

(Redrawn from Clewell et al, 2008) 
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Table 1.2 A brief overview of some large scale HBM population surveys. URLs indicate 

where results for the different surveys can be obtained 

Country Survey name URL for Results 

Belgium Flemish CEH http://www.milieu-en-gezondheid.be/English/index.html 

Canada CHMS 
http://www.hc-sc.gc.ca/ewh-semt/contaminants/human-

humaine/index-eng.php 

Czech 

Republic 

Environmental 

Health Monitoring 

http://www.szu.cz/topics/environmental-health/environmental-

health-monitoring 

Germany GerES 
http://www.umweltbundesamt.de/gesundheit-

e/survey/index.htm 

International COPHES-project http://www.eu-hbm.info/ 

International ESBIO-inventory http://www.hbm-inventory.org/scid/e-formv2/default.asp 

International WHO-human milk http://www.who.int/foodsafety/chem/pops/en/index.html 

USA NHANES http://www.cdc.gov/exposurereport/ 

Generally, these options need to take into account population variability in exposure 

and pharmacokinetic processes. One of the major themes in source identification for 

biomarkers of exposure, and the health-based interpretation that is associated with it, 

is the difference between source identification at the individual level and at the 

population level (Table 1.3). This discrepancy is also reflected in the opportunities for 

source identification for environmental stressors, and in the variability that is 

associated with this. Because detailed information on external exposure concentrations 

or time-activity patterns is often missing, source identification for large-scale survey 

projects mostly occurs at a population level. Although survey projects typically contain 

data on a large number of individuals, and hence reflect population variability in 

biomarker values, they tend to contain relatively limited information per individual 

regarding specific exposure scenarios or pathways. Most frequently, only one sample is 

taken per individual, hence omitting all information regarding the kinetic behavior of 

the biomarker studied (Mosquin et al 2009). This shift from individual to population 

requires taking into account the natural variability that is present in population 

exposure profiles, time-activity patterns or pharmacokinetic variability.   

Table 1.3 Differential aspects of research and survey projects generating HBM data 

 Research project Survey project 

# participants Low High 

Exposure classification High Low 

Aim Hypothesis testing Background values 

Inter-individual variability Low High 

Study control High Low 

Source identification Individual level Population level 

http://www.milieu-en-gezondheid.be/English/index.html
http://www.hc-sc.gc.ca/ewh-semt/contaminants/human-humaine/index-eng.php
http://www.hc-sc.gc.ca/ewh-semt/contaminants/human-humaine/index-eng.php
http://www.szu.cz/topics/environmental-health/environmental-health-monitoring
http://www.szu.cz/topics/environmental-health/environmental-health-monitoring
http://www.umweltbundesamt.de/gesundheit-e/survey/index.htm
http://www.umweltbundesamt.de/gesundheit-e/survey/index.htm
http://www.eu-hbm.info/
http://www.hbm-inventory.org/scid/e-formv2/default.asp
http://www.who.int/foodsafety/chem/pops/en/index.html
http://www.cdc.gov/exposurereport/
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1.3 Improving the interpretation of HBM data through modeling 

The aim of this document is to outline some (indirect) modeling approaches to improve 

the interpretation of survey-based HBM data. For these approaches to become 

successful however, they will need to take into account a number of requirements: 

 Inter-individual variability: HBM data has the unique advantage that it 

includes person-specific exposure information like for example individual 

susceptibility, time-activity patterns, and life-style and consumer behavior in one 

measurement. Modeling approaches to interpret HBM data should as much as 

possible allow the opportunity to, as much as possible include person-specific data 

as well; 

 Dynamic exposure profiles: Internal dose is not a static variable, but reflects 

the temporal and spatial variability in exposure. In this perspective, a HBM value 

is only a point estimate of a continuously fluctuating concentration of a 

contaminant in a human matrix. Modeling efforts should preferably enable 

scientists to include this variability;  

 Generic application: The Fourth National Report on Human Exposure to 

Environmental Chemicals (CDC 2010) reports on the concentrations of over 200 

different chemicals in human matrices of about 2400 participants across the 

United States. And it is foreseen that in the future, many more techniques to 

detect chemicals in human matrices will become available. Coming up with 

specifically suited models for each of these hundreds of different chemicals would 

be a daunting task, and would probably not be feasible. Therefore, generic models 

are needed that offer enough sensitivity to adequately describe indirect EDR-

relationships, while at the same time offer sufficient flexibility to warrant routine 

application for a broad range of substances. Also, the models should offer an 

interface that can be understood by a broad suite of scientists, even without a 

specific background. Hence, easy computation and a user-friendly interface are 

essential; 

 Mechanistic information: Obviously, a good model should as much as possible 

provide mechanistic information on the sources of contaminant exposure, and 

potentially also the relationship with health effects, and in an ideal situation 

predict how changes in exposure would result in changed internal dose. By adding 

this mechanistic information in outlining policy actions, the most important 

exposure routes may be identified that offer the best cost-benefit options for 

policy makers (Loizou et al 2008).  
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CHAPTER 2 PBPK MODELLING IN THE EXPOSURE-

DOSE-RESPONSE CHAIN 

2.1 The general purposes of data modeling 

Human biomonitoring offers a direct description of the dose associated with aggregate 

exposure across all pathways, also including the physiological and pharmacological 

variability inherent to biological systems. At the same time however, there is a need to 

improve understanding about what the major exposure pathways are, which organs are 

targeted by a particular exposure pathway, and how different individuals with variable 

susceptibility and time-activity patterns are affected by variable exposure scenarios. It 

is clear that biomonitoring, as an integrative measure of exposure, cannot provide this 

information by itself, but would benefit from a more mechanistic approach to improve 

the understanding of EDR-relationships.  

Recently Dahl et al (2009) dedicated a review on the conceptual framework of 

pharmacokinetic models. They argued that the main purposes of constructing and 

applying a pharmacokinetic model in environmental health impact assessment are to: 

 Describe complex data;  

 Test hypothesis; 

 Make predictions. 

The type of model to be developed is likely to differ depending of the intended use of 

the model, and the assessment of model quality include agreement with previous 

knowledge, agreement with observed data, and agreement between prospective model 

predictions and new experimental data. More specifically within the context of this 

document, a good model offers a representation of the mechanisms describing the 

physiological, pharmacological processes of relevance to xenobiotic exposure, and 

allows one: 

1. To test whether assumed hypotheses are consistent with observe behavior, 

2. To examine the sensitivity of a system to parameter variation, 

3. To learn about processes not directly amenable to experimentation, 

4. To utilize prior knowledge in the analysis of new data, 

5. To naturally increase complexity of the model as information becomes richer, 

and 

6. To predict system behavior under conditions not previously experienced. 

The main message of this document is that models can provide this type of mechanistic 

information, and hence provide an important added value for the interpretation of HBM 

data. 
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2.2 PBPK modeling and the indirect EDR-relationship 

A central paradigm in toxicity states that “the presence of a chemical does not 

necessarily equal the presence of risk”. Indeed, the expression of toxicity does not only 

dependent on (the route of) exposure, but also includes uptake-elimination processes, 

and eventually the contact between the biologically-active form of a chemical and the 

critical target receptor in the body to elicit a toxic response. These three elements, (1) 

exposure, (2) pharmacokinetics and (3) physiological dynamics form the basis of 

hazard and risk evaluation (Blaauboer 2003; Lipscomb et al 2004). The way chemicals 

are taken up, transported and excreted by individuals is an inherent source of 

interindividual variability, and are often not fully understood. Because of variability in 

absorption, distribution, metabolism and/or excretion (ADME) parameters, individual 

susceptibility to environmental contaminants can differ dramatically among individuals 

within a well-defined population (Dahl et al 2009, Bois et al 2010). In risk assessment, 

the internal exposure to a chemical at the target site for toxic effect is often referred to 

as a “target dose”. 

In recent years, physiologically based pharmacokinetic (PBPK) modeling has shown to 

be well-suited to calculate tissue doses of chemicals and their metabolites over a wide 

range of exposure conditions. Because these PBPK models are based on the human 

physiology and anatomy and summarize the behavior of chemicals in the body, they 

are often considered to be more realistic compared to empirical models (Beaudouin et 

al 2010; Jonsson 2001). In these PBPK models, the body is subdivided into a series of 

compartments that represent specific organs or lumped tissue and organ groups with 

appropriate volumes, blood flow rates, and pathways of metabolism (Figure 2.1). 

Routes of administration and exposure scenarios are included in their proper 

relationship to the overall physiological structure, and differences in exposure scenario 

are accounted for in the time sequence of the dose input terms. The transfer of 

chemicals between the different compartments is described by differential equations, 

with perfusion being the main limiting parameter for distribution of the chemical within 

a given compartment (Jonsson 2001).  
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Figure 2.1 An idealized approach for a PBPK model for simulation diffusion-limited tissue uptake and multi-route exposures. Dottet 

lines represent the separation of cellular matrix and tissue blood components (redrawn from Andersen et al (2003) and USEPA 

(2006) 
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2.3 Modeling individual exposure profiles 

In its simplest form, two identical individuals or organisms (human or animal) should 

respond identical when in contact with the same stressor. In this ideal situation, 

interpretation along the EDR-chain would be very simple. A particular exposure would 

lead to a related internal dose, which could be determined by modeling or human 

biomonitoring, and this in its turn would cause an almost predefined health effect. In a 

real world however, this obviously is not the case. Mainly through (1) differences in 

exposure profiles among different individuals and populations and (2) inter-individual 

variability in pharmacokinetic parameters, different organisms will respond differently 

to their environment and in the way they process chemicals through ADME. This normal 

biological variability significantly complicates the interpretation of human biomonitoring 

data, as the relationship between the external concentration of a pollutant and the 

internal biomonitoring dose becomes blurred.  

To gain better understanding of the factors responsible for the inter- and intra-

individual variability of the target dose, using an indirect approach to better understand 

the EDR-chain offers great potential. By better understanding how variability of ADME 

processes among and within individuals influences the relationship between external 

concentrations and internal dose, interpretation of HBM data and source identification 

can be made much easier. PBPK models, if correctly built and parameterized, offer 

great potential in among others identifying the most relevant exposure routes, 

metabolites that may be of relevance, and relating target dose to health effects. 

However, when developing PBPK models to understand population exposure profiles, 

the models need to take into account that not all individuals in a population share the 

same physiological or pharmacokinetic profile, nor does exposure in similar exposure 

scenarios lead to comparable biomarker values or health effects. A population-based 

estimate of exposure should account for the intrinsic heterogeneity in the population, 

both in the modeling of the disposition of the chemical in the body, and in the 

description of the exposure conditions (Bois 2001). Additionally, the biomonitoring data 

itself, considered as a whole, should reflect the variability in the population from which 

it arises (Lyons et al 2008). If source identification based on biomarker measurements 

is to be successful, factors such as appropriate exposure data availability, and 

pharmacokinetic variation need to be taken into account in the models used.     

While PBPK models have become widely accepted tools for chemical risk assessment, 

the statistical calibration and validation of PBPK models has received comparatively 

little attention. This is particularly true for the exact values of the physiological and 

physicochemical parameters that need to fit into the differential equations, which are 

often not known with precision, especially not in vivo (Jonsson 2001). In order to 

properly account for the inter- and intra-individual variability inherent in toxicokinetic 

data, and entangle these variability (i.e. a biological reality) from uncertainty (i.e. a 

lack of appropriate data), proper means for model validation are required. 

As PBPK models use biological information in order to predict the disposition of 

chemicals, genetic variability, differences in life stage, gender, ethnicity, or health 

status may affect the processes that control this disposition. Most PBPK models 

generally represent pharmacokinetic and –dynamic data for standard healthy adults. 

However, specifically susceptible subpopulations such as children, the elderly, and 
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health impaired individuals may not answer to this profile (Thompson et al 2009). 

Therefore, literature reviews have compiled physiological parameters for particular sub-

populations, such as children (Price et al 2003a), adults (2003b), and the elderly (≥ 65 

years of age) and health-impaired (Thompson et al 2009). Table 2.1 compares some 

pharmacokinetic parameter values for different subgroups of the population. 

Table 2.1 Physiological parameters for children aged 6, 10, 14 years old and adults 

(data from Price et al (2003), and elderly aged >69 years (Data from Thompson et al 

2009) 

Parameters 

Children 

Adult Elderly* 
6 years 

10 

years 

14 

years 

Alveolar ventilation rate (L/h) 147 219 290 300 291,6 

Cardiac output (L/h) 245 338 404 372  

Tissue blood rates (L/h)      

Liver 19,5 39,9 54,9 96,7 65,9 

Brain 59,1 53,7 46,9 42,4  

Adipose tissue 12,9 16,7 17,7 19,3 26,3 

Slowly perfused tissues 7,5 15,1 27,6 61,1  

Rest of body 146,3 212,8 256,7 152,4  

Tissue volumes (L)      

Liver 0,62 0,87 1,26 1,8 1,26** 

Brain 1,31 1,36 1,39 1,4 1,22** 

Adipose tissue 3,68 6,25 11,49 14,9  

Slowly perfused tissues 5,71 10,17 18,41 35,9  

Rest of body 8,37 11,26 11,64 8,17  

* Average data 

** assumes a transformation of tissue weight of 1000g per liter 

These differences in physiological variables among different subpopulations may be 

important, as the contribution of different environmental compartments in the ADME of 

chemicals may vary substantially with age. For example, liver blood flow increased five-

fold from 6-year olds to adults, and DeWoskin and Thompson (2008) described how 

differences in renal clearance parameters at different life stages may significantly alter 

the disposition of environmental toxicants.  

Generally, PBPK models are developed to model internal doses of a specific chemical 

based on external exposure concentrations. As input into these models, concentrations 

of a chemical in different environmental compartments (air, water, soil), food, or 

specific lifestyle sources (e.g. smoking) are used to predict internal concentrations. 

Recently, the more sophisticated models have also included population variability in 

pharmacokinetic parameters, mainly using a Bayesian approach (see further). Hence, 

the current state-of-the-art allows researchers to develop good approximations of the 
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distribution of critical chemicals in the general population, based on both variability in 

exposure profile and pharmacokinetic variability. 

The approach described above is generally referred to as “forward dosimetry”, as it 

uses input data from environmental compartments to calculate the expected biomarker 

values (the left-to-right approach already mentioned in Figure 1). This forward 

dosimetry approach has a lot of potential to offer for source identification. It provides 

an objective way to evaluate the impact of different exposure routes by comparing 

calculated biomarker values (originating from PBPK modeling) with measured 

biomarker values (coming from population human biomonitoring). 

2.4 Towards screening-level generic PBPK models 

One of the major problems associated with the inclusion of PBPK models in the EDR-

chain is the need to ascertain that models and their associated input data adequately 

describe the processes they are designed to estimate. The increasing use of tissue 

dosimetry in environmental health impact assessment also necessitates the need to 

develop internationally recognized good modeling practices (Loizou et al, 2008). The 

availability of suitable toxicokinetic data may be a bottleneck for routine application of 

PBPK modeling in interpreting HBM data since the availability and generic applicability 

of validated models remains relatively sparse. However, it has also been advocated that 

it may not always be necessary to have full PBPK models as long as sufficient 

toxicokinetic information is available to relate HBM data with hazard data (Hays and 

Aylward, 2008). For substances where toxicokinetic data is lacking, generalized 

toxicokinetic models are being developed which allow for a rapid screening-level 

approach to PBPK modeling. Below, a number of examples of (open access) screening-

level generic PBPK model approaches are presented: 

IndusChemFate 

IndusChemFate is a generic PBTK model developed by Cefic LRI in collaboration with 

IndusTox Consult as part of the project "Development of a computer programme with a 

multi-level modeling tool for the estimation of biomonitoring equivalent guidance values 

for chemical agents related to health based exposure rates for inhalation, oral intake 

and/or skin exposure." 

IndusChemFate contains algorithms as QSPRs (=Quantitative Structure-Property 

Relationships) for blood:air and tissue:blood partitioning, which allows it to provide 

useful information even when experimental partition characteristics of a compound are 

lacking. IndusChemFate is a generic PBTK-model for the derivation of human 

biomonitoring equivalent guidance values (BEGV) for multiple (data-poor) chemicals. It 

is a first tier or screening tool that requires a minimum of input data. It makes it 

possible to estimate biological monitoring guidance values as equal to airborne limit 

values. The model IndusChemFate is programmed in Visual Basic and runs in MS Excel. 

The data input proceeds via input in two worksheets of the Excel-file. Output is 

presented as numerical listing in time and in graphs and is presented in the same 

Excel-file. The model is provided as freeware with an open source code. The 
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IndusChemFate model and a user manual are publicly available from the CEFIC-LRI 

website (http://www.cefic-lri.org/lri-toolbox/induschemfate). 

MEGen 

MEGen (Model Equation Generator) software is a 'proof of concept' intuitive user 

interface for the rapid generation and analysis of PBPK models which was successfully 

developed by CEFIC LRI in collaboration with the UK‟s Health and Safety 

Laboratory. MEGen enables a user to describe physiology, biology and toxicology in 

order to output a set of mathematical equations that emulate the information supplied 

by the user and constitute a PBPK model. During this process, the software interrogates 

a built-in database, supplying pertinent data for use within the model. The resulting 

mathematics can be translated and imported into a number of commercial modeling 

packages where it may be visualized and exercised.  

Another feature of the MEGen model building process is the provision of a transparent 

and auditable trail. MEGen provides a schematic diagram of a built model along with a 

corresponding table listing the value, units, source, origin and reference for each 

parameter specified.  The diagrams and tables can be exported directly into documents 

prepared in standard word processors. MEGen is freely available under the General 

Public License regulation at http://xnet.hsl.gov.uk/megen/. 

PKQuest 

This is a slightly older program to construct PBPK models, which includes a “ Standard 

human” and “Standard rat” data set. It has a relatively simple user interface and 

graphical output, and has recently been revised to a Java application (PKQuest_Java) 

(Levitt 2002, 2009). PKQuest_Java is designed for the non-specialist who would like to 

attempt some PBPK modeling without acquiring detailed training or expensive software. 

PKQuest, along with different detailed examples, is freely available through 

www.pkquest.com. 

2.5 Measuring & Modeling along the EDR-chain 

Recently, there has been significant interest, but also worry, about interpretation of 

human biomonitoring in a policy making context. The NRC-report on human 

biomonitoring clearly stated that “The ability to generate new biomonitoring data often 

exceeds the ability to evaluate whether and how a chemical measured in an individual 

or population may cause a health risk or to evaluate its sources and pathways of 

exposure” (National Research Council, 2006). By integrating both a direct and indirect 

description of the EDR-relationship however, improved interpretation of HBM data may 

be achieved.  

In this interaction between direct and indirect EDR-relationships, HBM data offer a 

means to quantify the “black box reality” of aggregate and cumulative exposure (Figure 

2.2). However, identifying which uptake routes, lifestyle or confounding factors, or 

time-activity patterns are responsible for the measured dose, remains unknown. Hence, 

http://www.cefic-lri.org/uploads/LRI%20Toolbox/ICTX%202004%20poster.pdf
http://xnet.hsl.gov.uk/megen/
http://www.pkquest.com/
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for interpreting HBM data, mechanistic information needs to be found through a 

modeled approximation.  

Figure 2.2 Direct (HBM) and indirect (modeled) EDR-relationships provide mutual 

benefit to understand EDR-relationships 

 

At the same time however, the modeled approximation only is what it is, a model that 

provides an „informed guess‟ on how exposure is related to the target dose. Hence, the 

indirect EDR-relationship should be validated by measurement data, for which obviously 

HBM data would be the prime candidate. To make better use of body burden/biomarker 

data in the process of public health tracking, two essential scientific research tools, 

models and measurements, must be better integrated. Models provide the means to 

integrate and interpret measurements, design hypothesis driven experiments, and 

predict the effectiveness of risk management strategies. Measurements, in turn, 

provide tests of the models and „„ground truth‟‟ (Sohn et al 2004). 

To conclude this chapter, it should be clear that HBM and PBPK modeling are 

interrelated, and both offer important advantages to improve the knowledge on the 

relationship between environmental exposure and associated health effects. Both 

approaches have their merits and draw-backs, and can only achieve their greatest 

potential when used as a tandem. 

In the following chapter, we will give some examples how combining HBM and PBPK 

modeling has offered increased insight into otherwise poorly understood relationship 

between environmental exposure and health effects. 
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CHAPTER 3 COMBINING MEASURING AND 

MODELING: SOME APPLICATIONS 

3.1 Introduction 

In practice, PBPK models and human biomonitoring share the same goal: gaining more 

insight in the relationship between the presence of contaminants in the environment 

and potential health effects. Both approaches have significant merits, but also suffer 

disadvantages. Also, Sohn et al (2004) argued that in spite of the consensus on how to 

build PBPK models, there is much less consensus on how to use these models to find 

environmental determinants of chronic disease from biomonitoring. The new challenge 

in PBPK modeling is to develop a framework for the application of PBPK models to large 

and often poorly characterized human populations that have highly variable exposures, 

activities, physiology, and pharmacokinetics (Bois 2001, Sohn et al 2004). The key 

question is whether and how well the variation in source-to-dose relationships can be 

quantified against the noise contributed by these other variables and uncertain factors. 

In the following, some applications of combined measuring of biomarkers and 

pharmaco- and/or toxicokinetic modeling are given. The main aim of the examples is to 

illustrate how both approaches interact, and are mutually beneficial. 

3.2 Exposure reconstruction 

One of the main options of combining PBPK models and HBM data is to make inferences 

about environmental exposure scenarios for biomarker data collected in population-

based studies (Mosquin et al 2009). Biomarker data from large-scale HBM surveys 

often adequately reflects population variability, yet frequently lack the necessary 

activity information to take into account biomarker kinetics, or to develop aggregate 

exposure profiles. Exposure scenarios can be variable, with multiple possible routes and 

time variability of exposure. While these uncertainties generally remain unaddressed in 

HBM surveys, the additional use of PBPK models may offer further insight in exposure 

reconstruction.  

Therefore, a modeling approach may be particularly useful to provide further insight in 

the most important parameters that determine observed differences in biomarker 

values among and/or within individuals. For example, Gosselin et al (2006) used the 

biologically based toxicokinetic model developed by Carrier et al (2001) to estimate the 

dynamic profile of MeHg in both blood and hair. While many PBPK models used a simple 

one compartmental model to describe the fate of MeHg in the human body (assuming a 

steady-state in MeHg uptake and excretion), the Carrier-model accounts for fluctuating 

MeHg levels in fish, but also for fluctuating fish consumption patterns. Through the 

combined use of measuring and modeling, Gosselin et al (2006) was able to describe 

the bilateral links between the MeHg daily intake and the mercury concentration in 
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blood and hair samples collected at any given time following the onset of any MeHg 

ingestion period. It was clearly illustrated that the steady-state is not valid for MeHg 

toxicokinetic modeling, and the probable time duration of MeHg exposure is essential 

when back-calculating MeHg intakes. Particularly, it was concluded that biomarker 

studies would be better off focusing more on gathering data on the period during which 

the individual might have consumed contaminated food, rather than the need to 

quantify the daily MeHg intake. 

Also Sohn et al (2004) provided a good example of the synergy that is created when 

biomonitoring data and PBPK models are integrated for reconstructing population 

exposure. Combining venous blood concentrations of TCE (trichloroethylene) and PBPK 

modeling showed that population-scale variability of pharmacokinetics dominate the 

uncertainty of the predicted TCE concentration in air, and suggested that one should 

not spent excessive resources obtaining exposure onset and duration data if the 

primary objective is reducing uncertainty in the predicted concentration of TCE in air. 

The authors concluded that in order to achieve optimal synergy among biomarker 

measurements and PBPK modeling, the persistence of the biomarker should be long 

relative to exposure duration for estimating long-term, or population scale, exposure 

effects. 

As a final example, also Ruiz et al (2010) used PBPK modeling to gain further insight in 

urinary cadmium biomarker data from the most recent NHANES biomonitoring survey. 

From these data, the authors predicted urinary Cd concentrations by age at various 

intake doses from 10 to 100 µg Cd/day, and particularly demonstrated the marked 

elevated uptake of Cd in 6-11 year old children. The model also predicted a 1.4- to 1.6-

fold higher urinary Cd excretion in females compared to males in all age groups. The 

study demonstrated that computational techniques such as PBPK models can be useful 

predictors for delineating population subgroups at special risk as a function of age and 

gender. 

3.3 Biomonitoring equivalents (BEs) 

In an effort to improve the framework for the interpretation of biomonitoring data from 

HBM surveys, Hays and co-workers have introduced the concept of the Biomonitoring 

Equivalent (BE). BEs are defined as the concentration of a chemical (or metabolite) in a 

biological medium consistent with defined exposure guidance values or toxicity criteria 

including reference doses and reference concentrations, minimal risk levels or tolerable 

daily intakes (Hays et al 2007, 2008). These exposure guidance values are estimates of 

the daily exposure to a chemical that are believed to be without appreciable health 

risks, and are used regulatory agencies as guidelines for making risk management 

decisions. 

The concept of BEs is an approach that uses available pharmacokinetic data and 

forward dosimetry to calculate levels of biomarkers associated with these exposure 

guidance values (Figure 3.1). 
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Figure 3.1: Schematic diagram showing the concept for calculating BEs and possible 

routes for deriving a Biomonitoring Equivalent. Numbers (1) and (2) refer to specific 

sections in the following text (redrawn from Hays et al 2007) 

 

The BE concept preferentially relies on human pharmacokinetic data to relate external 

dose to biomarker concentrations (pathway (1) in Figure 3.1). However, also when only 

animal-based pharmacokinetic information is available (pathway (2)), this may be 

applied within the concept, taking into account the appropriate uncertainty or safety 

factors. 

There are two basic elements of the derivation process illustrated in Figure 3.2: 

 Identification of the biomarker concentration at the human equivalent Point of 

Departure (BEPOD); 

 Identification of a target margin of exposure (MOE) to be applied to the BEPOD to 

derive the BE value commensurate with the exposure guidance value. 

Practically, a chemical-specific BE can be derived for many chemicals using existing 

pharmacokinetic information.  The BE derivation process includes: 

 Compiling existing tolerable exposure reference values and the approaches used to 

calculate them; 

 Compiling and reviewing existing pharmacokinetic information available for 

translating exposure/intake (mg/kg/day or ppm in air) to internal dose metrics 

(blood or urine concentrations); 

 Reviewing information on the mode of action (MOA) for each endpoint for which an 

exposure guidance value was derived; 

 Determining the best available biomarker and assessing whether existing biomarkers 

used in biomonitoring studies are interpretable; 

 Deriving the appropriate BE values (BEPOD, BERfD); 

 Independent peer-review of the BE. 
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Figure 3.2: Flowchart of the process for derivation of BEPOD values under combinations 

of animal and human toxicity data and either animal or human pharmacokinetic data or 

models. Key steps in the derivation include the evaluation of the application of default 

uncertainty factor components based on understanding regarding the relationship 

between the biomarker and the critical or relevant dose metric.  

 

BMDL, lower bound on the benchmark dose; LOAEL, lowest observed adverse effect level; NOAEL, no 

observed adverse effect level; POD, point of departure; UFA-PK, pharmacokinetic component of the default 

inter-species uncertainty factor; UFA-PD, pharmacodynamic component of the default inter-species 

uncertainty factor. 

It needs to be stressed that BE values are screening values.  They can be used to 

provide a screening level assessment of measured blood or urine levels of a chemical in 

population- or cohort-based studies.  Comparison of measured biomonitoring levels to 

BE values can provide an initial evaluation of whether the measured values in a given 

study are of low, medium, or high priority for risk assessment follow-up and inform 

whether there is a need for additional studies on exposure pathways, potential health 

effects, other aspects affecting exposure or risk, or other risk management activities.   

BE values are not diagnostic criteria or “bright lines” between safe and unsafe levels.  

They cannot be used to evaluate the likelihood of an adverse health effect in an 

individual or even among a population.  Exposure guidance values are set at levels that 

are designed to be health-protective for daily exposure for a full lifetime of exposure, 

while, depending on the chemical, biomonitoring data may be informative only about 

recent exposure levels.  An exceedance of the BE value in a single sample of blood or 

urine may or may not reflect continuing elevated exposure and does not imply that 
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adverse health effects are likely to occur, but can serve as an indicator of relative 

priority for further risk assessment follow-up (Figure 3.3). 

Figure 3.3: Interpretation of population biomonitoring data in exceedance of BEs 

(redrawn from Hays et al 2008)  

 

Hays and coworkers have applied this BE-concept, which explicitly uses 

pharmacokinetic information to relate exposure guidance values to biomonitoring data, 

for a number of chemicals. Tables 3.1 and 3.2 provide an overview of chemicals for 

which BEs have been developed in respectively plasma and urine. 
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Table 3.1 Overview of available chemical-specific BEs in blood 

Chemical BERfD  BEPOD_human BEPOD_animal Reference 

2,4-D (2,4-dichlorophenoxyacetic acid, 

µg/L) 
5 170 540 

Aylward LL, Hays SM. 2008. Regulatory Toxicology and Pharmacology, 51 

(Supplement 1): S37-S48 

Cadmium (µg/L) 1.4-1.7 4.4-5.3 - 
Hays SM, Nordberg M, Yager JW, Aylward LL. 2008. Regulatory Toxicology and 

Pharmacology, 51 (Supplement 1): S49-S56 

Polychlorinated dibenzo-p-dioxins and 

dibenzofurans (ng TEQ/kg) 
31-74 31-74 - 

Aylward LL, LaKind JS, Hays SM. 2008 Journal of Toxicology and Environmental 

Health Part A, 71: 1499-1508 

Toluene 3-50 10-170 90-830 
Aylward LL, Barton HA, Hays SM. 2008. Regulatory Toxicology and Pharmacology, 

51 (Supplement 1): S27-S36 

Trihalomethanes (pg/ml): 

Chloroform 

Dibromochloromethane 

Bromodichloromethane 

Bromoform 

 

230 

80  

20 

130 

 

750 

270  

190 

420 

 

4.400 

2.200  

670 

2.900 

Aylward LL, LaKind JS, Hays SM. 2008. Regulatory Toxicology and Pharmacology, 

51 (Supplement 1): S68-S77 

 

Table 3.2 Overview of available chemical-specific BEs in urine 

Chemical BERFD BEPOD_human Reference 

2,4-D (2,4-dichlorophenoxyacetic 

acid) 
300 µg/g creatinin 30.000 µg/g creatinin 

Aylward LL, Hays SM. 2008. Regulatory Toxicology and Pharmacology, 51 

(Supplement 1): S37-S48 

Acrylamide 8 pmoles/g globin 25 pmoles/g globin 
Hays SM, Aylward LL. 2008. Regulatory Toxicology and Pharmacology, 51 

(Supplement 1): S57-S67 

Cadmium 
1.7-2.0 µg/g 

creatinin  
2.5-6.3 µg/g creatinin 

Hays SM, Nordberg M, Yager JW, Aylward LL. 2008. Regulatory Toxicology and 

Pharmacology, 51 (Supplement 1): S49-S56 

Cyfluthrin 
260-310 µg/g 

creatinin 
2600-3100 µg/g creatinin Aylward LL, Hays SM, Gagné M, Krishnan K. 2009. Regulatory Toxicology and 

Pharmacology,55: 268-295 

Di(2-ethylhexyl)phthalate 
Depending on number of metabolites taken into 

consideration 

Aylward LL, Hays SM, Gagné M, Krishnan K. 2009. Regulatory Toxicology and 

Pharmacology,55: 249-258 

Phthalate esters: 

Diethyl phthalate 

Di-n-butyl phthalate 

Benzylbutyl phthalate 

18 mg/L 

0.2-2.7 mg/L 

3.8-31 mg/L 

180 mg/L 

2-27 mg/L 

38-310 mg/L 

Aylward LL, Hays SM, Gagné M, Krishnan K. 2009. Regulatory Toxicology and 

Pharmacology,55: 259-267 
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As an example on the use of BEs in the interpretation of biomarker data, Aylward et al 

(2010) recently used data from several biomonitoring surveys in the USA and Canada 

to illustrate the value of the BE approach in the context of risk assessment. From the 

available pharmacokinetic data, it was found that 2,4-D is eliminated in urine either as 

the unchanged parent compound (80-95%) or as a conjugate, with urinary half-lives on 

the order of 1 day. Based on these data, is was assumed that continuous exposure for 

more than one week results in a steady state, in which the amount excreted daily in 

urine would be approximately equivalent to the amount absorbed each day. 

Because 2,4-D is excreted as the parent compound in urine, urinary biomarker data 

were used as well. It was recognized however that from a toxicological point of view, 

plasma concentrations probably would have been more informative for predicting target 

tissue concentrations and responses. Following the BE-framework outlined in Figures 

3.1 and 3.2, a comparison between urinary 2,4-D concentrations in both the general 

population (Figure 3.4a) and occupationally exposed pesticide applicators (Figure 3.4b) 

could be compared with the appropriate BEs. 

Figure 3.4: Comparison of urinary 2,4-D levels in (A) the general population, and (B) 

occupationally exposed applicators in the context of the BE value corresponding to 

respectively (A) the USEPA RfD for general population chronic exposures and (B) the 

USEAP occupational risk assessment levels.  

 

For additional information, see Aylward et al (2010). 

From this assessment, it was concluded that current use patterns and risk management 

efforts by industry and government are likely keeping average exposure to 2,4-D for 

the general population and in occupationally exposed groups well below current 

noncancer reference values. 
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3.4 Reverse dosimetry 

Recently, a novel approach to the use of PBPK models in source identification for the 

interpretation of biomarker values has been introduced, which explicitly aims at source 

identification. Establishing the relationship between biomarker data and environmental 

sources involves the reconstruction of past external exposure and has been termed 

“exposure reconstruction” or “reverse dosimetry” (Lyons et al 2008). By using 

advanced statistical methods such as Markov Chain Monte Carlo (MCMC) simulations, 

this reverse dosimetry approach has already been able to show its added value for 

source identification. The main issue however in this reverse dosimetry is that it needs 

to take into account the inherent variability of the population from which the HBM data 

arises. In the following, we dig a little deeper into the possibilities to include reverse 

dosimetry for improved source identification. 

As was already mentioned earlier, biomarker data are often gathered and reported 

without concomitantly collecting corresponding detailed external exposure data in the 

relevant environmental compartments. Hence, the PBPK model should in this setup be 

reversed, and human biomonitoring data can be transformed to equivalent exposure 

concentrations (Tan et al 2006). This approach is generally referred to as reverse 

dosimetry, and basically is defined as “the estimation of the environmental exposures 

that would be consistent with the measured biomonitoring data” (Clewell et al 2008). 

Reverse dosimetry uses pharmacokinetic data in combination with information 

regarding the nature of the potential exposures, to infer the exposures that are likely to 

have resulted in the measured biomonitoring results. The fundamental problem 

underlying reverse dosimetry is to relate a measured internal dose, or tissue 

concentration to an unmeasured external exposure or dose. Typically, the relationship 

between exposure and dose however is such that an inverse does not exist, is unstable, 

or is not unique. The reverse dosimetry problem hence is a problem of statistical 

inference: we wish to determine an estimate of exposure for the general population 

based on biomonitoring data collected from a representative sample of that population. 

This statistical aspect of the problem can be addressed by combining a Bayesian 

analysis with a population model (Lyons et al, 2008). 

Figure 3.5 provides a simplified schematic of a computational framework for exposure 

reconstruction showing major components and processes. Available supporting or 

complementary exposure-related data can provide “prior estimates” of exposures for 

individuals and populations. These estimates in turn can then be improved by using 

PBPK modelling and inversion techniques along with corresponding biomarker data 

(Georgopoulos et al 2009). Although this methodology is still under full development, 

and should currently fit more under “horizon scanning” than under actual application, 

Georgopoulos et al (2009) envisions that it should be possible to develop a 

comprehensive exposure reconstruction framework that allows source 

identification/exposure reconstruction following aggregate (i.e. from multiple exposure 

rouses) and cumulative (i.e. for multiple chemicals) exposures, and provide user-

friendly computational tools for use by the exposure/risk assessment and management 

communities. In addition, the modelling framework outlined in Figure 3.5 could also be 

used for estimating distributions of physiological and biochemical PBPK model 

parameters for individuals and populations that are consistent with available biomarker 

data. 
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Figure 3.5 A simplified schematic of a computational framework for exposure 

reconstruction showing major components and processes. Available exposure-related 

data can provide "prior estimates" of exposures, which in turn can be used in 

conjunction with biomarkers and PBTK modeling to obtain improved estimates of 

exposures and doses (Taken from Georgopoulos et al (2008)) 

 

 

 

Using a Bayesian approach 

An issue associated with both the forward and reverse dosimetry approach described 

earlier is that from a mathematical point of view, these models are highly 

parameterized and must be fitted or calibrated to experimental data in order to make 

accurate predictions of internal dose or reverse exposure scenarios. While other 

methods such as maximum likelihood estimation or least squared error approaches 

have been proposed, a Bayesian approach called Markov Chain Monte Carlo (MCMC) 

analysis has frequently been used to calibrate these complex models (Bois 2001; Hack 

2006; Allen et al 2007). 

Monte Carlo analysis is generally used to evaluate the propagation of variability through 

a model, and results in an estimate of the variance in model output (Figure 3.6). This 

estimation is achieved by randomly sampling model parameters from defined 

distributions and running the model for a large number of iterations. The Bayesian 

approach requires having these defined „prior‟ distributions that reflect the belief or 

knowledge on the distribution of PBPK variables. A Monte Carlo implementation of a 

PBPK model can be viewed as conducting in silico studies in a large number of humans 

with diverse physiology (Tan et al 2006, Bois et al (in press)). 
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Figure 3.6 A graphical overview of Monte Carlo simulations, where the distribution of 

internal concentrations is simulated by repeatedly sampling input values based on the 

distribution of individual parameters in a population(taken from USEPA 2006) 

 

The analysis of the reverse dosimetry problem consists of the following steps: 

 specification of the probability model: specification of the joint probability 

distribution and the specification of prior parameter distributions 

 Bayesian inference: Calculation of the posterior distribution conditioned on the 

observed biomonitoring data using MCMC simulation and calculation of expected 

values for exposure 

 Evaluation of the results: comparison of prior and posterior distributions of 

exposure using MC simulation to general model predictions for the observed 

biomonitoring data, evaluation of parameter independence, and comparison with 

previously obtained results (Lyons et al, 2008) 

Several examples how MCMC analysis was used in forward PBPK modeling occur. 

Among others, the method was used to estimate methylmercury exposure of US 

women of childbearing age (Allen et al 2007), benzene (Yokley et al 2005) or 

perchloroethylene (Covington et al 2006), while Yang et al (2009) used it to describe 

multiroute chloroform exposure. In order to take into account the higher mentioned 

(sub) population variability in pharmacokinetic parameters, Price et al (2003) reported 

the development of the Physiological Parameters for PBPK Modeling (P³M) computer 

program, a source of data for human physiological parameters. From this database, 

records can be randomly retrieved with specification of constraints on age, gender, and 

ethnicity. These output sets can be used as inputs to Monte Carlo-based PBPK models 

of interindividual variation in dose.   

3.5 Using exposure conversion factors (ECF) 

In their case study describing source identification for chloroform, Tan and co-authors 

(2007) described a relatively simple approach to reverse dosimetry using an “exposure 

conversion factor” (ECF). First, a Monte Carlo analysis was performed with varying the 

timing of sampling and different exposure scenarios. A reference chloroform 

concentration in water (= 1 µg/l) was then used to predict the distribution of 

chloroform concentrations in blood in pg/ml). The resulting output distributions were 
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then inverted to obtain a distribution of an ECF in (µg/l in water)/ (pg/ml in blood). The 

distribution of the ECF can be multiplied by any observed chloroform concentration in 

blood to estimate a distribution of chloroform concentrations in water to which the 

individual might have been exposed. This approach is graphically outlined in figure 3.7. 

 

 

 

 

 

 

From their in silico analysis, Tan et al (2006) were able to conclude that showering 

resulted in much higher chloroform concentrations in blood than does water drinking, a 

result which was consistent with what was suggested in experimental studies. However, 

Lyons et al (2008) argued that although the ECF distribution provides a population 

ternal exp. 

3.6 Interpretation of repeated HBM measurements 

Typically, large-scale human biomonitoring surveys gather biomarker measurements 

from single time points. These data are then used to make inferences about longer 

periods of toxicant intake, assuming that biomarker values are representative of 

steady-state conditions. However, steady-state conditions require stable biokinetics, a 

constant rate of exposure, and a dynamic equilibrium among different body tissues. 

Figure 3.8 gives an indication of how a single sampling time may not be representative 

of steady state biomarker concentrations. At the specific sampling time (t = 12), the 

biomarker value can be the result of different exposure scenarios. The dashed line 

implies one high peak exposure episode, the full line a continuous fluctuation around a 

steady-state situation, and the dotted line a completely steady-state situation. 

Obviously, information on the biomarker pharmacokinetics is issue has a significant 

effect on both source identification and potential associations with health effects. 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Schematic outline of the ECF approach for reverse dosimetry (Tan et al 

2007; Clewell et al 2008) 
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An example on how this assumption of steady-state may be important for source 

identification can be found in historical blood-Pb levels. Fifty years ago, blood-Pb levels 

were very well correlated with the emission of Pb from car emissions, as tetraethyl lead 

as an antiknocking agent was the main source of Pb emission in the environment. It 

can be assumed that blood-Pb levels were more or less in a steady state as air 

concentrations were not changing rapidly. Recently, this has been validated for 

different European Blood-Pb datasets (Smolders et al, 2010). Since the outphasing of 

tetraethyl lead in gasoline, the contribution of this continuous exposure has declined 

rapidly, and currently childhood lead exposure in the US is thought to occur primarily 

through paint, dust, and soil ingestion (Bartell et al, 2004). These activities are episodic 

in nature and seem to occur sporadically and at varying rates (Wong et al, 2000).     

Hence, assuming that biomarker values are representative for a steady-state 

concentration in the measured matrix may not be a justified assumption, and may 

require additional investigation. By repeated sampling of individuals with particularly 

high and particularly low biomarker values (e.g. > P95 and < P5), more insight in the 

pharmacokinetic behavior of the biomarker can be obtained. In combination, having an 

additional detailed questionnaire aimed at recording specific exposure scenarios during 

the time period between samplings, more insight into source identification can be 

obtained. The time-lag between sampling obviously is dependent on the half-life of 

chemicals, and the matrix that is used for biomarker determination. 

Chen and co-authors (2009) outlined a stochastic approach using Markov Chain Monte 

Carlo (MCMC) simulations and a PBPK model to estimate inhalation exposure to TCE, 

based on repeated measurements in venous blood. Their procedure illustrated that 

estimating environmental exposure from repeated biomarker measurements could be 

achieved with very high precision given known exposure duration.   

An additional approach, proposed by Bartell et al (2004) could be the inclusion of 

measuring the same chemical, but in different matrices, thus reflecting different 

pharmacokinetic properties of the biomarker. For example, measuring cadmium in both 

Figure 3.8 A generic example indicating how a single biomarker value may not be 

representative for exposure assessment 
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blood and urine could give an indication of the long-term steady state exposure (urine) 

but also of the more recent, dynamic exposure (blood). Combining these both data may 

provide increased resolution for source identification. Already earlier, Henderson (1995) 

proposed the use of multiple biomarkers of varying half-lives to distinguish among 

different possible exposure scenarios.  

Finally, one promising approach to improve the understanding of the kinetics of 

biomarkers is to use multiple biomarkers to describe the presence of a chemical in 

various matrices (i.e. biomarker batteries). By combining a PBPK model (which 

describes the expected distribution of a chemical among different matrices in the body) 

with biomarker battery data (quantifying the parent compound or metabolites in 

different matrices), greater sampling flexibility may be achieved. Mosquin et al (2009) 

argued that when a compound is simultaneously measured in for example blood and 

urine, they can be considered different biomarkers. The availability of multiple 

biomarkers then leads to a trade-off in the design of studies: is it more efficient to 

sample one biomarker over multiple time points or more biomarkers at a single time 

point? From a practical point of view, the latter may be preferred, as it is generally 

much easier and cost efficient to collect multiple biomarkers at a single sampling event 

in general population studies  

In illustrating this observation by using a well-validated PBPK model for chlorpyrifos, 

Mosquin et al (2009) concluded that collecting biomarker samples at additional time 

points tends to be more effective than measuring multiple biomarkers at one time 

point, based on reducing the mean absolute percentage error (MAPE).    
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CHAPTER 4 CONCLUSIONS 

Environmental health impact assessment requires public health tracking, and public 

health tracking requires a process for linking body burdens to a distribution of 

population doses. In order to achieve this requires sufficient and reliable information 

about population exposure and dose to those pollutants that have the most significant 

contribution to the observed health effect (Sohn et al 20044). By combining measuring 

(in the form of human biomonitoring) and modeling (in the form of PBPK models), a 

synergy is obtained. Models provide the means to integrate and interpret 

measurements, design hypothesis-driven experiments, and predict the effectiveness of 

risk management strategies. Biomonitoring in turn provides tests of the model and 

“ground truth” (Sohn et al, 2004).  
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